
J. Chem. Phys. 136, 164109 (2012); https://doi.org/10.1063/1.4705280 136, 164109

© 2012 American Institute of Physics.

Projected Hartree–Fock theory
Cite as: J. Chem. Phys. 136, 164109 (2012); https://doi.org/10.1063/1.4705280
Submitted: 12 February 2012 . Accepted: 06 April 2012 . Published Online: 26 April 2012

Carlos A. Jiménez-Hoyos, Thomas M. Henderson, Takashi Tsuchimochi, and Gustavo E. Scuseria

ARTICLES YOU MAY BE INTERESTED IN

Projected quasiparticle theory for molecular electronic structure
The Journal of Chemical Physics 135, 124108 (2011); https://doi.org/10.1063/1.3643338

Stability of the complex generalized Hartree-Fock equations
The Journal of Chemical Physics 142, 154109 (2015); https://doi.org/10.1063/1.4918561

Communication: Projected Hartree Fock theory as a polynomial similarity transformation
theory of single excitations
The Journal of Chemical Physics 145, 111102 (2016); https://doi.org/10.1063/1.4963082

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1858055942/x01/AIP-PT/MB_JCPArticleDL_WP_0818/large-banner.jpg/434f71374e315a556e61414141774c75?x
https://doi.org/10.1063/1.4705280
https://doi.org/10.1063/1.4705280
https://aip.scitation.org/author/Jim%C3%A9nez-Hoyos%2C+Carlos+A
https://aip.scitation.org/author/Henderson%2C+Thomas+M
https://aip.scitation.org/author/Tsuchimochi%2C+Takashi
https://aip.scitation.org/author/Scuseria%2C+Gustavo+E
https://doi.org/10.1063/1.4705280
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4705280
https://aip.scitation.org/doi/10.1063/1.3643338
https://doi.org/10.1063/1.3643338
https://aip.scitation.org/doi/10.1063/1.4918561
https://doi.org/10.1063/1.4918561
https://aip.scitation.org/doi/10.1063/1.4963082
https://aip.scitation.org/doi/10.1063/1.4963082
https://doi.org/10.1063/1.4963082


THE JOURNAL OF CHEMICAL PHYSICS 136, 164109 (2012)

Projected Hartree–Fock theory
Carlos A. Jiménez-Hoyos,1 Thomas M. Henderson,1,2 Takashi Tsuchimochi,1

and Gustavo E. Scuseria1,2

1Department of Chemistry, Rice University, Houston, Texas 77005, USA
2Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

(Received 12 February 2012; accepted 6 April 2012; published online 26 April 2012)

Projected Hartree–Fock (PHF) theory has a long history in quantum chemistry. PHF is here under-
stood as the variational determination of an N-electron broken symmetry Slater determinant that
minimizes the energy of a projected state with the correct quantum numbers. The method was ac-
tively pursued for several decades but seems to have been abandoned. We here derive and implement
a “variation after projection” PHF theory using techniques different from those previously employed
in quantum chemistry. Our PHF methodology has modest mean-field computational cost, yields rel-
atively simple expressions, can be applied to both collinear and non-collinear spin cases, and can
be used in conjunction with deliberate symmetry breaking and restoration of other molecular sym-
metries like complex conjugation and point group. We present several benchmark applications to
dissociation curves and singlet-triplet energy splittings, showing that the resulting PHF wavefunc-
tions are of high quality multireference character. We also provide numerical evidence that in the
thermodynamic limit, the energy in PHF is not lower than that of broken-symmetry HF, a simple
consequence of the lack of size consistency and extensivity of PHF. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4705280]

I. INTRODUCTION

In a recent paper,1 we introduced a novel wavefunc-
tion method known as projected quasiparticle theory (PQT).
The fundamental idea of PQT is very simple. We begin
with a Hartree–Fock–Bogoliubov determinant (thereby mix-
ing states of different particle numbers) and then restore par-
ticle number symmetry with the aid of projection operators
in a self-consistent variation-after-projection (VAP) manner.
Without breaking any other symmetries, this reduces to the
standard antisymmetrized geminal power (AGP) wavefunc-
tion. However, we can also deliberately break and restore spin
symmetry, point group symmetry, and complex conjugation
symmetry, all within the same general framework. In each
case, this deliberate symmetry breaking and restoration al-
lows us to construct fairly sophisticated multiconfigurational
wavefunctions with mean-field computational scaling.

Closely related to PQT, at least conceptually, is projected
Hartree–Fock (PHF), where particle number symmetry is not
broken and the projection operators act on an N-electron de-
terminant. The PHF acronym in quantum chemistry is usually
associated with spin-projection in a projection-after-variation
(PAV) approach2 where the deformed (i.e., symmetry broken)
determinant |�〉 variationally minimizes the energy

E� = 〈�|Ĥ |�〉
〈�|�〉 , (1)

and is then used to construct a projected state |�〉 = P̂ |�〉
whose energy is given by

E� = 〈�|P̂ †Ĥ P̂ |�〉
〈�|P̂ †P̂ |�〉 = 〈�|Ĥ P̂ |�〉

〈�|P̂ |�〉 . (2)

Here, we have used the fact that the projection operator P̂

is Hermitian, idempotent, and commutes with the Hamilto-
nian. The PAV approach is computationally quite simple, but
has several drawbacks. Near regions of spontaneous symme-
try breaking, the PAV energy can be ill behaved.3 Moreover,
the projection is often carried out only approximately,4 i.e.,
without removing all spin contaminants. This may lead to
a large deviation in the expectation value 〈Ŝ2〉 for the pro-
jected state when the reference determinant has contaminants
of many different spins.5 Lastly, the wavefunction is not vari-
ationally optimized, complicating the evaluation of properties
depending on its derivatives.

These defects can be remedied by using a self-consistent
VAP approach, wherein one obtains the deformed deter-
minant |�〉 by variationally minimizing the energy E� of
Eq. (2) with respect to |�〉, as first proposed by Löwdin in
his extended Hartree–Fock (EHF) method.6 More often than
not, EHF has been associated with the use of a spin projec-
tion operator on a reference unrestricted determinant (the so-
called spin-projected EHF (Ref. 7)), and we will follow this
usage. We should note that Goddard’s GF method8 is equiva-
lent to EHF, while in certain limits also the spin-coupled va-
lence bond (SCVB) method9 corresponds to EHF. The use of
projected wavefunctions in quantum chemistry is nowadays
very limited, but they are ubiquitous in fields such as nuclear
physics.10–12

