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Non-Hermitian quantum Hamiltonians with PT symmetry
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We formulate quantum mechanics for non-Hermitian Hamiltonians that are invariant under PT , where P is
the parity and T denotes time reversal, for the case that time-reversal symmetry is odd (T 2 = −1), generalizing
prior work for the even case (T 2 = 1). We discover an analog of Kramer’s theorem for PT quantum mechanics,
present a prototypical example of aPT quantum system with odd time reversal, and discuss potential applications
of the formalism.
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I. INTRODUCTION

The basic structure of quantum mechanics was delineated
in the early days of the theory [1] and it has not been modified
since. Still it is desirable to ask whether the structure can be
altered and generalized. For example, Weinberg showed that it
is possible to formulate a nonlinear generalization of quantum
mechanics and to thereby subject the linearity of quantum
mechanics to a quantitative test [2]. A fruitful generalization
of the canonical principles was the discovery that particles
can have fractional statistics that interpolate between Bose and
Fermi, albeit only in two spatial dimensions [3]. More recently,
the principle that the Hamiltonian and other observables should
be represented by Hermitian operators has been re-examined
[4]. A non-Hermitian formulation of quantum mechanics
promises to enlarge the set of possible Hamiltonians that
physicists could deploy to describe fundamental physics
beyond the standard model or for the effective description
of condensed-matter phenomena.

Bender and co-workers have shown that the assumption
of hermiticity can be relaxed under the circumstance that
the Hamiltonian is invariant under the combined symmetry
PT , where P denotes the parity and T denotes time reversal,
provided that in addition the eigenvalues of the Hamiltonian are
real and the appropriately defined left and right eigenvectors
coincide. By now many examples of PT quantum mechanics
have been presented in the literature [4].

In all work on PT quantum mechanics to date it has
been implicitly assumed that time reversal is even, T 2 = 1.
However, in quantum theory this is only true of bosonic
systems with integer spin. For fermionic systems, with half-
integer spin, time reversal is odd, T 2 = −1. Quarks and
leptons in particle physics, approximately half of all nuclei and
atoms, and a plethora of condensed-matter problems including
magnetic spin models and solid-state electronic matter fall
into this category. Thus, it is important to generalize the
construction of PT quantum mechanics to the case that T
is odd; that is our purpose here.

The outline of this paper is as follows. In Sec. II we
develop the principles of PT quantum mechanics for systems
with odd time-reversal symmetry and contrast them with the
established principles for systems with even time-reversal
symmetry [4]. In Sec. III we illustrate the principles by giving
the simplest two-level example of PT quantum mechanics
with odd time-reversal symmetry and comparing it to its even
counterpart. The discussion throughout is self-contained and

should be accessible to readers with no prior familiarity with
PT quantum mechanics.

In more detail, the contents of Sec. II are as follows. In
Secs. II A and II B we discuss time reversal and parity, the two
symmetry transformations that play a fundamental role in the
formulation of PT quantum mechanics. We prove that time-
reversal symmetry comes in two classes, even and odd, and we
show that one can always find a basis in which time-reversal
and parity operators have a simple canonical form. In Sec. II C
we introduce the PT inner product, which is integral to the
development of the theory. In Sec. II D we enunciate the criteria
that a Hamiltonian must satisfy in PT quantum mechanics in
lieu of the criterion of hermiticity. Among the key results in
this section are the finding that PT quantum Hamiltonians
with odd time reversal have a degeneracy analogous to
Kramer’s degeneracy for Hamiltonians with time-reversal
symmetry in conventional Hermitian quantum mechanics. We
also generalize a theorem of Ref. [5] regarding the spectrum
of operators that commute with an even antilinear symmetry
to operators that commute with an odd antilinear symmetry. A
principal novelty of PT quantum mechanics is that the inner
product on the Hilbert space of states is determined by the
Hamiltonian. This “dynamically determined” inner product is
called the CPT inner product and is the subject of Sec. II E.
Finally, we conclude our discussion of the principles of PT
quantum mechanics by discussing the conditions that must be
satisfied by operators corresponding to observables other than
the Hamiltonian in Sec. II F.

II. PRINCIPLES

A. Time reversal

First let us demonstrate that there are two classes of
behavior under time reversal. For simplicity we assume that
the Hilbert space of states has finite dimension so that the
state of the system may be specified by a column vector
with complex components ψ(n), with n = 1,2,3, . . . ,N in
the even case and n = 1,2,3, . . . ,2N in the odd case. We
see below that for the case of odd time-reversal symmetry it
will be required that the dimensionality of the Hilbert space is
even.

Following Wigner [6], we now assume that time reversal
is an antilinear operation. Thus, T ψ = Lψ∗, where L is a
linear operator. Next we assume that T 2 leaves all states
unchanged up to a phase eiφ . It follows that LL∗ = eiφ .
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This implies L−1 = L∗e−iφ . But by conjugation L∗L = e−iφ ,
which implies L−1 = eiφL∗. Together these expressions for
L−1 imply eiφ = e−iφ or eiφ = ±1. Thus, we have established
the proposition that there are two kinds of time reversal, with
T 2 = 1 and T 2 = −1, respectively. In textbook Hermitian
quantum mechanics it is assumed that we are working in an
orthonormal basis and that L is unitary (see, for example,
Ref. [7]). The proof here does not make that assumption and
hence appropriately generalizes the proposition to the case of
non-Hermitian quantum mechanics.

