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This paper proposes to broaden the canonical formulation of quantum mechanics.
Ordinarily, one imposes the conditionH†5H on the Hamiltonian, where † repre-
sents the mathematical operation of complex conjugation and matrix transposition.
This conventional Hermiticity condition is sufficient to ensure that the Hamiltonian
H has a real spectrum. However, replacing this mathematical condition by the
weaker and more physical requirementH‡5H, where ‡ represents combined parity
reflection and time reversalPT, one obtains new classes of complex Hamiltonians
whose spectra are still real and positive. This generalization of Hermiticity is in-
vestigated using a complex deformationH5p21x2( ix)e of the harmonic oscillator
Hamiltonian, wheree is a real parameter. The system exhibits two phases: When
e>0, the energy spectrum ofH is real and positive as a consequence ofPT sym-
metry. However, when21,e,0, the spectrum contains an infinite number of
complex eigenvalues and a finite number of real, positive eigenvalues becausePT
symmetry is spontaneously broken. The phase transition that occurs ate50 mani-
fests itself in both the quantum-mechanical system and the underlying classical
system. Similar qualitative features are exhibited by complex deformations of other
standard real HamiltoniansH5p21x2N( ix)e with N integer ande.2N; each of
these complex Hamiltonians exhibits a phase transition ate50. ThesePT-
symmetric theories may be viewed as analytic continuations of conventional theo-
ries from real to complex phase space. ©1999 American Institute of Physics.
@S0022-2488~99!00105-X#

I. INTRODUCTION

In a recent letter1 a class of complex quantum-mechanical Hamiltonians of the form

H5p21x2~ ix !e ~e real! ~1.1!

was investigated. Despite the lack of conventional Hermiticity the spectrum ofH is real and
positive for all e>0. As shown in Fig. 11 in this paper and Fig. 1 of Ref. 1, the spectrum is
discrete and each of the energy levels increases as a function of increasinge. We will argue below
that the reality of the spectrum is a consequence ofPT invariance.

The operatorP represents parity reflection and the operatorT represents time reversal. These
operators are defined by their action on the position and momentum operatorsx andp:

P:x→2x, p→2p,
~1.2!

T:x→x, p→2p, i→2 i .
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When the operatorsx and p are real, the canonical commutation relation@x, p#5 i is invariant
under both parity reflection and time reversal. We emphasize that this commutation relation
remains invariant underP andT even if x and p are complex provided that the above transfor-
mations hold. In terms of the real and imaginary parts ofx and p, x5Rex1i Im x and p5Rep
1i Im p, we have

P:Rex→2Rex, Im x→2Im x,

Rep→2Rep, Im p→2Im p,
~1.3!

T:Rex→Rex, Im x→2Im x,

Rep→2Rep, Im p→Im p.

While there is as yet no proof that the spectrum ofH in Eq. ~1.1! is real,2 we can gain some
insight regarding the reality of the spectrum of aPT-invariant HamiltonianH as follows: Note that
eigenvalues of the operatorPT have the formeiu. To see this, letC be an eigenfunction ofPT
with eigenvaluel: PTC5lC. Recalling that (PT)251, we multiply this eigenvalue equation by
PT and obtainl* l51, where we have used the fact thati→2 i underPT. Thus,l5eiu. We
know that if two linear operators commute, they can be simultaneously diagonalized. By assump-
tion, the operatorPT commutes withH. Of course, the situation here is complicated by the
nonlinearity of thePT operator~T involves complex conjugation!. However, let us suppose for
now that the eigenfunctionsc of H are simultaneously eigenfunctions of the operatorPT with
eigenvalueeiu. Then applyingPT to the eigenvalue equationHc5Ec, we find that the energyE
is real:E5E* .

We have numerically verified the supposition that the eigenfunctions ofH in Eq. ~1.1! are also
eigenfunctions of the operatorPT when e>0. However, whene,0, thePT symmetry of the
Hamiltonian is spontaneously broken; even thoughPT commutes withH, the eigenfunctions ofH
are not all simultaneously eigenfunctions ofPT. For these eigenfunctions ofH the energies are
complex. Thus, a transition occurs ate50. As e goes below 0, the eigenvalues as functions ofe
pair off and become complex, starting with the highest-energy eigenvalues. Ase decreases, there
are fewer and fewer real eigenvalues and below approximatelye520.57 793 only one real energy
remains. This energy then begins to increase with decreasinge and becomes infinite ase ap-
proaches21. In summary, the theory defined by Eq.~1.1! exhibits two phases, an unbroken-
symmetry phase with a purely real energy spectrum whene>0 and a spontaneously-broken-
symmetry phase with a partly real and partly complex spectrum whene,0.

A primary objective of this paper is to analyze the phase transition ate50. We will demon-
strate that this transition occurs in the classical as well as in the quantum theory. As a classical
theory, the HamiltonianH describes a particle subject to complex forces, and therefore the trajec-
tory of the particle lies in the complex-x plane. The position and momentum coordinates of the
particle are complex functions oft, a real time parameter. We are interested only in solutions to
the classical equations of motion for which the energy of the particle is real. We will see that in
the PT-symmetric phase of the theory, the classical motion is periodic and is thus a complex
generalization of a pendulum. We actually observe two kinds of closed classical orbits, one in
which the particle oscillates between two complex turning points and another in which the particle
follows a closed orbit. In many cases these closed orbits lie on an elaborate multisheeted Riemann
surface. On such Riemann surfaces the closed periodic orbits exhibit remarkable knotlike topo-
logical structures. All of these orbits exhibitPT symmetry; they are left–right symmetric with
respect to reflections about the imaginary-x axis in accordance with Eq.~1.3!. In the broken-
symmetry phase classical trajectories are no longer closed. Instead, the classical path spirals out to
infinity. These spirals lackPT symmetry.