Several authors have proposed different ways to optimize
the EHF wavefunction in quantum chemistry. Mayer’s deriva-
tion was based on the Brillouin theorem for the projected
state.13 His derivation relied heavily on the pairing theorem
by Löwdin.14 Rosenberg and Martino,15 and later Klimo and
Tinŏ,16 used a direct minimization of the energy functional.
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More recently, Byrman suggested an optimization technique
based on the fact that the EHF wavefunction is recovered
when a single spin wavefunction is used in the context of
the spin-coupled valence bond method.9 Our purpose in this
paper is to show how to carry out a VAP optimization of
a PHF wavefunction in an alternative, computationally effi-
cient, manner. In achieving this goal, we are guided by our
previous work.1

The derivation of the PQT equations relied on expressing
a general Hartree–Fock–Bogoliubov determinant |�〉 using
its Thouless parametrization with respect to the bare vacuum
|−〉. In other words, we implicitly wrote |�〉 = eẐ|−〉.1, 17

This parametrization requires 〈�| − 〉 �= 0. In the case of PHF,
however, the deformed determinant is a number eigenfunction
with N electrons and is thus orthogonal to the bare vacuum.
The PQT derivation cannot then be blindly applied. The prac-
tical consequence of this orthogonality is that one encounters
indeterminancies in the PQT equations when using reference
determinants whose one-particle density matrix has occupa-
tion numbers equal to zero.

While the PQT derivation cannot straightforwardly be ex-
tended to derive corresponding PHF equations, the underlying
conceptual framework is similar. That is, we wish to express
the energy of the projected state in terms of the one-particle
density matrix of a broken symmetry reference determinant.
Having done so, the energy can be minimized with respect
to the reference determinant’s density matrix, leading to an
effective one-particle Hamiltonian to be variationally opti-
mized. We thus follow the basic ideas used in PQT to derive
the PHF equations from scratch. Our derivation and resulting
equations afford spin symmetry restoration of both collinear
and non-collinear broken symmetry determinants in a straigh-
forward manner, where collinear (unrestricted Hartree–Fock
type) determinants are eigenfunctions of Ŝz and non-collinear
determinants (generalized Hartree–Fock type) are not. Addi-
tionally, we can readily restore complex conjugation or point
group symmetry as well, just as we did in PQT. All of this is
accomplished in essence by choosing a more convenient rep-
resentation of the projection than the standard Löwdin projec-
tion operators used historically.

Fukutome18 and later Stuber and Paldus19 have dis-
cussed the group-theoretical classification of the solutions
to the Hartree–Fock equations. Aside from particle number,
the molecular Hamiltonian preserves spin symmetry (broken
in unrestricted Hartree–Fock (UHF) solutions), Sz symme-
try (broken in non-collinear or GHF solutions), point group
symmetry (usually broken in UHF solutions), and complex
conjugation symmetry (broken by allowing the molecular or-
bitals to become complex). The use of non-collinear reference
determinants in the optimization of projected Hartree–Fock
states has been limited to the work by Lunell on the two-
electron series.20 The complex molecular orbital method of
Hendeković21 is closely related to our complex conjugation
projection but has seen little use. Unlike these approaches,
however, our implementation of PHF readily allows for the
simultaneous restoration of all the symmetries discussed by
Fukutome at once. Our method is also related to the VAMPIR
method of Schmid et al.,22 though the optimization of the ref-
erence determinant is carried out in a very different way.

The properties of the projected Hartree–Fock wavefunc-
tion have been studied extensively by many authors. We
point the interested reader to the review by Mayer7 on the
spin-projected EHF method as a starting point to access
the wide literature on the subject. In particular, we men-
tion that properties of the density matrices characterizing
the standard EHF states (i.e., those based on collinear de-
terminants) have been derived by Harriman,23 Hardisson and
Harriman,24 Mestechkin,25 and Phillips and Schug.26 Simons
and Harriman27 derived properties of the point-group pro-
jected Hartree–Fock wavefunction. We would also like to
mention the work of Handy and Rice28 in deriving the analyt-
ical energy gradients of an approximate EHF wave function
(only the first spin contaminant was removed).

We should also point out some of the vices of PHF: the
method is neither size consistent nor size extensive, as has
been noted before.29 Recall that a size consistent method is
one where the dissociation limit of the system AB is equal
to the energy of A plus the energy of B; a size-extensive
method is one where the energy is proportional to the num-
ber of particles. Our results in this paper confirm previous
conclusions29, 30 that, in the thermodynamic limit, the PHF
energy per particle reduces to that of the broken symme-
try mean field. In other words, as the number of electrons
becomes large enough, PHF has nothing to add over stan-
dard Hartree–Fock except that it retains good quantum num-
bers which the broken symmetry Hartree–Fock state loses.
Additionally, we note that the EHF method has been criticized
for not being able to account for dynamical correlation, con-
trary to Lowdin’s original thoughts.31 Even though the use of
a more general symmetry-breaking and restoration approach
will invariably result in more correlations being captured, we
believe that such an approach is still insufficient to capture all
the correlations present in many-particle states.

Section II discusses the details of the projection we use
before deriving the energy of our projected wavefunction and
the variational equations we solve to obtain it. In Sec. III we
present the results of applying our equations in the descrip-
tion of molecular dissociation processes and in the computa-
tion of singlet-triplet splittings, before drawing a few conclu-
sions in Sec. IV. In the interest of brevity, we have deferred
the detailed equations for our effective Hamiltonian to the
Appendix.

II. THEORY

A. Projection operators

The complicated nature of Mayer’s EHF equations owes
much to the form of the projection operator used. This form
is due to Löwdin,6 and writes

P̂ s =
∏
l �=s

Ŝ2 − l(l + 1)

s(s + 1) − l(l + 1)
. (3)

Applying this operator to a wavefunction composed of mul-
tiple different spins just returns the component with spin s,
and annihilates the components with other spins. While this
spin operator does not project the z-component of spin, it can
be generalized to do so. Given a simpler way of writing the
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projection operators and evaluating the projected energy E�

in terms of the deformed determinant |�〉, one would have a
computationally simpler scheme whose results are identical
to those of Mayer in the case of spin projection.

Fortunately, such a simple representation of general pro-
jections exists.10, 11 In our previous paper,1 we omitted some
details about the form of the projection, a fact we intend to
remedy here. We start our discussion by emphasizing that by
projected Hartree–Fock theory we mean recovering a wave-
function with good quantum numbers from an intrinsically
deformed HF state, and do not demand the use of actual
projection operators in a strict mathematical sense. In other
words, while we require that the wavefunction P̂ |�〉 be an
eigenfunction of the relevant symmetry operators, we do not
insist that P̂ is either Hermitian or idempotent.

If a single operator �̂ can be associated with a constant
of motion (that is, �̂ commutes with the Hamiltonian), one
can write a projection operator as

P̂ λ = 1

L

∫
L

dφ eiφ(�̂−λ), (4)

where λ is the eigenvalue recovered and L is the correspond-
ing volume of integration.10 We note that this form can be
used to project onto eigenfunctions of Ŝz.

