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Quantum phase transitions studied within the interacting boson model
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~Received 20 December 1999!

We study quasicritical phenomena in transitions between two ‘‘quantum phases’’ of a finite boson system,
described by the interacting boson model 1 used in nuclear physics. The model is formulated in the algebraic
framework and has a simple geometrical interpretation; the ‘‘phases’’ represented by dynamical symmetries
U~5! and SU~3! correspond to spherical and deformed nuclear shapes. The quasicriticality of the U~5!-SU~3!
transition is shown to be connected with the following phenomena simultaneously occurring in a narrow
parameter region between the symmetries:~a! abrupt structural changes of eigenstates,~b! multiple avoided
crossing of levels,~c! peaked density of exceptional points,~d! qualitative changes of the corresponding
classical potential. We show that these spectroscopic features influence the dynamics of intersymmetry tran-
sitions in the model parameter space if the parameters themselves become dynamical variables.

PACS number~s!: 05.70.Fh, 21.60.Fw
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I. INTRODUCTION

Consider a Hamiltonian given by the following weighte
sum of two incompatible parts:

Ĥl5~12l!Ĥ01lĤ1 , lP@0,1#. ~1!

The termsĤ0 andĤ1 ~with @Ĥ0 ,Ĥ1#Þ0) may represent two
fundamental modes of motion—suppose that they are cla
fied by two different dynamical symmetries@1#—and Ĥl is
intermediate between them forlP(0,1). Parameterl thus
controls the transition between both dynamical limits. Do
features ofĤl go smoothly from one limit to the other, or d
they flip at a certain criticall? The answer, of course, de
pends on what particular terms in Eq.~1! are considered
Although one somehow tends to expect a smooth chang
properties, the critical, ‘‘phase-transitional’’ behavior is e
countered in a number of physically relevant situatio
@2–8#. It is met in nuclear physics, for instance, where t
Ĥ0 and Ĥ1 ‘‘phases’’ usually represent normal and supe
conducting or rotational and vibrational modes of the nucl
motion.

In this paper, the phenomenon of ‘‘quantum phase tra
tion,’’ as we tentatively call it, is studied within a simpl
model that describes an ensemble of interacting bosons@9#.
Our choice is motivated by the transparent algebraic st
ture of this model, but also by its relation to real atom
nuclei. The former ensures well defined dynamical symm
tries and transitions between them controlled by a few mo
parameters. The latter follows from the fact that in an app
priate coordinate representation the bosonic Hamilton
turns out to describe certain rotational and vibrational m
tions of a ‘‘quantum drop,’’ i.e., images nuclear collectiv
degrees of freedom. In this sense, the model used is a
egant example, realistic and toy at the same time.

*Electronic address: pavel.cejnar@mff.cuni.cz
†Electronic address: jan.jolie@unifr.ch
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The phase transition that we will be dealing with is us
ally tracted as a transition between spherical and deform
nuclear shapes@6,7#. We will discuss both the spectroscop
and dynamical consequences of this transition—see Sec
and IV. Here, the term ‘‘spectroscopic’’ is used for the ph
nomena directly related to wave functions and energies
the Hamiltonian eigenstates. It will be shown that the qu
tum phase transitions are characterized by quite spe
changes of this kind, changes that take place in a very nar
parameter interval around the critical point. The term ‘‘d
namical,’’ on the other hand, is reserved for those pheno
ena that are encountered if the intersymmetry transition,
deformation in our case, is considered as a dynamical p
cess. In such a case, the model parameters become dyn
cal variables coupled to an external physical system, and
qualitative changes of the Hamiltonian in the critical regi
influence their evolution.

In spite of the specific character of the model used
believe that our results hold qualitatively also for other qua
tum parameter-dependent Hamiltonians that exhibit criti
behavior and will thus be valuable for understanding
quantum phase-transitional phenomena in general.

II. REVIEW OF THE MODEL

We will study the transitions in the parameter space of
simplest nuclear interacting boson model, commonly abb
viated as the IBM-1@9,10#. This model describes a system
a fixed number~N! of spin50 and 2 bosons (s andd bosons!
subject to one- and two-body interactions. The IBM-1 r
veals a transparent algebraic structure with U~6! as the dy-
namical group. Varying six free parameters of the mo
~this number results from plausible requirements set on
Hamiltonian!, one can reach three standard dynami
symmetries—U~5!, SU~3!, and SO~6!—and two additional
ones—SU~3!* and SO~6!* ~differing from the corresponding
standard symmetries only by gauge transformations of
boson operators! @9#. It turns out~see also below! that these
dynamical symmetries provide an appropriate framework
the description of low-energy collective motions of real n
6237 ©2000 The American Physical Society
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6238 PRE 61PAVEL CEJNAR AND JAN JOLIE
clei with certain shape symmetries:~a! the U~5! limit corre-
sponds to spherical nuclei,~b! the SU~3! and SU~3!* limits
to axially symmetric nuclei with a quadrupole deformati
@two SU~3! realizations distinguish prolate and oblate sha
@9##, and ~c! the SO~6! and SO~6!* limits to quadrupolly
deformed nuclei that are unstable against the axial-symm
breaking @9# or even have tendency for a small stabiliz
triaxiality @11# ~two SO~6! realizations differ in electric
quadrupole properties@12#!.

In this work we adopt a simplified, two-parameter IBM
Hamiltonian from Ref.@13#:

Ĥ (h,x)5~12h!F2
Q̂x•Q̂x

N
G1h n̂d ,

hP@0,1#, xP@2A7/2,0#. ~2!

Here, n̂d is the d-boson number operator andQ̂x a quadru-
pole operator,

n̂d5d†
•d̃, ~3!