Under a change of basis ψ ′ = V ψ , it is easy to see that
the matrix L changes to L′ = V LV −1∗. It is shown in the
Appendix A that for the case of even time reversal one can
always find a basis in which the matrix L is the identity
and the operation of time reversal consists simply of complex
conjugation. For the case of odd time reversal one can always
find a basis in which the matrix L has a particular canonical
form denoted Z (defined below). The proof of this proposition
given in the Appendix A also reveals that for the odd case the
Hilbert space must be even dimensional; thus, Z is a 2N × 2N

matrix. That the operation of time reversal can be brought to
these canonical forms is a standard proposition of Hermitian
quantum mechanics [7]. The proof given in the Appendix A is
a generalization of the standard proposition because we do not
assume that we are working in an orthonormal basis or that L

is unitary.
In describing Z, and in much of the following discussion,

it is convenient to refer to 2 × 2 matrices as quaternions. Any
quaternion can be expanded as q = q0σ0 + iq1σ1 + iq2σ2 +
iq3σ3, where σ0 is the 2 × 2 identity matrix and σ1, σ2, and
σ3 are the Pauli matrices. The coefficients q0, q1, q2, and q3

are complex in general. In the case that they are real, the
quaternion is said to be real. It is important to realize that if a
quaternion is real that does not mean that the elements of the
corresponding 2 × 2 matrix are real. By suitably partitioning
a 2N × 2N matrix into 2 × 2 blocks, one can view it as an
N × N matrix of quaternions. Such a matrix is said to be
quaternion real if it is composed of real quaternions. Some
additional useful results regarding quaternions are compiled
and proved in Appendix B.

In particular, the matrix Z is an N × N quaternion matrix
with every diagonal term equal to iσ2 and every off-diagonal
term equal to zero. Thus,

Z =

⎛
⎜⎝

e2

. . .
e2

⎞
⎟⎠ , where e2 = iσ2 =

(
0 1

−1 0

)
. (1)

A basis in which the matrix L is the identity is hereafter
called a canonical basis in the even case. In such a basis
the operation of time reversal consists of just conjugation.
Similarly, in the odd case a basis in which L is Z is called
a canonical basis. In such a basis, time reversal consists of
conjugation followed by multiplication by Z.

From the transformation law L′ = V LV −1∗, we see that
in the even case if V V −1∗ = 1 and if the initial basis is
canonical, the final basis will also be canonical. Equivalently,
we may write the condition as V = V ∗. In other words, for the
even case, canonical bases are linked by real transformation
matrices. Similarly, in the odd case we see that if V ZV −1∗ = Z

then if the initial basis is canonical so too is the final basis.
Equivalently, we may write the condition as V Z = ZV ∗. The
latter condition implies that the matrix V is quaternion real (see
Appendix B). In other words, for the odd case, canonical bases
are linked by transformation matrices that are quaternion real,
an elegant generalization of the corresponding even result.

B. Parity

The second symmetry operation that plays a fundamental
role in PT quantum mechanics is parity. We make the
following assumptions about parity: (i) Parity is a linear
operator and hence it may be represented by a matrix we
denote S; thus, Pψ = Sψ . (ii) Parity applied twice is the
identity operator and hence S2 = 1. (iii) We assume that parity
commutes with time reversal: PT = T P . In a basis where
time reversal has a canonical form this implies that S = S∗ in
the even case and SZ = ZS∗ in the odd case. In other words, in
a canonical basis S is real in the even case and S is quaternion
real in the odd case.

It follows from assumption (ii) that the eigenvalues of S

are all ±1. For the odd case, in addition, the eigenvalues of
S come in degenerate pairs since S is quaternion real and its
eigenvalues are all real (see discussion of Kramer’s theorem
in Appendix B).

For the even case, since S is real in a canonical basis and
since its eigenvalues are real, being equal to ±1, it follows that
the eigenvectors of S can be chosen real and the eigenmatrix
of vectors that diagonalize S can also be chosen real. Thus,
we can always find a basis in which parity is diagonal and
time reversal is canonical in the even case. Similarly for the
odd case, since S is quaternion real in a canonical basis it
follows that the eigenmatrix that diagonalizes S can be chosen
quaternion real (see Appendix B). Thus, we can always find a
basis in which parity is diagonal and time reversal is canonical
in the odd case also.

Although it is not essential to do so, for illustrative purposes
we sometimes assume in the following that the number of
states with positive parity equals the number with negative
parity. Then in a basis where time reversal has a canonical
form and parity is diagonal, the matrix S has the form

S =
(
I 0

0 −I

)
, (2)

where I denotes the (N/2)-dimensional identity matrix in the
even case and the N -dimensional identity matrix in the odd
case.