If, on the other hand, there is a set of operators that com-
mute with the Hamiltonian (but not necessarily with each
other) and which form a group G = {ĝ}, then one can recover
the correct symmetries by diagonalizing the Hamiltonian in
the basis formed by the elements of the group. In other words,

|�〉 =
∑

g

cg ĝ|�〉, (5)

with the coefficients being determined by the solution to the
corresponding eigenvalue problem.

Alternatively, one can recover the coefficients by de-
manding that the wavefunction |�〉 has the desired symme-
tries. In other words, one can work with projectors. In general,
one can construct the so-called “transfer” operators32, 33

P̂
j

λκ = lj

h

∑
g

�j (g)	λκ ĝ, (6)

where h is the order of the group G, lj is the dimension of
the irreducible representation �j, and �j(g)λκ is the element
in the λth row and κth column of the matrix associated with
ĝ in such irreducible representation. This operator yields zero
unless the function on which it acts belongs to the κth row of
�j. By using the great orthogonality theorem one can show
that

P̂
j

λκ P̂
k
μν = δjkδκμP̂ k

λν, (7)

(
P̂

j

λκ

)† = P̂
j

κλ. (8)

It is easy to see that P̂
j
κκ is indeed a projection operator in the

mathematical sense: it is Hermitian and idempotent.
Consider the action of P̂

j
κκ on a deformed wavefunction

|�〉. It extracts the component of |�〉 which transforms as the

κth row of �j. It is, however, unphysical in the sense that

P̂ j
κκ |�〉 �= P̂ j

κκ |�′〉, (9)

where |�′〉 is a rotated wavefunction in the subspace of �j.
In order to avoid this unphysical behavior, we use the linear
combination

|�〉 =
∑

κ

cκ P̂
j

λκ |�〉. (10)

It is clear that this linear combination produces a wavefunc-
tion |�〉 which transforms as the λth row of �j, thus having λ

and j as good quantum numbers.
Evaluating the energy of |�〉 leads to

E� =
∑

κκ ′ c
	
κ ′ cκ〈�|(P̂ j

λκ ′
)†

Ĥ P̂
j

λκ |�〉∑
κκ ′ c

	
κ ′ cκ〈�|(P̂ j

λκ ′
)†

P̂
j

λκ |�〉

=
∑

κκ ′ c
	
κ ′ cκ〈�|Ĥ P̂

j

κ ′κ |�〉∑
κκ ′ c

	
κ ′ cκ〈�|P̂ j

κ ′κ |�〉
, (11)

where we have used the fact that P̂
j

λκ commutes with the
Hamiltonian. The coefficients cκ are most conveniently de-
termined by solving the generalized eigenvalue problem∑

κ

h
j

κ ′κ cκ = E
∑

κ

n
j

κ ′κ cκ , (12)

with h
j

κ ′κ = 〈�|Ĥ P̂
j

κ ′κ |�〉 and n
j

κ ′κ = 〈�|P̂ j

κ ′κ |�〉. Observe
that all projected wavefunctions of the same irreducible rep-
resentation �j are degenerate.

We have used the above projections to restore spatial
symmetry. On the other hand, we have preferred to diago-
nalize the Hamiltonian in the basis of the elements of the
group {Î , K̂} to restore complex conjugation. Restoring com-
plex conjugation amounts to letting the resulting |�〉 have the
property that

K̂|�〉 = eiχ |�〉, (13)

where χ is an arbitrary phase factor. Note that a general com-
plex deformed HF determinant does not have this property.

B. Spin projection operators

Due to the historical significance of spin projection, we
here present a more detailed discussion of the form we use.

We can recover eigenfunctions of Ŝ2 by demanding that
the projected wavefunction be invariant to the axis of spin
quantization, as first proposed by Percus and Rotenberg in the
context of angular momentum projection.34 The form we use
for the spin projection operator is similar to the one we dis-
cussed for non-abelian groups in Sec. II A. Explicitly, we use
the operator

P̂ s
mk = |s; m〉〈s; k| (14)

= 2s + 1

8π2

∫
d�Ds	

mk(�) R̂(�), (15)

R̂(�) = eiαŜz eiβŜy eiγ Ŝz , (16)
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where Ds
mk(�) = 〈s; m|R̂(�)|s; k〉 is a Wigner rotation matrix

and |s; m〉 is an eigenfunction of Ŝ2 and Ŝz with eigenvalues
denoted by s and m, respectively. Here, � = (α, β, γ ) is the
set of Euler angles.

P̂ s
mk obeys the same rules as the transfer operators dis-

cussed previously:

P̂ s
mk P̂ s ′

m′k′ = δss ′ δm′k P̂ s
mk′ , (17)

(
P̂ s

mk

)† = P̂ s
km. (18)

The action of P̂ s
mk on a deformed HF state |�〉 recovers the

multi-determinantal state characterized by the quantum num-
bers s and k and writes it in terms of the quantum numbers s
and m. As discussed above, the operator P̂ s

kk is a true projec-
tion operator but we avoid its use as the resulting wavefunc-
tion (and the energy) depends on the value of k chosen. We
therefore form the linear combination

|�〉 =
∑

k

ckP̂
s
mk|�〉 (19)

and determine the 2s + 1 coefficients ck by diagonalization.
We finally note that if |�〉 is an eigenfunction of Ŝz with

eigenvalue m (i.e., a collinear state), then no such expansion
is necessary. Furthermore, the operator becomes a true pro-
jection operator and can be simplified to

P̂ s
mm = 2s + 1

2

∫ π

0
dβ sin β ds

mm(β) eiβŜy , (20)

where ds
mm(β) = 〈s; m|eiβŜy |s; m〉. In this case, the projected

wavefunctions (and their energies) depend on the value of
〈Ŝz〉 = m chosen for the deformed determinant. In practice,
the gauge integration over the set of Euler angles is dis-
cretized. We have observed that the number of grid points re-
quired to get good convergence on the integrals is generally
small. We should note that the projectors we have described
in the foregoing have frequently been used for total angular
momentum projection in nuclear physics.10 It should also be
observed that the form of the spin projector that we use is in
fact not new in quantum chemistry. It was used by Lefebvre
and Prat35, 36 to provide a simpler formula for the EHF energy.
Their work, unfortunately, remained largely unnoticed.

To reduce notational clutter, we will henceforth use E for
the energy of the projected state and will write the projector
in a general form as

P̂ =
∫

d�w(�) R̂(�). (21)

All associated eigenvalue problems are implied by our
notation.