There have been many previous instances of non-HermitianPT-invariant Hamiltonians in
physics. Energies of solitons on acomplexToda lattice have been found to be real.3 Hamiltonians
rendered non-Hermitian by an imaginary external field have been used to study population
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biology4 and to study delocalization transitions such as vortex flux-line depinning in type II
superconductors.5 In these cases, initially real eigenvalues bifurcate into the complex plane due to
the increasing external field, indicating the growth of populations or the unbinding of vortices.

ThePT-symmetric Hamiltonian considered in this paper has many generalizations:~i! Intro-
ducing a mass term of the formm2x2 yields a theory that exhibits several phase transitions;
transitions occur ate521 and e522 as well as ate50.1 ~ii ! Replacing the condition of
Hermiticity by the weaker constraint ofPT symmetry also allows one to construct new classes of
quasi-exactly solvable quantum theories.6 ~iii ! In this paper we consider complex deformations of
real Hamiltonians other than the harmonic oscillator. We show that Hamiltonians of the form

H5p21x2K~ ix !e ~1.4!

have the same qualitative properties asH in Eq. ~1.1!. As e decreases below 0, all of these theories
exhibit a phase transition from an unbrokenPT-symmetric regime to a regime in whichPT
symmetry is spontaneously broken.

The HamiltonianH in ~1.1! is especially interesting because it can be generalized to quantum
field theory. A number of such generalizations have recently been examined. ThePT-symmetric
scalar field theory described by the Lagrangian7

L5 1
2~]f!21 1

2m
2f21gf2~ if!e ~e>0! ~1.5!

is intriguing because it is not invariant under parity reflection. This is manifested by a nonzero
value of ^f&. It is interesting that this broken symmetry persists even whene.0 is an even
integer.7 The Hamiltonian for this theory is not Hermitian and, therefore, the theory is not unitary
in the conventional sense. However, there is strong evidence that the spectrum for this theory is
real and bounded below. Fore51 one can understand the positivity of the spectrum in terms of
summability. The weak-coupling expansion for a conventionalgf3 theory is real, and apart from
a possible overall factor ofg, the Green’s functions are formal power series ing2. These series are
not Borel summable because they do not alternate in sign. Nonsummability reflects the fact that
the spectrum of the underlying theory is not bounded below. However, when we replaceg by ig,
the perturbation series remains real but now alternates in sign. Thus, the perturbation series
becomes summable, and this suggests that the underlying theory has a real positive spectrum.

Replacing conventionalgf4 or gf3 theories byPT-symmetric2gf4 or igf3 theories has
the effect of reversing signs in the beta function. Thus, theories that are not asymptotically free
become asymptotically free and theories that lack stable critical points develop such points. There
is evidence that2gf4 in four dimensions is nontrivial.8

Supersymmetric quantum field theory that isPT invariant has also been studied.9 When we
construct a two-dimensional supersymmetric quantum field theory by using a superpotential of the
form S(f)52 ig( if)11e, the supersymmetric Lagrangian resulting from this superpotential is

L5 1
2~]f!21 1

2i c̄]”c1 1
2S8~f!c̄c1 1

2@S~f!#2

5 1
2~]f!21 1

2i c̄]”c1 1
2g~11e!~ if!ec̄c2 1

2g
2~ if!212e, ~1.6!

wherec is a Majorana spinor. The Lagrangian~1.3! has a broken parity symmetry. This poses the
question, Does the parity violation induce a breaking of supersymmetry? To answer this question,
both the ground-state energyE0 and the fermion–boson mass ratioR were calculated as series in
powers of the parametere. Through second order ine, E050 andR51, which strongly suggests
that supersymmetry remains unbroken. We believe that these results are valid to all orders in
powers ofe. This work and our unpublished numerical studies of SUSY quantum mechanics show
that complex deformations do not break supersymmetry.

Quantum field theories having the property ofPT invariance exhibit other interesting features.
For example, the Ising limit of aPT-invariant scalar quantum field theory is intriguing because it
is dominated by solitons rather than by instantons as in a conventional quantum field theory.10 In
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addition, a model ofPT-invariant quantum electrodynamics has been studied.11 The massless
theory exhibits a stable, nontrivial fixed point at which the renormalized theory is finite. Moreover,
such a theory allows one to revive successfully the original electron model of Casimir.

Since ^f&Þ0 in PT-symmetric theories, one can in principle calculate directly~using the
Schwinger–Dyson equations, for example! the real positive Higgs mass in a renormalizablePT-
symmetric theory in which symmetry breaking occurs naturally. No symmetry-breaking parameter
needs to be introduced. This most intriguing idea could lead to an experimental vindication of our
proposed generalization of the notion of Hermiticity toPT symmetry.

This paper is organized as follows: In Sec. II we study the classical version of the Hamiltonian
in Eq. ~1.1!. The behavior of classical orbits reveals the nature of the phase transition ate50.
Next, in Sec. III we analyze the quantum version of this Hamiltonian. We derive several
asymptotic results regarding the behavior of the energy levels near the phase transition. In Sec. IV
we discuss the classical and quantum properties of the broad class ofPT-symmetric Hamiltonians
in Eq. ~1.4! of which H in Eq. ~1.1! is a special case.

