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Space-time reflection symmetry, or PT symmetry, first proposed in quantum 
mechanics by Bender and Boettcher in 1998 [1], has become an active research area 
in fundamental physics. More than two thousand papers have been published on the 
subject and papers have appeared in two dozen categories of the arXiv. Over two 

dozen international conferences and symposia specifically devoted to PT symmetry 
have been held and many PhD theses have been written.

http://dx.doi.org/10.1051/epn/2016101
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Symmetries
While complex numbers are central in quantum mechan-
ics, the symmetries of space-time are restricted to the real 
domain. A point in space-time is represented by the real 
four-dimensional vector (x,y,z,t). The Poincaré group, the 
continuous symmetry group of space-time, is ten-dimen-
sional: First, there are four translations; repeating an experi-
ment in a laboratory located at different points in space and 
time (x+a,y+b,z+c,t+d) will yield the same experimental 
result. Second, there are three rotations; we can rotate about 
the x, y, and z axes. Repeating an experiment in a laboratory 
that has been rotated in space will yield the same result. 
Third, we can boost the velocity in three possible ways, 
along the x, y, or z axes. Again, repeating an experiment in 
a laboratory that is moving at a constant velocity relative to 
the original laboratory will yield the same result. The ho-
mogeneous Lorentz group is defined as the six-parameter 
group of all real 4 × 4 matrices that perform rotations and 
boosts (not translations) on the space-time vector (x,y,z,t) 
but leave the numerical value of the Lorentz scalar x2 - t2 
invariant. For many years it was thought that this six-pa-
rameter group (plus translations) was the fundamental 
geometrical symmetry group of the universe. However, 
along with the continuous transformations (rotations and 
boosts), the definition of this group allows for two discrete 
transformations that we now know are not symmetries of 
nature. The first, called parity P, changes the sign of the 
spatial part of the four vector P: (x,y,z,t) → (-x,-y,-z,t). (This 
symmetry operation changes one’s right hand into one’s 
left hand; such a transformation cannot be achieved by a 
rotation.) The second, called time reversal T, changes the 
sign of the time component of the four vector T: (x,y,z,t) 
→ (x,y,z,-t). A Nobel prize was awarded to Lee and Yang 
in 1957 for demonstrating that parity is not a symmetry 
of nature and another was awarded to Cronin and Fitch 
in 1980 for demonstrating that time reversal is also not a 
symmetry of nature. (A left-handed laboratory can obtain 
different experimental results from a right-handed labora-
tory and a laboratory traveling backward in time can obtain 
different results from a laboratory traveling forward in 
time.) After these advances, it was accepted that the correct 
geometrical symmetry of nature must exclude P and T. 

P
T-symmetric quantum mechanics is an exten-
sion of conventional quantum mechanics into 
the complex domain. (PT symmetry is not in 
conflict with conventional quantum theory but 

is merely a complex generalization of it.) PT-symmetric 
quantum mechanics was originally considered to be an 
interesting mathematical discovery but with little or no 
hope of practical application, but beginning in 2007 it 
became a hot area of experimental physics. It has now 
been explored experimentally in such diverse fields as 
optical wave guides, lasers, optical resonators, micro-
wave cavities, superconducting wires, NMR, graphene, 
and metamaterials, and this work has been published in 
such high-impact journals as Nature, Science, and Phys-
ical Review Letters. Using techniques developed in these 
studies it appears likely that it will be possible to use PT 
symmetry to develop new ways to control light, perhaps 
even leading to new kinds of computers that use optical 
beams instead of electric wires. It may well be used to 
formulate new kinds of materials and to develop new 
kinds of communication devices.

Two profound discoveries
To understand the background of PT-symmetric quan-
tum mechanics, recall that two profound discoveries in 
the early 20th century transformed classical physics into 
what we regard today as modern physics. The first was 
quantum mechanics, which describes the nature of mat-
ter, the stability of atomic energy levels, the binding of 
atoms to form molecules, and the properties of materials. 
The second was relativity, which describes the geometry 
of space and time. Symmetries are a central component 
of physical laws, and these theories both possess fun-
damental symmetries, a discrete symmetry in quantum 
mechanics called Hermiticity and a continuous symmetry 
in special relativity, which is expressed in terms of the 
Poincaré group.