C. PT inner product

Conventionally in quantum mechanics we assume that
the inner product of two states is given by (φ,ψ) = φ†ψ =∑N

n=1 φ∗(n)ψ(n). Implicit in this formula is the assumption
that we are working in an orthonormal basis. However,
in PT quantum mechanics we do not assume that the
conventional inner product applies or that we are working in
an orthonormal basis. Instead a different inner product is used,
one that is determined by the Hamiltonian. This “dynamically
determined” inner product is formulated below. As a prelude,
however, it is useful to first introduce the PT inner product.
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The purpose of this subsection is to generalize the definition
of the PT inner product used in the even case [4] to the case
of odd time-reversal symmetry.

For the even case the PT inner product is defined by

(φ,ψ)PT = (PT φ)T ψ = φ†Sψ. (3)

The definition given here assumes we are in a basis where time
reversal has the canonical form and parity is diagonal. For the
odd case we define the PT inner product as

(φ,ψ)PT = (PT φ)T Zψ = φ†Sψ ; (4)

note the crucial insertion of Z. Again we assume that we are in
a basis where time reversal has the canonical form and parity
is diagonal.1

It is clear from Eqs. (3) and (4) that the norm of any
state (φ,φ)PT is real but of indefinite sign. Thus, the PT
inner product is not a viable inner product to use in quantum
mechanics. In the odd case we also see that the states φ and
ψ = PT φ are orthogonal to each other and have the same
norm; in other words, (φ,ψ)PT = 0 and (φ,φ)PT = (ψ,ψ)PT .

For later reference it is useful to define the adjoint of an
operator under the PT inner product. Let us denote the adjoint
of A under the PT inner product as AD . AD is then defined by
the condition that (ADφ,ψ)PT = (φ,Aψ)PT . This condition
should be met for all pairs of states φ and ψ . One can show
explicitly that

AD = SA†S (5)

by making use of the formula (φ,ψ)PT = φ†Sψ [cf. Eqs. (3)
and (4)]. In the case that A commutes with PT , with a little
work the following alternative expressions for the PT adjoint
may be derived:

AD = AT (even),
(6)

= ZT AT Z (odd).

D. Hamiltonian conditions

The principal new feature of PT quantum mechanics is
that it is now acceptable for the Hamiltonian H to be non-
Hermitian. We no longer impose the condition of hermiticity,
H = H †. Instead, in PT quantum mechanics the Hamiltonian
is required to meet the following three criteria:

(i) It is invariant under PT , [H,PT ] = 0.
(ii) PT symmetry is unbroken.

(iii) H is self-adjoint under the PT inner product.
These conditions were originally formulated for the case
of even time reversal [4] and need generalization to the
case of odd time reversal. We discuss that generalization in
this section. Most notably, we find that the modification of
condition (ii) leads to a PT analog of the phenomenon of
Kramer’s degeneracy in textbook quantum mechanics.

Motivated by PT quantum mechanics, Bender, Berry, and
Mandilara [5] studied Hamiltonians that commute with an

1More generally the definitions of Eqs. (3) and (4) apply in a basis
in which time reversal has a canonical form and the parity matrix is
Hermitian, S = S†.

arbitrary antiunitary symmetryA that satisfiesA2k = 1, where
k is an odd integer. They found that such a Hamiltonian has
eigenvalues that come in conjugate pairs and that in a suitable
basis such a Hamiltonian would be real. We have generalized
their findings to the case of an odd antiunitary symmetry A
that satisfies A2k = −1, where k is an odd integer. For this
case, too, we find that the eigenvalues come in conjugate pairs
and that in a suitable basis the Hamiltonian is quaternion real.
This result is a straightforward extension of our analysis of
condition (i) and is therefore presented in Appendix C. We
now turn to a detailed discussion of each of the conditions.

(i) Invariance under PT . The first condition imposed on
the Hamiltonian is that it must be invariant under PT (i.e., it
must commute with PT ). It is easy to verify that invariance
underPT implies that the eigenvalues of H come in conjugate
pairs for if φ is an eigenvector with eigenvalue λ then PT φ is
an eigenvector with eigenvalue λ∗. Evidently, this is true for
both even and odd time reversal. Suppose that time reversal
is even and that we are working in a canonical basis where
time reversal consists of conjugation and parity has the form
of Eq. (2). Invariance under PT then forces the Hamiltonian
to have the following block structure:

H =
(

A iB

iC D

)
, (7)

where A, B, C, and D are real matrices. Now suppose that
time reversal is odd. In that case, invariance under PT forces
the Hamiltonian to have the same block structure but with A,
B, C, and D now quaternion real matrices.

(ii) Unbroken PT symmetry. For the case of even time
reversal that has been discussed in the literature, a key role is
played by states that are invariant under PT in the formulation
of the condition of unbroken PT symmetry. An immediate
problem in generalizing this condition to the odd case is that
one can prove rigorously that there are no states that are
invariant under PT . Before we surmount this obstacle, let
us first review the condition of unbroken PT symmetry for
the even case.

