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Light propagation in distributed-feedback optical structures with gain or loss regions is shown to

provide an accessible laboratory tool to visualize in optics the spectral properties of the one-dimensional

Dirac equation with non-Hermitian interactions. Spectral singularities and PT symmetry breaking of the

Dirac Hamiltonian are shown to correspond to simple observable physical quantities and are related to

well-known physical phenomena such as resonance narrowing and laser oscillation.
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Introduction.—Quantum mechanics prescribes that the
Hamiltonian H of a physical system must be self-adjoint.
Since the seminal paper by Bender and Boettcher [1], it
was realized that the Hermiticity of H can be relaxed and
that a consistent quantum theory can be constructed for a
broader class of Hamiltonians [2–5]. Among these are
parity-time (PT ) Hamiltonians, which possess a real-
valued spectrum below a symmetry-breaking point. Non-
Hermitian Hamiltonians are also encountered in reduced
descriptions of open quantum systems, with important
applications to atomic, molecular, and condensed-matter
physics [6]. In such systems, the lack of Hermiticity can
lead to the appearance of exceptional points and spectral
singularities, whose physical relevance has been discussed
by several authors (see, e.g., [7–9]). Recently, non-
Hermitian extensions of relativistic wave equations [10–
12] and non-Hermitian quantum field theories [13] have
attracted increasing interest as well. As some issues in this
field are still debated (see, e.g., [13]), physical realizations
of non-Hermitian relativistic models remain mostly unex-
plored. Recently, optical structures in media with a com-
plex refractive index have been proposed to test and
visualize non-Hermitian features rooted in the nonrelativ-
istic Schrödinger equation with a complex potential
[8,9,14,15]. The main motivation in the study of such
quantum-optical analogs is that concepts like exceptional
points, spectral singularities, and PT symmetry breaking
become measurable quantities in an optical experiment
[8,9]. This has led to the first experimental visualization
of exceptional points and PT symmetry breaking in an
optical structure [16,17]. Such results motivate the search
for optical simulators of non-Hermitian relativistic wave
equations, which is the aim of this Letter. Here it is shown
that light propagation in distributed-feedback (DFB) opti-
cal structures with gain and/or loss regions, which is at the
heart of such important devices as DFB semiconductor
lasers [18,19], can provide a fertile ground to test the
spectral properties of non-Hermitian Dirac Hamiltonians.
Similarities between light propagation in DFB structures
and relativistic wave equations were noticed in early stud-
ies on gap solitons in connection with the massive Thirring

model of field theory [20]; however, these previous studies
did not consider non-Hermitian interactions.
Non-Hermitian Dirac equation and its optical realiza-

tion.—Let us consider the Dirac equation in one spatial
dimension for a two-component spinor wave function
c ðx; tÞ ¼ ðc 1; c 2ÞT with time-independent vector (V)
and scalar (S) couplings, which in natural units (@ ¼ c ¼
1) reads [11,12]

i@tc ¼ �i�@xc þ �mðxÞc þ VðxÞc � Hc ; (1)

where � and � are 2� 2 Hermitian square matrices sat-
isfying the relations �2 ¼ �2 ¼ 1 and ��þ �� ¼ 0,
VðxÞ is the time-component of a Lorentzian 2-vector po-
tential, mðxÞ is the space-dependent effective mass defined
by mðxÞ ¼ m0 þ SðxÞ, and m0 is the rest mass of the Dirac
particle. Among the various representations of the Dirac
equation, the optical realization of Eq. (1) discussed below
is at best highlighted by taking � ¼ �z and� ¼ �x, where