II. CLASSICAL THEORY

The classical equation of motion for a particle described byH in ~1.1! is obtained from
Hamilton’s equations:

dx

dt
5

]H

]p
52p,

~2.1!
dp

dt
52

]H

]x
5 i ~21e!~ ix !11e.

Combining these two equations gives

d2x

dt2
52i ~21e!~ ix !11e, ~2.2!

which is the complex version of Newton’s second law,F5ma.
Equation~2.2! can be integrated once to give12

1

2

dx

dt
56AE1~ ix !21e, ~2.3!

whereE is the energy of the classical particle~the time-independent value ofH!. We treat timet
as a real variable that parametrizes the complex pathx(t) of this particle.

This section is devoted to studying and classifying the solutions to Eq.~2.3!. By virtue of the
PT invariance of the HamiltonianH, it seems reasonable to restrict our attention to real values of
E. Given this restriction, we can always rescalex and t by real numbers so that without loss of
generality Eq.~2.3! reduces to

dx

dt
56A11~ ix !21e. ~2.4!

The trajectories satisfying Eq.~2.4! lie on a multi-sheeted Riemann surface. On this surface
the functionA11( ix)21e is single valued. There are two sets of branch cuts. The cuts in the first
set radiate outward from the roots of

11~ ix !21e50. ~2.5!

These roots are the classical turning points of the motion. There are many turning points, all lying
at a distance of unity from the origin. The angular separation between consecutive turning points
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is 2p/(21e). The second set of branch cuts is present only whene is noninteger. In order to
maintain explicitPT symmetry~left–right symmetry in the complex-x plane!, we choose these
branch cuts to run from the origin to infinity along the positive imaginary axis.

A. Case e50

Because the classical solutions to Eq.~2.4! have a very elaborate structure, we begin by
considering some special values ofe. The simplest case ise50. For this case there are only two
turning points and these lie on the real axis at61.

In order to solve Eq.~2.4! we need to specify an initial conditionx(0). Thesimplest choice
for x(0) is a turning point. If the path begins at61, there is a unique direction in the complex-x
plane along which the phases of the left side and the right side of Eq.~2.4! agree. This gives rise
to a trajectory on the real axis that oscillates between the two turning points. This is the well-
known sinusoidal motion of the harmonic oscillator.

Note that once the turning points have been fixed, the energy is determined. Thus, choosing
the initial position of the particle determines the initial velocity~up to a plus or minus sign! as
well. So, if the path of the particle begins anywhere on the real axis between the turning points, the
initial velocity is fixed up to a sign and the trajectory of the particle still oscillates between the
turning points.

Ordinarily, in conventional classical mechanics the only possible initial positions for the
particle lie on the real-x axis between the turning points because the velocity is real; all other
points on the real axis lie in the classically forbidden region. However, because we are analytically
continuing classical mechanics into the complex plane, we can choose any pointx(0) in the
complex plane as an initial position. For all complex initial positions outside of the conventional
classically allowed region the classical trajectory is an ellipse whose foci are the turning points.
The ellipses are nested because no trajectories may cross.~See Fig. 1.! The exact solution to Eq.
~2.4! is

x~ t !5cos@arccosx~0!6t#, ~2.6!

where the sign oft determines the direction~clockwise or anticlockwise! in which the particle
traces the ellipse. Forany ellipse the period of the motion is 2p. The period is the same for all
trajectories because we can join the square-root branch cuts emanating from the turning points,

FIG. 1. Classical trajectories in the complex-x plane for the harmonic oscillator whose Hamiltonian isH5p21x2. These
trajectories represent the possible paths of a particle whose energy isE51. The trajectories are nested ellipses with foci
located at the turning points atx561. The real line segment~degenerate ellipse! connecting the turning points is the usual
periodic classical solution to the harmonic oscillator. All closed paths@see Eq.~2.6!# have the same period 2p.
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creating a single finite branch cut lying along the real axis fromx521 to x51. The complex path
integral that determines the period can then be shrunk~by Cauchy’s theorem! to the usual real
integral joining the turning points.

Finally, we remark that all of the classical paths~elliptical orbits! are symmetric with respect
to parityP ~reflections through the origin! and time reversalT ~reflections about the real axis!, as
well asPT ~reflections about the imaginary axis!. Furthermore,P andT individually preserve the
directions in which the ellipses are traversed.

B. Case e51

The casee51 is significantly more complicated. Now there are three turning points. Two are
located below the real axis and these are symmetric with respect to the imaginary axis:x2

5e25ip/6 and x15e2 ip/6. That is, underPT reflectionx2 and x1 are interchanged. The third
turning point lies on the imaginary axis atx05 i .

As in the casee50, the trajectory of a particle that begins at the turning pointx2 follows a
unique path in the complex-x plane to the turning point atx1 . Then, the particle retraces its path
back to the turning point atx2 , and it continues to oscillate between these two turning points.

This path is shown on Fig. 2. The period of this motion is 2A3pG( 4
3)/G( 5

6). The periodic motion
betweenx6 is clearly time-reversal symmetric.

A particle beginning at the third turning pointx0 exhibits a completely distinct motion: It

travels up the imaginary axis and reachesi` in a finite timeApG( 4
3)/G( 5

6). This motion is not
periodic and is not symmetric under time reversal.