In the even case, PT is said to be unbroken if we can find a
complete set of eigenvectors of H , ψi , that are invariant under
PT ; that is, each eigenvector satisfiesPT ψi = ψi . In practice,
the task of verifying that H is invariant under PT is generally
straightforward, whereas proving that PT is unbroken for a
given H can pose formidable difficulties.

The condition of unbroken PT ensures that the eigenvalues
of H are real in the even case:

Proof. Invariance under PT implies that if ψ is an
eigenvector with eigenvalue λ, then PT ψ is an eigenvector
with eigenvalue λ∗. If PT is unbroken, ψ = PT ψ , implying
λ = λ∗; that is, the eigenvalues are real. Conversely, if the
eigenvalues of H are real, one can show that PT is unbroken.

Suppose, for illustration, that we are working in a canonical
basis where time reversal consists of conjugation and parity
has the form given in Eq. (2). Then it is easy to see that a state
that is invariant under PT has the form

ψ =
(

ξ

iη

)
, (8)
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where ξ and η are real column vectors with N/2 components
each.

Now let us generalize to the odd case. It is impossible to
find a state that is invariant under PT in the case of odd time
reversal. This is most readily seen by working in a basis where
time reversal has the canonical form and parity is diagonal. It
is then easy to verify that imposing the condition φ = PT φ

implies φ = 0. However, one can assemble the two column
vectors φ and −PT φ into a PT doublet,⎛

⎜⎝
| |
φ −PT φ

| |

⎞
⎟⎠ . (9)

The doublet is a 2N × 2 matrix that can equivalently be
viewed as a single N -component column of quaternions. It
is easy to see that the PT doublet has the form shown in
Eq. (8) where ξ and η now both represent real columns of
real quaternions (see the parallel discussion of the Kramer’s
doublet in Appendix B). Under the application of PT , the PT
doublet gets postmultiplied by a single Pauli matrix iσy .

We are now ready to formulate the condition of unbroken
PT in the odd case. We say that PT is unbroken for a
Hamiltonian H if for every eigenvector φ we find that the
pair of states φ and PT φ are degenerate eigenvectors of H .

Clearly this condition ensures that the eigenvalues must
be real. We have already demonstrated that the eigenvalues
of φ and PT φ are a conjugate pair λ and λ∗. If the states
are degenerate, then λ = λ∗; that is, the eigenvalues are real.
Conversely, if the eigenvalues are real then clearly φ and PT φ

are degenerate and therefore PT is unbroken.
In odd PT quantum mechanics the condition of unbroken

PT not only ensures that the eigenvalues of H are real, it also
ensures they come in degenerate pairs. This is analogous to
Kramer’s theorem for a Hamiltonian invariant under odd time
reversal in conventional quantum mechanics.

(iii)PT self-adjoincy. The motivation for this third criterion
is that we want the eigenvectors of all observables to be
orthogonal to each other under the dynamical CPT inner
product. As a stepping stone toward this goal, we require that
the Hamiltonian be self-adjoint under the PT inner product.
In other words, we impose H = HD . Making use of Eq. (6),
we may express this condition as

H = HT (even),
(10)

= ZT HT Z (odd).

As explained below, this requirement ensures that the eigen-
vectors of H are appropriately orthogonal to each other under
the PT inner product.

Suppose for illustration that we are working in a basis where
time reversal has the canonical form and parity is given by
Eq. (2). Then if the Hamiltonian is invariant under PT and
also PT self-adjoint, it has the following block structure:

H =
(

A iB

iB† D

)
. (11)

Here B is a real matrix and A and D are real and symmetric
in the case that time reversal is even. For odd time reversal, A,
B, and D are all quaternion real and A and D are Hermitian

in addition. It is instructive to compare Eq. (11) to Eq. (7),
which corresponds to a Hamiltonian invariant under PT but
not necessarily PT self-adjoint.

Now we address the orthogonality theorem. Let us suppose
that H satisfies all three conditions ofPT quantum mechanics.
Let ψi denote an eigenstate of H with eigenvalue λi . It follows
that

(ψi,Hψj )PT = (Hψi,ψj )PT

⇒ (ψi,λjψj )PT = (λiψi,ψj )PT (12)

⇒ (λj − λi)(ψi,ψj )PT = 0.

In other words, eigenstates of H with distinct eigenvalues
must be orthogonal under the PT inner product, provided
H satisfies the three conditions. Note that we used PT
self-adjoincy in the first line of Eq. (12) and the reality of
the eigenvalues, which follows from the conditions of PT
invariance and unbroken PT , in going from the second line to
the third.

To summarize this section, invariance under PT ensures
that the eigenvalues of H come in conjugate pairs; unbroken
PT ensures that the eigenvalues are real (and twofold degener-
ate in the odd case); and self-adjoincy of H under thePT inner
product ensures that the eigenvectors of H are orthonormal
under the PT inner product as well as under the dynamically
generated and physically relevant CPT inner product to be
discussed below. In this manner the three conditions of PT
quantum mechanics endow the Hamiltonian H with all the
desirable qualities normally obtained by imposing hermiticity.