�x ¼ 0 1
1 0

� �

and

�z ¼ 1 0
0 �1

� �

are the Pauli matrices. If either V or m assume complex
values, the Dirac Hamiltonian H is non-Hermitian and its
spectrum is, in general, complex-valued. For the Dirac
equation, parity and time-reversal operators can be defined
as [12] P ¼ P 0� and T ¼ K�, where P 0 changes x
with �x and K performs complex conjugation. Hence
PT c ðxÞ ¼ c �ð�xÞ. PT invariance of H, i.e.,
½PT ; H� ¼ 0, requires Vð�xÞ ¼ V�ðxÞ and mð�xÞ ¼
m�ðxÞ [12]. If every eigenfunction of a PT -invariant
Hamiltonian is also an eigenfunction of the PT operator,
the PT symmetry of H is said to be unbroken and its
spectrum is real-valued [4]. In the following, we will
consider a real-valued effective mass mðxÞ, whereas non-
Hermiticity is introduced by allowing the vector potential
VðxÞ to be complex-valued. An optical realization of the
Dirac equation (1) is provided by propagation of light
waves in an effective one-dimensional DFB structure
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[18]. Let nðzÞ ¼ n0 � �nhðzÞ cos½2�z=�þ 2�ðzÞ� be the
effective index grating of the dielectric structure, where n0
is the modal refractive index in the absence of the grating,
�n � n0 and� are the peak index change and the nominal
period of the grating, respectively, and hðzÞ and 2�ðzÞ are
the normalized amplitude and phase profiles, respectively,
of the index grating. The periodic modulation of the re-
fractive index leads to Bragg scattering between two coun-
terpropagating waves at frequencies close to the Bragg
frequency !B ¼ �c=ð�n0Þ, where c is the speed of light
in vacuum. The linear space-dependent absorption coeffi-
cient of counterpropagating waves in the structure is in-
dicated by �0ðxÞ (�0 > 0 in lossy regions; �0 < 0 in gain
regions). In a semiconductor DFB structure, gain and loss
regions could be tailored by a judicious control of current
injection across the active layer [19]. Indicating by
Eðz;�Þ¼ c 1ðz;�Þexp½�i!B�þ ikBzþ i�ðzÞ�þc 2ðz;�Þ�
exp½�i!B�� ikBz� i�ðzÞ�þc:c: the electric field propa-
gating in the DFB structure, where kB ¼ �=�, the enve-
lopes c 1 and c 2 of counterpropagating waves satisfy
coupled-mode equations [19]. After introduction of the
scaled space and time variables x ¼ z=Z and t ¼ �=T,
with Z ¼ 2n0�=ð��nÞ and T ¼ Z=vg, where vg ’ c=n0
is the group velocity of light at frequency !B, the enve-
lopes c 1 and c 2 satisfy Eq. (1) with a real mass m and a
complex-valued vector potential V defined by

mðxÞ ¼ hðxÞ; VðxÞ ¼ d�

dx
� i�ðxÞ; (2)

where �ðxÞ ¼ Z�0ðxÞ is the dimensionless absorption co-
efficient. In the following, we will assume that both mðxÞ
and VðxÞ have a limited support, i.e., m ¼ V ¼ 0 for jxj>
L=2. This case typically applies to optical DFB structures,
in which the grating region is spatially confined to a finite
region of length L.

Spectral singularities, bound states, and resonances of
the Dirac Hamiltonian.—The spectral properties of the
non-Hermitian Dirac Hamiltonian H, defined by Eqs. (1)
and (2), can be investigated by standard methods of scat-
tering theory. To this aim, let us introduce the functions

�ð1Þ
E ðxÞ, �ð2Þ

E ðxÞ, ’ð1Þ
E ðxÞ, and ’ð2Þ

E ðxÞ, which satisfy the
equation Hc ¼ Ec (E is a complex-valued parameter)

with the asymptotic behavior �ð1Þ
E ¼ ð1; 0ÞT expðiExÞ,

�ð2Þ
E ¼ ð0; 1ÞT expð�iExÞ for x <�L=2, and ’ð1Þ

E ¼
ð1; 0ÞT expðiExÞ, ’ð2Þ

E ¼ ð0; 1ÞT expð�iExÞ for x > L=2.

