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Abstract
We numerically solved the implicit, transcendental equation that defines the
eigenenergy surface of a degenerating isolated doublet of unbound states in the
simple but illustrative case of the scattering of a beam of particles by a double
barrier potential. Unfolding the degeneracy point with the help of a contact
equivalent approximant, crossings and anticrossings of energies and widths, as
well as the changes of identity of the poles of the S-matrix, are explained in
terms of sections of the eigenenergy surfaces.

PACS numbers: 25.70.Ef, 03.65.Nk, 33.40.+f, 03.65.Vf, 02.40.Xx

1. Introduction

Unbound decaying states are energy eigenstates of a time reversal invariant Hamiltonian
describing non-dissipative physics in a situation in which there are no particles incident
[1, 2]. Even when the formal Hamiltonian, considered as an operator in the Hilbert space
of square integrable functions, is Hermitian (self-adjoint), this boundary condition makes
the eigenvalue problem non-self-adjoint and the corresponding energy eigenvalues complex
En = En − i1/2�n with En > �n > 0 [3].

Commonly, unbound energy eigenstates are regarded as arising from a perturbation with
the physics essentially unchanged from the bound state case, except for an exponential decay.
But, unbound state physics differs radically from bound state physics in the presence of
degeneracies, that is, coalescence of eigenvalues [4].

In the case of a Hermitian Hamiltonian depending on parameters, the bound state energy
eigenvalues are real and, when a single parameter is varied, the mixing of two levels leads
to the well-known phenomenon of energy level repulsion [5] and avoided level crossing [6].
In the case of unbound energy eigenstates (resonances) of the same Hamiltonian, the energy
eigenvalues are complex and, when a single parameter is varied, this fact opens a rich variety
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of possibilities, namely, crossings and anticrossings of energies and widths [7], and the so-
called ‘change of identity’ of the poles of the S-matrix [8]. These novel effects have attracted
considerable theoretical [9–11] and recently also experimental interest [12]. True degeneracies
of resonance energy eigenvalues result from a joint crossing of energies and widths in a physical
system depending on only two real parameters and give rise to the occurrence of a double pole
of the scattering matrix in the complex energy plane [10]. Associated with a double pole of
the S-matrix, the quantum system has a chain of Jordan–Gamow generalized eigenfunctions
[3, 13, 14]. Examples of double poles in the scattering matrix of simple quantum systems
have been recently described [15–18]. Degeneracy of complex energy eigenvalues of non-
Hermitian PT symmetric Hamiltonian has been discussed by Znojil [19–21] and Mostafazadeh
[22]. From a phenomenological point of view, Rotter discussed double poles in the scattering
matrix and level repulsion of unbound states in the framework of an effective many-body
theory [23–26].

The characterization of the singularities of the eigenenergy surfaces at a degeneracy
of unbound states in parameter space arises naturally in connection with the Berry phase
of unbound states that was predicted by Hernández et al [27–29] and independently by
Heiss [30], see also the interesting recent work by Mailybaev et al [31]. The Berry phase
of two unbound states was measured by the Darmstadt group [32, 33]. The unfolding of
energy eigenvalue surfaces at a degeneracy of unbound states of a Hermitian Hamiltonian
was discussed by Hernández et al [34] and the unfolding of eigenvalue surfaces of non-
Hermitian Hamiltonian matrices with applications in modern problems of quantum physics,
crystal optics, physical chemistry, acoustics, mechanics and circuit theory has been the subject
of many recent investigations [35–42].

In this paper, we will be concerned with some physical and mathematical aspects of the
mixing and degeneracy of two unbound energy eigenstates in an isolated doublet of resonances
of a quantum system depending on two control parameters. The plan of the paper is as follows:
in section 2, we give the results of a numerical computation of the surfaces that represent the
resonance energy eigenvalues as functions of the control parameters in the scattering of a
beam of particles by a double barrier potential. The analytical structure of the singularity of
the energy surface at the crossing point is characterized in section 3, where we also introduce
a contact equivalent approximant to the energy surface at the degeneracy point. Section 4 is
devoted to a discussion of crossings and anticrossings of energies and widths, as well as the
changes of identity of the poles of the S-matrix, in term of sections of the energy surfaces. We
end our paper with a short summary and some conclusions.

2. Resonances in a double barrier potential

Doublets of resonances and accidental degeneracies of unbound states may occur in the
scattering of a beam of particles by a potential with two regions of trapping. A simple
example is provided by a spherically symmetric potential V (r) such that the two regions of
trapping are two potential wells defined by two concentric potential barriers located between
the origin of coordinates and the outer region where the potential V (r) vanishes. In order to
make the analysis as simple and explicit as possible, we take the wells and barriers to be square
as shown in figure 1. In this section, we will consider the conditions for the occurrence of a
degeneracy of unbound states in this simple system and we will describe the numerically exact
computation of the surfaces that represent the complex energy eigenvalues as functions of the
control parameters of the system in the neighbourhood of and at a degeneracy of unbound
states.
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Figure 1. The double barrier potential is such that it supports two unbound states with equal
energies and half-lives. The control parameters of the system are d and V3.

2.1. The Jost regular solution

The s-wave radial Schrödinger equation is

d2φ(k, r)

dr2
+ (k2 − U(r))φ(k, r) = 0, (1)

the potential U(r) = 2mV (r)/h̄2 is a double barrier such that between the origin of coordinates
and the outer region, where the particles propagate freely, there are two square potential
wells separated by two square potential barriers, as shown in figure 1. The system has
seven parameters, the positions ri (i = 1, 2, 3, 4) and heights Vi (i = 2, 3, 4) of the four
discontinuities of the potential. We will keep the five parameters (V2, V4, r1, r3 − r2, r4 − r3)

fixed and will vary the depth V3 of the outer well and the thickness of the inner barrier
d = r2 − r1. In the following, we will refer to the pair of parameters (d, V3) as the control
parameters of the system.

