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A recent paper by Jones-Smith and Mathur, Phys. Rev. A 82, 042101 (2010) extends PT -symmetric quantum
mechanics from bosonic systems (systems for which T 2 = 1) to fermionic systems (systems for which T 2 = −1).
The current paper shows how the formalism developed by Jones-Smith and Mathur can be used to construct
PT -symmetric matrix representations for operator algebras of the form η2 = 0, η̄2 = 0, ηη̄ + η̄η = α1, where
η̄ = ηPT = PT ηT −1P−1. It is easy to construct matrix representations for the Grassmann algebra (α = 0).
However, one can only construct matrix representations for the fermionic operator algebra (α �= 0) if α = −1; a
matrix representation does not exist for the conventional value α = 1.
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I. INTRODUCTION

A recent paper [1] shows how to generalize PT quantum
mechanics [2,3] from the Heisenberg algebra [q,p] = i to
other kinds of algebras, such as E2. (The E2 algebra is
characterized by a set of three commutation relations: [u,J ] =
iv, [v,J ] = −iu, [u,v] = 0.) The algebras considered in
Ref. [1] are bosonic in character because they are expressed
in terms of commutation relations. However, Jones-Smith
and Mathur have shown how to describe PT -symmetric
quantum theories in a fermionic setting [4]. Thus, in the
current paper we apply the formalism developed in Ref. [4] to
examine the representations of algebras expressed in terms of
anticommutation relations.

We consider here two standard algebras: the operator
algebra of fermions, which consists of two nilpotent elements,
η and η̄, whose anticommutator is unity,

η2 = 0, η̄2 = 0, ηη̄ + η̄η = 1, (1)

and the Grassmann algebra, which again consists of two
nilpotent elements, η and η̄, whose anticommutator vanishes,

η2 = 0, η̄2 = 0, ηη̄ + η̄η = 0. (2)

The requirement that η and η̄ be nilpotent is imposed to
incorporate fermionic statistics. Our objective is to find matrix
representations of (1) and (2) in the context of fermionic PT -
symmetric quantum mechanics; that is, under the assumption
that η̄ is the PT reflection of η,

η̄ = PT ηT −1P−1. (3)

In Sec. II we investigate the two-dimensional matrix
representations of (1) and (2) using nothing more than the
representation of P and T introduced in Ref. [5] in which
the square of the T operator is unity: T 2 = 1. Then in
Sec. III, we apply the more elaborate formalism introduced
recently in Ref. [4] in which it is argued that T 2 = −1
(and not 1) for fermions. We show that if we replace the
condition T 2 = 1 by T 2 = −1, it is still possible to find matrix
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representations of the Grassmann algebra (2). However, the
surprise is that it is not possible to find matrix representations
of the fermionic operator algebra in (1); one can only find
matrix representations of the PT version of the fermionic
operator algebra

η2 = 0, η̄2 = 0, ηη̄ + η̄η = −1. (4)

II. TWO-DIMENSIONAL REPRESENTATIONS OF η AND η̄

For purposes of comparison, we begin by considering a
two-dimensional matrix representation in which we assume
that η̄ is given by the conventional Hermitian adjoint η̄ = η†.
The most general complex matrix η whose square vanishes
has a vanishing trace and determinant,

η =
(

a b

c −a

)
, (5)

where b and c are arbitrary complex numbers, and a is fixed
by the determinant condition a2 + bc = 0. Then, η̄ is given by

η̄ =
(

a∗ c∗
b∗ −a∗

)
, (6)

and the nilpotency condition η̄2 = 0 is automatically satisfied.
The fermionic algebra condition ηη̄ + η̄η = 1 now reduces to

|b| + |c| = 1. (7)

Thus, if b and c are real, they are constrained to a unit diamond,
as shown in Fig. 1. More generally, if b = ueiα and c = veiβ

are complex, then α and β are arbitrary, and u � 0 and v � 0
lie on the line segment u + v = 1 in the positive quadrant of
the (u,v) plane.

For the case of the Grassmann algebra, b and c satisfy the
constraint

|b| + |c| = 0 (8)

instead of (7). The unique solution to (8) is b = c = 0. Thus,
in this case there is no nontrivial Grassmann representation for
η and η̄.