As the Wronskians Wf�ð1Þ
E ;�ð2Þ

E g ¼ Wf’ð1Þ
E ; ’ð2Þ

E g ¼ 1 do

not vanish, f�ð1Þ
E ;�ð2Þ

E g and f’ð1Þ
E ; ’ð2Þ

E g are two sets of
linearly independent solutions to the equation ðE�
HÞc ¼ 0, and therefore there exists a 2� 2 matrix
MðEÞ, with detMðEÞ ¼ 1, such that

�ð1Þ
E ðxÞ ¼ M11ðEÞ’ð1Þ

E ðxÞ þM21ðEÞ’ð2Þ
E ðxÞ;

�ð2Þ
E ðxÞ ¼ M12ðEÞ’ð1Þ

E ðxÞ þM22ðEÞ’ð2Þ
E ðxÞ:

(3)

Physically, MðEÞ is the transfer matrix that connects the
amplitudes of forward- and backward-propagating waves

from x ¼ �L=2 to x ¼ L=2, which is commonly adopted
in the optical context (see, for instance, [19]). The spectral
transmission and reflection coefficients, for left (l) and
right (r) incidence, can be expressed in terms of the trans-
fer matrix elements in the usual way [9]

tðlÞ ¼ tðrÞ � t¼ 1

M22

; rðlÞ ¼�M21

M22

; rðrÞ ¼M12

M22

: (4)

For a PT -invariant Hamiltonian, one has ’ð1Þ
E� ðxÞ ¼

�ð1Þ�
E ð�xÞ and ’ð2Þ

E� ðxÞ ¼ �ð2Þ�
E ð�xÞ, and thus M�1ðEÞ ¼

M�ðE�Þ, which implies M11ðEÞ ¼ M�
22ðE�Þ.

The spectrum of H, as well as the existence of spec-
tral singularities arising from the non-Hermiticity of H
[9,21], can be determined by an inspection of the singu-
larities and branch cuts of the resolvent GðEÞ ¼
ðE�HÞ�1, which takes the integral form [21]
GðEÞc ðxÞ ¼ R

dyGðx; y;EÞc ðyÞ, where Gðx; y;EÞ is the
Green function. Its explicit form reads Gðx; y;EÞ ¼
Gþðx; y;EÞ for ImðEÞ> 0 and Gðx; y;EÞ ¼ G�ðx; y;EÞ
for ImðEÞ< 0, where

G þðx; y;EÞ ¼ � i

M22ðEÞ ½�ðy� xÞ�ð2Þ
E ðxÞ’ð1ÞT

E ðyÞ

þ�ðx� yÞ’ð1Þ
E ðxÞ�ð2ÞT

E ðyÞ��x; (5)

G�ðx; y;EÞ ¼ i

M11ðEÞ ½�ðy� xÞ�ð1Þ
E ðxÞ’ð2ÞT

E ðyÞ

þ�ðx� yÞ’ð2Þ
E ðxÞ�ð1ÞT

E ðyÞ��x; (6)

and �ðxÞ is the Heaviside function [�ðxÞ ¼ 0 for
x < 0;�ðxÞ ¼ 1 for x > 0]. On the basis of Eqs. (5) and
(6), the following results hold for the spectral properties
of H.
(i) Continuous spectrum.—The continuous spectrum of

H is the entire real energy axis (�1<E<1), where
GðEÞ has a branch cut.
(ii) Point spectrum.—The zeros of M22ðEÞ on the

ImðEÞ> 0 half plane, together with the zeros of M11ðEÞ
on the ImðEÞ< 0 half plane, define the point spectrum of

H; at such energies, the function �ð2Þ
E ðxÞ [for ImðEÞ> 0]

and �ð1Þ
E ðxÞ [for ImðEÞ< 0] are bound states of H.

(iii) Resonances.—The zeros of M22ðEÞ [M11ðEÞ] on
the ImðEÞ< 0 [ImðEÞ> 0] half plane, i.e., the poles of the
analytic continuation of Gþ [G�] on the ImðEÞ< 0
[ImðEÞ> 0] half plane, correspond to the resonances [anti-
resonances] of the scattering problem.
(iv) Spectral singularities.—A spectral singularity [21]

is any zero E ¼ E0 on the real axis of either M11ðEÞ or
M22ðEÞ, around which GðEÞ is unbounded (for either E ¼
E0 þ i0þ orE ¼ E0 � i0þ) in spite of the fact that E ¼ E0

does not belong to the point spectrum of H.
Note that, for a PT -invariant Hamiltonian, M11ðEÞ ¼