Q̂x5d†s1s†d̃1x@d†3d̃# (2), ~4!

with @d†3d̃# (2) standing for thel 52 tensor coupling of the
d-boson creation and annihilation operators@ d̃m
5(21)md2m , where m522 . . .12 is the angular-
momentum projection# and ‘‘• ’’ denoting the scalar product
While h andx are varied as the control parameters, the to
number of bosonsN is taken as a constant. Clearly,Ĥ (h,x) is
of the form of Ĥl from Sec. I if x is constant. The
(h,x)-parameter sheet of Eq.~2! contains the standar
IBM-1 dynamical symmetries: U~5! for h51, SU~3! for h
50, x52A7/2, and SO~6! for h5x50. The nonstandard
symmetries, on the other hand, are absent@14# ~we choose
here the phase convention from Ref.@10#!. A natural repre-
sentation of the parameter sheet is in a nonrectangular c
dinate grid that maps the rectangle defined in Eq.~2! onto a
triangle ~the so-called Casten triangle@9#! with vertices cor-
responding to the standard dynamical symmetries and
other points to various transitional cases~see Fig. 7 below!.

Since the model is analytically soluble in the dynamic
symmetry limits, the textbooks mostly deal with only the
cases, the transitional Hamiltonians leaving just for a
merical treatment. One of the aims of this paper is to sh
that the intersymmetry transitions are not only more gen
in nature than the exact symmetries, but also perhaps m
interesting in some respect. An important feature studied
this connection is the onset of chaos in such transitions.
Hamiltonian~2! is exactly integrable in the symmetry limit
and also along the SO~6!-U~5! leg of the Casten triangle (x
50), which leads to semiregular properties in neighbor
parameter regions. No other case of integrability is know
The dynamics outside these nearly integrable regions
indeed found to be mostly chaotic—with one important e
ception, however. A narrow strip of increased regularity w
found @13# in the parametrization represented by Eq.~2!
along the x'(A721)h/22A7/2 curve connecting the
SU~3! and U~5! limits through the triangle interior. Thus th
suppression of chaos is not a privilege of the regions clos
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integrable. Transitions between various dynamical symm
tries can but may not lead through completely chaotic int
mediate regimes. We must admit that the explanation for
behavior is still missing although recently some hint w
given @14,15# by the analysis of wave-function entropies
the Hamiltonian eigenstates with respect to the symme
bases.

Another interesting feature that can be investigated w
the intersymmetry IBM-1 Hamiltonians is the abov
mentioned critical behavior@6,7#. The model in the most
general parametrization exhibits a phase transition with
spect to the U~5!-symmetry breaking. It turns out that if th
Hamiltonian with the U~5! dynamical symmetry is perturbed
the ground-state structure remains basically the U~5! struc-
ture until some critical perturbation is reached. At this poi
the ground state flips to another form and continues vary
slowly as the perturbation goes on.

More precisely, what the IBM experts call the shap
phase transition is standardly derived in the following wa
The model ground state is considered within the mean-fi
approximation, i.e., in the form of the boson condens
uN,aW &}(ass

†1(mamdm
† )Nu0& ~where u0& is the boson

vacuum!. Any such state can be expressed via an appropr
rotation of the ‘‘intrinsic’’ condensate state,

uN,b,g&}S s†1b cosgd0
†1

b sing

A2
@d2

†1d22
† # D N

u0&,

~5!

whereb andg allow to be interpreted@16# as corresponding
to the Bohr parameters of the intrinsic-frame quadrupole
formation in the drop model@Bohr geometrical parameter
appear in the expansionR(u,f)}11(mamY2m(u,f) of the
nuclear surface if the coefficientsam are written in the same
way asam’s in Eq. ~5!#. The variational method is then ap
plied to find the optimal values of these variables, i.e.,
values that minimize the energy functionalE(N,b,g)
5^N,b,guĤuN,b,g&. It turns out that if the U~5!-symmetry
breaking reaches the critical point, the optimal value ofb
moves abruptly from zero@value corresponding to the U~5!
symmetry# to nonzero. Within the above-mentioned ge
metrical interpretation this transition mimics the flip of th
nuclear shape from spherical (b50) to a prolate (b.0)
form.

To be concrete, the Hamiltonian in Eq.~2! yields the en-
ergy functional as follows~cf. @16#!:

E(h,x)~N,b,g!525~12h!1
1

~11b2!2 H @Nh2~12h!

3~4N1x228!#b21FNh2~12h!

3S 2N15

7
x224D Gb4

1F4A2

7
N~12h!xGb3cos 3gJ . ~6!
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PRE 61 6239QUANTUM PHASE TRANSITIONS STUDIED WITHIN . . .
The critical point in the above expression is given by t
value ofh where the coefficient atb2 vanishes, i.e.,

hN
c ~x!5

4N1x228

5N1x228
. ~7!

At this value, the secondb derivative of Eq.~6! for b50
changes its sign, which means that theb50 maximum be-
comes a local minimum. Note that the critical point~7! de-
pends on x: it changes betweenhN

c (2A7/2)5(16N
225)/(20N225) at the SU~3!-U~5! side of the Casten tri-
angle andhN

c (0)5(16N232)/(20N232) at the SO~6!-U~5!
side, but this dependence is practically negligible for su
ciently large boson numbers~even with N510 the critical
region is located within a narrow interval between 0.762 a
0.771!. It should be mentioned that a more sophisticated
merical treatment@11,22# with an angular-momentum pro
jection of the state~5! would yield an energy functional an
phase separatrix differing in general from those in Eqs.~6!
and~7!. Both these approaches, however, converge asN goes
to infinity.

