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An ab initio method is introduced, called the maximum radius of convergeiMdaXR.)
perturbation theory, that exploits the added degrees of freedom permitted with flexible energy
denominator perturbation theoryJ. Chem. Phys.109 7725 (1998] by defining the
energy-denominator factors of a Rayleigh—Sclimger perturbative expansion to be
(approximately optimal. This method can vyield rapid convergence as long as there is no
quasidegeneracies in first order between the reference-space state and one of the orthogonal-space
states. ©2000 American Institute of Physids$50021-960600)30314-3

I. INTRODUCTION optimize the orbital energies using a Fock space. This ap-

Rayleigh—Schrdinger perturbation theory is a very suc- proach, however, is less than ideal, gince ther_e are only_a
cessfulab initio method, especially when employed with small number of parameters—the orbital energies—to opti-

Mdller—Plesset partitioning for closed-shell ground-statemize’ especially compared to the huge number of determi-

systemd™ However, the unrestricted formalishfs are nantal states within the Hilbert space. . ,
widely considered to exhibit slow convergence that is related  F1€Xible energy denominator perturbation thedris a
to the degree of spin contaminatidhand the magnitude of general formahsm for msgrtlng-addmonal parameters.—one-,
the radius of convergendeEven for closed-shell ground ™WO-, and higher-body shifts—into the energy denominators
states, Mtler—Plesset partitioning is not always effective in Of @ Rayleigh—Schidinger perturbation expansion, in a
higher order, where damping behavior may appeaffanner that preserves the LDT. Below we introduce a
and—eventually—divergende® Therefore, it is desirable to Method, maximum radius of convergence (MR pertur-
construct a method that offers some improvements, eveRation theory, that exploits the added degrees of freedom
though previous attempts have faifgd!® permitted with flexible-energy denominators, by defining its
The energy denominators of Rayleigh—Satinger per-  €nergy denominator factors to KWapproximately optimal.
turbation theory are constructed from energy-denominatoEXplicitly, in MAX R, perturbation theory, the energy de-
factors that are given by the zeroth-order energy differencegominator factors arising between the reference-space state
between the reference-space state and the orthogonal-spa@e and any orthogonal-space state, sgy), are defined so
states. Using a general form of the zeroth-order Hamiltoniarihat it yields a maximum radius of convergence, if used in a
Ho, it is easy to show that the zeroth-order energies of gwo-state perturbation expansion involvirgly these two
perturbation expansion are arbitrdfy*® but, this choice is States]p) and|q).
critical, since the convergence behavior depends to a great The MAXR. approach enlarges the energy denominator
extent on the zeroth-order energiés® This dependence is factors associated with two state®) and |g), when the
most easily demonstrated by examining two-state system@oupling between these states are enlarged or their Hamil-
where the radius of convergen® is easily computed and tonian expectation values become closer. In cases where
can be used to model the convergence difficulties for systeniéere is no coupling betweejp) and|q), the energy de-
involving many state$®-18 nominators reduce to their values in Epstein—Nesbet parti-
The optimization (OPT) partitioning methotf~*8  tioning. The MAXR, method can yield rapid convergence,
chooses the zeroth-order energies of the dominant states ovided the Hamiltonian expectation value of the reference
an optimal manner. This method has been demonstrated &ate and any state from the orthogonal space is not close: no
yield rapid convergence for perturbation calculations that ardirst-order quasidegeneracies. Note that small energy de-
known to converge poorly with N@r—Plesset and nominators caused by zeroth-order degeneracies do not oc-
Epstein—Nesb&t=2! partitionings. (A similar method, also cur, but can appear in other partitioning methods. If the en-
called optimization partitioning, is based on optimizing theergy denominator shifts are neglected and Hartree—Fock
energy denominator shifts using a variational form of thecanonical orbitals are used, the MRX method reduces to
first-order wave functiop?® Unfortunately, the OPT parti- Mdller—Plesset perturbation theory.
tioning method does not possess a linked diagram formalism, While the final energies and wave functions of coupled
since its energy denominators are based on the Hilbert spacglpster theor$ do not depend on a zeroth-order Hamiltonian
instead of the Fock space. We wish to obtain a method that isl, the coupled cluster equations can be solved by introduc-
similar to OPT partitioning, but is size extensive and pos-ing anH, and, therefore, also energy-denominator factors. In
sesses a linked diagram theorg¢hDT). One method is to Lindgren’s formulationg? the coupled-cluster equations are
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derived from perturbation theory, and a pseudodependence sm(pq)=H‘3 for |(p|H|q)|—0. (2.9
on Hy appear in the final equations. Using this type of for-
mulation, the MAXR, approach combined with flexible-
energy denominators can be employed to enhance the iter
tive convergence of coupled-cluster equations. Alternately, 4)(p|H|q)? 4/(p|H|a)|?
using a perturbative expansion, an infinite-order summation &.,(pq)~ >Hg.
of all connected wave-operator diagrams can be used to ob- Hg Hg

tain the cluster operatof, which defines the exponential Thus, in situations where the ratid<p|H|q>|2/Hg is large,
form the wave operatee’, em(pQ) is also large. Traditional partitioning methods have