C. Projected Hartree–Fock

Given the projectors defined above, we evaluate the pro-
jected Hartree–Fock energy expression as

E = 〈�|Ĥ P̂ |�〉
〈�|P̂ |�〉 =

∫
d�w(�) 〈�|Ĥ R̂(�)|�〉∫
d�w(�) 〈�|R̂(�)|�〉 . (22)

Simplifying the notation by defining

x(�) = w(�) 〈�|R̂(�)|�〉 (23)

and constructing the rotated Slater determinants

|�〉 = R̂(�)|�〉
〈�|R̂(�)|�〉 (24)

permits us to write

E =
∫

d�x(�) 〈0|Ĥ |�〉∫
d�x(�)

=
∫

d�y(�) 〈0|Ĥ |�〉. (25)

Evaluating the energy thus requires evaluating overlap or
norm matrix elements 〈�|R̂(�)|�〉 and Hamiltonian matrix
elements 〈0|Ĥ |�〉. Note that because R̂(0) = 1, we have |0〉
= |�〉. Note also that the determinants |�〉 are defined in in-
termediate normalization, so that 〈0|�〉 = 1.

The norm matrix elements can be evaluated in the usual
way for the overlap between two non-orthogonal Slater deter-
minants |�〉 and |�〉:37

〈�|�〉 = det M, (26)

where M is the matrix of overlaps between orbitals |φ〉 occu-
pied in |�〉 and orbitals |ξ 〉 occupied in |�〉, i.e.,

Mij = 〈φi |ξj 〉. (27)

To evaluate the Hamiltonian matrix elements we follow
Löwdin,37 who realized that a generalized form of Wick’s the-
orem holds. We have

〈�|Ĥ |�〉
〈�|�〉 =

∑
ik

hikρ
��
ki + 1

2

∑
ijkl

〈ij‖kl〉ρ��
ki ρ��

lj , (28)

where hik and 〈ij||kl〉 are the usual one-electron and antisym-
metrized two-electron integrals, respectively, and the transi-
tion density matrix elements ρ��

kl are given by

ρ��
kl = 〈�|a†

l ak|�〉
〈�|�〉 =

N∑
i,j=1

〈k|ξi〉(M−1)ij 〈φj |l〉. (29)

Using these formulae, we find that the overlap we need is
given by

〈�|R̂(�)|�〉 = det M�, (30)

M� = C†R�C, (31)

while the Hamiltonian elements are

〈0|Ĥ |�〉 =
∑
ik

hik(ρ�)ki + 1

2

∑
ijkl

〈ij‖kl〉(ρ�)ki(ρ�)lj . (32)

The transition density matrices

(ρ�)kl = 〈�|a†
l akR̂(�)|�〉

〈�|R̂(�)|�〉 (33)

can be formed as

ρ� = R�CM−1
� C†. (34)

Here and above, C is the M × N matrix of orbital coefficients
defining the occupied orbitals in |�〉 and R� is the matrix
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representation of the operator R̂(�), where M is the number
of spin-orbitals in the basis and N is the number of electrons in
the system. We have assumed an orthonormal basis for con-
venience and will continue to do so, but modifications for a
non-orthonormal basis are straightforward.

D. Optimization of the PHF wave function

As we have written things thus far, the fundamental vari-
ables are the occupied orbital coefficients C. However, be-
cause the wavefunction |�〉 is a single determinant, it is de-
fined completely by its one-particle density matrix ρ, a point
brought up by Löwdin in 1966,33 when he wrote

“Since the wavefunction P̂ |�〉 depends uniquely on ρ, the
main problem in the projected Hartree–Fock scheme is to vary
ρ so that the energy becomes an absolute minimum.”

The minimization of the energy with respect to ρ would
be greatly facilitated if we were able to write an explicit den-
sity matrix functional E[ρ]. Our task here is thus to obtain
this energy functional, in a manner analogous to the work of
Sheikh and Ring for projected Hartree–Fock–Bogoliubov.17

Having done so, we can minimize the PHF energy with re-
spect to idempotent density matrices ρ.

We start by writing the density matrix as

ρ = CC†, (35)

where we recall that C is the matrix of coefficients defining
the occupied orbitals. Let us partition this matrix in the form

C =
(

Cp

Cq

)
, (36)

where Cp is N × N and Cq is (M − N) × N. In terms of these
blocks of the orbital coefficients, we have

ρ =
(

ρpp ρpq

ρqp ρqq

)
(37)

=
(

Cp C†
p Cp C†

q

Cq C†
p Cq C†

q

)
. (38)

Note that the partitioning of C is not unique because we can
arbitrarily mix basis functions amongst each other, thereby
mixing rows of C. We require that Cp have non-vanishing
determinant. We can always find a partitioning satisfying
this requirement because we can choose to work in the ba-
sis of the occupied molecular orbitals of |�〉 for which
Cp = 1. In practical calculations, we do exactly this, and
the subscripts p and q denote occupied and virtual orbitals,
respectively.

Recall that the overlap matrix elements are given by

〈�|R̂(�)|�〉 = det M�. (39)

We rewrite the matrix M� as

M� =
(

Cp

Cq

)†

R�

(
Cp

Cq

)
(40a)

= (Cp)−1Cp

(
Cp

Cq

)†

R�

(
Cp

Cq

)
C†

p(C†
p)−1 (40b)

= (Cp)−1N−1
� (C†

p)−1, (40c)

where

N� =
[

( ρpp ρpq )R�

(
ρpp

ρqp

)]−1

. (41)

Then we can write the overlap matrix elements explicitly in
terms of ρ as

〈�|R̂(�)|�〉 = 1

det(N� ρpp)
. (42)

In a similar manner, we can write the Hamiltonian matrix
elements, computed in terms of transition density matrices,
explicitly in terms of ρ. The transition density matrices are
formed as

ρ� = R�

(
Cp

Cq

)
M−1

�

(
Cp

Cq

)†

. (43)

Simple manipulations bring us to

ρ� = R�

(
ρpp

ρqp

)
N�( ρpp ρpq ). (44)

Having expressed the overlap and Hamiltonian matrix el-
ements as functionals of ρ, we have all the ingredients we
need to write a closed-form expression for the projected en-
ergy in terms of ρ, which we recall is the density matrix of the
deformed (unprojected) state |�〉. We can then set up a vari-
ational problem similar to that of the regular Hartree–Fock
procedure. We simply write

δ{E[ρ] − Tr[�(ρ2 − ρ)]} = 0, (45)

where � is a matrix of Lagrange multipliers used to constrain
ρ to remain idempotent so that |�〉 remains a single determi-
nant. This variational ansatz is equivalent to the condition that

[F , ρ] = 0, (46)

where F is an effective Fock matrix given by

Fkl = ∂

∂ρlk

E[ρ]. (47)

We provide explicit expressions for the matrix elements of F
in the Appendix.

Equation (46) can be solved by what we may call the PHF
eigenvalue equations

FC = Cε, (48)
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where ε is a (diagonal) matrix of orbital energies and C here
corresponds to the full matrix of orbital coefficients (includ-
ing virtual orbitals). We use the eigenvectors C of F to con-
struct a new guess of the density matrix ρ, just as in standard
Hartree–Fock. We remind the reader that these equations have
been here derived in the special case of an orthonormal basis
and must be modified slightly in the case of a general non-
orthogonal basis.