The radial Schrödinger equation (1) is solved exactly. The Jost regular solution of (1)
normalized to unit slope at the origin, φ(k, r), is as follows.

In the wells,

φ1(k, r) = 1

k
sin kr, 0 � r � r1, (2)

and

φ3(k, r) = φ2(k, r2)[cos(K3(k, V3)(r − r2))

+ α2(k, d) sin(K3(k, V3)(r − r2))], r2 � r � r3. (3)

In the barriers,

φi(k, r) = φi−1(k, ri−1)[cosh(Ki(k)(r − ri−1)) + αi−1(k, d) sinh(Ki(k)(r − ri−1))],

ri−1 � r � ri, i = 2, 4, (4)

and in the outer region,

φ5(k, r) = φ4(k, r4)[cos k(r − r4) + α4(k, d) sin k(r − r4)], r4 � r < ∞. (5)

In these expressions k is the wave number of the free waves and

Ki(k) = ((−1)i(Ui − k2))1/2, i = 2, 3, 4 (6)

is the wave number in the barriers and the outer well.
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The logarithmic derivatives αi(k, d, V3) of φ(k, r) at the consecutive discontinuities ri

and ri+1 are related by the matching conditions at ri+1,

α1(k) = k

K2(k)
cot kr1, α2(k, d) = K2(k)

K3(k)

α1(k) + tanh(K2(k)d)

1 + α1(k) tanh(K2(k)d)
, (7)

α3(k; d, V3) = K3(k, V3)

K4(k)

α2(k, d) − tan(K3(k)(r3 − r2))

1 + α2(k, d) tan(K3(k)(r3 − r2))
(8)

and

α4(k; d, V3) = K4(k)

k

α3(k; d, V3) + tanh(K4(k)(r4 − r3))

1 + α3(k; d, V3) tanh(K4(k)(r4 − r3))
. (9)

Since the first logarithmic derivative is known, successive substitution of αi(k, d, V3) in
αi+1(k, d, V3) gives an explicit solution for α4(k; d, V3) and an explicit expression for the
regular solution is obtained from equations (2)–(5).

2.2. The Jost function

When the regular solution in the outer region, (5), is written as a linear combination of an
outgoing wave exp(ikr) and an incoming wave exp(−ikr)

φ5(k, r) = φ4(k, r4)
1
2 [(1 − iα4(k;V3, d)) exp ik(r − r4)

+ (1 + iα4(k;V3, d)) exp −ik(r − r4)], r4 � r < ∞, (10)

the coefficient of the incoming wave is the Jost function. Making use of equations (4), (9) and
(10) we find an exact expression for the Jost function f (−k),

f (−k; d, V3) = sin kr1[cosh K2(k)d + α1(k) sinh K2(k)d]

× [cos K3(k, V3)(r3 − r2) + α2(k, d, V3) sin K3(k, V3)(r3 − r2)]

×
{

K4(k)

k
[sinh K4(k)(r4 − r3) + α3(k; d, V3) cosh K4(k)(r4 − r3)]

− i[cosh K4(k)(r4 − r3) + α3(k; d, V3) sinh K4(k)(r4 − r3)]

}
exp ikr4. (11)

2.3. The physical solutions

The scattering wavefunction, ψ(k, r), and the regular solution, φ(k, r), are related by [43]

ψ(k, r) = −2ik

f (−k)
φ(k, r), (12)

and the scattering matrix is given by

S(k) = f ∗(−k)

f (−k)
= exp(i2δ(k)), (13)

where the Jost function f (−k) is given by (11).
The zeros of the Jost function give resonance poles in the scattering wavefunction ψ(k, r),

and in the S(k) matrix, and from (1) and (2)–(5), we may verify that all unbound energy
eigenfunctions of the radial Schrödinger equation are associated with roots (zeros) of the Jost
function.

Unbound state eigenfunctions also called resonant state or Gamow eigenfunctions are
the solutions of equation (1) that vanish at the origin, and at infinity satisfy the outgoing
wave boundary condition. When the Jost function has a zero at kn, the coefficient of the
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incoming wave in (10) vanishes, and φ(kn, r) is proportional to the outgoing wave solution of
equation (1) for r larger than the range of the potential. Hence, the unbound state eigenfunctions
are related to the regular solution by

un(kn, r) = N−1
n φ(kn, r), (14)

where Nn is a normalization constant and kn is a zero of the Jost function

f (−kn; d, V3) = 0. (15)

2.4. Degeneracy of unbound energy eigenvalues

A degeneracy of unbound states results from the exact coincidence of two simple zeros of the
Jost function, which merge into one double zero lying in the fourth quadrant of the complex
k-plane. Hence, the condition for a degeneracy of two unbound energy eigenstates at some
k = kd is that both the Jost function and its first derivative vanish at kd ,

f (−kd; d, V3) = 0,

(
df (−k; d, V3)

dk

)
kd

= 0, (16)

where f (−k; d, V3) is given in (11).
Therefore, to locate a degeneracy of unbound states, the coupled equations (16) were

solved numerically. The zeros of the Jost function are found by an algebraic computer
package that searches for the minima of |f (−k)| in the complex k-plane. In the computation,
the five parameters V2, V4, r1, r3 − r2 and r4 − r3 were kept fixed at the values V2 = V4 = 2,

r1 = 1, r3 − r2 = 1, r4 − r3 = 0.304 892 and only the control parameters d and V3 were
allowed to vary. Starting with the values d = 2 and V3 = 1.04, we find the first isolated
doublet of resonances at k1 = 2.210 1546 − i0.136 6887 and k2 = 2.232 1776 − i0.001 7984.

