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The Hartree—Fock self-consistent-field approximation has provided an invaluable conceptual
framework and a standard computational procedure for atomic and molecular quantum theory. Its
shortcomings are significant however, and require remediatidfieMdlesset perturbation theory
offers a popular correction strategy: it formally expands eigenfunctions and eigenvalues as power
series in a coupling parameterthat switches the Hamiltonian continuously between the Hartree—
Fock form (\ =0) and the electron-correlating “physical” Hamiltoniak € 1). Recent high-order
Mdller—Plesset numerical expansions indicate that the series can either converge or diverge at
=1 depending on the chemical system under study. The present paper suggests at least for atoms
that series convergence is controlled by the position of a singularity on the negatiweavaalthat

arises from a collective all-electron dissociation phenomenon. Nonlinear variational calculations for
the two-electron-atom ground state illustrate this proposition, and show that series convergence
depends strongly on oxidation staieast favorable for anions, better for neutrals, better yet for
cationg. © 2000 American Institute of Physids$0021-960800)30222-7

|. BACKGROUND interest lies at\ =1, these case&) and (b), respectively,
correspond ta series with radii of convergence greater than,

On account of its conceptual simplicity, computational and less than, unity. Specifically, patteh) is characteristic
convenience, and adequate accuracy, the Hartree—Fock sedif an energy singularity closest to the origin that lies on the
consistent-field approximation has exerted a dominating innegative reak axis at less than unit distance from the origin.
fluence on the evolution of atomic and molecular electronicThe purpose of the present study is to argue that this singu-
structure studies. Indeed its single-particle terminol@gy., larity stems from a multielectron autoionization phenom-
orbitals, bands, sigma and pi electrons, Fermi surfaces, holesnon.
etc) has permanently entered the general scientific vocabu- Beside presenting the general formalism required for this
lary. Not surprisingly, the Hartree—Fock approximation oftenanalysis, Sec. Il also offers an intuitive description of how
serves as the starting point for more ambitious computationghe eigenvalue problem is expected to evolve along thexreal
procedures that attempt to come to grips with electron coraxis. Section Il bolsters this view with results from a set of
relation phenomena by appending systematic corrections teonlinear variational calculations fo¥S ground states of
that starting point. One of these procedures was initiated bjwo-electron atoms; in particular these results show a two-
Mdller and Plesset in 1934and forms the subject of this electron autoionization whose position on the negatieis
paper. depends strongly on nuclear chatgeThe final Sec. IV dis-

As explained in the following Sec. Il, the Mer—Plesset cusses the potentially most useful next-stage calculations de-
formalism casts the electronic structure problem into the forsigned to elucidate NMter—Plesset convergence issues, and
mat of Rayleigh—Schidinger perturbation theo’yThe self-  how they might be used to increase the productivity of com-
consistent-field Hartree—Fock Hamiltonian serves as the urputational quantum chemistry.
perturbed problem, and the electronic wave function and
energy are then developed in power series in a perturbatiof) FORMALISM
parametein whose increase from 0 to 1 continuously trans-
forms and connects the independent-particle description to N the interest of maximum clarity, the following will
the fully correlated electronic structure problem. concentrate on the case ofi 2lectrons with equal numbers

Modern advances in computing power have enabled nuof up and down spins, i.e., a spin singlet state. The corre-
merical studies to carry out Kler—Plesset expansions to sponding self-consistent-field Hamiltonian, to be denoted by
high order, at least for some atomic and molecular systemkl(0), consists strictly of a sum ofr2identical operators for
of modest size. Although basis set adequacy always remairt§e 2n electrons:

a significant concern, one can safely assume that behavior 2n N

patterns exhibited by published Mier—Plesset series for en- H(0)=2, | —(12V?= > Z/|rj—Ry +V}S°ﬁ}.