Another method used for studying the IBM phase tran
tion is based on the time-dependent variational principle w
the coherent stateuaW &}exp(ass

†1(mamdm
†)u0& trial functions

@17,18#. ForN→` this procedure yields the classical limit o
the model. The classical IBM-1 Hamiltonian depends on fi
coordinates and associated momenta,H(h,x)(qi ,pi), while
its potential-energy partV(h,x)(qi)[H(h,x)(qi ,pi50) ~clas-
sical potential! only on two appropriately chosen coord
nates. In particular, for the Hamiltonian~2! we have

V(h,x)~ b̃,g̃ !}F5

2
h22G b̃21F ~12h!S 12

x2

14D G b̃4

1F 2

A7
~12h!xG b̃3A12

b̃2

2
cos 3g̃, ~8!

whereb̃ and g̃ are connected with the above-defined intr
sic shape variables through the relation

b̃5
A2b

A11b2
, g̃5g, ~9!

which maps the restricted interval ofb̃P@0,A2# onto the
infinite rangebP@0,̀ ) in the standard parametrization@19#.
It is easy to check that the potentialV(h,x)(b̃,g̃) with the
substitution ~9! is nothing but the N→` limit of
E(h,x)(N,b,g)/N. Both expressions~8! and ~6! are thus
equivalent for the infinite boson number. Indeed, the cla
cal potential yields the same critical behavior as the ene
functional since a minimum atb̃50 obviously rises in the
potential ath equal to

h`
c 5

4

5
, ~10!

which is just theN→` limit of Eq. ~7!. Note that the
asymptotic independence ofhN

c (x) on N is due to the 1/N
scaling of the first term in Eq.~2!. It should be pointed ou
-

d
-

i-
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e
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y

here that theb.0 minimum of the potential~or energy func-
tional! does not disappear at the criticalh, but coexists with
the b50 minimum in a very narrowh region above the
critical point ~at first even preserving its role of the glob
minimum!.

Before closing this section, we have to stress that the li
of infinite boson numbers has a key role for all effects co
nected with the IBM phase transition. In this limit, the co
densate trial functions provide the exact representation of
IBM-1 eigenstates@16# and also the coherent states descr
truly classical motions@18#—the model then has a purel
geometrical interpretation and a classical counterpart. Th
fore, the phase transition, as derived in both the abo
mentioned approaches, is precisely defined only forN→`.
On the other hand, as will be demonstrated below, altho
the change of the eigenstate structure ath5hN

c (x) is not
really discontinuous for finite boson numbers, it remains f
enough to keep the term ‘‘critical’’~or quasicritical! sensible
even in such cases.

III. SPECTROSCOPIC SIGNATURES OF THE PHASE
TRANSITION

In this section, we will study spectroscopic properties
the Hamiltonian~2! along the SU~3!-U~5! transitional region.
We therefore considerĤ (h,x) with x52A7/2 and look at the
energies and wave functions of individual levels as they
pend onh.

The standard treatment of the shape-phase trans
based on the variational principle reflects explicitly only t
ground-state properties. However, the structure of the gro
state should influence also the excitation modes. Indeed
change of form of the classical potential at the criticalh
signals a qualitative change of the quantum Hamiltonian~2!
at the same place—the potential~8! is just an appropriate
coordinate representation of the corresponding quan
operator—which means that the quasicritical behavior is
pected also for excited states, at least those not too hig
energy. This expectation is verified in Figs. 1 and 2.

Figure 1 shows the structure of the lowest-energy sta
with the angular momentumJ50, 2, and 4~parity is always
positive in the IBM-1!. Exact~numerical! wave functions of
these states in the SU~3!-U~5! transitional region were ex
panded in both the unperturbed SU~3! and U~5! bases. At
h50, the SU~3! expansion has just one component, wh
the U~5! expansion is trivial ath51. In thehP(0,1) region,
on the other hand, the real eigenstates are spread over a
U~5! and SU~3! eigenstates with the same angular mome
tum. The curves on the right-hand side of Fig. 1~those in-
creasing withh) represent the admixture~the squared modu
lus of amplitude! of the U~5! state 01

1 , 21
1 , or 41

1 in the
actual state 01

1 , 21
1 , and 41

1 , respectively. The left curves
~decreasing! show the same for the SU~3! admixtures. This
all is given for boson numbersN510, 20, and 30.

Naturally, the SU~3! admixture shown in Fig. 1 drops
from 1 to 0, as it must, and the U~5! admixture goes oppo
site. A more interesting feature is that while the SU~3! ad-
mixture decreases to zero gradually, in a wide region oh
between 0 and'0.8, almost the whole 0→1 increase of the
U~5! admixture takes place in a relatively narrow regi
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6240 PRE 61PAVEL CEJNAR AND JAN JOLIE
close toh50.8[h`
c , i.e., around the critical point~7!. The

transition becomes apparently sharper as the excitation
creases and also for larger boson numbers. This all is c
patible with the above explanations. The reason why
SU~3! admixture does not behave critically is that the pote
tial minimum atb.0, existing belowh'0.8, does not stay
at a fixed position but moves gradually ash varies. There-
fore, the overlap of an actual eigenstate forhP(0,0.8) with
the correspondingh50 eigenstate is imperfect even for in
finite boson numbers.

Figure 2 shows the ratioE(21
1)/E(41

1) of excitation en-
ergies~measured from the ground state 01

1) of the lowest 21

and 41 states. The ratio equal to 0.3 indicates the spect
of an ideal rotor whereas the value of 0.5 is typical for
harmonic vibrator. Indeed, these values characterize
SU~3! and U~5! limits in Fig. 2—the vibrational character o

FIG. 1. Structural changes of the first 01, 21, and 41 states
~upper, middle, and bottom panel, respectively! along the SU~3!-
U~5! transition. Admixtures~squared amplitudes! of the unper-
turbed SU~3! and U~5! Jk

p501
1 , 21

1 , and 41
1 state in the corre-

spondingJk
p transitional state are shown for various boson numb

The onset of the U~5! structure has a critical behavior.

FIG. 2. A ratio of excitation energies of the first 21 and 41

levels along the SU~3!-U~5! transition. The flip between the rota
tional and vibrational limits is very sudden even for low bos
numbers.
e-
-

e
-

m

e

the low-energy spectrum is associated with a spherical d
while the rotational spectrum implies some deformation.
apparent from the figure, however, the switch between th
two limiting regimes is very sudden even for boson numb
as low asN510, which was shown@20,21# to have measur-
able consequences in real nuclei.