Phenomena such as quantum interference imply 
that complex numbers play an essential role in explain-
ing physical observations in quantum mechanics. The 
Schrödinger equation, which is the fundamental equation 
of quantum mechanics, is complex. It is partly because 
of complex numbers that quantum theory makes prob-
abilistic rather than definite predictions. (For example, 
the mass of an unstable particle appears as a pole at a 
specific point in the complex plane, but on the real axis 
the remnant of this pole is a probability distribution, and 
we cannot say exactly what the mass of the particle is.) 

c FIG. 1: Structure of the homogeneous Lorentz group, the group of all real 4 × 4 matrices  
that leave the Lorentz scalar x2 - t2 invariant. This group consists of four disconnected parts,  

a subgroup called the proper orthochronous Lorentz group (POLG), and the elements  
of the POLG multiplied by parity P, time-reversal T, and space-time reflection PT. If the  

4 × 4 matrices in the Lorentz group are allowed to be complex, we obtain the complex Lorentz 
group, which has only two disconnected parts. In the complex Lorentz group the POLG is joined 

continuously to the POLG × PT and the POLG × P is joined continuously to the POLG × T.

b P. 17: The first table-
top optics experiment 

on PT symmetry. 
This experiment is 

described in Ref. [5]. 
(Photo taken by Carl 

Bender during a visit 
to the laboratory.)
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However, it was shown that the theory defined by this 
Hamiltonian has the two essential properties of a con-
ventional quantum theory: First, the energy levels (eigen-
values of H) are all real and positive if ε is positive. (The 
energies of this Hamiltonian are plotted in Fig. 2.) The 
reality of the energy levels for ε>0 was proved rigorously 
in 2001 by Dorey, Dunning, and Tateo [2]. Second, proba-
bility is conserved in time. This condition, called unitarity, 
was established in 2002 by Bender, Brody, and Jones [3].

Upside-down potential
The graph in Fig. 2 is remarkable. It shows that the Hamil-
tonian H=p2+ix3, obtained by setting ε=1, actually has real 
positive energy levels even though it is complex. Moreover, 
the Hamiltonian H=p2–x4, obtained by setting ε=2, also has 
real positive energy levels. This is particularly surprising 
because –x4 is an upside-down potential! One might think 
that a classical particle located at x=0 and subject to such 
a potential would slide down to infinity (unless it was pre-
cariously balanced at the top of the potential hill). This does 
indeed happen. However, the particle does not remain at 
infinity! Complex analysis shows that the particle repeatedly 
slides right back up to the top of the hill, and actually spends 
most of its time there. It is extremely unlikely to find the 
classical particle far from the origin; it is most probable to 
find the classical particle near x=0. At the quantum level a 
particle in this upside-down potential is in a bound state 
strongly localized at the origin. The explanation for this 
surprising behavior is that we have extended real space to 
complex space. Complex numbers differ from real numbers 
in that the complex numbers are not ordered. If a and b are 
real numbers, we can say that a>b or b>a. However, even 
though the real numbers are embedded in the complex 
numbers, we cannot say that one complex number is greater 
than another complex number, so it makes no sense to say 
that the “top” of the potential is at x=0! One must think in 
new ways when working in the complex domain.

We learn from this model that quantum theories need 
not obey the conventional mathematical condition of 
Hermiticity so long as they obey the physical geometric 
condition of space-time-reflection symmetry (PT sym-
metry). PT symmetry challenges a standard convention 
in physics—the widely held belief that a quantum Ham-
iltonian must be Hermitian. And, because PT symmetry 
is a weaker condition than Hermiticity, there are infinitely 
many Hamiltonians that are PT symmetric but non-Her-
mitian; we can now study new kinds of quantum theo-
ries that would have been rejected in the past as being 
unphysical. Moreover, PT-symmetric systems exhibit a 

Removing these symmetries from the Lorentz group, we 
obtain a new smaller symmetry group called the proper 
orthochronous Lorentz group (see Fig. 1).

 
Extended Lorentz group
What happens if we assume that, as in quantum mechan-
ics, complex numbers play a role in geometry? That is, 
what happens if we extend the proper orthochronous 
Lorentz group to include complex as well as real 4 × 4 
matrices? If we extend the Lorentz group to the complex 
domain, a new discrete symmetry, namely, PT symme-
try, emerges naturally. PT symmetry means combined P 
and T symmetry; a PT reflection changes the sign of all 
four components of a space-time vector PT: (x,y,z,t) → 
(-x,-y,-z,-t). For uncharged particles that are their own 
antiparticles this discrete symmetry is a fundamentally 
correct symmetry of nature. (For fermions and charged 
particles, PT symmetry is augmented with an additional 
symmetry operator called charge conjugation C, which 
turns particles into antiparticles. This is the origin of the 
famous CPT theorem in particle physics.)