ergy eigenvalues are at least qualitatively correct. These pat- =1 k=1

terns appear to fall into two categorigs) convergentex- (2.9)
amples are BH, Ck and(b) divergent with even—odd sign Herek indexes theN nuclei, with chargeZ, and positions
alternation in the high-order series coefficiefdbserved for Ry. ViSCf is the self-consistent-field operator for electrion
Ne, HF, H0).2 In view of the fact that the physical state of including both Coulomb and exchange portions. The “physi-

0021-9606/2000/112(22)/9711/5/$17.00 9711 © 2000 American Institute of Physics



9712 J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 Frank H. Stillinger

cal” Hamiltonian,H(1), replaces the sum of self-consistent- While the second is an integral operator with the property
field operators with the pairwise sum of ath2—n electron—

n
electron Qqulomb repulsions. _More g(_anerally, tegh) be \/Jﬁe).f(rj):Z @k(rj)J dsgpk(s)f(s)/“j_sl. (2.11)
the Hermitian operator that linearly interpolates between k=1
these two cases: The effect of the self-consistent-field essentially is to
2n N provide a static negative charge cloud that is spatially dis-
HOO) =, —(1/2)ij— > Z,J|rj— Ry tributed according to the extension of the orbitals comprised
=1 k=1 in ¢ (A=0). The exchange operators reduce the magnitude
2n of the corresponding repulsion somewhat, but only to a par-
+(1—)\)v1€50f>+)\21 Urj—ril|. (2.2) tial extent. Ask increases from 0 to 1iHl(\), Eq.(2.2), this
J

diffuse repulsion continuously switches off while being re-
For each electronic state of interest, twwependent Placed by eXp|iCit e|ectl’0n-pair I’epulsions. Forma”y extend-

energy functions need to be distinguished. The first is théd A to even larger positive values greater than 1 causes the
corresponding eigenvalue &f(\), to be denoted bg(r),  Self-consistent field to convert to a diffuse attraction sur-

associated with normalized wave functigil,...,2n,\): rounding the nuclei, while electron pairs become even more
repulsive. For very large positive we can expect the 12
HOD (L. 20,0) =E(M) §(1,...,20,0). (2.3 electrons to concentrate around configurations that represent
The secondW()), is the expectation value of the physical & compromise between these competing strong attractive and
HamiltonianH(1) in the state described hy(1,...,,\): repulsive interactions.

As A moves from the origin along the negative real axis,
W) =((1,...20, M) [H(D)[4(1,....20,N)). (2.4 interaction roles are reversed in comparison with Xhel
It is this latter quantity whose power series represents théegime. The self-consistent field becomes ever more repul-
Mdller—Plesset expansion: sive, overcoming the direct nuclear attractions, thereby di-
_ ) minishing the capacity of the electrons to remain bound in
W) =Wot WA +WoA - - - 29 the neighborhood of the nuclei. But now the explicit
In generalE(\) andW()\) are not equal. The obvious electron—electron pair interactions have become attractive.
exception occurs at the physical value of the coupling conAs a result the 2 electrons in isolation from nuclei have the
stant, capacity to form their own bound state whose energy would

E(1)=W(1). (2.6 have the form X <0)

2

The Rayleigh—Ritz variational princiglerequires for the A M, (212
ground electronic stat@r indeed for the lowest-energy state whereA is a suitable positive constant. This last expression
of any given symmetrythat W(\) must pass through its (2.12 locates an autoionization threshold at which the 2
absolute minimum ax =1, an attribute not shared EB(\). electrons spontaneously leave the neighborhood of the nu-