Thus, the optimization of the projected Hartree–Fock
state uses the following algorithm:

1. Construct an initial broken symmetry guess for |�〉 and
form ρ.

2. Compute the overlap matrix elements 〈�|R̂(�)|�〉 and
form the function y(�).

3. Form the transition density matrices ρ� and contract
them with one- and two-electron integrals to evaluate the
Hamiltonian matrix elements 〈0|Ĥ |�〉.

4. Form the effective Fock matrix F and diagonalize it
to obtain new eigenvectors and thence a new density
matrix ρ.

5. Test for convergence. If the density matrix is not con-
verged, return to step 2.

At any time the energy can be evaluated from

E =
∫

d�y(�) 〈0|Ĥ |�〉. (49)

We emphasize that the scaling of our PHF implementa-
tion with respect to system size is the same as that of Hartree–
Fock. At each gauge point �, we form an effective one-body
Hamiltonian F� by contracting two-electron integrals with
transition density matrices (whose formation is trivial). Hav-
ing formed F by integrating F� over the gauge angle �,
we obtain a new reference determinant by diagonalizing F .
While the cost of our PHF procedure is moderately higher
than that of Hartree–Fock because we must integrate over
the gauge angle, this integration generally does not require
too many points and is trivially parallelizable in any event.
Reference 1 establishes that the size of the gauge integration
grid needed scales only weakly with the size of the system.

It is important to note that the Brillouin-like condition
of Eq. (46) defines only the occupied-virtual part of the
effective Hamiltonian F , just as in standard Hartree–Fock
theory. When working in the molecular orbital basis as
we do, this corresponds to defining Fpq and Fqp. The
occupied-occupied and virtual-virtual parts of F are not
defined by the Brillouin condition; accordingly, without fur-
ther modifications the entire effective Hamiltonian vanishes
at convergence. In order to cleanly separate occupied and
virtual orbitals and thereby ensure efficient convergence, the
occupied-occupied and virtual-virtual parts must be defined
as well. We therefore define the occupied-occupied and
virtual-virtual parts of F to be the corresponding parts of
F, the standard Fock operator constructed from the density
matrix ρ. In the molecular orbital basis, this corresponds to
defining Fpp = Fpp and Fqq = Fqq ; in a general basis, this
corresponds to writing F → F + ρFρ + (1 − ρ)F(1 − ρ).
This ad hoc choice has proven to be efficient and reliable
thus far but is not guaranteed to work in all cases. One should

note that the orbital energies from our PHF equations do not
have obvious physical meaning.

E. Nomenclature

Before we discuss our results, let us briefly clarify the
nomenclature we use in this paper.

We will use PUHF for spin projection on the unrestricted
Hartree–Fock in a projection after variation manner. We write
SUHF (equivalent to the standard spin-projected EHF) for
variation after spin projection on a determinant which breaks
Ŝ2 symmetry and SGHF for variation after spin projection on
a determinant which breaks both Ŝ2 and Ŝz symmetry. We
can also break complex conjugation symmetry (see Ref. 1)
to form KUHF, KGHF, KSUHF, or KSGHF, where KSGHF,
for example, means that we restore complex conjugation sym-
metry as well as Ŝ2 and Ŝz. Similarly, we can restore point
group symmetry to form, for instance, C2-SUHF, which re-
stores Ŝ2 and makes the wavefunction transform as one of the
irreducible representations of the group C2.

III. RESULTS

Our PHF equations have been implemented in the
GAUSSIAN38 program package. For this pilot work, we will
generally be interested in spin projection in small systems
with small basis sets, though we also consider complex con-
jugation and point group symmetry breaking and restoration.
Larger systems with larger basis sets are certainly feasible, as
the method has the same computational scaling as Hartree–
Fock.

In order to construct an initial guess for the deformed
determinant, we typically start with a broken-symmetry
Hartree–Fock state. This is usually straightforward in the case
of SUHF, but is often challenging for SGHF since GHF solu-
tions different from rotated UHF are not common for first row
molecules.39 We therefore mix the ↑-spin and ↓-spin orbitals
closest to the Fermi level with some predefined angle small
enough so as not to raise the energy significantly but large
enough so as not to return to UHF. Similarly, to break com-
plex conjugation symmetry, we mix the highest occupied or-
bital and the lowest virtual orbital with complex coefficients,
thereby breaking complex conjugation symmetry, and we use
an analogous procedure to break point group symmetry where
we must take care to mix orbitals belonging to different irre-
ducible representations of the point group we wish to restore.
Convergence is usually enhanced by the use of the Direct In-
version of the Iterative Subspace (DIIS) (Ref. 40) procedure
which ideally does not start until the energy of the projected
state is below the energy of the symmetry-adapted HF state.
In other words, SUHF projecting onto an overall singlet state
should not start DIIS until the energy is lower than the re-
stricted Hartree–Fock (RHF) energy, simply because the RHF
wavefunction is a solution of the SUHF equations.

We note that the optimization strategy that we have pre-
sented is in no way guaranteed to work. In practice, con-
vergence of the SUHF equations starting from the UHF
wave function is achieved in few iterations. Breaking and
restoring complex conjugation symmetry is somewhat more
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complicated because good initial guesses are hard to come
by. That is, most of the HF solutions in quantum chemistry are
stable in the sense that allowing the orbitals to become com-
plex does not lower the energy. Finally, we note that converg-
ing SGHF (and KSGHF) is very challenging, partly because
GHF solutions are rare39 (at least for common molecules in
the upper rows of the periodic table), but also because the
ad hoc construction of the Fock matrix that we use does not
work all that well in SGHF optimizations.

Our first order of business is to verify that our SUHF
method reproduces previous EHF results. Unfortunately, there
are relatively few calculations available in the literature.
Nonetheless, we have verified that we reproduce results from
Rosenberg and Martino15 and Klimo and Tinŏ.16 Recently,
Karadakov and Cooper performed self-consistent projected
UHF calculations based on the spin-coupled valence bond
theory.41 Because they worked within the SCVB framework,
Karadakov and Cooper chose to keep a set of core orbitals
which remained doubly occupied and symmetry adapted. The
wavefunction is then the antisymmetrized product of the core
part with an active part, written as the product of a set of non-
orthogonal spatial orbitals with a single spin function, whose
coefficients are calculated variationally. In order to make our
results directly comparable to theirs, we had to carry out a
constrained optimization of our SUHF state in a manner simi-
lar to our previous work on CUHF, such that symmetry break-
ing is only allowed within an active space.5, 42 We have repro-
duced several of the numbers quoted in Ref. 41 to all decimal
places.