M�
22ðE�Þ and hence at a spectral singularity bothM11 and

M22 vanish, the resolvent is unbounded for E ¼
E0 � i0þ, and the transmission and reflection spectral
coefficients diverge according to Eq. (4) [22]. For such a
reason, in Ref. [9] spectral singularities were identified
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with zero-width resonances. However, for a PT -non-
invariant Hamiltonian, a spectral singularity could arise
from the vanishing of M11 but not of M22; i.e., it might
not correspond to a divergence of the spectral transmission
or reflection coefficients. Such a case was not noticed in
Ref. [9] and has a different physical meaning: At such a
spectral singularity the potential becomes reflectionless for
simultaneous excitation with twowaves of the same energy
E0 and amplitudes 1 (for the wave incident from the left
side) and M21 (for the wave incident from the right side).
An example of such a spectral singularity, arising from the
crossing of an antiresonance with the real energy axis, is
discussed in the first example below.

Optical realizations of spectral singularities and PT
symmetry breaking.—Let us specialize the general results
of the spectral theory by considering two examples of
complex potentials, in which spectral singularities and
PT symmetry breaking of the Dirac equation correspond
to well-known physical phenomena in the theory of DFB
optical systems.

As a first example, let us consider a PT -non-invariant
potential corresponding to �ðxÞ ¼ 0 and mðxÞ ¼ m0,
�ðxÞ ¼ �	 in the interval jxj< L=2 [Fig. 1(a)], where 	
is the dimensionless gain coefficient. This case corre-
sponds to the simplest version of a DFB laser with a
uniform index grating and a uniform gain region [19].
The transfer matrix of this structure is given by [19]

M ¼ coshð
LÞ� i�
 sinhð
LÞ �im0


 sinhð
LÞ
im0


 sinhð
LÞ coshð
LÞþ i�
 sinhð
LÞ
 !

;

(7)

where � � �Eþ i	 and 
 ¼ ðm2
0 � �2Þ1=2. Note that the

functional dependence of M on E and 	 is solely via � ¼
�Eþ i	, so that MikðE; 	Þ ¼ MikðE� i	; 0Þ. In the
Hermitian limit 	 ¼ 0, the spectrum of H is purely con-
tinuous, and a number of resonances [i.e., zeros of M22 in
the ImðEÞ< 0 half plane] as well as of antiresonances
[i.e., zeros of M11 in the ImðEÞ> 0 half plane] do exist
[Fig. 1(b)]. As 	 is increased, the spectrum remains real-
valued; the resonances (antiresonances) rigidly shift paral-
lel to the imaginary axis, until at a critical value 	 ¼ 	c

two resonances cross the real energy axis; i.e., they become
two spectral singularities [Fig. 1(b)]. The critical value 	c

can be expressed in the form 	c ¼ fðm0LÞ=L, where the
function fðm0LÞ can be calculated numerically. For in-
stance, for the case of Fig. 1 (m0L ¼ 1) one has 	cL ’
1:755. At 	 > 	c the resonances cross the real energy axis
and bound states with ImðEÞ> 0 emerge; correspondingly,
the spectrum of H ceases to be real-valued. Such a tran-
sition, from 	 < 	c to 	 > 	c, is accompanied by a nar-
rowing of the resonance widths in the transmission
spectrum as 	 ! 	�

c [see Fig. 1(c)] and to the threshold
for self-oscillation at 	 ¼ 	c. Note that the imaginary parts
of the eigenvalues E for 	 > 	c are precisely the growth
rates of the two detuned unstable modes at the onset of
lasing found in the theory of DFB lasers with a uniform
grating [18,19]. It is remarkable that the well-known physi-
cal phenomenon of self-oscillation in DFB lasers mimics
the onset of a spectral singularity of a non-Hermitian
relativistic wave equation. Let us consider now the same
DFB structure of Fig. 1(a) but with �ðxÞ ¼ 	, correspond-
ing to a uniform grating with a homogeneous lossy region.
The transfer matrix of the structure is given again by
Eq. (7), but with � ¼ �E� i	. In this case, as the loss
coefficient 	 is increased from zero, the spectrum remains
real-valued shifting parallel to the imaginary axis. At the
critical value 	 ¼ 	c, two antiresonances (rather than
resonances) now cross the real energy axis; i.e., they
become two spectral singularities. As opposed to the pre-
vious case, at 	 ¼ 	c the spectral transmission does not
diverge because the spectral singularities are born from
antiresonances (rather than from resonances); see the
dotted curve in Fig. 1(c). Moreover, the crossing does not
correspond, as in the previous case, to the onset of lasing in
the DFB structure, because at 	 > 	c the two bound states
supported by the Hamiltonian have now a negative growth
rate [ImðEÞ< 0]; i.e., any initial perturbation (starting
from spontaneous emission noise) is damped rather than
amplified.
As a second example, let us propose a PT -invariant

DFB structure which could be used to observe PT sym-
metry breaking of the Dirac equation. The structure, sche-
matically shown in Fig. 2(a), is composed by a uniform
index grating with two symmetric homogeneous gain and
lossy regions, i.e., �ðxÞ ¼ 0, mðxÞ ¼ m0 for jxj<L=2,
�ðxÞ ¼ �	 for �L=2< x< 0, and �ðxÞ ¼ 	 for 0< x<
L=2. The transfer matrix of the structure can be calculated
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FIG. 1 (color online). (a) Schematic of an optical DFB struc-
ture consisting of a uniform index grating with a homogeneous
gain region that realizes a PT -non-invariant Dirac Hamiltonian.
(b) Zeros of M22 (squares) and of M11 (circles) in the complex
energy plane � ¼ EL for m0L ¼ 1 and for increasing values of
normalized gain 	. The critical value 	c, above which bound
states emerge and the spectrum of H ceases to be real-valued, is
	c ’ 1:755=L. (c) Spectral transmission jtj versus normalized
energy � of incident wave for increasing values of 	L: Curve 1,
	L ¼ 0; curve 2, 	L ¼ 1; curve 3, 	L ¼ 1:5; curve 4, 	L ¼
1:65; curve 5, 	L ¼ 1:74. The dotted curve in (c) is the spectral
transmission of the DFB structure for 	L ¼ 1:74 when the gain
region is replaced by a lossy region.
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as M ¼ M2M1, where M1 and M2 are the transfer
matrices of the uniform gain and lossy sections [see
Eq. (7)]. Figure 2(b) shows the loci of zeros of M22 in
the complex energy plane for increasing values of 	L and
for m0L ¼ 1. Note that, owing to the PT invariance ofH,
M11ðEÞ ¼ M�

22ðE�Þ, and thus the zeros of M11 (not
shown in the figure) are simply the complex conjugates
of those ofM22. As 	 is increased above the critical value
	c ’ 4:46=L, a PT symmetry breaking occurs, with the
appearance of two pairs of complex-conjugate eigenvalues
belonging to the point spectrum of H and arising from two
couples of resonances and antiresonances crossing the real
energy axis. As the point of PT symmetry breaking is
approached, narrowing of the transmission resonances is
observed [see Fig. 2(c)], and the onset of lasing at 	 ¼ 	þ

c

corresponds to the breaking of the PT symmetry.
Conclusions.—DFB optical structures provide a fertile

classical simulator of non-Hermitian relativistic wave
equations. This work suggests that well-known phenomena
occurring in DFB structures, such as spectral narrowing of
resonances and self-oscillation, are the measurable quan-
tities associated to the onset of spectral singularities and
PT symmetry breaking of Dirac Hamiltonians with cer-
tain complex couplings.
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FIG. 2 (color online). (a) Schematic of an optical DFB struc-
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neous gain and lossy regions that realizes a PT -invariant Dirac
Hamiltonian. (b) Zeros ofM22 in the complex energy plane � ¼
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symmetry breaking is reached at 	c ’ 4:46=L. (c) Behavior of
spectral transmission jtj for increasing values of 	L: Curve 1,
	L ¼ 0; curve 2, 	L ¼ 3; curve 3, 	L ¼ 4; curve 4, 	L ¼ 4:45.
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