It is traditional to express the wave functionat0 as a  clei, together as a bound composite particle, tunneling
2nx 2n Slater determinant whose elements are space—spifirough a repulsive barrier due to the magnified self-
orbitals. However, this is not necessary in view of the factconsistent field. The negative value at which this occurs
that HamiltoniarH()\) is spin independent for all. Instead, ~ can be identified by equating eigenvalié\) to quadratic
we can confine attention to any one spin—space componergxpression2.12. Just as an analogous autoionization thresh-
say that for electrons 1,n., with spins down andn old for theZ~! expansion of the two-electron-atom ground
+1,...,2n with spins up, and consider just the position-spacestate creates a wave function and energy singularity in that
dependence of/(A=0). Let @,(r)---@n(r) be an appropri- context>® so too can we expect the same i), E(\), and
ate orthonormal set of position-space orbitals. Then we caMV(\). Hence we propose that this collective autoionization
set phenomenon determines the/Mo—Plesset convergence ra-

dius.
Y(ry-ron, A=0)=D(ry---r))D(rpsq1-ropn), (2.7
whereD is annXn determinant

— -12
D(ry-ra)=(nt) "“det ei(r))] 2.8 In order to provide support for the qualitative ideas ex-
Self-consistency requires that the orbitajswhich com-  pressed at the end of Sec. Il, we now set up and carry out a
pose eigenfunctiony(A=0) both determine the operators simple nonlinear variational calculation. While it is desirable
VJ(SCf) and also minimizeW(0). Each of theV}s"f) resolves eventually to use a more sophisticated and precise calcula-
into Coulomb(c) and exchangée) portions, tion, the following example will suffice for present purposes.
Specifically we consider the general two-electron atom

lll. SIMPLE ILLUSTRATIVE EXAMPLE

(sch_ys(c) _ys(e)
Vi Vit Vi (2.9 (nuclear charge) in its singlet ground state, for which the
The first of these is just anrspace-function multiplier, spatial wave function is symmetric under electron inter-
n change. Our task is to estimai\) andW(\), and for this
Vj(c) =92 Z f dS(Pﬁ(S)/| ri—9d, (2.10 purpose we introduce _the following tw_o-paramete_r _correlated
k=1 variational wave functiorithe nucleus is at the origin
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b, (r1,12,N)=C(a,B)exd —a(r;+r3)—Bry]. (3.1

2.0 _
The normalizing constant has the value = z=2
® 1.5} o (1)
c 86!3((1+B)5 1/2 32 g
(aaﬁ)_ 772(8a2+5a,8+,82) ( ) g 1.0
T
Parametersy(\) and B(\) are to be determined by minimiz- 5 05
ing s
s or B (1)
(P HM)|g,)=EN) (3.3 o5
“V.o [C | 1 1 | | | | 1
at eachi. -20 -1.5 -1.0 -0.5 0 0.5 1.0 1.5
Negative real\ permits formation of a bound “dielec- A
tron.” In its free state this composite particle has wave func-rig, 1. coupling constarit) dependence of variational parameterand 3
tion (\<0) in trial wave functiony, , Eq. (3.1), for the helium atom ground staté& (
=2).
(IN218m) Y2 exp( — N |1 122) (3.9

and binding energy

(W |HD)|p,)=[(a+B)/(8a*+5aB+ 7]
—IN[?4. (3.9 X[8al+7a?B+4apB?+ B3+5a?

Accurate numerical solutions are available for the +h4aB+p2—4Za(da+B)].  (3.10
Hartree—Fock approximation to the two-electron ground o o ) .
state’ In principle they could be used to construct the single-BY substituting thex(\) and B(\) variational results into this
particle operators/(* and V{®. However, that would be ©€XPression one obtains the correspondfg).

“numerical overkill” given the modest objective of our el-
ementary variational strategy. Instead we exploit two simpli-V. NUMERICAL RESULTS
fying approximations. First we use the best effective-charge,

single-exponential 4 orbital for each nuclear charge® Figure 1 showsx(\) and B(\) computed for the neutral

helium atom,Z=2. The corresponding energy functions

zpo(r)z(aglw)l’zexp(—aor), E(\) and W(\) appear in Fig. 2, which also contains the
(3.6 free dielectron binding energy curve, E§.5. Numerically
ag=72Z—5/16. it appears possible to locate normalizable wave functions in