Paths originating from all other points in the finite complex-x plane follow closed periodic
orbits. No two orbits may intersect; rather they are all nested, like the ellipses for the casee
50. All of these orbits encircle the turning pointsx6 and, by virtue of Cauchy’s theorem, have the

same period 2A3pG( 4
3)/G( 5

6) as the oscillatory path connectingx6 . Because these orbits must
avoid crossing the trajectory that runs up the positive imaginary axis from the turning pointx0

5 i , they are pinched in the region just belowx0 , as shown on Fig. 2.
As these orbits become larger they develop sharper indentations in the vicinity ofx0 . We

observe that the characteristic radius of a large orbit approaches the reciprocal of the distanced
betweenx0 and the point where the orbit intersects the positive imaginary axis. Thus, it is appro-
priate to study these orbits from the point of view of the renormalization group: We scale the
distanced down by a factorL and then plot the resulting orbit on a graph whose axis are scaled

FIG. 2. Classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21 ix3 and having
energyE51. An oscillatory trajectory connects the turning pointsx6 . This trajectory is enclosed by a set of closed, nested
paths that fill the finite complex-x plane except for points on the imaginary axis at or above the turning pointx05 i .
Trajectories originating at one of these exceptional points go off toi` or else they approachx0 , stop, turn around, and then
move up the imaginary axis toi`.
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down by the same factorL. Repeated scaling gives a limiting orbit whose shape resembles a
cardioid~see Fig. 3!. The equation of this limiting orbit is obtained in the asymptotic regime where
we neglect the dimensionless energy 1 in Eq.~2.4!:

dx

dt
56~ ix !3/2. ~2.7!

The solution to this differential equation, scaled so that it crosses the negative imaginary axis at
23i , is

x~ t !5
4i

~ t12i /) !2
~2`,t,`!. ~2.8!

This curve is shown as the solid line in Fig. 3.~Strictly speaking, this curve is not a true cardioid,
but its shape so closely resembles a true cardioid that we shall refer to it in this paper as the
limiting cardioid.!

In the infinite scaling limit all periodic orbits@all these orbits have period 2A3pG( 4
3)/G( 5

6)#,
which originally filled the entire finite complex-x plane, have been squeezed into the region inside
the limiting cardioid~2.8!. The nonperiodic orbit still runs up the positive imaginary axis. The
obvious question is, What complex classical dynamics is associated with all of the other points in
the scaled complex-x plane that lie outside of the limiting cardioid? We emphasize that all of these
points were originally at infinity in the unscaled complex-x plane.

We do not know the exact answer to this question, but we can draw a striking and suggestive
analogy with some previously published work. It is generally true that the region of convergence
in the complex-x plane for an infinitely iterated function is a cardioid-shaped region. For example,
consider the continued exponential function

f ~x!5exexex

. ~2.9!

The sequenceex,exex
,... isknown to converge in a cardioid-shaped region of the complex-x plane

~see Figs. 2–4 in Ref. 13!. It diverges on the straight line that emerges from the indentation of the
cardioid. The remaining part of the complex-x plane is divided into an extremely elaborate mosaic
of regions in which this sequence converges to limit cycles of period 2, period 3, period 4, and so

FIG. 3. Approach to the limiting cardioid in Eq.~2.8!. As the orbits shown in Fig. 2 approach the turning pointx0 , they
get larger. Using a renormalization-group approach, we plot successively larger orbits~one such orbit is shown as a dashed
line! scaled down by the characteristic size of the orbit. The limiting cardioid is indicated by a solid line. The indentation
in the limiting cardioid develops because classical trajectories may not intersect and thus must avoid crossing the trajectory
~shown in Fig. 2! on the imaginary axis abovex0 .
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on. These regions have fractal structure. It would be interesting if unbounded complex classical
motion exhibits this remarkable fractal structure. In other words, does the breaking ofP andT
symmetry allow for unbounded chaotic solutions?

C. Case e52

Whene52 there are four turning points, two located below the real axis and symmetric with
respect to the imaginary axis,x15e23ip/4 andx25e2 ip/4, and two more located above the real
axis and symmetric with respect to the imaginary axis,x35eip/4 andx45e3ip/4. Classical trajec-
tories that oscillate between the pairx1 andx2 and the pairx3 andx4 are shown on Fig. 4. The

period of these oscillations is 2A2pG( 5
4)/G( 3

4). Trajectories that begin elsewhere in the complex-x
plane are also shown on Fig. 4. Note that by virtue of Cauchy’s theorem all these nested nonin-
tersecting trajectories have the same period. All motion is periodic except for trajectories that
begin on the real axis; a particle that begins on the real-x axis runs off to6`, depending on the
sign of the initial velocity. These are the only trajectories that are nonperiodic.

The rescaling argument that gives the cardioid for the casee51 yields a doubly indented
cardioid for the casee52 ~see Fig. 5!. This cardioid is similar to that in Fig. 5 of Ref. 13.
However, for the casee52 the limiting double cardioid consists of two perfect circles, which are
tangent to one another at the originx50. Circles appear because ate52 in the scaling limit the
equation corresponding to~2.7! is dx/dt56x2. The solutions to this equation are the inversions
x(t)56@1/(t1 i )#, which map the real-t axis into circles in the complex-x plane.

