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Thermodynamic analogy for quantum phase transitions at zero temperature
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We propose a relationship between thermodynamic phase transitions and ground-state quantum phase
transitions in systems with variable Hamiltonian parameters. It is based on a link between zeros of the canonical
partition function at complex temperatures and branch points of a quantum Hamiltonian in the complex-extended
parameter space. This approach is applied in the interacting boson model, where it is shown to properly distinguish
the first- and second-order phase transitions.
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Quantum phase transitions (QPTs) are now a well-
documented phenomenon in both lattice [1] and many-body
systems [2–19]. A QPT Hamiltonian usually reads as a
superposition of two incompatible terms,

H (λ) = H0 + λV = (1 − λ)H (0) + λH (1) , (1)

[H0, V ] �= 0, where λ ∈ [0,1] is a dimensionless control
parameter that drives the system between two limiting modes
of motions. It can be shown that the ground-state (g.s.) average
〈V 〉0 ≡ 〈�0(λ)|V |�0(λ)〉 is a nonincreasing function of λ. In
the QPT situation it evolves in such a way that either 〈V 〉0

itself or some of its derivatives change discontinuously (for
systems of infinite size) at a certain critical value λc.

Of particular interest are the cases when 〈V 〉0 drops to
zero and, simultaneously, also 〈V 2〉0 = 0 at the critical point.
Typically, this may happen if V is semi-positively definite.
Then zero of 〈V 〉0 at an arbitrary point λc implies that 〈V 〉0 = 0
for all λ � λc and if the ground state is nondegenerate, its wave
function gets fixed. In these cases, 〈V 〉0 plays a role of an
“order parameter” whose value (zero or nonzero) distinguishes
two quantum “phases” of the model. Such a scenario is
realized in various many-body models, mostly known from
nuclear physics. Limits H (0) and H (1) are usually connected
with collective or single-particle motions corresponding to
spherical and deformed nuclear shapes [2–6,10–15,18,19] but
they can also represent paired and unpaired fermionic phases
of nuclei [4,5,7,16], or normal and super-radiant modes of
interacting atom-field systems [17]. Quantum phase transitions
were also studied in open quantum systems [8,9].

Questions often arise concerning the depth to which the
term “phase transition” can be followed toward standard
thermodynamics. The g.s. QPTs happen at zero temperature
and thus have no real thermal attributes. Nevertheless, as
discussed, for example, in Refs. [12,15,16,20], counterparts of
some thermodynamic terms can often be derived from standard
quantum-mechanical expressions. A unified thermodynamic-
like approach to characterize the QPT situation is, however,
missing.

In this Rapid Communication, we present a method capable
of establishing the thermodynamic analogy for QPTs on a new,
general ground. The method is based on a surmise that there

exists a similarity between the distribution of zeros of the
canonical partition function Z(T ) at complex temperatures T

for systems undergoing classical phase transitions [21–23] and
the distribution of branch points of QPT Hamiltonians (1) in
the complex-extended λ plane (these are points of unavoided
crossings of the Hamiltonian eigenvalues) [5,8,24–28]. This
link is not artificial. Whereas in generic finite systems neither
zeros nor branch points occur on the real T or λ axes
(here and in the whole paper we consider branch points that
characterize subsets of states with the same symmetry quantum
numbers), it is known that their distribution in the complex
plane determines the key features of the system in the physical
(real) domain. Zeros and branch points thus play crucial
roles also in the fundamental theory of classical and quantum
phase transitions. Indeed, places where in the thermodynamic
limit complex zeros of Z(T ) approach infinitely close to the
real T -axis can be identified with points of classical phase
transitions [21–23], whereas similar convergence of branch
points to real λ induces singular evolution of energies and
wave functions, as observed in T = 0 QPTs [5,8,11].

An obvious way to quantitatively exploit the thermody-
namic analogy for QPTs relies on connecting the g.s. energy
E0(λ) as a function of the interaction parameter λ, with the
equilibrium value of a thermodynamic potential F0(T ) as a
function of temperature T (or inverse temperature β). This
method leads to the standard QPT classification, known from
the literature [3]. From the relation 〈V 〉0 = dE0/dλ it follows
that if the (l − 1)th derivative of 〈V 〉0 is discontinuous at λc,
then derivatives of the g.s. energy are discontinuous (singular)
starting from dlE0/dλl so that the QPT is of the lth order. The
“specific heat” defined [15] through the second derivative of
E0 in such a transition (in analogy to the standard definition
C = −T ∂2F0/∂T 2),

C1 = −λ
d2E0

dλ2
= −λ

d〈V 〉0

dλ
= 2λ

∑
i>0

|〈�i |V |�0〉|2
Ei − E0

,

(2)
behaves exactly as expected for a thermodynamic phase
transition of the same order. Here, Ei(λ) and |�i(λ)〉 are the
ith energy and eigenvector, respectively.