Now let us turn to the case of a PT -symmetric fermionic
algebra. What happens if we apply to fermions the naive
representations of parity reflection P and time reversal T that
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FIG. 1. (Color online) Plot of the real parameters b and c for the
representation of η in (5) for the case in which η̄ is the conventional
Hermitian conjugate of η; η and η̄ satisfy the fermionic algebra ηη̄ +
η̄η = 1. The diamond-shaped locus of points is described by the
equation |b| + |c| = 1.

were used earlier in Ref. [5]? We represent a parity reflection
as a real symmetric matrix whose square is unity, which for
two-dimensional matrices is

P =
(

0 1
1 0

)
, (9)

and we represent T as complex conjugation. With these
choices, P2 = 1, T 2 = 1, and [P,T ] = 0.

Here, if η is as given in (5), then from (3) η̄ is given by

η̄ = PT ηPT =
(−a∗ c∗

b∗ a∗

)
. (10)

Once again, the condition η̄2 = 0 is automatically satisfied.
Now, requiring that η and η̄ obey the fermionic algebra ηη̄ +
η̄η = 1 leads to the condition

(|b| − |c|)2 = 1. (11)

Thus, if b and c are real, they lie on the lines shown in Fig. 2,
which is the unbounded extended complement of the diamond
shown in Fig. 2. More generally, if b = ueiα and c = veiβ are
complex, then α and β are arbitrary, and u � 0 and v � 0 lie
on two infinite lines u − v = ±1 in the positive quadrant of
the (u,v) plane.

If η and η̄ are required to satisfy a Grassmann algebra, then
if b and c are real, they must satisfy the equation

|b| − |c| = 0. (12)

Thus, unlike the Hermitian case, there is a nontrivial set of
solutions.

It is interesting that when η̄ is the PT conjugate of η, there
is an unbounded range of parameters and that when η̄ is the
Hermitian conjugate of η, the range of parameters is bounded.
This result is strongly analogous to what was found in the study
of the PT -symmetric quantum brachistochrone compared
with the conventional Hermitian quantum brachistochrone [6].
The matrix elements of the Hamiltonian that describes the PT

FIG. 2. (Color online) Plot of the real parameters b and c for the
representation of η in (5) for the case in which η̄ is the PT conjugate
of η, where P is given in (9) and T is complex conjugation, and η

and η̄ satisfy a fermionic algebra. The locus of points is described
by the equation (|b| − |c|)2 = 1 and is thus an unbounded region, in
contrast with the bounded region shown in Fig. 1.

brachistochrone are unbounded (even though the eigenvalues
are fixed), while the matrix elements of the Hamiltonian for the
Hermitian quantum brachistochrone are bounded. Thus, PT -
symmetric quantum mechanics is hyperbolic (unbounded) in
character, while conventional Hermitian quantum mechanics
is elliptic (bounded) in character.

III. APPLICATION OF THE FORMALISM
OF JONES-SMITH AND MATHUR

For a correct quantum-mechanical description of fermions,
the time-reflection operator T must be chosen such that its
square is −1 instead of 1 [7]. In a recent paper by Jones-
Smith and Mathur, this fact is used to construct suitable matrix
representations of the T and P operators [4]. In the following
subsection we briefly recapitulate their results.

A. Brief summary of the essential results of Jones-Smith
and Mathur

In Ref. [4] it is shown how to construct matrix repre-
sentations of dimension 4n (n = 1, 2, 3, . . .) of the T and
P operators. The effect of a time operator acting on a
state ψ , which is a 4m-dimensional vector, is to take the
complex conjugate of ψ and to multiply the result by a real
matrix t :

T ψ = tψ∗. (13)

The general form for the t matrix consists of 2n copies of the
2 × 2 matrix

(
0 1
−1 0

)
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on the main diagonal and zero entries elsewhere. For the
simplest (n = 1) case t is the 4 × 4 matrix

t =

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ . (14)

The effect of a parity operator acting on a state ψ is to multiply
ψ by a real matrix p:

Pψ = pψ. (15)

The general form for the p matrix is the diagonal matrix whose
first 2n diagonal elements are 1 and whose next 2n diagonal
elements are −1. For the simplest (n = 1) case p is the 4 ×
4 matrix

p =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ . (16)

Note that with these choices the operators P and T commute,
P2 = 1, and T 2 = −1. Also, the matrices p and t satisfy
[p,t] = 0, p2 = 1, and t2 = −1.