D. Case e55

When e55 there are seven turning points, one located ati and three pairs, each pair sym-
metric with respect to reflection about the imaginary axis~PT symmetric!. We find that each of
these pairs of turning points is joined by an oscillatory classical trajectory.~A trajectory joining
any other two turning points would violatePT symmetry.! Surrounding each of the oscillatory
trajectories are nested closed loops, each loop having the same period as the oscillatory trajectory
it encloses. These classical trajectories are shown on Fig. 6. The periods for these three families of
trajectories are

FIG. 4. Classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p22x4 and having
energyE51. There are two oscillatory trajectories connecting the pairs of turning pointsx1 and x2 in the lower-half
x-plane andx3 andx4 in the upper-halfx-plane.@A trajectory joining any other pair of turning points is forbidden because
it would violatePT ~left-right! symmetry.# The oscillatory trajectories are surrounded by closed orbits of the same period.
In contrast to these periodic orbits there is a class of trajectories having unbounded path length and running along the real-x
axis. These are the only paths that violate time-reversal symmetry.
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4Ap
G~8/7!

G~9/14!
cosu,

where u55p/14 for the lowest pair of turning points,u5p/14 for the middle pair, andu
53p/14 for the pair above the real axis.

One other class of trajectory is possible. If the initial position of the classical particle lies on
the imaginary axis at or above the turning point ati, then depending on the sign of the initial

FIG. 5. Limiting double cardioid for the casee52. As the orbits in Fig. 4 approach the real axis, they get larger. If we
scale successively larger orbits down by their characteristic size, then in the limiting case the orbits approach two circles
tangent at the origin. In this limit the four turning points in Fig. 4 coalesce at the point of tangency.

FIG. 6. Classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21 ix7 and having
energyE51. Shown are oscillatory trajectories surrounded by periodic trajectories. Unbounded trajectories run along the
positive-imaginary axis abovex5 i .
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velocity, the particle either runs off toi` or it approaches the turning point, reverses its direction,
and then goes off toi`. These purely imaginary paths are the only possible nonperiodic trajec-
tories. They are also shown on Fig. 6.

E. General case: Noninteger values of e>0

Because Eq.~2.4! contains a square root function, the turning points, which are solutions to
Eq. ~2.5!, are square root branch points for all values ofe. Thus, in principle, the complex
trajectoriesx(t) lie on a multi-sheeted Riemann surface. However, whene is a non-negative
integer, we can define the branch cuts so that the classical trajectories satisfying Eq.~2.4! never
leave the principal sheet of this Riemann surface. We do this as follows: We choose to join the
PT-symmetric~left–right-symmetric! pairs of turning points by branch cuts that follow exactly the
oscillatory solutions connecting these pairs.~There are three such pairs in Fig. 6, two in Fig. 4, and
one in Figs. 2 and 1.! If e is odd, there is one extra turning point that lies on the positive imaginary
axis ~see Figs. 2 and 6!; the branch cut emanating from this turning point runs up the imaginary-x
axis toi`. Since classical paths never cross, there are no trajectories that leave the principal sheet
of the Riemann surface.

Whene is noninteger, we can see from the argument of the square root function in Eq.~2.4!
that there is an entirely new branch cut, which emerges from the origin in the complex-x plane. To
preservePT symmetry we choose this branch cut to run off to` along the positive-imaginary
x-axis. If e is rational, the Riemann surface has a finite number of sheets, but ife is irrational, then
there are an infinite number of sheets.

If a classical trajectory crosses the branch cut emanating from the origin, then this trajectory
leaves the principal sheet of the Riemann surface. In Fig. 7 we illustrate some of the possible
classical trajectories for the casee5p22. The top plot shows some trajectories that do not cross
the positive-imaginary-x axis and thus do not leave the principal sheet of the Riemann surface. The
trajectories shown are qualitatively similar to those in Fig. 2; all trajectories have the same period.

In the middle plot of Fig. 7 is a trajectory that crosses the positive-imaginary-x axis and visits
threesheets of the Riemann surface. The solid line and the dotted line outside of the solid line lie
on the principal sheet, while the remaining two portions of the dotted line lie on two other sheets.
Note that this trajectory doesnot cross itself; we have plotted the projection of the trajectory onto
the principal sheet. The trajectory continues to exhibitPT symmetry. The period of the trajectory
is greater than that of the period of the trajectories shown in the top plot. This is because the
trajectory encloses turning points that are not on the principal sheet. In general, as the size of the
trajectory increases, it encloses more and more complex turning points; each time a new pair of
turning points is surrounded by the trajectory the period jumps by a discrete quantity.

Although the trajectory in the bottom plot in Fig. 7 has the same topology as that in the middle
plot, it is larger. As the trajectory continues to grow, we observe a phenomenon that seems to be
universal; namely, the appearance of a limiting cardioid shape~solid line! on the principal surface.
The remaining portion of the trajectory~dotted line! shrinks relative to the cardioid and becomes
compact and knotlike.

In Fig. 8 we examine the casee50.5. In this figure we observe behavior that is qualitatively
similar to that seen in Fig. 7; namely, as the trajectory on the principal sheet of the Riemann
surface becomes larger and approaches a limiting cardioid, the remaining portion of the trajectory
becomes relatively small and knotlike.

To summarize, for anye.0 the classical paths are alwaysPT symmetric. The simplest such
path describes oscillatory motion between the pair of turning points that lie just below the real axis
on the principal sheet. In general, the period of this motion as a function ofe is given by

T54ApE2e/~412e!
G~~31e!/~21e!!

G~~41e!/~412e!!
cosS ep

412e D . ~2.10!