E. CPT inner product

Having specified the kinds of Hamiltonians that are per-
missible in PT quantum mechanics, we now return to the
formulation of the appropriate inner product. It is instructive
to first recall the formulation for the even case [4]. In this case,
eigenvectors of H fall into two classes under the PT inner
product: namely, those for which (ψi,ψi)PT is positive and
those for which (ψi,ψi)PT is negative.2 We now introduce a
linear operator denoted C which has the property Cψi = siψi ,
where ψi are eigenvectors of H and si is the sign of the PT
norm of the eigenvector, (ψi,ψi)PT . We have defined C by its
action on the eigenvectors of H but since it is a linear operator
it must be represented by some matrix in the standard basis; we
denote this matrix K (i.e., Cψ = Kψ). Evidently the operator
C commutes with the combination PT (although it may not
commute with either P or T separately). Thus, KS = SK∗.
Furthermore, C2 = 1. It is evident from the definition given
here that the Hamiltonian plays a crucial role in determining
the operator C.

The CPT inner product is now defined as (φ,ψ)CPT ≡
(CPT φ)T ψ = φ†KT Sψ . This is the inner product used in
PT quantum mechanics in lieu of the standard inner product.
Evidently all states have a positive norm with this inner
product; this is most easily seen by expanding in the eigenbasis

2The case (ψi,ψi)PT = 0 is a catastrophe. In the absence of
degeneracies, it then becomes impossible to formulate PT quantum
mechanics for the Hamiltonian under consideration.
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of the Hamiltonian. Furthermore, the CPT norm of any
state is preserved under time evolution via Schrödinger’s
equation i∂ψ/∂t = Hψ . Thus, it is possible to consistently
formulate quantum mechanics using the CPT inner product,
notwithstanding the non-Hermitian Hamiltonian.

We now turn to the generalization to the odd case. PT
doublets (φ, − PT φ) fall into two classes under the PT inner
product: those for which (φi,φi)PT is positive and those for
which it is negative. As in the even case, we introduce a
linear operator C with a corresponding matrix K which has
the defining property that Cψi = siψi , where ψi denotes an
eigenvector of H and si is the sign of the PT norm of that
eigenvector, (ψi,ψi)PT . C commutes with PT corresponding
to the statement KSZ = SZK∗. As in the even case, C2 = 1.

The CPT inner product is defined for the odd case as
(φ,ψ)CPT ≡ (CPT φ)T Zψ = φ†KT Sψ . As in the even case,
all states have a positive norm with this inner product;
moreover, the norm of any state is preserved under Schrödinger
time evolution. Thus, it is possible to consistently formulate
quantum mechanics using the CPT inner product as defined
here for the case of systems that are odd under time reversal.

F. Observables

Finally, in PT quantum mechanics it is no longer required
that observables be Hermitian. Rather we define the CPT
adjoint A� of an operator A by imposing the condition that
(φ,Aψ)CPT = (A�φ,ψ)CPT for all states φ and ψ . Observ-
ables are then required to be CPT self-adjoint, A = A�. This
is sufficient to ensure that the eigenvalues of A are real and that
the usual principles of quantum measurement and uncertainty
relations [8] may be applied even though the observables are
no longer Hermitian in the usual sense.

This concludes our formulation of PT quantum mechanics
for the case of odd time reversal. Although for simplicity
we have only discussed finite-dimensional Hilbert spaces, the
extension to the infinite-dimensional case is straightforward.

III. TWO-LEVEL EXAMPLES

We now consider the simplest nontrivial examples of PT
quantum mechanics corresponding to N = 2 for the even case
and 2N = 4 for the odd case; the two-level model for the
even case has been discussed before in Ref. [5]. We note that
in conventional quantum mechanics a variety of complicated
quantum-mechanical problems can be truncated to a two-level
model [9]. Thus, the two- and four-level models presented here
should be regarded not merely as toy models but as effective
Hamiltonians that can be used to investigate the quantum
dynamics of PT quantum systems.

For the even case the most general Hamiltonian matrix that
meets all the conditions of PT quantum mechanics is

H =
(

a ib

ib −a

)
. (13)

Here a and b are real numbers and we have imposed the
additional condition that H is traceless for simplicity. Note
that for b �= 0 this matrix is explicitly non-Hermitian. It is
instructive to compare Eq. (13) to the most general two-level
Hermitian Hamiltonian that is invariant under even time

reversal. That Hamiltonian is obtained from Eq. (13) by
replacing the pure imaginary off-diagonal terms with pure real
ones (i.e., ib → b). The eigenvalues of H are ±√

a2 − b2.
Thus, PT is unbroken only for a2 > b2. So long as this
condition is satisfied, the Hamiltonian H may be parametrized
as a = ρ cosh(χ ) and b = ρ sinh χ , where ρ > 0 and −∞ <

