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Parity–time synthetic photonic lattices
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The development of new artificial structures and materials is today one of the major research challenges in optics. In most
studies so far, the design of such structures has been based on the judicious manipulation of their refractive index
properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical
behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently
developed notion of ‘parity–time symmetry’ in optical systems, which allows a controlled interplay between gain and
loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity–time
symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional
invisible media when operated near their exceptional points. Our experimental results represent a step in the
application of concepts from parity–time symmetry to a new generation of multifunctional optical devices and networks.

In designing an optical system, nature demands that only a few basic
‘ingredients’ be used: refractive index, gain and loss. There is no doubt
as to how useful index contrast is in controlling optical dynamics.
Shaping the refractive index profile has led to unprecedented
advancements in optics ranging from the design and fabrication of
photonic crystals1 and photonic crystal fibres2 to the exploration of
nanoplasmonics3–6 and negative-index metamaterials7. Loss is abund-
ant in physical systems, but is typically considered a problem. Gain,
however, as afforded by lasers, is valuable in optoelectronics because it
provides a means to induce lasing or to overcome losses4–6. The ques-
tion naturally arises as to whether new artificial optical structures and
materials can be synthesized by mixing together these three ingredi-
ents in roughly comparable proportions, and, if so, how this can be
done without running into uncontrollably growing or decaying
optical modes. The answer may come from some recent abstract
developments in quantum field theories.

In 1998, it was shown that a wide class of non-Hermitian
Hamiltonians can actually possess entirely real spectra as long as they
respect parity–time symmetry8. This is clearly counterintuitive given
the fact that this symmetry is commonly associated with purely
Hermitian systems. In quantum mechanics, the action of the parity
operator P̂ is defined by the relations x̂?{x̂ and p̂?{p̂, and that of
the T̂ operator leads to p̂?{p̂, i?{i and x̂?x̂, where x̂ and p̂
represent the position and momentum operators, respectively. In
general, a Hamiltonian Ĥ~p̂2=2zV(x̂) associated with a complex
potential V(x̂) is parity–time symmetric provided that it commutes
with the parity–time operator. In this case, ĤP̂T̂~P̂T̂Ĥ and, thus, Ĥ
and P̂T̂ may share a common set of eigenfunctions8–14.

Given that the evolution of the system is described by a Schrödinger
evolution equation of the form iY t~ĤY , where Y t denotes the
partial derivative of Y with respect to time, it can be shown9 that a
necessary (but not sufficient) condition for this to occur is that the
complex potential involved in such a Hamiltonian satisfies
V(x) 5 V*(2x). This implies that the real part of the potential must
be an even function of position and that the imaginary part must be
odd. In such pseudo-Hermitian configurations, the eigenfunctions
are no longer orthogonal and, hence, the vector space of eigenmodes
is skewed8,10. Even more intriguing is the possibility of a sharp, sym-
metry-breaking transition once a non-hermiticity parameter exceeds

a certain critical value, the ‘parity–time threshold’. In such a regime,
the Hamiltonian and the parity–time operator no longer have the
same set of eigenfunctions (even though they commute) and as a
result the eigenvalues of the system cease to be all real. In addition,
this broken parity–time symmetry phase is associated with the
appearance of exceptional points8–11, where the eigenvalue branches
merge and parity–time symmetry breaks down.

Although the ramifications of these developments are still a matter
of debate within the framework of theoretical physics, it has recently
been recognized that optics can provide a productive test bed where
the notions of parity–time symmetry can be experimentally explored,
and ultimately used15–17. Given that such photonic systems are entirely
classical, they can be fully realized without introducing any conflict
with the hermiticity of quantum mechanics. In optics, a complex
potential can be readily built by judiciously incorporating, in a
balanced way, regions having optical gain and loss15. What allows this
duality between quantum mechanics and optics is the isomorphic
nature of the wave equations involved (Supplementary Methods, sec-
tion 1.9). In this case, the complex refractive index plays the part of a
potential and ‘parity–time symmetry’, hereafter PT symmetry in the
context of optics, therefore demands15–17 that n(x) 5 n*(2x).
However, so far, the realization of structures that simultaneously
exhibit a symmetric refractive index distribution and an antisym-
metric gain/loss profile has been hampered by technical difficulties.
As a result, PT symmetry has been observed only in elemental two-
component systems18–21. It will be important to devise new, versatile
platforms where such phenomena can be explored. If successful, a
new generation of optical devices, materials and networks may result,
including, for example, unidirectional on-chip devices22 as well as PT-
symmetric, high-power laser systems and laser oscillators23–31. Finally,
ideas from PT symmetry may provide a viable route to overcoming
losses that have so far hindered progress in other areas of applied
physics such as plasmonics and metamaterials5–7.