Other closed paths having more complicated topologies~and longer periods! also exist, as shown
in Figs. 7 and 8.
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Whenever the classical motion is periodic, we expect, the quantized version of the theory to
exhibit real eigenvalues. Although we have not yet done so, we intend to investigate the conse-
quences of quantizing a theory whose underlying classical paths have complicated topological
structures traversing several sheets of a Riemann surface. The properties of such a theory of
quantum knots might well be novel.

FIG. 7. Classical trajectories forH5p22( ix)p corresponding to the casee5p22. Observe that as the classical trajectory
increases in size, a limiting cardioid appears on the principal sheet of the Riemann surface. On the other sheets the
trajectory becomes relatively small and knotlike.
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F. Case 21<e<0

Classical paths for negative values ofe are fundamentally different from those corresponding
to non-negative values ofe; such paths no longer exhibitPT symmetry. Furthermore, we no longer
see paths that are periodic; all paths eventually spiral outwards to infinity. In general, the time that
it takes for a particle to reach infinity is infinite.

FIG. 8. Classical trajectories for the casee50.5. As the classical path on the principal sheet of the Riemann surface
increases in size it approaches a limiting cardioid, just as in Fig. 7. The remaining portion of the path becomes relatively
small and knotlike.
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We interpret the abrupt change in the global nature of the classical behavior that occurs ase
passes through 0 as a change in phase. For all values ofe the Hamiltonian in Eq.~1.1! is PT
~left–right! symmetric. However, fore,0 the solutions cease to exhibitPT symmetry. Thus, we
say thate>0 is aPT-symmetric phase and thate,0 is a spontaneously brokenPT-symmetric
phase.

To illustrate the loss ofPT ~left–right! symmetry, we plot in Fig. 9 the classical trajectory for
a particle that starts at a turning pointx252p(41e)/(412e) in the second quadrant of the
complex-x plane~Rex,0, Imx.0! for three values ofe: 20.2,20.15, and20.1. We observe that
a path starting at this turning point moves toward butmissesthe PT-symmetric turning point
x152p(e/(412e)) because it crosses the branch cut on the positive-imaginary-x axis. This path
spirals outward, crossing from sheet to sheet on the Riemann surface, and eventually veers off to
infinity asymptotic to the angleu` , where

u`52
21e

2e
p. ~2.11!

This formula shows that the total angular rotation of the spiral is finite for alleÞ0 but becomes
infinite ase→02. In the top figure (e520.2) the spiral makes 214 turns before moving off to
infinity; in the middle figure (e520.15) the spiral makes 3112 turns; in the bottom figure (e
520.1) the spiral makes 434 turns.

Note that the spirals in Fig. 9 pass many classical turning points as they spiral clockwise from
x2 . $From Eq. ~2.5! we see that thenth turning point lies at the angle@(42e24n)/(4
12e)#p ~x2 corresponds ton50!.% As e approaches 0 from below, when the classical trajectory
passes a new turning point, there is a corresponding merging of the quantum energy levels~as
shown in Fig. 11!. As pointed out in Ref. 1, this correspondence becomes exact in the limite
→02 and is a manifestation of Ehrenfest’s theorem.

G. Case e521

For this special case we can solve the equation~2.4! exactly. The result,

x~ t !5~12b21 1
4t

2!i 1bt ~b real!, ~2.12!

represents a family of parabolas that are symmetric with respect to the imaginary axis~see Fig.
10!. Note that there is one degenerate parabola corresponding tob50 that lies on the positive
imaginary axis abovei.

III. QUANTUM THEORY

In this section we discuss the quantum properties of the HamiltonianH in Eq. ~1.1!. The
spectrum of this Hamiltonian is obtained by solving the corresponding Schro¨dinger equation

2c9~x!1@x2~ ix !e2E#c~x!50 ~3.1!

subject to appropriate boundary conditions imposed in the complex-x plane. These boundary
conditions are described in Ref. 1. A plot of the spectrum ofH is shown in Fig. 11.

There are several ways to obtain the spectrum that is displayed in Fig. 11. The simplest and
most direct technique is to integrate the differential equation using Runge–Kutta. To do so, we
convert the complex differential equation~3.1! to a system of coupled, real, second-order equa-
tions. We find that the convergence is most rapid when we integrate along anti-Stokes lines and
then patch the two solutions together at the origin. This procedure, which is described in Ref. 1,
gives highly accurate numerical results.

To verify the Runge–Kutta approach, we have solved the differential equation~3.1! using an
independent and alternative procedure. We construct a matrix representation of the Hamiltonian in
Eq. ~1.1! in harmonic oscillator basis functionse2x2/2Hn(x)p21/4/A2nn!:
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Mm,n52E
2`

`

dx
1

Ap2m1nm!n!
e2x2/2Hm~x!H d2

dx22 i m1n

3cosFp2 ~e2m2n!G uxu21eJ e2x2/2Hn~x!. ~3.2!

FIG. 9. Classical trajectories that violatePT symmetry. The top plot corresponds to the casee520.2, the middle plot to
e520.15, and the bottom plot toe520.1. The paths in each plot begin at a turning point and spiral outwards to infinity
in an infinite amount of time.