It is known that rapid structural changes of theĤl eigen-
states$uFl

k&% are typically correlated with some specifi
variations of the eigenspectrum$El

k%, namely with the so-
called avoided level crossings, i.e., mutual approaching
two or more levels with the same symmetry quantum nu
bers. It can be easily shown that at the avoided-cross
places the mutual mixing of eigenstate is most efficient.
deed, as the parameter value in Eq.~1! shifts from l to l
1dl, new eigenstates become mixtures of the old ones,
rate of mixing of thei th and j th state~both with the same
symmetry quantum numbers! being expressed in the follow
ing way:

lim
dl→0

1

dl
^Fl

i uFl1dl
j &[ K Fl

i U d

dl
Fl

j L 5
^Fl

i uĤ12Ĥ0uFl
j &

El
j 2El

i
.

~11!

The energy difference in the denominator of the last expr
sion clearly implies an acceleration of mixing if the two le
els become close.

This general conclusion can be illustrated by consider
the wave-function entropy in a simple two- or three-lev
system. The wave-function entropy of a stateuc& with re-
spect to a given reference basisB[$u i B&% i 51

n is just the in-
formation entropy of theuc& distribution over the basis
states:

WB~c!52(
i 51

n

uai
B~c!u2lnuai

B~c!u2, ai
B~c!5^ i Buc&.

~12!

It has been used by a number of authors~see, e.g., Refs
@23,24,15# and references therein! for measuring the above
mentioned effects of mixing. Indeed, ifuc& coincides with
one of theB-states, its entropy~with respect toB) is mini-
mal, equal to 0, while ifuc& is uniformly spread over all the
n basis states, the entropy yields the maximal possible va
ln n. Note that the relation of the information entropy to vo
Neumann basis-independent entropy was discussed in
@25# along with some instructive examples.

We consider first, as the simplest example, a two-le
mixing given by the following Hamiltonian:

Hl
(2)5Hdiag

(2) 1lḢ (2)5S 2e1ėl v̇l

v̇l e2ėl
D . ~13!

The wave-function entropy of both the Hamiltonian eige
states in the basisB[$(0

1),(1
0)} depends on the value o

x5(e2ėl)/ v̇l, having a sharp maximum@WB(1)
5WB(2)5 ln 2# at x50. Therefore, the entropy increase
with l from 0 ~for l50) to ln 2 ~for l5e/ė) and then
decreases again to a limiting value (l→`) determined by

s.
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PRE 61 6241QUANTUM PHASE TRANSITIONS STUDIED WITHIN . . .
the ratioė/ v̇. The maximum rate of mixing is thus connecte
with the avoided crossing of both the levels.

A bit more complex behavior is characteristic for a thre
level system,

Hl
(3)5Hdiag

(3) 1lḢ (3)5S e0 ẇl ẇl

ẇl 2e1ėl v̇l

ẇl v̇l e2ėl
D ,

~14!

describing again the two-state mixing, but influenced b
third state. Figure 3 shows the energy spectrum and the
responding average wave-function entropy~again in thel
50 eigenbasis, the averaging involves all three states! as a
function of l/l05lė/e for different values ofẇ/ v̇[ f and
ė/ v̇[g ~we considere0 /e[h51). Common to all the typi-
cal patterns shown in panels~a!–~d! is the fact that the en
tropy grows most rapidly when the lower two states beco
closest. Note that although the Hamiltonian~14! contains
nominally five constants, the only ones relevant for t
present analysis are the above dimensionless ratiosf, g, and
h.

These principles can be applied also to the interac
boson model. Figure 4 shows a correlation between the l
dynamics and wave-function entropies for the 01 eigenstates
of the Hamiltonian~2! in the case ofN530. In the upper
part, the energy spectrum of all 01 states is displayed as
varies withh along the SU~3!-U~5! transition ~the ground-
state energy is constantly set to 0 here!, while the corre-
sponding wave-function entropies in the U~5! and SU~3!
bases are shown—for two selected states—in the lower
~unlike Fig. 3, the entropies characterize only the giv
single state here!. A manifold avoided crossing of levels
situated just to the phase-transitional regionh'0.8, is appar-
ently responsible for the basic variations of the wav
function entropies. The correspondence between the u
and lower parts of Fig. 4 persists even under the scrut
when the oscillations in the 04

1-state entropy are found t

FIG. 3. The spectrum and average wave-function entropy of
eigenstates of the three-state Hamiltonian~14! as a function ofl.
The spectra, shown in the upper panels for various choices of
stants~see the text!, are accompanied in the lower panels by t
corresponding average entropies with respect to thel50 eigenba-
sis. The avoided crossings of the lower two levels apparently ac
erate the mixing process, regardless of whether it results in jus
exchange~more or less! of unperturbed wave functions for largel
~left! or in their complete spread out~right!.
-
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e

e

g
el
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n

-
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exactly coincide with the single avoided level crossings
the 04

1 level with its neighbors. Note that the structural o
cillations of individual eigenstates, like those shown here
the 04

1 state, occur quite generally in parameter-depend
quantum systems and can have drastic consequences fo
behavior of transition probabilities@22#.

We just saw that the ‘‘macroscopic’’ flip of the eigensta
structure ath'0.8 is correlated with~one even tends to sa
‘‘caused by’’! a simultaneous avoided crossing of many le
els at the same parameter value. This conclusion, veri
also in other quantum systems possessing critical behav
@4,5,8#, leads to a natural question of what makes the lev
behave in such a peculiar way. The true origin of this ph
nomenon is clearly the qualitative change of the Hamilton
at the critical point, namely the rise of theb50 potential
minimum. It is known that the connection between t
Hamiltonian and level dynamics goes via the notion of s
called exceptional points~also branch or crossing points!