Then, we adjusted the control parameters d and V3 until k1 and k2 became equal to some
common value kd . We also computed numerically |df (−k)/dk| at k = kd to verify that
the second equation was also satisfied to some previously prescribed accuracy. In this way,
we found that by fine tuning the control parameters to the values d∗ = 1.131 466 1145 and
V ∗

3 = 1.038 235 081, the first doublet of resonances becomes degenerate, with a precision
better than one part in 108, at kd = 2.226 976 06 −i0.072 201 39.

In the following, we will refer to the double zero of f (−k) at kd as the degeneracy point
or crossing point of the doublet of resonant states in the complex k-plane and to the point
(d∗, V ∗

3 ) as the exceptional point in parameter space.

2.5. Energy surfaces

The energy eigenvalues En(d, V3) = (h̄2/2m)k2
n(d, V3) of the physical system are obtained

from the zeros of the Jost function, given in equation (15). That condition defines, implicitly,
the inverse functions

kn(d, V3) = f −1(0; d, V3), n = 1, 2, . . . . (17)

as branches of a multivalued function [43] which will be called the wave number pole
position function. Each branch kn(d, V3) is a continuous, single-valued function of the
control parameters. When the physical system has an isolated doublet of unbound states
which become degenerate for some exceptional values of the control parameters (d∗, V ∗

3 ), the
corresponding two branches of the energy–pole position function, E1(d, V3) and E2(d, V3),
are equal (cross or coincide) at that point. With the purpose of exploring the geometrical
and topological properties of the surfaces representing the pole position function k1,2(d, V3)
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Figure 2. The two-sheeted surface SR that represents the real part of the eigenwave numbers k1
and k2 as functions of the control parameters (d, V3) in the vicinity of a degeneracy of unbound
states.

Figure 3. The two-sheeted surface SI that represents the imaginary part of eigenwave numbers
k1 and k2 as functions of the control parameters (d, V3) in the neighbourhood of a degeneracy of
unbound states with complex resonance energies Ei = h̄2k2

i /2m, i = 1, 2.

of the isolated doublet of resonances in parameter space, we numerically solved the implicit
equation (15) for k1(d, V3) and k2(d, V3) in the neighbourhood of and at a degeneracy of
unbound states. The results of the numerical computation are represented as surfaces in a
Euclidean space with coordinates (Re k, Im k, d, V3).

In figure 2, the real function Re k1,2(d, V3) is shown as a surface SR in the three-
dimensional subspace with Cartesian coordinates (Re k, d, V3). Similarly, in figure 3, the
imaginary function Im k1,2(d, V3) is shown as a surface SI in the three-dimensional subspace
with Cartesian coordinates (Im k, d, V3).
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We see that close to the degeneracy of unbound states, the function Re k1,2(d, V3) has
two branches and is represented by a two-sheeted surface SR . The two sheets of SR are two
copies of the plane (d, V3) which are cut and joined smoothly along a line LR starting at the
exceptional point and extending to values d � d∗ and V3 � V ∗

3 .
The function Im k1,2(d, V3) has also two branches and is represented by a two-sheeted

surface SI . The two sheets of SI are two copies of the plane (d, V3) which are cut and pasted
smoothly along a line LI extending from the exceptional point to values d � d∗ and V3 � V ∗

3 .
The projection of the lines LR and LI on the plane (d, V3) are the two halves of a line L′

that goes through the exceptional point (d∗, V ∗
3 ).

At the exceptional point, and only at that point, both the real and imaginary parts of k1

and k2 are equal. Therefore, in the complex k-plane, at the crossing point, the two simple
zeros of the Jost function merge into one double zero which is an isolated point in the complex
k-plane.

3. The analytical behaviour of the pole position function close to the exceptional point

In this section, it will be shown that the singularity of the energy surface at the degeneracy
or crossing point is an algebraic branch point of square-root type. The analytical structure of
the singularity of the energy surface will be worked out and discussed in detail. The results
in this and the following section are not restricted to the double barrier potential, to stress this
generality, the control parameters will be called x1 and x2.

Let us start by recalling that when the first and second absolute moments of the potential
exist, and the potential decreases at infinity faster than any exponential (e.g., if V (r) has a
Gaussian tail or if it vanishes identically beyond a finite radius), the Jost function f (−k; x1, x2)

is an entire function of k [43]. The entire function of k, f (−k; x1, x2), may be written in the
form of an infinite product, according to Hadamard’s form of the Weierstrass factorization
theorem [44], and by using a theorem of Pfluger [45], we may write

f (−k; x1, x2) = f (0) exp(ikR)

∞∏
1

(
1 − k

kn(x1, x2)

)
(18)

where R is the range of the potential, f (0) �= 0 and {kn} are the zeros of f (−k; x1, x2), see
also Newton [43].

When the Jost function has a set of isolated zeros, the implicit equation for the pole
position function, equation (15), may, in principle, be solved, at least numerically, for each
branch kn(x1, x2) without ambiguity. When the system has an isolated doublet of resonances
which may become degenerate, the corresponding branches of the pole position function, say
k1(x1, x2) and k2(x1, x2), may be equal (cross or coincide) at an exceptional point. In this
case, it is not possible to solve equation (15) for each individual branch without ambiguity and
one should proceed to solve that equation for the pole position function of the two members
of the isolated doublet of resonances.