In Sec. Il the energy denominator factor that yields thatzeroth-order energy differences that do not depend on the
maximum radius of convergence for a two-state system igoupling (p|H|q) between states. Thus, not surprisingly,
derived. This relationship is used to define the energy de\?vhen|<p|H|q>|2/Hg is even modestly large, these methods
nominator shifts for MAXR, perturbation theory, presented gften yield divergent expansions. We wish to obtain a per-
in Sec. lll. A spin-adapted, closed-shell, restricted-orbitakrhative method that enIargesas|<p|H|q)|2/Hg becomes
formalism is presented in Secs. IV and V. large, and selects so that it has the same sign &g .

It is also easy to obtain the value ef denoted by
e1(pQ), that yield a radius of convergence equal to unity

When the second term on the right-hand-side of &37)
dominates, we get

(2.9

II. MAXIMUM RADIUS OF CONVERGENCE FOR A

— 16,17
TWO-STATE SYSTEM (Re=1),
2
Denote|p) and|q) as the referenceR) and orthogonal e1(pQ) = 1 HY+ w) (2.10
(Q) space states of a two-dimensional system, gnande, AR Hg

as their zeroth-order energies. These zeroth-order energi . '
are arbitrary and define the diagonal, zeroth-order Ham”?CSomparmg Bgs(2.7) and(2.10 we find that

tonian, e1(PQ)=3z&m(Pa). (2.11)

Ho=|p)ep(p|+]a)eq(al. (2.1 Since, for a two state system, it is always possible to
chooses so that R.>1),'*® then, clearly, the maximum
radius of convergence also has a value greater than unity.
However, if there is a first-order quasidegenerad)g,z 0,
then Egs(2.7) and(2.1)) yield infinities,[e,(pQg) =] and

g2 [em(PQ) =]

The radius of convergend®. for the two-state, Rayleigh—
Schralinger perturbation expansion is easily derivage,
for example, Chaudhuri and coworkgt

2

= a2 > (2.2
(e—HP)*+4[(p[H|q)|
1. MAXIMUM RADIUS OF CONVERGENCE
where PERTURBATION THEORY
R.=0, (2.3 A. Qualitative development
Hg=(p|H|p>—<q|H|q>, (2.9 The energy-denominator factors for Rayleigh—

, _ . Schradinger perturbation theofy>2® are given by the
ande is the sole energy-denominator factor appearing in thee o _order energy differences between pairs of interspace
perturbation expansion, states, where a pair of interspace states consists of the

e=€,—€q. (2.5 reference-space stalp) and a state, sajq), from the or-
thogonal spac&. As a simple example, consider /N&r—
Plesset perturbation theofy. Its first-order wave function
(and second-order enerngygonsists of terms arising from
double excitations fromp): w,x—r,s; these excitations
have an associated energy-denominator factor, denoted by
eyx, given by

The perturbation expansion is convergenRjf=1, and di-
vergent if 0sR.<1.

We wish to choose:s so that it yields the maximum
radius of convergencd®.. This value ofe, denoted as
em(pQ), satisfies
1%

—R?
de ©

rs

=0. (2.6) Ewx= €wt €x— €— €s=(p|Ho|p) —(a|Ho|a),

lq)=aala,a,|p), 3.0

where the zeroth-order Hamiltoniadh, is the Hartree—Fock
a 4)(p|H|q)|? Hamiltonian and the orbital energies are eigenvalues of
em(PQ=Hp+ T Qe (27 the Fock operatdt.(Note that the second-order wave func-
P tion consists of terms that have two energy-denominator fac-
Note thate ,,(pq) has the same sign atg This relationship  tors)
is expected, since for a two-state systemnng must have In a perturbation expansion involvingnly two states,
the same sign oR,< 1.6’ |p) and|q), the zeroth-order energy difference can be deter-
In the limit of the coupling p|H|q) vanishing, the maxi- mined that yields the maximuR., as demonstrated in the
mum R, is given by Epstein—Nesbet partitioning, previous section. In Sec. I(B), a formalism is presented

e=gmn(pa)
Substituting Eq(2.2) into Eq. (2.6) gives
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that employs these two-state, zeroth-order energy differences els =en(pq) for |q>=a a axaw| p). (3.10

(or energy-denominator factgrin a perturbation expansion

involving the reference-space stdfg) and simultaneously ~Substituting Eq(3.10 into Eq.(2.7) and using Eq(3.3), we

all the orthogonal-space states; where, the orthogonal stat€§t

of interests are generated byTaEpJ!ylng excitation operators to . .. al[wr|xs] — [ws|xr]|?