@4,5,26–28#. Exceptional points of the HamiltonianĤl are
defined if the range ofl is extended to the complex plane—
they represent those complex parameter values where tw~or
more! different levels become degenerated. Note that
well-known rule that energy levels do not really cross,
generic cases, if just one Hamiltonian parameter is var
@29# is right for reall only. Exceptional points have a sim
lar relation to the avoided level crossings as theS-matrix
poles to cross-section resonances: if an exceptional poin

e

n-

l-
an

FIG. 4. The spectrum of 01 states~with the ground-state energ
set to 0! along the SU~3!-U~5! transition~upper part! and the cor-
responding wave-function entropy of the first and fourth state in
U~5! and SU~3! bases~lower part! for N530. Major as well as
minor variations of the wave-function entropy are correlated w
the avoided level crossings.
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6242 PRE 61PAVEL CEJNAR AND JAN JOLIE
close to the real-l axis, the avoided crossing of the corr
sponding levels is located at that place. Thus, the ph
transitional behavior of a quantum system is encountere
l5lc if some ~many! of the exceptional points are aligne
in parallel to the imaginary axis with Rel5lc @4,5#.

We calculated the distribution of exceptional points of t
Hamiltonian~2! along the real parameter axis, i.e., the de
sity of the exceptional-h real parts. The method used, tak
from Ref. @28#, is only approximative—based on th
asymptotic behavior of the spectrum for largeh—but accu-
rate enough for our purposes. The result for 01 states with
N530 is shown in Fig. 5~lower part! together with the cor-
responding energy spectrum~upper part! in the parameter
rangehP@0,2.5# ~the reason for considering alsoh.1 will
be clarified later!. First of all, the level energies are no
plotted without subtracting the ground-state energy, wh
discloses some new features disregarded in the present
of Fig. 4. In particular, at the critical point the bunch of lev
‘‘trajectories’’ is squeezed in such a way that the slo
changes more for low-energy levels than for the high-ene
ones ~the highest-energy states remain completely un
fected!. This can be easily understood in terms of the pot
tial ~8! shown for the correspondingh region in Fig. 6 with
g50. The potential change at the criticalh influences only
the states whose average kinetic energy does not ex
much the depth of theb50 minimum; for the ground state
the slopes below and aboveh'0.8 correspond approxi
mately to the elevation rate of the global potential minimu

FIG. 5. The ‘‘dynamics’’ of 01 states (N530) induced by the
change of parameterhP@0,2.5# ~upper panel! and the accompany
ing ~approximative! distribution of the exceptional-point real par
~lower panel!. The peaks in the exceptional-point distribution co
respond to multiple avoided crossings of levels.
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in the respective regions@be reminded that forN→` the
condensate states~5! become exact eigenstates and Eq.~6!
thus yields exact energies#. Associated with the spectrum
compression at the critical point is the well pronounced pe
in the exceptional-point distribution in the lower panel
Fig. 5. We therefore confirm that the switch of the potent
form influences the avoided-crossing pattern through the
tial alignment of the Hamiltonian exceptional points.

However, theh'0.8 peak in the exceptional-point den
sity in Fig. 5 is not the only one. An increase is observed a
in the regionhP(1,2), where, as apparent in the upper pa
of Fig. 5, another change of the slope of levels occur, sim
to the one ath'0.8 but affecting in contrary only the high
energy states. We have to first emphasize that although
Hamiltonian~2! was originally considered only in the rang
hP@0,1#, the present values ofh.1 ~in fact, all values
2`,h,1`) still yield perfectly acceptable IBM-1 Hamil-
tonians. They are also transitional between the U~5! and
SU~3! symmetries~see the expansions ofĤ (h,x) into Casimir
invariants given in Ref.@15#!, just like the hP@0,1# ones
~which was the reason for not considering them in the or
nal parametrization!, but exhibit effects inequivalent to thos
present in the restricted interval. Comparing Figs. 5 and
one sees that the cumulation of exceptional points in
regionh.1 is connected with another qualitative change
the potential, the rise of theb̃'1.2 maximum. At the corre-
sponding parameter value, i.e., ath51 @see Eq.~8!#, the
global potential maximum moves fromb̃5A2 to the new
position and the rate of its increase withh changes. For
sufficiently large boson numbers, the same behavior m
characterize also the highest excitation energy, since Eq~6!
describes the true eigenspectrum forN→`. The level dy-
namics shown in Fig. 5 apparently confirms these consid
ations.

FIG. 6. The potential~8! as a function ofb̃ ~with g̃50) for h

P@0,2.5# and x52A7/2. The potential minimum moves fromb̃

'1.2 to b̃50 at h50.8 and theb̃'1.2 maximum rises ath51.
These features are behind the phenomena shown in Fig. 5.
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IV. DYNAMICAL CONSEQUENCES

The importance of avoided level crossings in nonstati
ary quantum problems is generally known. In particular,
mechanism of so-called Landau-Zener transitions@30# is of-
ten mentioned in the literature. Suppose that the parametl
in Eq. ~1! is made time dependent—consider the simpl
dependencel(t)5l̇t at the moment—and that the system
initially prepared in one of theĤ0 eigenstates,uF0

i &. Because
jumps between various eigenstates occur most likely at
avoided-crossing places, the probability of finding thej th
eigenstate,uFl(t)

j &, at a timet.0 depends very much on th
way in which the levels between thei th and j th ‘‘collide’’
with each other within the corresponding parameter inter
The transition probability is also sensitive to the rate of
parameter change: in the limiting adiabatic~infinitely slow!
regime the system exactly follows the stateuFl(t)

i & with no
chance to jump, which is certainly very different from a typ
cal behavior if the change is fast~close to the diabatic limit!.
It is obvious that the most pronounced differences betw
fast and slow dynamics must be connected with the spe
regions containing a large number of avoided level crossin
Practical implications of such investigations are numero
remember, for example, elastoplastic and memory effect
nuclear large-amplitude motions@31,32# or other peculiar
phenomena studied so far mostly in some schem
models—see, e.g., Refs.@33,34#.