In this Article, we report the experimental demonstration of tem-
porally resolved optical beam dynamics in large-scale, PT-symmetric
lattices. The unusual band structure associated with such extended
systems is probed along with power unfolding and secondary emis-
sions resulting from the skewed character of the Floquet–Bloch
modes. In addition, we observe the unidirectional invisibility of a
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PT-symmetric temporal grating when operating close to the system’s
exceptional points. Such structures have no effect on transmitted
light, and their reflectivity greatly varies with the direction of pro-
pagation. The underlying flexibility of the arrangements proposed can
be used to implement a diverse family of ‘PT synthetic’ structures and
networks with altogether new properties and functionalities.

In our experiments, large-scale, PT-symmetric optical networks are
realized in the temporal domain. This is accomplished by shaping the
evolution of a sequence of pulses in two appropriately designed fibre
loops connected by a 50/50 coupler (Fig. 1a and Supplementary
Methods, section 1). A length differential DL between the two path-
ways leads to discretized arrival times for the optical pulses and to a
transverse coupling between neighbouring time slots. The induced
transverse pulse transport32,33 can be directly observed by monitoring

the output of tap nodes. A pulse traversing the short loop will be
advanced, whereas pulses propagating along the long loop will be
temporally delayed. The resulting pulse trains emerging from the
short and long loops eventually interfere at the coupler in a manner
depending on the phases acquired along their respective pathways
(Fig. 1b and Supplementary Methods).

In this system, PT symmetry is imposed by temporally alternating
gain and loss in the two loops by means of optical amplifiers in
conjunction with amplitude modulators. In addition, the even, real
part of the optical PT potential (Re{n(x)}) can be discretely introduced
using phase modulation. The PT nature of this configuration becomes
apparent by considering the fully equivalent spatial waveguide net-
work shown in Fig. 1c, where the time slots associated with the set-up
described here are mapped on discrete transverse sites n. A pulse delay
or advancement in the temporal domain corresponds to a transition
towards the left or the right in the spatial network of Fig. 1c. The light
evolution in these spatiotemporal lattices is described by the following
recursion equations33:
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In the temporal domain, um
n and vm

n denote the amplitudes of a
sequence of pulses occupying time slots n within the short and long
loop, respectively, after the mth round trip. The phase function Q(n)
provides the symmetric, real part of the PT potential, by imposing a
phase 6Q0 on the pulses, and the antisymmetric, imaginary compon-
ent of the effective potential is induced by a gain/loss factor G. In
equation (1), the exponent of G switches from 21/2 to 11/2 between
alternate loops in every step m; that is, the loops are repeatedly
switched between gain and loss in equal amounts.

Our experimental set-up (Fig. 1a), as well as its equivalent optical
network (Fig. 1c), are periodic in both m and n, thus leading to a band
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Figure 1 | PT-symmetric fibre networks. a, Two coupled fibre loops
periodically switching between gain and loss as used in the experiment
(Supplementary Fig. 1). Pulses are delayed or advanced as a result of a length
difference DL between the loops. PM, phase modulator. b, Pulse evolution in
the networks. Passages through short and long loops are indicated.
c, Equivalent PT-symmetric lattice network. Gain (red) and loss (blue)
channels are positioned antisymmetrically and are periodically coupled.
Moreover, the real part of the potential is evenly imposed by phase shifts 6Q0.

a

G = 1, ϕ0 = 0

b

G = 1.4, ϕ0 = 0 G = 1.4, 2ϕ0 = 0.39π G = 1.4, 2ϕ0 = 0.41π

c d

S
te

p
, m

Position, n
−30 0 30

0

20

40

Position, n
−30 0 30

Position, n
−30 0 30

Position, n
−30 0 30

0 20 40
0

2

4

Li
gh

t 
en

er
gy

Step, m

Total
Long
Short

0 20 40

Step, m

0 20 40

Step, m

0 20 40

Step, m

Gain Potential Potential

Figure 2 | Band structure and measured single-pulse evolution in the PT
synthetic network. a, Passive system (G 5 1) without phase potential (Q0 5 0)
with an entirely real (blue) band structure and no band gaps. The evolution of a
pulse injected into the long loop is similar33 to a quantum walk32. Measured
pulse intensities at position n and step (loop round trip) m are indicated in the
logarithmic colour scale: red, high intensity (1); dark blue, low intensity
(1022.05). b, Same as a, but with net gain/loss (G 5 1.4). Parts of the band
structure become imaginary (red), leading to an exponential energy growth.