2214 J. Math. Phys., Vol. 40, No. 5, May 1999 Bender, Boettcher, and Meisinger



TheKth approximant to the spectrum comes from diagonalizing a truncated version of this matrix
Mm,n ~0<m, n<K!. One drawback of this method is that the eigenvalues ofMm,n approximate
those of the HamiltonianH in ~1.1! only if 21,e,2. Another drawback is that the convergence
to the exact eigenvalues is slow and not monotone because the HamiltonianH is not Hermitian in
a conventional sense. We illustrate the convergence of this truncation and diagonalization proce-
dure fore52 1

2 in Fig. 12.
A third method for finding the eigenvalues in Fig. 11 is to use WKB~Wentzel–Kramers–

Brillouin!. Complex WKB theory~see Ref. 1! gives an excellent analytical approximation to the
spectrum.

In the next two subsections we examine two aspects of the spectrum in Fig. 11. First, we study

FIG. 10. Classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p22 ix and having
energyE51. Shown are parabolic trajectories and a turning point ati. All trajectories are unbounded.

FIG. 11. Energy levels of the HamiltonianH5p21x2( ix)e as a function of the parametere. There are three regions.:
Whene>0, the spectrum is real and positive and the energy levels rise with increasinge. The lower bound of this region,
e50, corresponds to the harmonic oscillator, whose energy levels areEn52n11. When21,e,0, there are a finite
number of real positive eigenvalues and an infinite number of complex conjugate pairs of eigenvalues. Ase decreases from
0 to 21, the number of real eigenvalues decreases; whene<20.57793, the only real eigenvalue is the ground-state energy.
As e approaches211, the ground-state energy diverges. Fore<21 there are no real eigenvalues.

2215J. Math. Phys., Vol. 40, No. 5, May 1999 Bender, Boettcher, and Meisinger



the asymptotic behavior of the ground-state energy ase→21. Second, we examine the phase
transition in the vicinity ofe50.

A. Behavior of the ground-state energy near e521

In this subsection we give an analytic derivation of the behavior of the lowest real energy
level in Fig. 11 ase→21. We show that in this limit the eigenvalue grows logarithmically.

Whene521, the differential equation~3.1! reduces to

2c9~x!2 ixc~x!5Ec~x!, ~3.3!

which can be solved exactly in terms of Airy functions.14 The anti-Stokes lines ate521 lie at 30°
and at2210° in the complex-x plane. We find the solution that vanishes exponentially along each
of these rays and then rotate back to the real-x axis to obtain

cL,R~x!5CL,R Ai ~7xe6 ip/61Ee62ip/3!. ~3.4!

We must patch these solutions together atx50 according to the patching condition

d

dx
uc~x!u2U

x50

50. ~3.5!

But for realE, the Wronskian identity for the Airy function14 is

d

dx
uAi ~xe2 ip/61Ee22ip/3!u2U

x50

52
1

2p
~3.6!

instead of 0. Hence, there is no real eigenvalue.
Next, we perform an asymptotic analysis fore5211d whered is small and positive:

2c9~x!2~ ix !11dc~x!5Ec~x!,
~3.7!

c~x!;y0~x!1dy1~x!1O~d2! ~d→01 !.

FIG. 12. Real eigenvalues of the (K11)3(K11) truncated matrixMm,n in Eq. ~3.2! (K50,1,...,17) fore52
1
2. As K

increases, the three lowest eigenvalues converge to the three real energy levels in Fig. 11 ate52
1
2. The other real

eigenvalues do not stabilize, and instead disappear in pairs.
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We assume thatE→` asd→01 and obtain

y09~x!1 ixy0~x!1Ey0~x!50,
~3.8!

y19~x!1 ixy1~x!1Ey1~x!52 ix ln~ ix !y0~x!,

and so on.
To leading order we again obtain the Airy equation~3.3! for y0(x). The solution fory0(x)

(x>0) is given bycR(x) in Eq. ~3.4! and we are free to chooseCR51. We can expand the Airy
function in y0(x) for large argument in the limitE→`:

y0~x!5Ai ~xe2 ip/61Ee22ip/3!;~xe2 ip/61Ee22ip/3!21/4exp@ 2
3~xe2 ip/61Ee22ip/3!3/2#.

~3.9!

At x50 we get

y0~0!5Ai ~Ee22ip/3!;eip/6E21/4e~2/3!E3/2
/~2Ap!. ~3.10!

To next order ine we simplify the differential equation fory1(x) in ~3.8! by substituting

y1~x!5Q~x!y0~x!. ~3.11!

Using the differential equation fory0(x) in ~3.8!, we get

y0~x!Q9~x!12y08~x!Q8~x!52 ix ln~ ix !y0~x!. ~3.12!

Multiplying this equation by the integrating factory0(x), we obtain

@y0
2~x!Q8~x!#852 ix ln~ ix !y0

2~x!, ~3.13!

which integrates to

Q8~x!5
i

y0
2~x!

E
x

`

dt t ln~ i t !y0
2~ t !, ~3.14!

where the upper limit of the integral ensures thatQ8(x) is bounded forx→`. Thus, we obtain

Q8~0!5
i

y0
2~0!

E
0

`

dx x ln~ ix !y0
2~x!. ~3.15!

To determine the asymptotic behavior of the ground-state eigenvalue asd→0, we insert

c~x!;y0~x!1dy1~x!1O~d2!5y0~x!@11dQ~x!#1O~d2! ~3.16!

into the quantization condition:

05
d

dx
@c* ~x!c~x!#U

x50

;
d

dx
@ uy0~x!u2„11dQ* ~x!…„11dQ~x!…#U

x50

;
d

dx
@ uy0~x!u2#U

x50

12duy0~0!u2 Re@Q8~0!#

12d
d

dx
@ uy0~x!u2#U

x50

Re@Q~0!#. ~3.17!
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We are free to chooseQ(0)50, and doing so eliminates the last term on the right side. The
leading-order result for the quantization condition in Eq.~3.6! then gives

1

2p
;2duy0~0!u2 Re@Q8~0!#. ~3.18!