This relation can be easily verified [15] in the interacting
boson model (IBM) [29], where both first- and second-order

0556-2813/2005/71(1)/011304(5)/$23.00 011304-1 ©2005 The American Physical Society



RAPID COMMUNICATIONS

PAVEL CEJNAR, STEFAN HEINZE, AND JAN DOBEŠ PHYSICAL REVIEW C 71, 011304 (2005)
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FIG. 1. “Specific heat” (2) in the (a) first-
order and (b) second-order QPT of the interacting
boson model [Hamiltonian (3) with (a) χ =
−√

7/2 and (b) χ = 0]. The curves, in order from
the lowest to the highest, correspond to N = 10,
20, 40, and 80, respectively; the insets show the
increase of the maximal value with N .

QPTs between spherical and deformed g.s. shapes are present
in the parameter space [2,3,6,10–15,18]. The model describes
shapes and collective motions of atomic nuclei in terms of
an ensemble of N interacting s and d bosons with angular
momenta 0 and 2, respectively. We use the Hamiltonian
[10–15]

H (λ) = (1 − λ)
[
−qχ · qχ

N

]
+ λ nd, (3)

where nd = d† · d̃ is the d-boson number operator, and qχ =
d†s̃ + s†d̃ + χ (d†d̃)(2) is the quadrupole operator. Clearly,
V = nd + qχ · qχ/N is semi-positive. In the N → ∞ limit,
the order parameter 〈V 〉0/N (where normalization per boson
is necessary to deal with effects of varying N ) can be expressed
in terms of the g.s. deformation parameter β0 [2]:

lim
N→∞

〈V 〉0

N
=

5β2
0 − 4

√
2
7χβ3

0 + (
2
7χ2 + 1

)
β4

0(
1 + β2

0

)2 . (4)

For χ �= 0, the value of β0 drops from a nonzero value
β0c to 0 at λ = λc(χ ) = (4 + 2χ2/7)/(5 + 2χ2/7), indicating
a first-order deformed-spherical QPT. For χ = 0, the value
β0 ∝ √

λc − λ valid in the left vicinity of the critical point
λc(0) continuously joins with β0 = 0 valid above λc; the

corresponding QPT is of second order (with the critical
exponent for 〈V 〉0/N equal to 1). The dependence of C1 on λ

in the first- and second-order QPT regions is shown in Fig. 1
for various boson numbers N .

In the following, we will focus on the thermodynamic
analogy based on the distribution of branch points. These are
points in the complex plane of parameter λ where various
pairs of eigenvalues of the complex-extended Hamiltonian (1)
coalesce [24]. They are simultaneous solutions of equations
det[E − H (λ)] = 0 and (∂/∂E) det[E − H (λ)] = 0, which
after elimination yield the following condition [25,27]:

D(λ) =
∏
k

Dk(λ) = (−)
n(n−1)

2

∏
i<j

[Ej (λ) − Ei(λ)]2 = 0, (5)

Dk(λ) =
∏
i(�=k)

[Ei(λ) − Ek(λ)]. (6)

The discriminant D(λ) is a polynomial of order n(n − 1) in
λ (where n is the dimension of the Hilbert space, which
is assumed to be finite) with real coefficients and its roots
thus occur as n(n − 1)/2 complex conjugate pairs. Except
at these points, the complex eigenvalue E(λ) obtained from
the characteristic polynomial of Hamiltonian (1) is a single
analytic function defined on n Riemann sheets. The energy
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labels in Eqs. (5) and (6) enumerate the respective Riemann
sheet according to the ordering of energies at real λ. The
degeneracy points are square-root branch points where the
Riemann sheets are pairwise (in generic cases) connected.
The leading-order behavior on the two connected sheets close
to the branch point λ0 is given by E(λ) − E(λ0) ≈ a

√
λ − λ0

(as a doubly valued function), with a being a complex constant
[5,26,27].

The relation of branch points to QPTs has been declared
several times—see, for example, Refs. [5,8,11]. Clearly, a
branch point located close to the real λ axis affects the local
evolution of the corresponding pair of real energies so that the
two levels undergo an avoided crossing with accompanying
rapid changes of wave functions. A cumulation of branch
points close to some real point λc thus can give rise to
massive structural changes of eigenstates, as observed in
QPTs. Although this mechanism was illustrated by several
model examples [5,8,11], quantitative determination of the
arrangement and density of branch points needed to trigger a
phase-transitional behavior is still missing.