χ < ∞. This parametrization applies for a > 0, which we
assume hereafter. The case a < 0 can be parametrized and
analyzed in exactly the same way. The eigenmatrix is

U =
(

q cosh χ/2 q sinh χ/2

iqp sinh χ/2 iqp cosh χ/2

)
, (14)

where for the moment we set q = p = 1. Here the first column
corresponds to the eigenvector with positive eigenvalue ρ

and the second to the negative eigenvalue −ρ; note that the
eigenvectors have the PT invariant form in Eq. (8). It is easy
to verify that the positive eigenvector also has positive PT
norm; the negative has negative norm. Thus, the operator C
is simply the normalized Hamiltonian (i.e., H divided by the
magnitude of the eigenvalues

√
a2 − b2). Finally, the most

general operator A that corresponds to an observable by virtue
of being CPT self-adjoint is

A =
(

A0 + A3 − iA1 tanh χ A1 − iA2 + iA3 tanh χ

A1 + iA2 + iA3 tanh χ A0 − A3 + iA1 tanh χ

)
.

(15)

Note that, in the limit χ → 0, the most general observable is
simply a Hermitian matrix; in the same limit, the Hamiltonian
H becomes Hermitian as well.

Finally, let us consider the simplest nontrivial example of
PT quantum mechanics for the case of odd time-reversal sym-
metry with 2N = 4. The most general traceless Hamiltonian
matrix that meets the criteria of being invariant and self-adjoint
under PT is given by

H =
(

a ib

ib† −a

)
, (16)

where b = b0σ0 + ib1σ1 + ib2σ2 + ib3σ3 is a real quaternion,
and a = a0σ0 is a real quaternion proportional to the identity.
It is instructive to compare this Hamiltonian to the most
general four-level Hermitian Hamiltonian that is invariant
under odd time reversal; the latter is obtained by replacing
the pure imaginary off-diagonal quaternions with pure real
quaternions, ib,ib† → b,b†. It is also instructive to compare
Eq. (16) to its counterpart in the even case, Eq. (13),
obtained by replacing the real quaternions a and b with real
numbers. The eigenvalues of the PT invariant Hamiltonian
are ±√

a2 − b2, where a2 = a2
0 and b2 = b2

0 + b2
1 + b2

2 + b2
3

denote the magnitudes of the quaternions a and b. Note that
the eigenvalues are twofold degenerate in accordance with the
general analysis above. PT is unbroken only for a2 > b2. So
long as this condition is met (and a0 > 0; the case a0 < 0 can
be analyzed similarly), we can parametrize the PT Hamilto-
nian by writing a0 = cosh χ and adopting polar coordinates
(sinh χ,ϕ,θ,φ) in the four-dimensional space of the compo-
nents of b so that b0 = sinh χ cos ϕ, b3 = sinh χ sin ϕ cos θ ,
b1 = sinh χ sin ϕ sin θ cos φ, and b2 = sinh χ sin ϕ sin θ sin φ.
In terms of this parametrization, the eigenmatrix has the form
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(14) where q is the real quaternion corresponding to a rotation
about the nx = sin φ, ny = − cos φ,nz = 0 axis by an angle of
θ ; and p = exp(−iϕσz), a rotation about the z axis by an angle
2ϕ. The first two columns correspond to the positive-energy
PT doublet; the second two correspond to the negative-energy
doublet. It is easy to verify that the positive doublet also has
positive PT norm; the negative has negative norm. Thus, the
operator C coincides with the normalized Hamiltonian (i.e.,
H divided by

√
a2 − b2). Finally, the most general operator

B that corresponds to an observable by virtue of being CPT
self-adjoint is

B =
(

q 0

0 qp

)
A

(
q† 0

0 p†q†

)
, (17)

where A is given by Eq. (15) with A0, A1, A2, and A3 now
interpreted as arbitrary 2 × 2 Hermitian matrices.

IV. CONCLUSION

In summary, we have generalized the construction of PT
quantum mechanics to the case that time-reversal symmetry
is odd. We hope this generalization will further stimulate the
search for natural phenomena that are described by PT quan-
tum mechanics. The most important model in fundamental
physics that is odd under time reversal is the Dirac equation.
It is natural to ask whether the formulation of PT quantum
mechanics presented here may lead to a different form of
Dirac equation. The results of that investigation are reported
elsewhere [10].
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APPENDIX A: CONSTRUCTION OF CANONICAL BASIS

Let us start in a basis wherein time reversal has the form
T ψ = Lψ∗, where L is a linear operator. Under a change of
basis ψ ′ = V ψ , the matrix L transforms to L′ = V LV −1∗.
The purpose of this Appendix is to show that we can always
find a basis in which the matrix L has a canonical form, namely
L = 1 for even time reversal and L = Z for odd time reversal.
We focus on the case of odd time reversal here. The analysis
for the even case is a straightforward extension and is omitted
for the sake of brevity. For the odd case, T 2 = −1, implying
LL∗ = −1.