These results are nearly identical with those of Bjorken
and Drell [8] in their discussion of the operators P and T
for the Dirac equation. In this text it is shown that when the
parity-reflection operator P acts on a four-component spinor,
it has the effect of multiplying the spinor by the matrix γ 0,
which is precisely the matrix p given in (16). Furthermore,
when the time-reversal operator T acts on a four-component
spinor, it has the effect of multiplying the spinor by the matrix
iγ 1γ 3, which is the matrix τ = it , with t given in (14). Thus,
τ 2 = 1. It still follows that T 2 = −1 because τ is imaginary,
and thus it changes sign under complex conjugation.

B. Construction of quadratically nilpotent matrices

Our next task is to construct general classes of quadrat-
ically nilpotent matrices. We know that an n-dimensional
matrix whose square vanishes must have a vanishing trace

and determinant. Of course, if n > 2, not all traceless n-
dimensional matrices having a vanishing determinant are
quadratically nilpotent. Thus, we propose the following very
simple general set of such matrices: Let the elements in the
top row of the matrix be arbitrarily chosen complex numbers:
a1, a2, a3, . . . ,an. Next, let the kth row (k > 1) be an arbitrary
multiple bk of the elements in the first row. This matrix contains
2n − 1 arbitrary complex parameters and by construction its
determinant vanishes.

We then impose the condition that the matrix be traceless:

a1 + a2b2 + a3b3 + · · · + anbn = 0. (17)

The resulting matrix contains 2n − 2 complex parameters and
is quadratically nilpotent. In four dimensions this construction
gives the following general 12-parameter complex matrix
representation for η:

η =

⎛
⎜⎝

−ch − bg − af f g h

−a(ch + bg + af ) af ag ah

−b(ch + bg + af ) bf bg bh

−c(ch + bg + af ) cf cg ch

⎞
⎟⎠ . (18)

Using the matrix representation in (14) for the time-reversal
operator and the matrix representation p in (16) for the parity-
reflection operator, we obtain from (3) the PT reflection of η

from the formula η̄ = −p t η∗ t p [9]:

η̄ =

⎛
⎜⎝

af a(ch + bg + af ) −ah ag

−f −ch − bg − af h −g

−cf −c(ch + bg + af ) ch −cg

bf b(ch + bg + af ) −bh bg

⎞
⎟⎠

∗

. (19)

One can verify that η̄2 = 0.

C. Grassmann algebra

Using the 4 × 4 matrix representations for η in (18) and η̄ in
(19), we can now construct the anticommutator y = ηη̄ + η̄η.
For the special case in which the parameters a, b, c, f , g, h

are real, the matrix y has a particularly simple form because
the expression ach − bh + cg + abg + a2f + f factors out
of all 16 matrix elements:

y = (ach − bh + cg + abg + a2f + f )

⎛
⎜⎜⎝

−ach − abg − a2f − f −ch − bg h + ag ah − g

ch + bg −ach − abg − a2f − f ah − g −h − ag

c2h + bcg + acf − bf −bch − b2g − cf − abf bh − cg −ch − bg

−bch − b2g − cf − abf −c2h − bcg − acf + bf ch + bg bh − cg

⎞
⎟⎟⎠ .

(20)

Thus, if we choose

f = (bh − ach − cg − abg)/(a2 + 1), (21)

then all 16 matrix elements of y vanish, and we have found a
five-parameter four-dimensional real matrix representation of
η and η̄ for the Grassmann algebra (2).

There is no choice of parameters for which y = 1. To show
that this is true, we see from (20) that y2,3 = 0 requires that
g = ah and that y2,4 = 0 requires that h = −ag. Combining

these two equations gives g(a2 + 1) = 0. Thus, g = 0 and
also h = 0. It follows that y4,4 = 0, and we conclude that it is
impossible to construct a real matrix representation of η that
obeys the PT -symmetric fermionic operator algebra (1).