To be precise, we will say that the system has an isolated doublet of unbound states if
there is a finite bounded and connected region M in parameter space and a finite domain D in
the fourth quadrant of the complex k-plane, such that when (x1, x2) ε M, the Jost function has
two and only two zeros, k1 and k2, in the finite domain D ⊂ C, all other zeros of f (−k; x1, x2)

lying outside D.
The pole position function k1,2(x1, x2) of the isolated doublet of resonances,

k1,2(x1, x2) = f −1(0; x1, x2), (19)
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is implicitly defined by the equation f (−k1,2; x1, x2) = 0 and the conditions(
df (−k; x1, x2)

dk

)
kd

= 0 and

(
d2f (−k; x1, x2)

dk2

)
kd

�= 0, (20)

for (x1, x2) in a neighbourhood of the exceptional point (x∗
1 , x∗

2 ).
Then, to find an expression for the pole position function of the isolated doublet of unbound

states, the two zeros of f (−k; x1, x2), corresponding to the isolated doublet of unbound states,
are explicitly factorized in (18) as

f (−k; x1, x2) = [k − k1(x1, x2)][k − k2(x1, x2)]g1,2(k; x1, x2), (21)

which may be conveniently rearranged as

f (−k; x1, x2) = [(
k − 1

2 (k1 + k2)
)2 − 1

4 (k1 − k2)
2
]
g1,2(k, x1, x2), (22)

with

g1,2(k; x1, x2) = f (0) exp(ikR)
1

k1(x1, x2)k2(x1, x2)

∞∏
3

(
1 − k

kn(x1, x2)

)
, (23)

the expression in square brackets in the right-hand side of equation (22) is the Weierstrass
polynomial of the isolated doublet of unbound states [46].

Solving equation (22) for k1,2(x1, x2) when f (−k; x1, x2) vanishes, we get

k1,2(x1, x2) = 1
2 (k1(x1, x2) + k2(x1, x2)) +

√
1
4 (k1(x1, x2) − k2(x1, x2))2 (24)

with (x1, x2) in a neighbourhood of the exceptional point. This equation relates the wave
number pole position function of the doublet to the pole position function of the individual
unbound (resonance) states. Since the argument of the square-root function is complex, it is
necessary to specify the branch. Here and thereafter, the square root of any complex quantity
F will be defined by

√
F = |

√
F | exp

(
i 1

2 arg F
)
, 0 � arg F � 2π, (25)

so that |√F | = √|F | and the F-plane is cut along the real axis.
Now, we will proceed to the derivation of a contact equivalent approximant to the pole

position function of the doublet at the crossing point.
According to the preparation theorem of Weierstrass [46], the functions 1/2(k1(x1, x2) +

k2(x1, x2)) and 1/4(k1(x1, x2)−k2(x1, x2))
2, appearing in the right-hand side of equation (24),

are regular at the exceptional point and admit a Taylor series expansion about that point:

1

2
(k1(x1, x2) + k2(x1, x2)) = kd(x

∗
1 , x∗

2 ) +
2∑

i=1

d
(1)
i (xi − x∗

i ) + O((xi − x∗
i )2) (26)

and

(k1(x1, x2) − k2(x1, x2))
2 =

2∑
i=1

c
(1)
i (xi − x∗

i ) + O((xi − x∗
i )2). (27)

The complex coefficients c
(1)
i and d

(1)
i , appearing in these equations, may readily be

computed from the Jost function with the help of the implicit function theorem [46]:

c
(1)
i = −8[(

∂2f (−k;x1,x2)

∂k2

)
x∗

1 ,x∗
2

]
k=kd

[(
∂f (−k; x1, x2)

∂x1

)
x2

]
k=kd

(28)
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and

d
(1)
i = −1[(

∂2f (−k;x1,x2)

∂k2

)
x∗

1 ,x∗
2

]
k=dd

{[(
∂2f (−k; x1, x2)

∂x1∂k

)
x2

]
k=kd

− 1[(
∂2f (−k;x1,x2)

∂k2

)
x∗

1 ,x∗
2

]
k=kd

1

3

[(
∂3f (−k; x1, x2)

∂k3

)
x∗

1 ,x∗
2

]
k=kd

×
[(

∂f (−k; x1, x2)

∂x1

)
x2

]
k=kd

}
. (29)

A contact equivalent approximant, k̂1,2(x1, x2), to the doublet’s pole position function is
obtained when the Taylor series expansions (26) and (27) are substituted for the functions
1/2(k1(x1, x2) + k2(x1, x2)) and 1/4(k1(x1, x2) − k2(x1, x2))

2. Keeping only the first-order
terms, we obtain

k̂1,2(x1, x2) = kd(x
∗
1 , x∗

2 ) +
2∑

i=1

d
(1)
i (xi − x∗

i ) +

√
1

4

[
c
(1)
1 (x1 − x∗

1 ) + c
(1)
2 (x2 − x∗

2 )
]
. (30)

Then, from (22) and (30), close to the exceptional point, the Jost function may be
approximated as

f (−k; x1, x2) ≈ 1

g1,2(kd; x∗
1 , x∗

2 )
f̂ doub(−k; x1, x2), (31)

where

f̂ doub(−k; x1, x2) =
[
k −

(
kd +

2∑
i=1

d
(1)
i (xi, x

∗
i )

)]2

− 1

4

(
c
(1)
1 (x1 − x∗

1 ) + c
(1)
2 (x2 − x∗

2 )
)
.