We will argue that such a criterion can be derived from
the above-mentioned surmise concerning branch points and
zeros of partition functions. Namely, a link will be established
between the lth-order QPT distribution of the g.s.-related
branch points and a distribution of complex zeros of the
classical partition function Z(T ) characterizing an lth-order
thermodynamic phase transition. To this end, we assume the
correspondence Z(T ) ↔ D0(λ), where D0 stands for the k = 0
partial discriminant (6). This means that (in a QPT case) the
partial discriminant D0(λ) is to be treated in the same way
as if it were a partition function Z(T ) of a fictitious classical
system undergoing classical phase transition (so Z(T ) is not
the actual partition function of the QPT system). Recall that
the square D2

k of any partial discriminant is a polynomial
with n − 1 complex conjugate pairs of roots, each of them
being simultaneously assigned to one other D2

k′ . These roots
correspond to the branch points located on the kth Riemann
sheet. Thus zeros of D0 represent singularities on the g.s.
Riemann sheet that are now assumed to play a role similar to
zeros of Z(T ) in standard phase transitions.

This correspondence allows us to find a quantum counter-
part of the thermodynamic potential F0 = −T ln Z. It is pro-
portional to the g.s. “potential energy,” U = −∑

i>0 ln |Ei −
E0|, as obtained in the static Coulomb-gas description of
quantal spectra [30]. For the “specific heat” one obtains

C2 = −Sλ
d2(λU )

dλ2

= S
∑
i>0

[
λ2

{
d2Ei

dλ2 − d2E0
dλ2

Ei − E0
−

(
dEi

dλ
− dE0

dλ

Ei − E0

)2}

+ 2λ

(
dEi

dλ
− dE0

dλ

Ei − E0

)]
. (7)

The first expression here is analogous to Eq. (2), but with
E0 replaced by λU . The second formula in Eq. (7) can be
further decomposed, using the Pechukas-Yukawa method [31]
as in Eq. (2), into a double sum of terms containing matrix

elements of V and energy differences. (The result is not shown
here.) Note that any power of D0 used in this thermodynamic
correspondence (the power is, in fact, arbitrary) would modify
just the scaling factor S. This factor must also depend on the
size of the system and will be discussed later.

A direct numerical determination of the g.s. branch points
is prohibitively difficult for large dimensions. (IBM results for
N = 20 are shown in Ref. [32], but with no distinction between
branch points lying on different Riemann sheets.) However, the
quantity C2, which is easily computable and depends solely
on real-λ observables, represents an indirect measure of the
density of branch points on the g.s. Riemann sheet near the real
axis. Consider, as a simplified example, a chain λ±m = λc ±
iλ̃m (with λ̃m � λ̃m+1) of complex-conjugate pairs of zeros
of D0 along a line perpendicular to the real axis. If λ̃1 → 0
when the system’s size (N ) increases to infinity, a QPT will
most probably occur at λc (with little space being left for
an unlikely nonanalytic but still smooth behavior of E0(λ) at
λc). Let ρ(λ̃) be a density of branch points along the λc + iλ̃

line for N → ∞. The D2
0 polynomial is determined (up to a

multiplicative constant) by the roots, and specific heat (7) is
for real λ given by

C2 ∝ λ2
∫ ∞

0

ρ(λ̃)(λ̃
2 − �2)

(λ̃
2 + �2)2

dλ̃ + 2λ�

∫ ∞

0

ρ(λ̃)

λ̃
2 + �2

dλ̃,

(8)
where � = λ − λc. This implies that the “latent heat” Q =
limε→0

∫ +ε

−ε
C2(�)d� is zero if ρ(λ̃) decreases sufficiently fast

when approaching the real axis. A rate of the ρ(λ̃) decrease
can, in fact, help us to classify the corresponding QPT.

In particular, if in this example ρ(λ̃) ∼ λ̃
α

for λ̃ close to
zero, we obtain the following possibilities: (i) a “first-order”
QPT, with C2 → ∞ at � = 0 and Q finite, for α = 0,
(ii) a “second-order” QPT, with C2 → ∞ but Q = 0, for
α ∈ (0, 1], and (iii) a “higher order” QPT, with C2 finite and
Q = 0, for α > 1. This relation is the same as in standard
thermodynamics, where the order of a phase transition reflects
the density of the Z(T ) zeros close to a critical temperature
Tc [22]. In the QPT case, however, there is no direct connection
between C2 and the form of E0(λ), so it must be stressed that
the “order” deduced from C2 cannot be a priori expected to
coincide with the order determined via C1. In the following we
focus on this problem showing that the IBM first- and second-
order QPTs (in the sense of C1) are correctly distinguished by
C2 if the scaling factor S involves a natural dependence on the
relevant dimension n.