In general, the parameters in (18) and (19) are com-
plex numbers: a = a1 + a2i, b = b1 + b2i, c = c1 + c2i, f =
f1 + f2i, g = g1 + g2i, h = h1 + h2i. If we set the (1,2)
matrix element of the anticommutator matrix y to 0, we obtain
two equations for the vanishing of the real and imaginary
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parts. These equations are long and complicated, and they are
quadratic in all of the parameters a1, a2, b1, b2,. . . , except for
two; surprisingly, they are linear in f1 and f2. If we solve this
pair of equations simultaneously, we obtain startlingly simple
results for the real and imaginary parts of f :

f1 = [(a1c2 − a2c1 + b2)h2 + (−a2c2 − a1c1 + b1)h1

+ (−c2 + a1b2 − a2b1)g2 + (−c1 − a2b2 − a1b1)g1]

/
(
a2

2 + a2
1 + 1

)
,

f2 = −[(a2c2 + a1c1 − b1)h2 + (a1c2 − a2c1 + b2)h1

+ (c1 + a2b2 + a1b1)g2 + (−c2 + a1b2 − a2b1)g1]

/
(
a2

2 + a2
1 + 1

)
. (22)

This is the complex generalization of (21).
Substituting f1 and f2 into y, we find that all 16 matrix

elements of y vanish. Thus, we have found a 10-parameter
complex Grassmann representation. An interesting special

case is the complex symmetric representation (there is no real
symmetric representation):

η =

⎛
⎜⎝

−i −iα 1 α

−iα −iα2 α α2

1 α i iα

α α2 iα iα2

⎞
⎟⎠ , (23)

for which α is real. This representation has an obvious
quaternionic structure.

D. Peculiar PT -symmetric fermionic case

To construct a fermionic algebra (for which the matrix y

is nonvanishing), we must not allow f1 and f2 to take the
values in (22). The expressions for the matrix elements of y

are extremely complicated, but (22) indicates a way to proceed.
Note that the denominator of (22) is quadratic in a1 and a2.
This suggests that we should choose f1 = 0 and f2 = 0 so
that we can obtain linear equations to solve for a1 and a2. We
find that it is simplest to solve simultaneously the real and
imaginary parts of y3,4 = 0 for a1 and a2, and we obtain

a1 = N1/D, a2 = N2/D, (24)

where

N1 = (b1g1 − b2g2 + c1h1 − c2h2)(b1h1 + b2h2 − c1g1 − c2g2) + (b1g2 + b2g1 + c1h2 + c2h1)(b1h2 − b2h1 − c1g2 + c2g1),

N2 = (b1h2 − b2h1 − c1g2 + c2g1)(b2g2 − b1g1 − c1h1 + c2h2) + (b1h1 + b2h2 − c1g1 − c2g2)(b1g2 + b2g1 + c1h2 + c2h1),

D = (c2h2 + b2g2 − c1h1 − b1g1)2 + (c2h1 + b1g2 + c1h2 + b2g1)2.

Amazingly, it is not necessary to solve for any other
parameters; we find that when we substitute the values of
a1 and a2 in (24) into the matrix y, we obtain after massive
simplification a stunningly simple expression for y:

y = ηη̄ + η̄η =

⎛
⎜⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ . (25)

This result is a surprise because y = −1 rather than the
expected matrix 1. Evidently, it is not possible to achieve
the conventional fermionic algebra in (1), but rather we get
the PT -symmetric variant of this algebra in (4). Indeed, we
have found an eight-parameter representation of this algebra
in which the real and imaginary parts of b, c, g,
h are arbitrary. Note that we cannot change the sign in this
algebra from −1 back to +1 by multiplying η by a complex

phase because the time-reversal operator T performs complex
conjugation.

We conclude that because the time operator for fermions
obeys the equation T 2 = −1, the fermionic operator algebra
for a PT -symmetric system necessarily picks up an extra
minus sign; we must replace the algebra in (1) by its PT
variant in (4). We interpret the negative sign in the fermionic
algebra (4) as indicating a fundamental change in character
from elliptic to hyperbolic. This is the same interpretation that
we presented at the end of Sec. II for the case of a 2 × 2
PT -symmetric matrix representation for η.
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