(32)

The coefficient [g1,2(kd, x
∗
1 , x∗

2 )]−1 in (31) may be understood as a scaling factor. Hence,
the two-parameter family of functions f̂ 1,2(−k; x1, x2) is contact equivalent to the Jost function
at the exceptional point and is also a universal unfolding [47] of f (−k; x1, x2) at the exceptional
point where the degeneracy of unbound states occurs.

3.1. Energy–pole position function

A contact equivalent approximant to the energy–pole position function E1,2(x1, x2) at the
crossing point of the doublet of unbound states is readily obtained from (24), (26)–(27). Taking
the square in both sides of (30), multiplying them by h̄2/2m and recalling Ei = (h̄2/2m)k2

i , in
the approximation of (26)–(30), we get

E1,2(x1, x2) ≈ Ed(x
∗
1 , x∗

2 ) + 	Ed(x1, x2) + ε̂1,2(x1, x2), (33)

where

ε̂1,2(x1, x2) =
√

1
4

[
C

(1)
1 (x1 − x∗

1 ) + C
(1)
2 (x2 − x∗

2 )
]
, (34)

and C
(1)
i = (h̄2kd(x

∗
1 , x∗

2 )/m)2c
(1)
i . It will be convenient to slightly change the notation

�ξ =
(

ξ1

ξ2

)
=

(
x1 − x∗

1

x2 − x∗
2

)
, �R =

(
Re C

(1)
1

Re C
(1)
2

)
, �I =

(
Im C

(1)
1

Im C
(1)
2

)
. (35)



10096 E Hernández et al

The components of the real fixed vectors �R and �I are the real and imaginary parts of the
coefficients C

(1)
i of (xi − x∗

i ) in the Taylor expansion of the function 1/4(E1(x1, x2) −
E2(x1, x2))

2 and the real vector �ξ is the position vector of the point (x1, x2) relative to the
exceptional point (x∗

1 , x∗
2 ) in parameter space.

In the notation defined in equations (35),

ε̂2
1,2(x1, x2) = 1

4 (( �R · �ξ) + i(�I · �ξ)) (36)

and

|ε̂1,2(x1, x2)|2 = + 1
4

√
(( �R · �ξ)2 + (�I · �ξ)2). (37)

Solving for the real and imaginary parts of the function ε̂1,2(x1, x2), we obtain

Re ε̂1,2(x1, x2) = ± 1

2
√

2

[
+

√
( �R · �ξ)2 + (�I · �ξ)2 + �R · �ξ]1/2

, (38)

Im ε̂1,2(x1, x2) = ± 1

2
√

2

[
+

√
( �R · �ξ)2 + (�I · �ξ)2 − �R · �ξ]1/2

(39)

and

sgn(Re ε̂1,2) sgn(Im ε̂1,2) = sgn(�I · �ξ). (40)

It follows from (38) that Re ε̂1,2(x1, x2) is a two-branched function of (ξ1, ξ2) which may be
represented as a two-sheeted surface SR in a three-dimensional Euclidean space with Cartesian
coordinates (Re E, ξ1, ξ2). The two branches of Re E(ξ1, ξ2) are represented by two sheets
which are copies of the plane (ξ1, ξ2) cut along a line where the two branches of the function
are joined smoothly. Since a negative and a positive number are equal only when both vanish,
the cut is defined as the locus of the points where the argument of the square-root function in
the right-hand side of (38) vanishes. Close to the origin of coordinates (the exceptional point),
this locus is defined by a unit vector ξ̂o in the (�ξ1, �ξ2) plane such that

�I · ξ̂o = 0 and �R · ξ̂o = −| �R · ξ̂o|. (41)

Therefore, the real part of the energy–pole position function, E1,2(x1, x2), as a function of
the real parameters (x1, x2), has an algebraic branch point of square-root type (rank 1) at the
exceptional point with coordinates (x∗

1 , x∗
2 ) in parameter space and a branch cut along a line,

LR , that starts at the exceptional point and extends in the positive direction defined by the unit
vector ξ̂o satisfying equations (41).

A similar analysis shows that the imaginary part of the energy–pole position function,
Im E1,2(x1, x2), as a function of the real parameters (x1, x2), also has an algebraic branch point
of square-root type (rank 1) at the exceptional point with coordinates (x∗

1 , x∗
2 ) in parameter

space and also has a branch cut along a line, LI , that starts at the exceptional point and extends
in the negative direction defined by the unit vector ξ̂o satisfying equations (41).

The branch cut lines, LR and LI , are in orthogonal subspaces of a four-dimensional
Euclidean space with coordinates (Re E, Im E, ξ1, ξ2), but have one point in common, the
exceptional point with coordinates (x∗

1 , x∗
2 ).

Along the lineLR , excluding the exceptional point (x∗
1 , x∗

2 ), Re E1(x1, x2) = Re E2(x1, x2),
but Im E1(x1, x2) �= Im E2(x1, x2).

Similarly, along the line LI , excluding the exceptional point, Im E1(x1, x2) = Im
E2(x1, x2), but Re E1(x1, x2) �= Re E2(x1, x2).

Equality of the complex resonance energy eigenvalues (degeneracy of resonances),
E1(x

∗
1 , x∗

2 ) = E2(x
∗
1 , x∗

2 ) = Ed(x
∗
1 , x∗

2 ), occurs only at the exceptional point with coordinates
(x∗

1 , x∗
2 ) in parameter space and only at that point.
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In consequence, in the complex energy plane, the crossing point of two simple resonance
poles of the scattering matrix is an isolated point where the scattering matrix has one double
resonance pole.