Ip): ala,|p), ajala,a.lp), alalala,a.a.p), . Al =G'S + , (3.11)
In order to increase the degrees of freedom in choosing Guxt €t ex— € — €

the energy-denominator factors, one-body energy-

denominator shifts\|, are added to the energy-denominator

factors correspondlng to single excitations, two-body shifts  GJ;, =G,y + G+ Gsyt Gsx— Grs— Gux- (3.12

A}y, for double excitations, and so on. If we denote the

energy-denominator factors from single, double, and tnple

where

The energy-denominator factors for the triple excitations
are defined by

excitations byey,, ey, ande\;,,, respectively, then these
factors are given by \’NS)Ey—sm(pq) for |g)=a/ala ayaxawl p). (3.13
ew=€w— €A, (32 since triply excited stateaalala,aa,p) do not couple
615 = eyt 60— €A™, 33 with |p) via the HamlltonlarH
H|p)=0, 3.1
e\rNS;y— eyt et e~ € — €5 et A\r,f;y, (3.9 (alHlp) 319

the energy-denominator factors for these excitations are the
wherew, X, andy are occupled orbitals and s, andt are 9y

virtuals. The energy-denominator shifts, , ATS. . AT same as they appear in Epstein—Nesbet partitioning. By sub-

and
WX WX tituting Eqs.(3.1 d(3.19 into Eq. (2. t
Al ., can be introduced in a manner that preserves thS ftuting £qs.(3.13 and(3.14) into Eq. (2.7) we ge

LDT, as long as additional perturbations are added and dis- &5, =(p/H|p)—(a[H|a), |aq)= alalalaja.a,|p).

connected products are treated in a special mafiner. (3.15
In summary, the energy-denominator factors for

MAXR. perturbation theory are given by Eq8.2), (3.3,

and (3.4) with A}, defined so that a perturTbation expansion AR =Gy~ "Guxy— "Gt (3.1

involving only the reference statg) anda,a has the

maximu?nR ySimilarly,ArS is ch(k;?en SO thaﬂﬁé expansion where the occupied- V|rtua|°VGLV5; »  occupied-occupied

for |p) anda a axaw|p> has a maximunR, . (Higher-body ®Gyxy, and virtual-virtualG; terms are given by

Using Eq.(3.4) gives

shifts are def|ned in a similar manrjeﬂ?his formalism re- °"G(N5;y Grw+ Gix+ Gry+ Geyt Gext+ Gsy

duces to Mter—Plesset perturbation theory when Hartree—

Fock canonical orbitals are used and the shifts are neglected. TGt Gixt Grys (3.17
OOway: GWX+ GWy+ GXyl (3.18

B. Mathematical development WG, s=Gs+ Gy + Gy (3.19

We now derive the one-, two-, and three-body, energyBy generalizing these three latter expressions, higher-body
denominator shiftsA},, AlS,, and A5, using Egs.(3.2), shifts ALS!, - are easily obtained.

(3.3, (3.4, and (2.7). The energy-denominator factors for
the single excitations are defined by

en=em(pq) for [g)=ala,|p). (3.5  IV. CLOSED-SHELL RESTRICTED SPIN-ORBITAL
Substituting Eq(3.5) into Eq.(2.7) and using Eq(3.2), we FORMALISM
get We now obtain the spin- independent forms for the
4] €, |2 energy-denominator factorsy, &\, &yx,) and shifts @,
Ay=Gp+ G e < (36 A}, Alyx,) for a spin-free Hamiltonian "When the and g
rw w r
spin-orbitals are spatially restricted and all occupied orbitals
where are double occupied. Henceforth, all orbital indices refer to
spatial orbitals. Spin-orbitals are indicated by appending the
e;=[i[hlj1+ 2 [ijlww]—[iw|wj], (3.7 spin functions =« or B) to the spatial orbitals. Also, we
" use a Goldstone diagrammatic representatiorsince
€=ei, (3.9  Hugenholt?’ and BrandoW’ diagrams are antisymmetric
and not readily converted into a spin-free form.
Grw=[rr|ww]—[rw|wr], 3.9 The spin-orbitalswoe and ro’ from the one-body
and the spin-dependent one- and two-electron integrals asnergy-denominator facto@v‘f,' can have either parallel or
written using chemist’s notatich. opposite spins. In the Goldstone diagrams in which these