. L ) ) this approximation for
In this apprOX|mat|onVJ(°) is a simple closed-fornn-space

potential
V%= (2/r)[ 1—exp(— 2aor )] — 2a0 €XPl — 2T ). -
(3.7 o P
-~ Dielectron
The second simplifying assumption involves the following Binding Energy
modification of the exchange operator: r
V](e>.f(rj)=(p0(r]-)fdS(p(S)f(S)/|rj—S‘ 50
&
> L
1) [ dseo(s)eo(sylr - g
£
=(12VI®-1(r)). (3.9 20
Note that this is exact wheh= ¢y. Thus we assume L
(©) _\/(&)~ (c)
V7 =VT=(1/2)V] (3.9 a0l "o
for illustrative purposes; this is equivalent to the restricted
Hartree approximation. . : | |
Subject to these simplifications, the Appendix contains _2"0 _1‘,5 _1‘,0 _0‘.5 0 0.5 1.0 1.5
the matrix elements needed for tB€\) variational minimi- A

zation, each of which has a rational algebraic form. These

. . FIG. 2. Variationally determined energy curvegA) and W(\) for the
have been used to Obtatk’()\) and '8()\) numenca”y along helium atom ground state. The free dielectron binding energyf/4 for

the real\ axis. Note that theH(1) matrix element has @ \<o has been included to locate the dielectron ionization singularity, its
relatively simple form' intersection WithE(A).
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0.4

V. DISCUSSION

0.2 Although the variational calculations presented above
are admittedly crude and are restricted to two-electron
atomic ground states, it is reasonable to suppose that they
present qualitatively correct patterns. In particular they lead
to the proposition that the Mier—Plesset series faN(\),

Eqg. (2.4), has a radius of convergence determined by the
W) presence of a singularity on the negative nealis. Further-

more this singularity arises from a wave function—distorting

-0.2

-0.4

Binding Energy

el phenomenon whereby the electrons are expelled from the

08l region of the nucleus as a free dielectron complex. The varia-
tional calculations also indicate that for a fixed number of

1.0k E) electrons the singularity position_depen_ds strongly on nuclear
chargeZ: larger Z moves the singularity farther from the

1.2+ origin of the complex plane and improves the convergence
rate of the Mdler—Plesset energy power series.

1.4 Obviously it is desirable to strengthen the case by re-
peating the two-electron ground-state calculations in a more

-1.8 _1'_0 _0‘.5 6 0!5 1fo 155 2T0 2.5 precise manner. One area for improvement involvesxhe

A =0 Hartree—Fock orbitals, approximated crudely in the

- ) present study by a single exponential with effective nuclear
FIG. 3. Variationally determined energy curveég\) and W(\) for the h A It of thi imati is that th iati |
hydride anion ground stateZE& 1), along with the free dielectron binding charge. A result o IS approximation Is that the variationa

energy—\%/4 for \<0. calculations at\=0 do not quite replicate a product of
simple exponentials; insteg@(0) has a small negative value,
and «(0) slightly exceeds effective charge-5/16, for allZ
values investigated. These minor discrepancies would be
—2.10s\  (Z=2). (4.)  eliminated upon insertion of a correct Hartree—Fock solution
for H(0).
However, notice in Fig. 2 thaE(\) intersects the curve for A& t?}e same time it is also desirable to employ a more

the dielectron binding energy at the ionization thresholdgeyinie, and thus potentially more accurate, variational wave
critical value function. For the two-electron ground state considered above

it would be advantageous to work with linear combinations

Ae(2=2)=-133; (4.2 of Gaussian functions that are appropriately symmetrized:

if the variational wave function had been sufficiently flexible

to describe the dielectron ionization explicitly and realisti-  ¢,(ry,r;)=>, A exp—ars—bira—cr2,). (5.9
cally, no normalizable solution would have been found for !