4. Phenomenology of the exceptional point

There is a variety of phenomenological manifestations of the topological and geometrical
properties of the singularity of the energy surfaces at an exceptional point, which fall roughly
in two categories, according to the experimental set-up. First, when one control parameter is
slowly varied while keeping the other constant, crossings and anticrossings of energies and
widths are experimentally observed [48–50], as well as, the so-called, changes of identity of
the poles of the scattering matrix [8, 51]. Second, when the system is slowly transported
in a double circuit around the exceptional point in parameter space, it is observed that the
wavefunction of the system acquires a geometrical or Berry phase [27–33].

4.1. Sections of the energy surfaces

The experimentally determined dependence of the difference of complex resonance energy
eigenvalues on one control parameter, say ξ1, while the other is kept constant, ξ2 = ξ̄

(i)
2 , i =

1, 2, 3,

Ê1
(
ξ1, ξ̄

(i)
2

) − Ê2
(
ξ1, ξ̄

(i)
2

) = ε̂1,2
(
ξ1, ξ̄

(i)
2

)
, (42)

has a simple and straightforward geometrical interpretation, it is a direct measurement of the
intersection of the eigenenergy surface of the doublet ε̂1,2(ξ1, ξ2) with the hyperplane defined
by the condition ξ2 = ξ̄

(i)
2 , i = 1, 2, 3.

The intersection of the eigenenergy surface ε̂1,2(ξ1, ξ2) and each one of the hyperplanes
πi : ξ2 = ξ̄

(i)
2 defines two three-dimensional curves for each value of ξ̄

(i)
2 :

ε̂1,2(ξ1, ξ2) ∩ πi =
{
Ĉ1(πi)

Ĉ2(πi)
. (43)

The sections Ĉ1(πi) and Ĉ2(πi) are the three-dimensional curves traced by the points
Ê1

(
ξ1, ξ̄

(i)
2

)
and Ê2

(
ξ1, ξ̄

(i)
2

)
on the surface ε̂1,2(ξ1, ξ2) when the point with coordinates

(
ξ1, ξ̄

(i)
2

)
moves along a straight line path parallel to the Oξ1 axis, and ξ1,i � ξ1 � ξ1,f , in parameter
space.

The projections of the sections Ĉ1(πi) and Ĉ2(πi) on the planes (Re Ê, ξ1) and (Im Ê, ξ1)
are

Re[Ĉm(πi)] = Re Êm

(
ξ1, ξ̄

(i)
2

)
m = 1, 2 (44)

and

Im[Ĉm(πi)] = Im Êm

(
ξ1, ξ̄

(i)
2

)
m = 1, 2, (45)

respectively, see figures 4–6. A comparison of the representations of the eigenenergy surfaces
provided by the numerically exact computation and the contact equivalent approximant is
shown in figure 7.

The projections of the sections Ĉ1(πi) and Ĉ2(πi) on the plane (Re Ê , Im Ê) are the
trajectories of the S-matrix poles in the complex energy plane. An equation for these
trajectories is obtained by eliminating ξ1 between Re Êm

(
ξ1, ξ̄

(i)
2

)
and Im Êm

(
ξ1, ξ̄

(i)
2

)
,m =

1, 2, equations (38)–(39),

(Re Êm)2 − 2 cot φ1(Re Êm)(Im Êm) − (Im Êm)2 − 1
4

( �R · ξ̄ (i)
c

) = 0 (46)
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Figure 4. The curves Ĉ1(π1) and Ĉ2(π1) are the intersection of the hyperplane π1 : ξ2 = ξ̄
(1)
2 and

the two-sheeted surface ε̂1,2. The projections of Ĉ1(π1) and Ĉ2(π1) on the planes (Im E, ξ1) and
(Re E, ξ1) show a crossing of widths and anticrossing of energies, respectively. The projections
of Ĉ1(π1) and Ĉ2(π1) on the plane (Re E, Im E) are the trajectories of the S-matrix poles in the
complex energy plane. In the figure, ξ1 = d − d∗.

Figure 5. The curves Ĉ1(π2) and Ĉ2(π2) are the intersections of the hyperplane π2 that goes
through the exceptional point (ξ∗

1 , ξ∗
2 ) in parameter space and the two-sheeted surface ε̂1,2(ξ1, ξ2).

The projections of Ĉ1(π2) and Ĉ2(π2) on the planes (Re E, ξ1) and (Im E, ξ1) show a joint crossing
of energies and widths. The projections of Ĉ1(π2) and Ĉ2(π2) on the plane (Re E, Im E) are the
critical trajectories of the S-matrix poles in the complex energy plane. At the crossing point, the
two simple poles coalesce into one double pole of S(E).

where

cot φ1 = R2

I1
(47)

and the constant vector �ξ (i)
c is such that

(�I · �ξc)|ξ2=�ξ (i)
2

= 0. (48)
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Figure 6. The curves Ĉ1(π3) and Ĉ2(π3) are the intersection of the hyperplane π3 := ξ̄
(3)
2

and the two-sheeted surface ε̂1,2. The projections of Ĉ1(π3) and Ĉ2(π3) on the planes
(Re E, ξ1) and (Im E, ξ1) show a crossing of energies and an anticrossing of widths. The projections
of Ĉ1(π3) and Ĉ2(π3) on the plane (Re E, Im E) are the trajectories of the S-matrix poles in the
complex energy plane and they do not cross. In the figure, ξ1 = d − d∗.

The discriminant of (46), 4 cot2 φ1 + 1, is positive. Therefore, close to the crossing point, the
trajectories of the S-matrix poles are the branches of a hyperbola defined by (46).