Similarly, the energy-denominator factors for the doublyorbitals appear, they are on the same path. Spin-orbitals on
excitations are defined by the same path must have parallel spin or the diagrams
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vanish?®3° Hence, only one-body energy-denominator fac-V. SPIN-ADAPTED ENERGY-DENOMINATOR

tors e{,v‘f,' with parallel spins §=o') need to be considered, FACTORS
and are given by

The choice of'7 5", ands;,‘ff;f‘y’;,, given in Eqs.(4.6)
el =gl =e€,—€+A], 4.1 and (4.10 generates perturbation expansions with wave
functions that are not eigenfunctions 8f. For two-body
where energy-denominator factors, this spin contamination appears
dey|? because, in general,
€
A’ kil + (1) (4.2 OATS £IATS (5.1

v €w— €T 0wi(1)

A spin-adapted choice for the two-body factets ' that

e =(i[hlj)+ 2 2(ij[ww) — (iw|wj), (4.3 is spin-adapted, is given by o
w
€= €, (4.4 E v xo! = Ewx s (5.2
rs . . . . .
gij(m)=(iijj)— n(ijlji). (4.5  Whereey, is defined by Eq(3.3) with orbital indices denot-

ing spatial orbitals and the spin-independent shiff, de-
When evaluating diagrams with two-body energy-fined by averaging the twg values,
denominator factors' 72°7# e use the convention that the

Woy Xog’
spin-orbitalswo, andr o, are on the same path; alsogys
andso, are on the same path. Diagrams vanish when spinAs an alternative, an average of the two possible spin-
orbitals have opposite spin that are on the same path, whetependent shifts is taken,
either oy # 0, or o3#0,. Therefore, we have only two
cases to consider for the restricted-orbital, two-body, energy-

A="2A0. (5.3

Aln= 5CAGH AR (5.4

denominator factors:

1ATS ; —
. A, if o=0

A third and more conservative choice is given by

A T (el > tew

Woxo! = Ew— €T Ex— €t g s , (4.6 AS = wx 5
Ay If ofao, WIS f (LTS | [0gTS | (5.9
where When there is a repeated index, either=6) and (w=x),
) then we must havéo#o'). Therefore, for this case, we
TATS — g () + 4l(wrlxs) — n(ws|xr)| (4.7  should chooseX(=CA[%).
e S (ew—€)+ (6x— €5)+9'S(7) As in the two-body case, the spin contamination arise
from the three-body energy-denominator shifts, because, in
Gund 7)=Grw(1) + s 1) + i3 7), (4.8  general,
Foox( 7)=Gswl 7) + Grx( 1) = Grs(7) — Gux(7)- 4.9 (abC)A\rNS;yi (abre )A\r/\?;y if abc#a’b’c’. (5.6
For diagrams with three-body, energy-denominator fac-This problem is removed by choosing
tors £'72°74'%6 e use the convention that orbitalgr , '
Woy Xogyog 8rtrSo to :Srst (5 7)
Xo3, andyos are on the same path as,, so,, andtog, woxg'yo” TwXy? '

respectively. Therefore, we have only three cases to Corl/‘vhereg@y is given by Eq.(3.4) and the spin-independent

sider:

shift A{,f;ty taken as an average of the four possible spin-
dependent shifts, or equivalently, averaging

rosoito” et et €y— € — €s— €
woxo'yo” w X y r s €t AlSt :;((111)Arst 4 (100)p rst | (010)A rst +(001)Arst)
(111)A\f,\?)§y; 0_:0_/’ 0_:0_7/' o' =g wxy 4 wxy WXy WXy WXY:
(100)p st . ’ " ] :(EEE)ATSt 5.8
N wxys OF0, oFd, o'=0 222Ayyy- (5.9
COARy: o#o', o=d", o'#d" As in the two-body shifta\(5,, a modified expression should
(001)A\rNs;y; o=0', o#d', o' #d' be used for the three-body shifm{j,ﬁy when one or more
indices are repeated. For example, if=<(s) then A{Nrf(y
410 should be taken as an averageiVA [ and C*OAT
where Other choices like, for example, generalizing the two-body
conservative choice given by E¢5.5, can also be used.
APIATy= Gru(1) + gex(1) + gy (1) + (@) However, since there is no coupling between the reference
state|p) and triply-excited states, the average choice, given
+1y(b)+fio(c). (410 py Eq.(5.8), should be sufficient in most cases.
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