In this section we focus on a few nonstationary proble
related to the IBM Hamiltonian~2!. The reason for such a
study is the expectation that the multiple avoided crossing
levels at the phase-separating curve~7! may have interesting
consequences for the dynamics induced by some dr
variations of the model parameters. It should be stres
from the very beginning that we do not pretend to make h
a complete account of all such dynamical phase-transitio

FIG. 7. The Casten triangle for the (h,x)-parameter sheet of th
Hamiltonian ~2! and the paths I–III between the U~5! and SU~3!
dynamical symmetries, as considered in Sec. IV. The dashed s
circles schematically indicate the most chaotic regions.
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effects; rather we try to give some hints that will hopefu
inspire a more detailed analysis.

In contrast to Sec. III, we allow for variations of both th
Ĥ (h,x) parameters. It is expressed by a functional dep
dence ofx uponh: ash varies between 0 and 1,x changes
accordingly. In particular, we consider three paths from
U~5! to SU~3! limit ~i.e.,h goes down from 1 to 0!, given by
the following formulas:

x~h!55
2

A7

2
for path I

A721

2
h2

A7

2
for path II

22A7S h2
1

2D 2

for path III.

~15!

Whereas path I is the one from Sec. III, the two addition
paths go through the interior of the Casten triangle—see
7. The choice of the paths I–III is motivated by the fact th
they cross regions of the parameter sheet characterize
different quantum and classical degrees of chaos, as
scribed in Ref.@13#: whereas I and III pass through tw
different chaotic regions at medium and smallh, respec-
tively, the path II follows the semiregular ‘‘valley’’ in be-
tween both the chaotic regions~see the schematic view in
Fig. 7!. For each path, the HamiltonianĤ (h,x) can be written

i-

FIG. 8. The ‘‘dynamics’’ of the unfolded spectrum of 21 states
(N520) for the U~5!-SU~3! path I ~upper panel! and the corre-
sponding entropic measures of chaos~lower panel!. The U~5! and
SU~3! entropy ratios quantify the average overlap of the actual1

states with bases in the respective symmetry limits, while
entropy-ratio product measures the overall degree of chaos.
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6244 PRE 61PAVEL CEJNAR AND JAN JOLIE
as Ĥh if the respective dependencex(h) is substituted, and
it becomes a particular function of time ifh is driven accord-
ing to a functionh(t).

To illustrate the above-mentioned features related
chaos, we present in Figs. 8–10 unfolded spectra of the1

states forN520 together with the corresponding avera
wave-function entropies for all the paths I–III. Be remind
that the spectral unfolding is a special transformation of le
energies, which ensures that the resulting spectra are fre
‘‘secular variations’’ of the level density and are thus pr
pared for studying fluctuations and correlations, as usua
the theory of quantum chaos. The unfolding procedure
scribed in Ref.@35# was employed here, which is based
fitting the staircase functionN(Jp,E,h), the number ofJp

levels below energyE, by a two-dimensional (E,h) polyno-
mial and evaluating the smooth part of the level density fr
the fitted function. As a result, the transformationEi(h)
→« i(h) is obtained, where the average spacing^« i 112« i&
is constant ('1) throughout the whole transforme
spectrum—see Figs. 8–10.

We do not show here the quantal measures of chaos
rived from the unfolded spectra in Figs. 8–10, as this ana
sis was done for the whole Casten triangle in Ref.@13#. One
can directly see, however, that the unfolded-level statis
interpolates the whole range between the chaotic case~with a
strong level repulsion! and the regular case~with a consid-
erable bunching of levels!. It is interesting that neither the
U~5! nor SU~3! limits yield the level statistics generic fo
integrable systems, as was observed in Refs.@13,36#. Also
noticed should be the level dynamics with a peculiar patt
of bunchings found for path II—see Fig. 9. The sequence
bunchings, descending in energy ash goes from'0.3 to 0.7,

FIG. 9. The same as in Fig. 8 but for the path II. The entro
ratio product, lower compared to Fig. 8, indicates a suppressio
chaos, which seems to be connected with the particular ‘‘movin
structure of level bunchings.
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clearly pushes the level statistics towards the Poissonian
and thus contributes to the result that the corresponding
gion of the Casten triangle is quasiregular@13#. Whether this
quasiregularity is caused by some hidden partial symmetr
still unclear, but the pattern shown in Fig. 9 might be a hi

The U~5! and SU~3! entropy ratios and the entropy-rati
product, shown in the lower panels of Figs. 8–10, are
rived from the average wave-function entropies of the1

eigenstates in bases corresponding to the various dynam
symmetries. In particular, the entropy ratior B derived from
the wave-function entropyWB ~average over all 21 states in
our case! is defined@14,15# asr B5N(expWB21), where the
scaling coefficientN ensures thatr B'1 for any ensemble of
eigenstates that exhibit a random overlap with the refere
basisB ~the expression forN contains in the denominator th
average entropy of eigenstates of a random-matrix ensem
see Ref.@15#, which justifies the term ‘‘entropy ratio’’!. Fig-
ures 8–10 show the entropy ratios with respect to the U~5!
and SU~3! bases as a function ofh for the three paths be
tween the SU~3! and U~5! limits. It is evident that the phase
transitional behavior is washed out in the average contain
all the 21 eigenstates~see also@15#!.

The entropy-ratio productR, also shown in Figs. 8–10, is
defined@14,15# as a product of the entropy ratios over th
basesB associated with all dynamical symmetries of t
model. Expressing something like a content of dynami
symmetries in a particular HamiltonianĤ (h,x) , the entropy-
ratio productR was found@14,15# to be perfectly correlated
with quantal measures of chaos corresponding to the g
Ĥ (h,x) . Indeed, the behavior ofR shown in the lower panels
of Figs. 8–10 is in agreement with the localization of chao

-
of
’’

FIG. 10. The same as in Fig. 8 but for the path III. Regular
well as chaotic regions are crossed, as indicated by the entropy-
product. In contrast to Fig. 8, theh,0.3 chaotic region shows a
turbulent ‘‘flow’’ of levels.
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and regular regions in the Casten triangle, as schematic
represented in Fig. 7. In particular, path II~Fig. 9! crossing
the above-mentioned quasiregular region yields much lo
R than path I~Fig. 8!, which goes directly through the cha
otic region at the SU~3!-U~5! leg. Also Fig. 10 exhibits a
large maximum ofR when path III ranges through the ch
otic region at the SO~6!-SU~3! leg, while R is in contrast
negligible when the path is close to the integrable SO~6!-
U~5! region. The small maximum ofR at h'0.8 in Fig. 10 is
due to the deviation of path III from the chaotic SU~3!-U~5!
region towards the regular SO~6!-U~5! region; it is also
clearly correlated with the multiple avoided crossings of le
els in the upper panel of Fig. 10.