We start by observing that the eigenvectors of L come in
pairs: if ψ is an eigenvector of L with eigenvalue λ, then ψ∗
is an eigenvector with eigenvalue −1/λ∗. This follows from
conjugating the relation Lψ = λψ and noting that for odd
time reversal L∗ = −L−1. It follows that the eigenmatrix of L

has the form

U =

⎛
⎜⎝

| | | |
ψ1 ψ∗

1 · · · ψN ψ∗
N

| | | |

⎞
⎟⎠ . (A1)

Since the eigenvectors of L come in pairs, the Hilbert space
it inhabits must necessarily have even dimensionality, which

we take to be 2N here. For later convenience, we write the
eigenvalues of L as λ1 = eα1eiφ1 , . . . ,λN = eαN eiφN . We now
define the matrix

D = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −i 0 0

1 i 0 0

· · ·
0 0 1 −i

0 0 1 i

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)

It is easy to see that R−1 = UD is then a real matrix. Under
a change of basis via R, L therefore transforms to L′ =
RLR−1∗ = D−1U−1LUD. Explicitly, L′ is a block-diagonal
matrix

L′ =
⎛
⎝ �1

· · ·
�N

⎞
⎠ , (A3)

where the ith block �i is given by

�i = eiφi

(
sinh αi −i cosh αi

i cosh αi sinh αi

)
. (A4)

We now construct the block-diagonal matrix

M =

⎛
⎜⎝

µ1

· · ·
µN

⎞
⎟⎠ , (A5)

where the ith block µi is given by

µi = exp

(
i
π

4

)
exp

(
i
φi

2

)(
cosh 1

2αi i sinh 1
2αi

−i sinh 1
2αi cosh 1

2αi

)
.

(A6)
Straightforward matrix multiplication reveals that under the
transformation M the matrix L′ transforms as ML′M−1∗ = Z.
This establishes the desired result.

APPENDIX B: QUATERNIONS AND
KRAMER’S THEOREM

It is helpful to first prove the following proposition: If an
N × N quaternion matrix A satisfies

AZ = ZA∗ (B1)

then A is quaternion real (i.e., composed of real quaternions).
Conversely, if A is quaternion real, it satisfies the condition
Eq. (B1). Evidently, it follows that if A is quaternion real then
so is A−1. (Proof: Rewrite Eq. (B1) as A−1Z = ZA−1∗.)

The proof of this proposition is as follows. Equation (B1)
implies that each quaternion matrix element of A satisfies

ae2 = e2a
∗, (B2)

where a denotes any quaternion element of A. By using the
explicit formula for e2 = iσy , it is not difficult to show that
Eq. (B2) restricts a to be of the form

a =
(

q0 + iq2 iq1 + q2

iq1 − q2 q0 − iq3

)
= q0 + iq · σ . (B3)
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In other words, a is a real quaternion and hence A is quaternion
real. In Eq. (B3), q0, q1, q2, and q3 are real numbers.

Next let us consider the invariance of states under time
reversal. Working in a canonical basis, for even time reversal
evidently ψ = T ψ if the vector ψ is real. For the odd case, on
the other hand, it is impossible to find a nontrivial state that is
invariant under time reversal, ψ = T ψ . This is evident from
consideration of a 2N -component column vector of complex
numbers, ψ , and its time-reversed counterpart T ψ :

ψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

a(1)

b(1)

· · ·
a(N )

b(N )

⎤
⎥⎥⎥⎥⎥⎥⎦

, T ψ = Zψ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

b(1)∗

−a(1)∗

· · ·
b(N )∗

−a(N )∗

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B4)

Using the explicit form in Eq. (B4), one can show indeed that
ψ and T ψ are linearly independent.

It is instructive to assemble ψ and −T ψ into a pair
of columns called a “Kramer doublet.” We may regard the
doublet as a 2N × 2 complex matrix or as a single column
of N quaternions. Writing the complex components in terms
of their real and imaginary parts as a(1) = q0(1) + iq3(1),
b(1) = −q2(1) + iq1(1), and so on reveals that a Kramer
doublet is composed of real quaternions:

⎡
⎢⎣

| |
ψ −T ψ

| |

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

a(1) −b(1)∗

b(1) a(1)∗

· · · · · ·
a(N ) −b(N )∗

b(N ) a(N )∗

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

q0(1) + iq3(1) q2(1) + iq1(1)

−q2(1) + iq1(1) q0(1) − iq3(1)

· · · · · ·
q0(N ) + iq3(N ) q2(N ) + iq1(N )

−q2(N ) + iq1(N ) q0(N ) − iq3(N )

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(B5)

We now turn to Kramer’s theorem, the main proposition of
this section. Suppose that A is an N × N quaternion matrix
that is quaternion real. Furthermore, let us suppose that the
eigenvalues of A are known to be real. Then (i) the eigenvalues
of A come in degenerate pairs (Kramer’s degeneracy) and
(ii) the eigenmatrix that diagonalizes A (in the sense that
U−1AU is diagonal with the eigenvalues of A along the
diagonal) can be chosen to be quaternion real.