Black points in the figures denote exceptional points. c, Same as b, but with a
phase potential (2Q0 5 0.39p) partly stabilizing the system, leading to a linear
growth in energy. d, A further increase of the real-valued potential
(2Q0 5 0.41p) opens a band gap, making the band structure again entirely real.
Power unfolding is observed in this case; that is, the optical energy is no longer
conserved but oscillates about a mean value because the eigenmodes are not
orthogonal. For data in both loops, colour scales and a comparison with
simulations, see Supplementary Figs 4 and 5.
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structure as shown in Fig. 2 (see Supplementary Fig. 6 for details). In
fact, all the unusual dynamics in these PT synthetic networks can be
traced back to their peculiar band features. As Fig. 2 indicates, the
bands can show new characteristics including the formation of excep-
tional points and the possibility of band-merging effects15,17—both a
direct outcome of a spontaneously broken PT symmetry. In the pass-
ive case, when the imaginary part of the potential is absent33, two
bands form without a gap (Fig. 2a), and the system hence has no
PT threshold. Therefore, even a small amount of gain/loss G abruptly
forces the bands to merge at the exceptional points, where a transition
to imaginary eigenvalues occurs (Fig. 2b). To establish a finite thresh-
old, a symmetric phase potential Q(n) has to be introduced into the
time lattice. The presence of such a potential forces the bands apart,
thus creating a band gap. In this arrangement, the spectrum is again
entirely real, in spite of the fact that the system is not Hermitian
(Fig. 2d).

In the experiment, we probe the entire band structure of this lattice
by simultaneously exciting all bands with a single pulse. Although
power is conserved in the passive time lattice (Fig. 2a), exponential
growth occurs (Fig. 2b) above the point at which PT symmetry is
broken, where the spectrum ceases to be real. However, if the system
is operated at threshold, with only exceptional points present (Fig. 2b,
c, black points), the power increases linearly in time as clearly shown
in Fig. 2c, in agreement with previous theoretical predictions34–36.
Even below the symmetry-breaking point, power oscillations are
observed (Fig. 2d). The question is why this occurs, given that the
bands are entirely real. The answer has to do with the very fact that the
network’s Floquet–Bloch modes are no longer orthogonal and, con-
sequently, power ‘hidden’ in the system can reappear during evolu-
tion15,35. As a result, the total power in the system undergoes
oscillations because of mode interference effects.

The versatility of the time-multiplexed lattice described here allows
us to explore further the onset of PT symmetry breaking by perform-
ing a parameter scan throughout the accessible range of the phase
potential Q0 and gain/loss coefficient G (Fig. 3a). As Fig. 3a shows, if
the phase modulation is strong enough we observe a harmonic co-
existence between gain and loss (blue region) that can be suddenly
broken by small parameter variations (as in the red area), resulting in
an exponential energy rise as shown in Fig. 3b. However, in the exact

PT phase the power oscillates during evolution (Fig. 3c). As both gain/
loss G and the phase potential Q(n) can be dynamically changed dur-
ing the course of light propagation, it is possible to implement abrupt
and gradual transitions from PT-symmetric to passive regimes in our
temporal photonic lattice. Moreover, the sharp transitions between
these phases can provide a precise mechanism for dynamic power
control in laser cavities. Given the conceptual similarity of our set-
up (Fig. 1a) to figure-eight fibre lasers, it might be possible to apply
our modulation schemes (Supplementary Fig. 3) to achieve enhanced
pulse control. For example, for the phase in which PT symmetry is
broken, pulse trains with a fixed phase relation and a spacing defined
by the path difference and not the total length of the loops could be
produced.
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Figure 4 | Bloch oscillations (experiment) and superluminal energy
transport (simulation). a, b, Bloch oscillations in the passive system (a) and in
the system with gain/loss (G 5 1.08) (b). A broad Gaussian input distribution is
used to excite a narrow mode spectrum near the centre of the Brillouin zone.
For each encounter with the imaginary parts of the band structure, a secondary
light beam is emitted. A weak phase gradient eiam with a 5p/25 is applied to the
long loop. Logarithmic colour scale: red, high intensity (1); dark blue, low
intensity (1021.8). c, A broad initial pulse excitation with a narrow frequency
spectrum close to the exceptional point speeds up the energy transport into the
superluminal regime. The field distribution after m 5 800 steps is shown for the
passive case (G 5 1) and the PT case (G 5 1.045). Here n is the maximum
possible speed of excitation spreading in the passive case (one step per round
trip m). a.u., arbitrary units.
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Pronounced outbursts of radiation are also observed when a broad
input is subjected to a weak phase gradient in a PT-symmetric
network above the symmetry-breaking point. As the beam dynam-
ically changes its tilt, it performs Bloch oscillations37–39 and sweeps the
whole band structure (Fig. 4a, b). In this case, every time the field
experiences imaginary eigenvalues, a secondary beam is emitted and
the total power is amplified (Fig. 4b). Finally, the merging of the two
bands at the exceptional points has even more intriguing con-
sequences. Numerical simulations show that as the slope of the bands
tends to infinity, the associated group velocity of a narrow-bandwidth
wave packet increases and can even exceed the speed of light in the
fibre40 (without violating causality41,42), as indicated in Fig. 4c. This
anomalous speed of the peak intensity is made possible by a gain-
assisted growth of the distribution’s leading tail. We note that all these
features are a direct outcome of pseudo-hermiticity and have no
analogue whatsoever in passive configurations.