Wigner showed that in quantum mechanics the 
time-reversal operator T changes the sign of the imag-
inary number i. This is because the position operator 
x and the momentum operator p obey the Heisenberg 
algebra: xp – px = i. (This fundamental equation leads to 
the famous Heisenberg uncertainty principle.) Since the 
momentum p changes sign (particles reverse direction) 
under time reversal while the position x does not, i chang-
es sign in order to preserve the Heisenberg algebra. Thus, 
a PT-invariant combination (one that does not change 
sign under PT) is ix, and any quantum theory that con-
tains the combination ix is PT invariant.

 The very first PT-symmetric quantum theory, which 
was proposed in 1998 [1], was defined by the Hamiltonian 
H=p2+x2(ix)ε (ε is a real parameter) in which the combina-
tion (ix) appears. The notable feature of this Hamiltonian 
is that it is not Hermitian and one might think that such 
a theory should be immediately rejected on this basis. 

b FIG. 2: Graph that launched PT-symmetric quantum theory. The energy levels of the quantum-
mechanical Hamiltonian H=p2+x2(ix)ε are plotted versus real parameter ε. This Hamiltonian is a 
complex deformation of the harmonic-oscillator Hamiltonian. It is astonishing that when ε>0, 
all the energy levels are real even though the Hamiltonian is non-Hermitian. This is because H is 
PT symmetric. When ε<0, the energies join in pairs and become complex (not shown). When ε=0, 
H reduces to the Hamiltonian for the harmonic oscillator, whose energy levels are 1, 3, 5, 7, …
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PT-symmetric atomic diffusion [12], superconducting 
wires [13,14], and PT-symmetric electronic circuits [15].

 It is remarkable how quickly the initial theoretical 
and mathematical work on PT-symmetric quantum me-
chanics led to a flurry of beautiful experimental work in 
diverse areas of physics. (Theoretical and mathematical 
work in many other areas of physics, such as string theory 
and supersymmetry, has so far failed to give rise to fruit-
ful experimentation even after decades of research.) It is 
becoming clear that PT symmetry will have important 
and lasting practical and commercial applications. 
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feature that Hermitian systems cannot; as indicated in 
Fig. 1, the energy levels become complex when ε<0. The 
transition from real to complex energies is a key feature 
of PT-symmetric systems and it is called the PT phase 
transition. At this transition the system goes from a state 
of physical equilibrium (called a state of unbroken PT 
symmetry) to nonequilibrium (broken PT symmetry).

Balanced loss and gain
PT-symmetric systems typically have complex potentials 
and thus can be thought of as non-isolated systems inter-
acting with their environment. A potential with a posi-
tive-imaginary part describes a system that receives energy 
from its environment; a potential with a negative-imagi-
nary part describes a system that loses energy to its envi-
ronment. However, a PT-symmetric system is special; the 
condition of PT symmetry means that loss and gain are 
exactly balanced. One can fabricate a PT-symmetric system 
in the laboratory by coupling two identical subsystems, one 
with gain and the other with loss. (The composite system 
is PT symmetric because space reflection P interchanges 
the subsystems and time reversal T switches the roles of 
gain and loss.) Many experiments, mostly in optics, have 
readily observed the PT phase transition between regions 
of broken and unbroken PT symmetry. 

The connection between PT-symmetric quantum 
mechanics and optics was proposed by El-Ganainy et 
al. [4]. The connection is simply that the equation de-
scribing the paraxial ray (the wave in the center) of a wave 
guide satisfies an equation of exactly the same form as 
the Schrödinger equation except that time t is replaced 
by z, the distance along the wave guide, and the poten-
tial V is replaced by the refractive index n of the optical 
material. A complex PT-symmetric potential in quantum 
mechanics (having a balanced gain and loss of energy) 
is equivalent to a complex index of refraction (having 
a balanced gain and loss of optical energy). The early 
optical experiments used a pair of coupled wave guides 
in which one wave guide had loss and the other had an 
equivalent gain [5,6] (see Fig. 3). However, there have now 
been experiments on multiple wave guides [7], PT-sym-
metric microwave cavities [8], PT-symmetric cavity lasers 
[9], unidirectional invisibility [10], and optical whisper-
ing-gallery resonators [11]. There has also been work on 

c FIG. 3: PT-symmetric optical wave 
guide. One wave guide has gain; this 
is accomplished by shining a laser on 

an optically active material such as 
lithium niobate. The other wave guide 

has loss, which is accomplished by 
plating the wave guide with a metal 

such as chromium. The wave guides are 
coupled by placing them in close physical 

proximity so that they can exchange 
energy and achieve equilibrium.
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