It is clear that the unfolded spectra in Figs. 8–10 do
exhibit the characteristic phase-transitional behavior sho
in Figs. 4 and 5; it was removed by the unfolding. In t
following we will show, however, that the waving curves
unfolded-level energies still carry—besides their appar
aesthetic appeal—physical information important for the
namics induced by the driven variations (h,x)(t) along
paths I–III. In particular, the ‘‘laminar’’ and ‘‘turbulent’’
character of the ‘‘flow’’ of unfolded levels is contrasted. On
can notice that whereas the chaotic region crossed by
path I yields a laminar flow, see Fig. 8, the chaotic reg
crossed by path III yields in contrast a turbulent flow in t
upper part of the spectrum, see Fig. 10. The laminar fl
implies a small number of avoided level crossings and le
therefore to a more or less steady rate of the eigenstate
ing. The turbulent flow, on the other hand, develops throu
many avoided crossings and thus induces dramatic r
rangements of eigenfunctions. This means that differen
between slow and fast parameter variations and o
memory effects, as mentioned above, must be expecte
play the most important role if the turbulent flow of levels
encountered.

To confirm these qualitative considerations, we have c
culated the average energy and itsh derivative, a ‘‘force,’’
in case of adiabatic and diabatic transitions between the U~5!
and SU~3! limits along the three paths in Eq.~15!. In par-
ticular, we assumed the system, characterized by an inv
temperatureb51/T, being at first in the U~5! limit, i.e., at
h51. Within the adiabatic change, the thermal equilibriu
is established at each new parameter value, so that the
nonical occupation probabilities always characterize
population of the actual energy eigenstates. The energy
erage at any value ofh is then given by the following for-
mula:

^Eh
adiab&b[

Tr~Ĥh e2bĤh!

Tr e2bĤh
5

(
i

Eh
i e2bEh

i

(
i

e2bEh
i

. ~16!

On the other hand, the diabatic change is so fast that
system has no time to move from its initial state and th
deviates from the actual thermal equilibrium. We have

^Eh
diab&b[

Tr~Ĥh e2bĤ1!

Tr e2bĤ1
5

(
i

Eh
i (

j
u^Fh

i uF1
j &u2e2bEh

j

(
i

e2bE1
i

.

~17!
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The use of the canonical density operatorr̂}exp(2bĤ),
either adiabatic or diabatic, can in our case be advocate
its simplicity: the variable population of levels that we ne
to incorporate into our calculations is controlled here just
a single parameter,b. However, for our purposes, the sta
dard thermal population is disadvantageous as it gives le
weights to higher excited states compared to those nea
the ground state. Indeed, in view of the discussion regard
spectra in Figs. 8 –10 we need to consider also the inve
population of states, i.e., negative temperatures. We th
fore allow for any valuebP(2`,1`) and introduce a new
variable,

x~b!5H e2b for b>0

22eb for b,0,
~18!

which changes betweenx(b)50 for T510 ~i.e., only the
ground state populated! and x(b)52 for T520 ~only the
highest state populated!, the intermediate valuex(b)51 be-
ing attributed toT56` ~a uniform population of all states!.
To avoid possible confusion, it should be stressed that h
the negative temperatures are just a formal tool to desc
dynamical features related to high-energy parts of spectr
Figs. 8–10; any deeper physical justification of their u
would be misleading at the moment.

Now we are in a position to explain the main physic
result of this section, presented in Fig. 11. We calculated
average energŷEh&b and the ‘‘force’’ d^Eh&b/dh as a
function of 12hP@0,1# for the 21 states atN520 shown in
Figs. 8–10~note that the term ‘‘force’’ for theh derivative
of energy results from an obvious generalization of the cl
sical relationdE5Fdx). The calculation was done for~a!
both the adiabatic and diabatic limits,~b! all three paths
I–III, and for ~c! the whole intervalx(b)P@0,2#. In Fig. 11,
the force~the leftmost and middle columns! is presented for
the whole interval~c!, while the average energy~the right-
most column! is shown only for the limiting values o
x(b)50 and 1. The aim pursued was to find differenc
between the adiabatic and diabatic dynamics, i.e., indicat
for dynamical memory effects.

The main message of Fig. 11 can be put as follows:
most pronounced memory effects in the U~5!→SU~3!
transition—at least as far as the force is concerned—are
nected with the spectral regions with a large density
avoided level crossings. It is, with the low-energy regi
near the critical pointh'0.8 ~like in Fig. 5! and for the path
III also with the ‘‘turbulent’’ high-energy region ath,0.3
~see Fig. 10!. The low-energy crossings near the critic
point ~cf. Fig. 5! induce the adiabatic-diabatic difference
the force at low positive temperatures@x(b)'0#, while the
high-energy crossings in the small-h region of path III~Fig.
10! induce the difference at negative temperatures clos
zero @x(b)'2#—see the leftmost and middle columns
Fig. 11.