A. Molecular dissociation

We start by examining the effects of projection on molec-
ular dissociation curves. All calculations in this section use
the cc-pVDZ basis set,43 unless otherwise stated.

As is well known, restricted Hartree–Fock fails for the
dissociation of H2, separating to an equal mix of two hydro-
gen atoms on the one hand and a hydrogen cation plus a hy-
drogen anion on the other. The energetically correct dissocia-
tion limit is recovered by breaking spin and spatial symmetry
in UHF. The resulting wavefunction is a linear combination
of singlet and triplet and is thus spin contaminated. Restoring
spin symmetry variationally leads to the SUHF wavefunction,
which like UHF is energetically exact at dissociation but un-
like UHF retains good quantum numbers along the whole po-
tential energy curve. Near equilibrium, SUHF and UHF differ
significantly, as can be seen in Fig. 1. Breaking and restoring
symmetry under K̂ or Ŝz variationally improves the results
near equilibrium even further.

While PHF yields excellent results for the dissociation
of H2, it misses some of the effects of dynamical correla-
tion, which we illustrate by considering the dissociation of
N2, as shown in Figs. 2–4. The projected HF methods gen-
erally go to a dissociation limit slightly below that of UHF.
Near equilibrium, breaking and restoring complex conjuga-
tion symmetry accounts for most of the correlation available
in CASSCF(10/8), though KRHF dissociates to a limit much
too high. Spin projection to give SUHF or SGHF is compara-
ble to complex conjugation projection at dissocation, but gen-
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FIG. 1. Potential energy curve for H2 dissociation in the cc-pVDZ basis set.

erally inferior at equilibrium. Combining the two in KSUHF
and KSGHF gives energies below the (variational) CASSCF.
All of these curves, however, are far above the coupled clus-
ter singles and doubles (CCSD) based on the UHF reference,
even with this small basis set. It is interesting to note that the
KSGHF solution nearly parallels the UCCSD solution; the
non-parallelity error (maximum deviation − minimum devia-
tion) is 8 kcal/mol.

A second illustration of the missing dynamical corre-
lation is provided by considering the dissociation of H3.
Here, we arrange the three atoms on the corners of an
equilateral triangle and expand the triangle symmetrically.
The Hartree–Fock ground state in this case is non-collinear
(i.e., is an eigenfunction of neither Ŝ2 nor Ŝz). Figure 5 shows
the dissociation, projecting onto s = 1/2. Even in this simple
three-electron system, the spin projection clearly misses a
significant portion of the total correlation.

An application of spatial symmetry restoration is pro-
vided in Fig. 6, where the isotropic expansion of a square
of hydrogen atoms is shown. We have performed these cal-
culations with an uncontracted STO-6G basis set, and we
have restored point group symmetry in the framework of the
abelian C4 subgroup of the full D4h symmetric group. In par-
ticular, the lowest energy C4-SUHF solution corresponds to B
symmetry. One can observe that symmetry breaking and
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FIG. 2. Effects of spin projection on the potential energy curves for N2 disso-
ciation in the cc-pVDZ basis set, compared to the CASSCF(10/8) reference.
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FIG. 3. Effects of complex conjugation projection on the potential en-
ergy curves for N2 dissociation in the cc-pVDZ basis set, compared to the
CASSCF(10/8) reference.

restoration of the point group of the molecule provides addi-
tional correlation energy to SUHF, though the improvements
relative to SUHF decrease as the system is pulled apart.

Unlike standard Hartree–Fock and most previous EHF
calculations, we can calculate all the m components for a state
with spin s. In the case of SGHF, all these states are degener-
ate, as they should be. This degeneracy is lost with SUHF, but
a SUHF state can be found for each pair of quantum numbers
(s, m). Figure 7 shows the dissociation of O2 to the singlet
and the m = 0 and m = ±1 triplets, computed with a minimal
(STO-3G) basis. The UHF dissociation on the triplet (more
precisely, on the m = 1) curve is qualitatively right at equi-
librium but has a bump before breaking spatial symmetry and
dissociating from above. The lowest energy UHF solution at
dissociation has m = 0. We have two different SUHF curves
for s = 1. The m = 1 curve is qualitatively reasonable near
equilibrium and has no bump, but goes to a limit above the
UHF curve for the same m. That UHF is below SUHF in this
case is presumably because the UHF is contaminated by the
quintet solution, which has lower energy at dissociation than
does the triplet. The m = 0 follows the UHF “singlet” and is
more correct at dissociation. Note that while SGHF has the
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FIG. 4. Effects of simultaneous spin and complex conjugation projection on
the potential energy curves for N2 dissociation in the cc-pVDZ basis set,
compared to the CASSCF(10/8) reference.
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FIG. 5. Potential energy curve for the dissociation of equilateral H3 in the
cc-pVDZ basis set.

attractive feature of making all components for a given spin
state degenerate, finding SGHF solutions is technically de-
manding.

Another interesting aspect that has not been thoroughly
studied in the literature before is the basis set dependence of
the correlation energy recovered by projection methods. In
Fig. 8, we show the difference of the SUHF, KSUHF, and
CASSCF(10,8) energies with respect to UHF as a function
of the internuclear separation with basis sets of increasing
size. As it is evident from the figure, the correlation energy
recovered is almost independent of the basis set size for both
SUHF and CASSCF. This suggests that the correlations we
recover are mostly static in nature.

B. Size consistency

What is not so clear from the dissociation curves we
have shown is that projected Hartree–Fock is not usually size
consistent. The magnitude of the error may be fairly large.
For example, the KSUHF dissociation limit of N2 is roughly
27 mH (17 kcal/mol) higher than twice the KSUHF energy
of the nitrogen atom, with comparable errors for KUHF and
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FIG. 6. Potential energy curve for the dissociation of square H4 in the un-
contracted STO-6G basis. C4-SUHF denotes the combination of spin restora-
tion on a collinear deformed determinant and restoration of C4 rotational
symmetry.
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SUHF. The origin of this size inconsistency is simply that
SUHF on N2 demands that the entire system be a singlet, but
does not independently project any particular spin component
onto the individual nitrogen atoms, which should each be a
quartet.

In principle, a spin-projected Hartree–Fock method could
be made size consistent with the aid of local projection oper-
ators. That is, suppose we wish to dissociate a molecule to
fragments A and B. Writing |�A〉 (|�B〉) for the broken sym-
metry reference for fragment A (fragment B), we could imag-
ine writing

|�〉 = P̂AB[(P̂A|�A〉) ⊗ (P̂B |�B〉)]

= P̂ABP̂AP̂B |�A�B〉, (50)

where P̂A and P̂B are projection operators which restore sym-
metry only on the individual (noninteracting) fragments, and
P̂AB subsequently restores symmetry on the whole system.
We could, for example, dissociate O2 to two triplet oxygen
atoms with the aid of P̂A and P̂B , and put the whole system
into a spin triplet via P̂AB . This wavefunction is explicitly size
consistent.