Finally, we performed scattering experiments on a periodic, PT-
symmetric temporal structure—a configuration analogous to a spatial
grating (Fig. 5). As recently predicted43,44, such structures have sur-
prising behaviour such as unidirectional invisibility and unconven-
tional reflection characteristics. More specifically, light propagating in
such a system can experience reduced or enhanced reflections (with a
coefficient that can even exceed one) depending on the direction of
propagation. This is because left–right symmetry is broken in this PT
network and propagation is no longer invariant when gain and loss
are exchanged in time. Even more remarkable is what happens at the
PT threshold: light waves entering the structure from one side do not
experience any reflection and can fully traverse the grating with com-
plete transmission. Given that this occurs without acquiring any
phase imprint from the system, the periodic structure is essentially
invisible44. However, if light is incident from the opposite side, the
coefficient of reflection exceeds one. In our set-up, we created a tem-
poral Bragg scatterer by imposing a periodic phase modulation Q(n)
only within a finite time window. Optical pulses travelling outside this
window do not experience this periodic potential. In the absence of
any gain or loss, the resulting passive configuration acts on incoming
light as a reflector, very much like a spatial Bragg stack (Fig. 5a). Gain
and loss was subsequently added to the phase modulation in a PT-
symmetric fashion. Figure 5 shows experimental results confirming
these predictions. Both suppression of reflection and full transmission
exactly at the symmetry-breaking point are clearly observed, suggest-
ing invisibility of the scatterers.

Our results demonstrate that scalable PT synthetic discrete systems
can be realized using building blocks that respect this reflection sym-
metry. The modular approach presented here can be easily extended to
on-chip configurations45, thus paving the way for the realization of PT
synthetic devices and effective media with new and unexpected optical
properties. Finally, similar concepts can be effectively used in other
areas such as plasmonics and metamaterials, where a harmonic
coexistence of gain and loss is ultimately required. These and
related issues are now accessible experimentally using the platform
described here.

METHODS SUMMARY
Operation of the time-multiplexed fibre network in its passive version is
described in ref. 33 and its supplementary information. To introduce gain and
loss into the network, an acousto-optic modulator (AOM) was inserted into each
loop. Both AOMs were operated in the zeroth order to implement a variable
attenuation from 0 to 6 dB without imposing a frequency shift on the signal.
The switching time of the AOMs was fast enough to change the attenuation
between subsequent round trips (or between subsequent positions n in the case
of PT scattering). The net gain of both loops provided by semiconductor optical
amplifiers was varied so that the optical energy remained constant when the
AOM losses were set to 3 dB. This allows the effective gain/loss to be modulated
by up to 63 dB (that is, G 5 2) in each loop.

The phase modulation for the potential was provided by an electro-optic phase
modulator in the long loop. The imposed phase function used was

Q(n)~
{Q0 for mod (nz3; 4)~0 or 1

zQ0 for mod (nz3; 4)~2 or 3

�

To observe PT Bloch oscillations, the phase factor eiQ(n) in equation (1) was
replaced by a linearly increasing phase gradient eiam.

Only every second position n can be accessed by the optical pulses in our loop
network. Therefore, the amplitudes in between are set to zero. The colour scales
in Figs 2, 4 and 5 are logarithmic and are shown in Supplementary Figures 4, 5, 8
and 9. Further details concerning the experimental procedures followed can be
found in Supplementary Methods.
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oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83,
4752–4755 (1999).

39. Morandotti, R., Peschel, U., Aitchison, J., Eisenberg,H.&Silberberg, Y. Experimental
observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83,
4756–4759 (1999).

40. Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in
honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011).

41. Chiao, R. Superluminal (but causal) propagation of wave-packets in transparent
media with inverted atomic populations. Phys. Rev. A 48, R34–R37 (1993).

42. Wang, L. J., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light
propagation. Nature 406, 277–279 (2000).

43. Kulishov, M., Laniel, J. M., Bélanger, N., Azaña, J. & Plant, D. V. Nonreciprocal
waveguide Bragg gratings. Opt. Express 13, 3068–3078 (2005).

44. Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic
structures. Phys. Rev. Lett. 106, 213901 (2011).

45. Sansoni, L. et al. Two-particle bosonic-fermionic quantum walk via integrated
photonics. Phys. Rev. Lett. 108, 010502 (2012).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We acknowledge financial support from DFG Forschergruppe
760, the Cluster of Excellence Engineering of Advanced Materials, SAOT and the
German-Israeli Foundation. This work was also supported by NSF grant
ECCS-1128520 and by AFOSR grant FA95501210148. Moreover, we thank J. Näger
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