4.2. Crossings and anticrossings of energies and widths

Crossings or anticrossings of energies and widths are experimentally observed when the
difference of complex resonance energy eigenvalues, Ê1(ξ1, ξ̄2)− Ê2(ξ1, ξ̄2) = 	E − i1/2	�,
is measured as a function of the slowly varying parameter ξ1, keeping the other constant,
ξ2 = ξ̄

(i)
2 . From equations (38)–(39), and keeping ξ2 = ξ̄

(i)
2 , we obtain

	E = En − En+1 =
√

2

2

[
+

√
( �R · �ξ)2 + (�I · �ξ)2 + ( �R · �ξ)

]1/2]
ξ2=ξ̄

(i)
2

(49)

and

	� = (�n − �n+1) = −
√

2
[

+

√
( �R · �ξ)2 + (�I · �ξ)2 − ( �R · �ξ)

]1/2∣∣
ξ2=ξ̄

(i)
2

. (50)

These expressions allow us to relate the terms ( �R · �ξ) and (�I · �ξ) directly with observables of
the isolated doublet of resonances. Taking the product of 	E	�, and recalling equation (40),
we get

	E	� = −(�I · �ξ)|
ξ2=ξ̄

(i)
2

, (51)

and taking the differences of the squares of the left-hand sides of (49) and (50), we get

(	E)2 − 1
4 (	�)2 = ( �R · �ξ)|

ξ2=ξ̄
(i)
2

. (52)

At a crossing of energies 	E vanishes, and at a crossing of widths 	� vanishes. Hence,
the relation found in equation (51) means that a crossing of energies or widths can occur if
and only if (�I · �ξ)

ξ̄
(i)
2

vanishes.

For a vanishing (�I · �ξc)ξ̄ (i)
2

= 0 = 	E	�, we find three cases, which are distinguished

by the sign of ( �R · �ξc)ξ̄ (i)
2

. From equations (49) and (50),
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(a) (d )

(b) (e)

(c) (f )

Figure 7. Projections of the sections C1(πi) and C2(πi) on the planes (Im E, ξ1) and (Re E, ξ1)
are shown in the left and right columns, respectively, for (a) V3 = 1.0381, (b) V3 = V ∗

3 and
(c) V3 = 1.0834. The full line is the numerically exact calculation and the dotted line is the contact
equivalent approximant.

(i) ( �R · �ξc)ξ̄ (i)
2

> 0 implies 	E �= 0 and 	� = 0, that is, energy anticrossing and width
crossing;
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(ii) ( �R · �ξc)ξ̄ (i)
2

= 0 implies 	E = 0 and 	� = 0, that is, joint energy and width crossings,
which is also a degeneracy of the two complex resonance energy eigenvalues;

(iii) ( �R · �ξc)ξ̄ (i)
2

< 0 implies 	E = 0 and 	� �= 0, i.e. energy crossing and width anticrossing.

This rich physical scenario of crossings and anticrossings for the energies and widths of
the complex resonance energy eigenvalues extends a theorem of von Neumann and Wigner
[5] for bound states to the case of unbound states.

The general character of the crossing–anticrossing relations of the energies and widths of
a mixing isolated doublet of resonances, discussed above, has been experimentally established
by von Brentano and his collaborators in a series of beautiful experiments [48–50].

4.3. Trajectories of the S-matrix poles and changes of identity

In subsection 4.1, we found that when one control parameter, say ξ1, is varied and the other
control parameter is kept constant ξ̄

(i)
2 and close to the exceptional value, the trajectories of

the S-matrix poles are the branches of a hyperbola defined by (46)–(48). The asymptotes of
this hyperbola are the two straight lines defined by

Im E (I) = tan
φ

2
Re E (I) (53)

and

Im E (II) = −cot
φ

2
Re E (II). (54)

The two branches of the hyperbola are in opposite quadrants of the complex energy plane
divided by the asymptotes, see figure 8.

We find three types of trajectories, which are distinguished by the sign of ( �R · �ξ)|ξ2=ξ̄2
:

(i) When ( �R · �ξ)|ξ2=ξ̄2
> 0, one branch of the hyperbola lies to the left and the other lies to

the right of a vertical line that goes through the crossing point.
(ii) Critical trajectories, when ( �R · �ξ)|ξ2=ξ̄2

= 0, are the asymptotes of the hyperbola. The two
simple poles start from opposite ends of the same straight line and move towards each
other until they meet at the crossing point where they coalesce to form a double pole of
the S-matrix. From there, they separate moving away from each other on a straight line
at 90◦ with respect to the first asymptote.

(iii) When ( �R · �ξ)|ξ2=ξ̄2
< 0, one pole moves on one branch of the hyperbola that lies above

and the other pole moves on the other branch that lies below a horizontal straight line that
goes through the crossing point.

When a small change in the control parameter ξ̄
(i)
2 changes the sign of ( �R · �ξ)|ξ2=ξ̄2

,
it produces a small change in the initial position of the poles, but the trajectories change
suddenly from type (i) to type (iii), this very large and sudden change of the trajectories
exchanges almost exactly the final position of the poles as can be appreciated from figure 8.
This dramatic change was called a ‘change of identity’ by Vanroose, van Leuven, Arickx
and Broeckhove [8] who discussed an example of this phenomenon in the S-matrix poles in
a two-channel model, Vanroose [51] has also discussed these properties in the case of the
scattering of a beam of particles by a double barrier potential with two regions of trapping.