The steplike adiabatic evolution of the force forx(b)
'0 ~see the leftmost column of Fig. 11! is connected with a
change of the slope of low-lying 21 levels near the critical
h, similar to that shown for 01 states in Fig. 5. This is
shown in the rightmost column of Fig. 11 for the lowest 21

state by the lower full curves@adiabatic energy average wit
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FIG. 11. The adiabatic and diabatic change
the thermal average energy of 21 states forN
520 ~column on the right! and the corresponding
‘‘force’’ ~left and middle columns! along the
U(5)→SU(3) (h51→0) paths I–III ~rows
from top to bottom!. Both positive and negative
temperatures were considered in Eqs.~16! and
~17!, the results being presented as a function
x(b) from Eq. ~18!. The differences between
adiabatic and diabatic behavior of the forc
~memory effects! are well pronounced in theh
3x(b) regions with a large number of avoide
level crossings located in the corresponding sp
tral region. Besides the multiple avoided lev
crossing at the criticalh, also the crossings in the
‘‘turbulent’’ area in Fig. 10 play an importan
role.
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x(b)50#. The diabatic energy average, shown forx(b)50
by the lower dashed curves, exhibits in contrary no chang
slope, which leads to a force constant over the whole tra
tional region ~see the middle column of Fig. 11!. Let us
stress again that this difference between the adiabatic
diabatic behaviors is connected with the structural rearran
ments of eigenstates induced by the phase transition.
cause the avoided crossing at the critical point involves m
levels, the diabatic evolutions most likely change theuFh

0&
state (h.0.8) into a quantum mixture of a large number
uFh

i & eigenstates ath,0.8. This is why the diabatic energ
average forx(b)50 goes steadily off the adiabatic avera
below h'0.8 ~note that for a constantx the diabatic force
must be totally independent ofh—see box I in the middle
column of Fig. 11!.

The adiabatic energy average withx(b)52 ~upper full
curves in the rightmost column of Fig. 11!, which represents
the energy of the highest 21 state, exhibits no change o
slope and therefore implies a constant adiabatic force n
x(b)'2. On the other hand, the diabatic energy aver
with x(b)52 ~upper dashed curves in the rightmost colum!
varies in a different way, the most important deviation fro
the adiabatic case being observed in theh,0.3 region for
path III. This implies the increase of the path-III diaba
force nearx(b)'2. The x(b)52 diabatic energy averag
for path III clearly corresponds to the trajectory that we s
in the ‘‘turbulent’’ part of the spectrum in Fig. 10 with half
open eyes. The present memory effect is thus again c
nected with the pattern of avoided level crossings, or m
precisely, with the accompanying structural changes of w
functions.

As was pointed out above, the present analysis is ma
intended as an initialization of some more detailed works
particular, we believe that the nonstationary problems c
nected with phase-transitional quantum systems might h
some impact in the theory of quantum dissipation and rela
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areas—see, e.g., Refs.@37–39#. As a simple example, con
sider a nucleus colliding with a projectile, the situation bei
characterized by a few ‘‘macroscopic’’ coordinates includi
shape parameters of the target nucleus. Now suppose a
tional mechanism, which transfers the initial kinetic ener
of the system from the macroscopic motion into som
nuclear internal degrees of freedom. It is clear that the in
nal dynamics depends on the nuclear shape parame
which are, in the same time, among the macrosco
coordinates—these parameters thus mediate the couplin
both the internal and macroscopic degrees of freedom.
can assume the Hamiltonian~2! as describing the interna
dynamics, the parametersh and x being the above shap
coordinates~in some generalized sense!. Therefore,h andx
are not any more static or independently driven, as we c
sidered them above; they become truly dynamical variab
We know that the internal dynamics undergoes a qualita
change at the critical (h,x) border. How does this influenc
the evolution of the system, for instance, the energy tran
from macroscopic to internal degrees of freedom? In
opinion, the answers to these kinds of questions carry ph
cally interesting information and may also turn out to
important in some realistic situations.

V. CONCLUSIONS

We studied quantum phase-transitional behavior in the
teracting boson model 1. In literature, the shape-phase t
sition in this model is presented as a sharp qualitative cha
of the ground-state wave function forN→` or as a corre-
sponding abrupt change of the classical potential.
showed, however, that spectroscopic signatures of the p
transition, still sharp enough even for boson numbers as
as N510, are characteristic also for a large number of e
cited states~see Figs. 1, 2, 4!. This phenomenon was relate
to the multiple avoided crossing of levels near the critic
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parameter value, which is mediated by a partial alignmen
the Hamiltonian exceptional points~Fig. 5!. We then dem-
onstrated, on the simplest example of driven adiabatic
diabatic parameter variations, that the phase-transitional
havior has a significant impact on memory effects in nons
tionary quantum problems~Fig. 11!.

Working in the above basic direction, several side res
were obtained:~a! We derived a finite-N energy functional
corresponding to the Hamiltonian~2!, see Eq.~6!, and the
exact phase separatrix~7! in the parameter plane.~b! We
showed that besides theh50.8 phase transition, anothe
qualitative change of the classical potential takes place ah
51 ~Fig. 6!. It causes a multiple avoided crossing of hig
energy levels~see Fig. 5! and constitutes a new class
IBM-1 phase-transitional effects.~c! We calculated unfolded
parameter-dependent energy spectra for three paths cro
parameter regions with different degrees of chaos~Figs.
8–10!. It turned out that the fully chaotic regions can yie
both the laminar and turbulent flow of levels, resulting
different dynamical memory effects~Fig. 11!. Moreover, we
disclosed a particular sequence of level bunchings~see Fig.
ett

et
f

d
e-
-

ts

ing

9! that can be significant for the quasiregular behavior
served@13# in the parameter region along path II.

To conclude, we point out that the study of phase tran
tions within the interacting boson model not only may op
some new theoretical viewpoints, but it is also very relev
for the concrete physics of atomic nuclei. Spectroscopic s
natures of a critical shape-phase transition were identi
@20,21# in spectra of even-even nuclei, for which the IBM-
provides an adequate description. The features studied
may thus turn out to have observable nuclear consequen
We believe that even the dynamical studies using the IB
such as that involved in Sec. IV, can be found useful for
modeling of the energy transfer into internal collective d
grees of freedom in heavy-ion collisions.
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