While formally this looks like projection operators acting
on a broken symmetry determinant to restore symmetry, this
approach lies outside the conventional PHF framework be-
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FIG. 8. Energy relative to UHF for the dissociation of N2. Notice that both
CAS(10/8) and SUHF show essentially no dependence on the size of the
basis, while KSUHF has some small basis set sensitivity; cc-pVQZ results
are only shown for SUHF.

cause we have relied on local projectors P̂A and P̂B in addition
to a global projector P̂AB . Unfortunately, it is far from clear
how best to define such local projectors except for noninter-
acting subsystems. The relation between the method sketched
above and PHF is closely akin to the relation between AGP
(which is not size consistent) and the size consistent antisym-
metrized power of strongly orthogonal geminals44 wherein
one creates orthogonal subsets of orbitals and introduces gem-
inals which pair orbitals only within a subset.

C. The curse of the thermodynamic limit

We have already seen that projected HF is not size con-
sistent. Neither is it size extensive. We demonstrate this by
examining equally spaced rings of hydrogen atoms with an
internuclear distance of 1.8 bohr. As the number of atoms in
the ring gets large, the ring approaches a periodic chain. All
calculations are done in the STO-6G basis set and for an over-
all spin singlet state.

In Fig. 9 we show the energy per atom as a function of
the ring size. While for small rings UHF, PUHF, and SUHF all
differ noticeably, the three curves converge to the same energy
per atom as the rings become large. Figure 9 also shows that as
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the number of particles becomes large, both PUHF and SUHF
give the same improvement in total energy over UHF. In other
words, both PUHF and SUHF provide the same correlation
energy relative to UHF, (about 140 mH), but the physically
meaningful correlation energy per particle vanishes for large
N. This observation was made by Mayer and Kertész30 and
by Castaño and Karadakov29 in a PPP model of finite polyene
chains, and our results show the behavior they described. In
the limit N → ∞, where N is the number of particles, restor-
ing spin symmetry has no effect on the energy per particle.
This is what we mean when we say that projected Hartree–
Fock is not size extensive.

The rationale behind the failure of projected methods to
go beyond broken symmetry mean-field theory in the ther-
modynamic limit is as follows. For finite systems, the en-
ergy lowering due to projection comes about from the fact
that the matrix elements 〈�|Ĥ R̂|�〉 and 〈�|R̂|�〉 are non-
zero, where R̂ are rotation matrices, as explained in Sec. II.
As the system size increases, those matrix elements tend to
zero. If they are zero, then the Hamiltonian becomes diagonal
in the basis of the rotated states, and thus there is no chance
for energy lowering to occur. In other words, the Goldstone
manifold (defined in Ref. 1) remains degenerate but becomes
non-interacting.

D. Singlet-triplet splittings

Spin splittings (the difference in energy between the low-
est energy states of various spins s) are important quanti-
ties in both organic and inorganic chemistry. They are con-
nected to magnetic coupling constants in the Heisenberg
Hamiltonian and can be unfortunately challenging to evalu-
ate with simple mean-field methods. Density functional the-
ory is well known to have difficulties with spin splittings, and
unrestricted Hartree–Fock (UHF) also often fails, particularly
when spin contamination is large.45

One can attempt to remedy the failings of UHF by pro-
jecting the UHF wavefunction onto spin eigenfunctions (that
is, to use a PAV approach), but in many cases this projected
UHF is still inadequate. The question we wish to address here
is whether variation after projection in our PHF scheme offers
more accurate results. We will focus on singlet-triplet split-
tings, as they are the most commonly studied.

In Table I we show the computed singlet-triplet splittings
for a variety of small diatomic molecules,46 as well as methy-
lene (CH2),47 trimethylmethane (TMM),48 and o-, m-, and
p-benzyne.49 All calculations use the cc-pVTZ basis set, and
we define the singlet-triplet splittings as simply

�EST = ET − ES, (51)

where ET and ES are the energies of the triplet and the singlet
states, respectively. We have included results using CUHF,
taken from Ref. 5. In CUHF, a triplet state is obtained by opti-
mizing the HF determinant subject to the constraint that it re-
mains a spin eigenfunction. For singlet states, CUHF allows
symmetry breaking only between two orbitals. PCUHF cor-
responds to spin-projection on CUHF performed with a PAV
approach.

For the small diatomic molecules, both SUHF and PUHF
provide excellent agreement with experiment. As the sys-
tems become larger (but not too large; see above) SUHF and
PUHF differ more, and SUHF is more accurate. Generally,
we observe that spin projection yields meaningful improve-
ments when the spin contamination in the UHF is large only
for the singlet state, but has less to offer when the UHF has
significant spin contamination in both the singlet and triplet
states. This is demonstrated by the benzynes, where SUHF,
though more accurate than UHF or PUHF, is still far from ex-
periment. Complex conjugation restoration has, as one might
expect, much smaller effects on the calculated singlet-triplet
splittings. We should point out that dynamic correlation can
have large effects on calculated singlet-triplet splittings which
cannot be captured by SUHF and SGHF as these methods ac-
count primarily for static correlation.

Note that semi-empirical corrections to calculated
singlet-triplet splittings with spin contaminated wavefunc-
tions such as UHF and KUHF can be extracted as, for
example,50–52

�EST = 2
ET − ES

〈Ŝ2〉T − 〈Ŝ2〉S
, (52)

where ET and ES are the energies of the spin contaminated
triplet and singlet determinants and 〈Ŝ2〉T and 〈Ŝ2〉S are the
respective expectation values of Ŝ2. If the wavefunctions used
are spin eigenfunctions, Eq. (52) reduces to Eq. (51). While

TABLE I. Singlet triplet splittings (kcal/mol) from several methods. “TMM” refers to trimethylmethane, while
ME is the mean error (theory − experiment) and MAE is the mean absolute error.

Molecule UHF KUHF CUHF PUHF PCUHF SUHF KSUHF Expt

NH 19.4 18.6 21.0 38.2 41.5 33.6 31.6 39.0
OH+ 25.9 25.0 27.4 50.9 54.1 45.8 43.4 50.6
O2 15.8 14.6 16.1 26.8 30.6 20.6 24.2 22.6
NF 19.7 18.6 20.6 38.1 40.8 32.3 31.0 34.3
CH2 16.9 15.9 15.4 18.9 15.7 15.6 14.0 9.4
TMM 23.7 15.6 7.5 28.6 10.5 19.1 18.0 17.7
o-benzyne − 15.8 − 12.5 − 9.8 − 42.6 − 24.5 − 51.4 − 48.7 − 38.0
m-benzyne 28.3 13.0 12.8 45.0 12.8 2.2 − 9.1 − 20.6
p-benzyne − 10.1 − 5.2 0.1 − 24.0 − 0.5 − 28.2 − 22.9 − 3.5

ME 1.3 − 1.0 0.0 7.6 7.7 − 2.5 − 3.4
MAE 17.5 15.5 15.9 13.4 9.3 9.2 7.4
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the results for spin contaminated states are closer to exper-
iment, the prescription is neither unique nor first principles.
Applying this correction to KUHF leads to a MAE of 10.1
kcal/mol, still worse than KSUHF.