Eigenvalues of A. Let ψ be an eigenvector of A with the
real eigenvalue λ. Then

Aψ = λψ

⇒ ZA∗ψ∗ = λZψ∗ (B6)

⇒ A(Zψ∗) = λ(Zψ∗).

The second line follows from complex conjugating the first
and premultiplying by Z; the second by using quaternion
reality, ZA∗ = AZ. In other words, ψ and Zψ∗ = T ψ are

both eigenvectors of A with the same eigenvalue λ. This proves
proposition (i).

Eigenmatrix of A. The eigenmatrix of any matrix is
constructed by assembling its eigenvectors into columns. By
the analysis above, if ψ is an eigenvector of A the −Zψ∗
is another independent eigenvector with the same eigenvalue.
Thus, the eigenmatrix of A has the form

U =

⎛
⎜⎝

| | | |
ψ1 −Zψ∗

1 · · · ψN −Zψ∗
N

| | | |

⎞
⎟⎠ . (B7)

Thus, U is a stack of N Kramer doublets. Regarded as an N ×
N quaternion matrix, U is therefore quaternion real. Moreover
if U is quaternion real, then so is U−1 as discussed above. This
proves proposition (ii) above.

Parenthetically, we note that the textbook Kramer theorem
[6,7] applies to a Hermitian Hamiltonian H that commutes
with an odd time-reversal operator T . In a canonical basis,
commutation with time reversal, HT = T H , implies H is
quaternion real, HZ = ZH ∗. The hermiticity of H ensures
its eigenvalues are real. Thus, H meets the conditions of the
theorem formulated here.

APPENDIX C: GENERALIZATION OF BENDER, BERRY,
AND MANDILARA THEOREM

According to Bender, Berry, and Mandilara [5], if A is
an antilinear operator that commutes with H and satisfies
A2k = 1 (where k is a positive odd integer) then (i) the
eigenvalues of H come in conjugate pairs and (ii) in some
basis the Hamiltonian matrix H is real. We first give a proof
of this theorem that is conducive to the odd generalization of
the theorem that we seek.

That the eigenvalues of H come in conjugate pairs follows
simply from the fact that H andA commute andA is antilinear.
The argument is as follows. Let ψ be an eigenvector of H

with eigenvalue λ, Hψ = λψ . Then H (Aψ) = A(Hψ) =
A(λψ) = λ∗ψ . In other words, if ψ is an eigenvector with
eigenvalue λ then Aψ is an eigenvector with eigenvalue λ∗;
the eigenvalues come in conjugate pairs. Note that no use was
made in this argument of the fact that A2k = 1.

Next let us show that H is real in a suitable basis. First let
us prove this in the case that k = 1 so that A satisfies A2 = 1.
Then by the analysis of Appendix A we can always find a basis
in which A consists of conjugation, Aψ = ψ∗. In this basis,
HA = AH implies H = H ∗. In other words, H is real in this
basis.

Now let us consider the case that k = 3 so that A satisfies
A6 = 1. In this case our strategy is to show that there is
an antilinear operator B that commutes with H and satisfies
B2 = 1. This reduces the problem to the case already proved,
namely k = 1. To implement this strategy all we need to do is
construct an antilinear operator B with the desired properties.
To this end, suppose that A has the form Aψ = αψ∗. We
define Bψ = βψ∗, where β = αα∗α is a linear operator. It
is easy to verify that A6 = 1 implies that αα∗αα∗αα∗ = 1.
Comparing the definition of β, this implies ββ∗ = 1 and hence
B2 = 1. That H commutes with A implies that Hα = αH ∗.
By repeated use of this relation and its complex conjugate, we
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can show that αα∗αH ∗ = Hαα∗α, implying that H commutes
with B. Thus, we have indeed succeeded in constructing an
antilinear operatorB with the desired properties. The extension
of this proof to higher k should be evident at this point.

We now turn to the odd generalization of the theorem
of Bender, Berry, and Mandilara. We claim that if A is
an antilinear operator that commutes with H and satisfies
A2k = −1 (where k is a positive odd integer) then (i) the
eigenvalues of H come in conjugate pairs and (ii) in some
basis the Hamiltonian matrix is quaternion real. The proof
follows by close analogy to the even counterpart.

The proof that the eigenvalues come in conjugate pairs is
identical to the even case above. To show that H is quaternion

real in some basis, first let us consider the case that k = 1 so
that A2 = −1. Then by the analysis in Appendix A we can
always find a basis in which A has the canonical form Aψ =
Zψ∗. In this basis, HA = AH implies that HZ = ZH ∗. In
other words, H is quaternion real in this basis. Next consider
the case k = 3 so that A satisfies A6 = −1. In this case we
can construct another antilinear operator B that commutes
with H and satisfies B2 = −1 and thereby reduce the problem
to the case already proved, namely k = 1. The construction
of B and the proof that the constructed operator B has the
desired properties is identical to the even case above. Thus, we
have proved the proposition for the case k = 2 as well. The
extension to higher values of k may be carried out similarly.
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