The specific heat C2 in the IBM first- and second-order
QPT for S = 1 is shown in Fig. 2, where panels (a) and (b)
again correspond to χ = −√

7/2 and 0, respectively. All the
levels with J = 0 were included in the sum (7). We know that
for χ = 0 some pairs of levels actually cross at real λ (owing
to the seniority quantum number v that survives all the way
across the transition [33]). This implies discontinuities and
singularities of some first and second derivatives in Eq. (7),
which however cancel out exactly and do not affect the C2

shape in Fig. 2(b) [32]. Let us stress that since the g.s. branch
points in the IBM are not aligned perpendicularly to the real
axis, formula (8) does not apply here.
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FIG. 2. The same as in Fig. 1 but for “specific
heat” (7) including all J = 0 states.

It is clear that the peaks in panels (a) of both Figs. 1 and 2 are
sharper and higher than those in panels (b), as indeed expected
in the first- and second-order phase transitions. The log-log
insets in these figures indicate that maximal values—A1 and
A2—in the C1 and C2 peaks exhibit roughly an algebraic
increase with the boson number. The increase is faster for
the first-order QPT than for the second-order one.

With a proper normalization to the system’s size, the values
of A1 and A2 corresponding to the second-order QPT have
finite N → ∞ asymptotics, whereas these values for the first-
order QPT, normalized in the same way, diverge. To prove
this, we show in Fig 3 the dependence of A1/N and A2/N

2

for the second-order QPT on the boson number up to N =
1000. The calculation for such high dimensions was enabled
by the underlying O(5) symmetry for χ = 0 [33]. Clearly, the
curves in Fig. 3 have finite asymptotics. The behavior of A1 is
consistent with the analytic result A1/N → 12.5 that can be
derived from the N → ∞ limit of the g.s. energy per boson [2].
Similar analytic calculation for χ �= 0 shows a divergence of
C1/N at λc(χ ) in the first-order QPT.

Specific heat C2 in Fig. 2 behaves in a similar way, but—as
follows from Fig. 3—in this case the correct normalization is
by 1/N2. This factor reflects the dimension of the subspace of
states with J = 0, which grows roughly as n ∼ N2/12 for very

large boson numbers (whereas the total number of IBM states
is ∼N5/120). Since there are n − 1 pairs of branch points on
each Riemann sheet, the choice of S = 1/(n − 1) ∝ 1/N2 in
Eq. (7) normalizes the density ρ(λ̃) [cf. Eq. (8)] in the finite-n
case to a unit integral. Again, the faster increase of A2 for
χ = √

7/2 [see Fig. 2(a)] indicates a divergence of C2/N
2 in

the first-order transitions.
Therefore, we can conclude that the quantity C2, which

was derived directly from the initial surmise introducing the
thermodynamic analogy discussed here, with S ∼ 1/n, yields
a plausible analog of specific heat in the IBM. It can be seen as
a mere alternative of C1, but more appropriately it should be
recognized as a direct reflection of the mechanism underlying
QPT behavior, which is based on specific arrangments of
branch points, similar to arrangements of a partition function’s
complex zeros. It is also possible to further test the validity of
this description by restricting the sum in Eq. (7) for χ = 0 only
to J = 0 states with seniority v = 0. In this case, the dimension
increases as n ∼ N/2, so that S ∝ 1/N should represent
the proper normalization. Unfortunatelly, the convergence of
A2/N to a postulated finite asymptotic value (if any) is very
slow in this case and the results (although compatible with
the aforementioned assumption) are not fully conclusive; see
Ref. [32] for details.
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FIG. 3. Normalized maximal values A1/N

(dots) and 10A2/N
2 (triangles) of “specific heat”

(2) and (7) in the IBM second-order QPT (χ = 0)
for very large boson numbers.

In summary, we proposed a method capable of indirectly
measuring the distribution of branch points of the Hamiltonian
(1) on the g.s. Riemann sheet near the real-λ axis. This
distribution is of great importance in the fundamental theory
of quantum phase transitions. The method is based on the
analogy between generic QPT arrangements of branch points
and similar behaviors of complex zeros of the canonical
partition function in thermodynamic phase transitions. Our
approach was tested in the first- and second-order QPTs
of the interacting boson model, where the “specific heat”
C2 from Eq. (7), normalized with respect to the relevant

dimension, turned out to behave in the same way as standard
specific heat in typical thermodynamic phase transitions of
the respective orders. We expect that the method is applicable
also in other QPT systems. It discloses a surprising analogy
between standard thermodynamics and quantum mechanics of
parameter-dependent systems.
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