IV. CONCLUSIONS

Symmetries and good quantum numbers are of critical
importance in many finite quantum systems. Unfortunately,
approximate variational solutions to the Schrödinger equation
need not respect the same symmetries as does the exact solu-
tion. Forcing them to do so reduces the variational flexibility
of the model, which is not ideal. On the other hand, symme-
try breaking from mean-field theories generally indicates the
failure of the mean-field approximation and the emergence of
strong correlation. One can take advantage of this symmetry
breaking to obtain energetically reasonable broken symme-
try mean-field wavefunctions, though the wavefunctions ob-
tained are of poor quality. By using projection operators, one
can restore the broken symmetries and recover the associated
quantum numbers while obtaining strongly correlated wave-
functions. Moreover, this can be accomplished without leav-
ing the independent particle picture that allows one to easily
grasp the physics in the wavefunction.

While self-consistently restoring the symmetry of mean-
field wavefunctions is formally attractive, the practical real-
ization of it is not trivial. On the other hand, a projection-after-
variation approach is simple but may lead to severe problems
with the projected wavefunction. A self-consistent approach
also allows one to break symmetry in a deliberate way, that is,
one can find a broken symmetry reference determinant even
in cases when the standard HF method leads to a symmetry-
adapted state.

Our earlier work showed how to optimize the energy of
the projected wavefunction when the broken symmetry refer-
ence state was a Hartree–Fock–Bogoliubov determinant that
broke particle number symmetry. Here, we do the same when
the reference determinant conserves electron number. There
are two reasons to present this new set of PHF equations.
The first is the historical significance of the PHF problem in
quantum chemistry. Second, the PQT equations as presented
before lead to indeterminancies for systems whose deformed
reference state has exact zero occupations, as is the case when
particle number symmetry is not broken. The pairing interac-
tion in PQT assigns a non-zero occupation to every natural
orbital, but in practice the occupation numbers may become
sufficiently small in a large enough basis that the equations
cannot be accurately solved in double precision arithmetic.
The ideas presented here can be extended to remedy this
deficiency.

The PHF formulation here presented is easy to code
and numerically robust. The resulting projected Hartree–Fock
scheme is conceptually simple and computationally afford-
able, and generally leads to good quality multireference wave-
functions. Our formulation also allows for a straightforward
derivation and implementation of the analytical energy gra-
dients required for practical molecular geometry optimiza-
tions with projected Hartree–Fock wave functions, in a man-
ner similar to that proposed by Handy and Rice.28 Size con-

sistency and size extensivity remain problems, but otherwise
projected Hartree–Fock offers a relatively black box treatment
of strong correlation while staying within the mean-field pic-
ture without sacrificing good quantum numbers.
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APPENDIX: THE PHF EFFECTIVE HAMILTONIAN

Here, we provide the explicit expressions required to
evaluate the matrix elements of the effective Fock matrix. The
PHF energy expression can be conveniently written as

E =
∫

d�y(�)

{
Tr[h ρ�] + 1

2
Tr[G� ρ�]

}
, (A1)

where h is the matrix of one-electron integrals and G� is

(G�)ik =
∑
j l

〈ij ||kl〉(ρ�)lj . (A2)

The effective Fock matrix is defined in terms of derivatives of
the PHF energy expression with respect to matrix elements of
the density matrix (of the deformed state) as

Fkl = ∂

∂ρlk

E[ρ]. (A3)

F is Hermitian by construction, that is,

F∗
lk = ∂

∂ρ∗
kl

E[ρ] = ∂

∂ρlk

E[ρ] = Fkl . (A4)

We follow Sheikh and Ring17 in writing the derivatives
of the function y(�) in the form

∂

∂ρkl

y(�) = y(�) (Y�)lk. (A5)

Using this, we can write the effective Fock matrix as

Fij =
∫

d�y(�)

{
(Y�)ij

[
Tr(h ρ�) + 1

2
Tr(G� ρ�)

]

+
∑
kl

(h + G�)lk
∂

∂ρji

(ρ�)kl

}
. (A6)

The derivation of the matrices Y� and F is straightfor-
ward but cumbersome. Our final expression for Y� is

Y� = Y� −
∫

d�′ y(�′) Y�′ , (A7)

where

Y� = R�

(
ρpp

ρqp

)
N� + N� ( ρpp ρpq ) R�. (A8)

If we define F� = h + G�, we can write F as

F =
∫

d�y(�) F�, (A9)
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where

F� =1

2
Y�Tr[(h + F�)ρ�]

+ N�( ρpp ρpq )F�(1 − ρ�)R�

+ (1 − ρ�)F�R�

(
ρpp

ρqp

)
N�. (A10)

Note that since N� is an N × N matrix, both Y� and parts
of F� are given as a sum of an M × N and an N × M matrix.
These matrices are correctly understood as M × M, padded to
the right or below by zeroes. The fact that (F�)qq and (Y�)qq

vanish is simply a consequence of the fact that the energy is
independent of ρqq .

In the molecular orbital basis of |�〉 in which we work in
practice, we have

ρ =
(

1 0

0 0

)
. (A11)

The subscripts p and q here will be replaced by o and v to
emphasize that they denote occupied and virtual orbitals, re-
spectively. Writing

R� =
(

Roo Rov

Rvo Rvv

)
, (A12)

where we have suppressed the dependence on � for brevity,
we obtain

N� = R−1
oo , (A13)

where R−1
oo is the inverse of Roo. The transition density matri-

ces are then

ρ� =
(

1 0

RvoR−1
oo 0

)
. (A14)

One finds that

Y� =
(

2 R−1
oo Rov

RvoR−1
oo 0

)
. (A15)

Finally, we have

F� = 1

2
Y�Tr[(h + F�)ρ�] + F̃�, (A16)

where the individual blocks of F̃� are

(F̃�)oo = 0, (A17a)

(F̃�)ov = R−1
oo Fov

[
Rvv − RvoR−1

oo Rov

]
, (A17b)

(F̃�)vo = Fvo − RvoR−1
oo Foo

+ [
Fvv − RvoR−1

oo Fov

]
RvoR−1

oo , (A17c)

(F̃�)vv = 0. (A17d)

Using Eq. (A7) and the fact that y(�) integrates to
unity, it is clear that the occupied-occupied and virtual-virtual
blocks of Y� vanish, and thus so do these blocks of F�.
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