A<\.. In view of the fact that the predicted magnitude The full set of parameter&A; ,a, ,b; ,c;} could in principle

|)‘C.(Z=2)| exceeds unity, t.he Mtgr—PIesset series for the o yreated as independent variakgsbject toy, normaliza-
helium atom ground state is predicted to be absolutely COMon), but for practical reasons might be linked into con-

vergent.l lculati h b ; 4 tracted subsets. In any case sufficient flexibility should re-
L_+Ana(()jg§Es4caBCli:+atlor_1rsh ave eler;] peLolrdmef GT]?’ main to describe the formation and ionization of the
(Li") andZ=4 (Be""). e critical thresholds for these o actron complex at negative

cases are the following: Using a Gaussian basis would remove another source of
imprecision in the present calculations, the replacer(@st

of exchange operators with their Coulomb operator analogs.
The result ofV(® operating on any Gaussian term can be put
into closed form, so approximatio{3.8) becomes unneces-

Evidently the ionization singularity moves farther from the S&ry- It is also clear that more than two electrons should be
origin asZ increases, which would be reflected as a moréfOnsidered, and polyatomic molecules as well, to provide a

No(Z=3)=—-2.52,

4.3
Ao(Z=4)=—3.70.

rapid convergence of the Mer—Plesset series. more comprehensive view of Mer—Plesset convergence is-
The situation is drastically different f@=1 (H"). The  SUeS in quantum chemistry. _ o
corresponding energy curves appear in Fig. 3. Etie) and Two further matters deserve mention. The first is the
dielectron binding energy functions intersect very close td'ature of the free “multelectron” in its ground and excited
the origin: states. Locating singularity-associated thresholds generally
will require determining the energy of these *“self-
Ae(Z=1)=-0.08, (4.4) gravitating” units composed of given numbers of down-spin

and up-spin electrons. The other matter is the precise math-
indicative of a strongly divergent Mier—Plesset series. ematical characterization of tig(\) andW(\) singularities
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themselves; if the analogousZiéxpansion threshold singu- where
larity for two electrons is any indication, this mathematical
problem will require a deep analysidunderstanding these B
singularities and how they dominate high-order series coefr= 5 az s+ —s
ficients should suggest how best to sum partial series into a [(atag)®™=B1(a"= )"  ao(Zat ag)(a”—p7)

closed form, including cases that formally diverge, to pro- 4a%B 4ap?

vide reliable energy estimates for systems of chemical inter- — +

ot ¥ Y ag(2a+ag)(a®= 7 [(a+ ag)’— Bol(a?— B7)°
20°8 2a3°
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APPENDIX

Owing to the special choic€3.1) of variational wave . (a+ag)a N (atag)B
function, to the restricted Hartree S|mpl_|f|cat|()318)—(3.9), [(a+ag)?— B2 B7)? " al(2a+ ag)2(a?— )2
and to the fact that only one nucleus is present, all of the
matrix elements needed to evalu&é\) and W(\) can be ap

expressed as rational algebraic functions of the variational + a3(2a+ ao)?’[(a+ ag)?— B?)*’ (A7)
parametersy and 8. The kinetic energy has the form
<K>:fdr1f dro (1, 1) [ = (VE+ VDR214,(rars) 7=y i
ay(2a+ ag) Y (atap)*~ P
3 2 2 3
_ (a+ﬁ)<88z2++750;§:;§ﬁ +5°) AL ot ag N a
ag(2atag)(atag?= B ap(2a+ ag)®(a®~ p?)?
Nuclear attractions, proportional # lead to the following: 8
o
+
(Vy)= f dr, f dry Y2~ 2Ir~ 211 ) &2at ol @—PF  [atag? BT
B
4Za(at B)(4atp) + T L2122 a3 (A8)
= — =+ — —
8aZ 5ap I (A2) [(a+ ag)®= BT (o~ )

Direct Coulomb repulsion between the two electrons generyy o \ ariational eigenvalue estimaEé\) is obtained as fol-
ates the matrix element: lows:

(a+B)(5a?+4apB+B?)

_ 2 _
<Ve>‘f d”f I/ g 7 5 g o E(\)=min[(K)+ (V) + A (Vo) + (1-N) (Vi) T, (A9)
(a,B)

Equation(3.10 above results from substituting Eq@\1),
(A2), and(A3) into the expression
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