4.4. Changes of identity when going around the exceptional point

In the previous discussion of the trajectories of the S-matrix poles and their changes of identity,
the two straight lines, parallel to the Oξ1 axis, defined by the conditions ξ1,i � ξ1 � ξ1,f and
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(a)

(b)

(c)

Figure 8. Trajectories of the poles of the scattering matrix, S(E), of an isolated doublet of
resonances in a double barrier potential close to a degeneracy of unbound states. The control
parameters are the width, d, of the inner barrier and the depth, V3, of the outer well. The
trajectories are traced by the poles E1(d, V

(i)
3 ) and E2(d, V

(i)
3 ) on the complex E-plane when

the point (d, V
(i)
3 ) moves on the straight line path πi ; V3 = V

(i)
3 . Panels (a)–(c) show the

trajectories corresponding to ( �R · �ξc)ξ̄ (i)
2

> 0, ( �R · �ξc)ξ̄ (i)
2

= 0 and ( �R · �ξc)ξ̄ (i)
2

< 0, respectively,

with (ξ1, ξ2) = (d −d∗, V3 −V ∗
3 ). The full line is the numerically exact calculation and the dotted

line is the contact equivalent approximant.

ξ2 = ξ̄
(i)
2 , i = 1, 3, are the two long sides of a very long and narrow rectangle in parameter

space that surrounds the exceptional point. The two short sides of this rectangle are defined by
the small change in ξ2 when going from ξ̄

(1)
2 to ξ̄

(3)
2 , keeping ξ1,i or ξ1,f constant, to which we

referred above, when explaining the changes of identity of the poles of the doublet of unbound
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Figure 9. The two poles of the isolated doublet of unbound states trace a starlike trajectory in the
complex k-plane, shown on the left-hand side of the figure, when the physical system is transported
in parameter space twice around the exceptional point in the circular path shown on the right-hand
side of the figure. For an explanation, see the text.

states. In order to better understand the meaning of the changes of identity of those poles,
it will be convenient to continuously deform the long and narrow rectangle into a circle and
consider the motion of the zeros of the Jost function k1(x1, x2) and k2(x1, x2) in the complex
k-plane, when the system is transported in parameter space around the exceptional point in the
closed circular path equivalent by continuous deformation to the long and narrow rectangle of
the previous discussion.

On the left-hand side of figure 9, we show the trajectory traced in the complex k-plane
by the two zeros of the Jost function, k1(x1, x2) and k2(x1, x2), when the physical system
is transported in parameter space twice around the exceptional point on the double circular
circuit shown on the right-hand side of the same figure. When the system is at the crossing
point of the two circular paths in parameter space, one zero, say k1(x1, x2), is at the uppermost
point and the other, say k2(x1, x2), is at the lowermost point of the four points star in the
complex k-plane.

(i) As the point representing the system in parameter space moves on the inner circle in
counterclockwise direction, from its initial position until it makes one complete round
about the exceptional point and is back at its initial position, the k1(x1, x2) zero moves
on the star in the complex k-plane in clockwise direction, from its initial position at the
topmost point of the star, goes through the point at the extreme right-hand side of the star
and ends at the lowest point in the star, while the k2(x1, x2) zero also moves in clockwise
direction, from its initial position at the lowest point in the star, goes trough the point in
the extreme left-hand side of the star and ends at topmost point on the star. It follows that,
when the system goes around the exceptional point once in parameter space, the poles of
the scattering matrix are exactly exchanged.

(ii) As the point representing the system in parameter space continues its counterclockwise
motion, now on the outercircle, until it completes a second round about the exceptional
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point and is back at its initial position, the k1(x1, x2) zero moves on the star in the
complex k-plane in clockwise direction from the lowest point on the star, goes through the
extreme left-hand side point on the star and ends at the topmost point on the star, while
the k2(x1, x2) zero moves on the star in the complex k-plane also in clockwise direction,
from the topmost point on the star, goes through the extreme right-hand side point on
the star and ends at lowest point of the four points star. Therefore, when the system
goes around the exceptional point twice in parameter space the poles of the S(k) matrix
and the complex energy eigenvalues return to their initial values in the complex k-plane.
The eigenfunctions also return to their initial values but they acquire a geometric phase
[27–31, 52].

5. Summary and conclusion

In this paper, we discussed some mathematical and physical aspects of the non-Hermitian
degeneracy of two unbound energy eigenstates of a Hamiltonian depending on two control
parameters. We numerically solved the implicit transcendental equation that defines the
eigenenergy surface of a degenerating isolated doublet of unbound states in the simple but
illustrative case of the scattering of a beam of particles by a double square barrier potential.
The analytical characterization of the singularity of the energy surface was made in the more
general case of a short-ranged potential with two regions of trapping. We showed that, from
the explicit knowledge of the Jost function as a function of the control parameters of the
system, it is possible to derive a two-parameter family of functions which is contact equivalent
to the exact energy–pole position function at the degeneracy point and includes all small
perturbations of the degeneracy conditions. This unfolding of the degeneracy point gives a
simple and explicit, but very accurate, representation of the eigenenergy surface close to the
exceptional point, see figure 7. In parameter space, the surface that represents the complex
energy eigenvalues has a branch point of square-root type at the crossing point, and branch cuts
in its real and imaginary parts that start at the exceptional point but extend in opposite directions
in parameter space. In the complex energy plane, the crossing point of two simple resonance
poles of the scattering matrix is an isolated point where the scattering matrix has one double
resonance pole. Crossings and anticrossings of the energies and widths of the resonances in
an isolated doublet of unbound states of a quantum system, as well as the sudden change in the
shape of the S-matrix pole trajectories, observed when one control parameter is varied while
the other is kept constant at a value close to the exceptional value, are fully explained in terms
of sections of the energy surfaces.
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