Next, we substitute the asymptotic form fory0 in Eq. ~3.10! and the result forQ8(0) in Eq.~3.15!
and obtain

AEe2~4/3!E3/2
;2d ReE

0

`

dx ix ln~ ix !F y0~x!

y0~0!G
2

. ~3.19!

Because the ratio of the unperturbed wave functions in the integrand in Eq.~3.19! is bounded
and vanishes exponentially for largex, we know that the integral can grow at most as a power of
E. Thus,

d;CEae2~4/3!E3/2
~3.20!

for some powera and constantC and the controling behavior of the ground-state energy asd
→0 is given by

E;@2 3
4 ln d#2/3, ~3.21!

where we have neglected terms that vary at most like ln(lnd). Equation~3.21! gives the asymptotic
behavior of the lowest energy level and is the result that we have sought. This asymptotic behavior
is verified numerically in Table I.

B. Behavior of energy levels near e50

In this subsection we examine analytically the phase transition that occurs ate50. In particu-
lar, we study high-lying eigenvalues for small negative values ofe and verify that adjacent pairs
of eigenvalues pinch off and become complex.

For smalle we approximateH in Eq. ~1.1! to first order ine:

H5p21x21ex2 ln~ ix !1O~e2!. ~3.22!

Using the identity ln(ix)5ln(uxu)11
2ip sgn(x), we then have

H5p21x21ex2F ln~ uxu!1
ip

2
sgn~x!G1O~e2!. ~3.23!

TABLE I. Comparison of the exact ground-state energyE neare521 and
the asymptotic results in Eq.~3.21!. The explicit dependence ofE on e5
211d is roughlyE}(2 ln d)2/3 asd201.

d Eexact Eq. ~3.21!

0.01 1.6837 2.0955
0.01 2.6797 3.9624
0.001 3.4947 3.6723
0.0001 4.1753 4.3013
0.00 001 4.7798 4.8776
0.000 001 5.3383 5.4158
0.0 000 001 5.8943 5.9244
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The simplest way to continue is to truncate this approximate Hamiltonian to a 232 matrix.
We introduce a harmonic oscillator basis as follows: Thenth eigenvalue of the harmonic oscillator
Hamiltonianp21x2 is En52n11 and the correspondingx-space normalized eigenstateun& is

cn~x!5
p21/4

A2nn!
e2x2/2Hn~x!, ~3.24!

where Hn(x) is the nth Hermite polynomial@H0(x)51, H1(x)52x, H2(x)54x222, H3(x)
58x3212x, and so on#. We then have the following diagonal matrix elements:

^nup21x2un&52n11, ~3.25!

^nux2 ln~ uxu!un&5an2S g

2
1 ln 2D S n1

1

2D , ~3.26!

whereg is Euler’s constant and

an5n111Fn

2G1S n1
1

2D (
0

@n11/2#
1

2k21
. ~3.27!

We also have the off-diagonal matrix element

^2n21u
1

2
ipx2 sgn~x!u2n&5

1

3
i ~8n11!FG2~n11/2!

n! ~n21!! G1/2

. ~3.28!

In the (2n21)2(2n) subspace, the matrixH2E then reduces to the following 232 matrix:

S A2E iB

iB C2ED , ~3.29!

where for largen and smalle we have

A;4n211e~n21/2!ln~2n!,

B; 8
3 en, ~3.30!

C;4n111en ln~2n!.

The determinant of the matrix in Eq.~3.\29! gives the following roots forE:

E5 1
2~A1C6A~A2C!224B2!. ~3.31!

We observe that the rootsE are degenerate when the discriminant~the square root! in Eq.
~3.31! vanishes. This happens when the condition

e5
3

8n
~3.32!

is met. Hence, the sequence of points in Fig. 11 where the eigenvalues pinch off approachese
50 asn→`. For example, Eq.~3.32! predicts~usingn54! that E7 andE8 become degenerate
and move off into the complex plane ate'20.1. In Fig. 13 we compare our prediction for the
behavior ofE in Eq. ~3.31! with a blow-up of of a small portion of Fig. 11. We find that while our
prediction is qualitatively good, the numerical accuracy is not particularly good. The lack of
accuracy is not associated with truncating the expansion in powers ofe but rather with truncating
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the HamiltonianH to a 232 matrix. Our numerical studies indicate that as the size of the matrix
truncation increases, we obtain more accurate approximations to the behavior of the energy levels
E in Fig. 11.

IV. MORE GENERAL CLASSES OF THEORIES

In this section we generalize the results of Secs. II and III to a much wider class of theories.
In particular, we consider a complex deformation of thex2K anharmonic oscillator, whereK
51,2,3,...@see Eq.~1.4!#. The Schro¨dinger equation for this oscillator has the form

2c9~x!1@x2K~ ix !e2E#c~x!50. ~4.1!

To determine the energy levelsE as functions of the deformation parametere, we must
impose appropriate boundary conditions on Eq.~4.1!. We require that the wave function vanish as
uxu→` inside of two wedges symmetrically placed about the imaginary-x axis. The right wedge is
centered about the angleu right , where

u right52
ep

4K12e14
, ~4.2!

and the left wedge is centered about the angleu left , where

u left52p1
ep

4K12e14
. ~4.3!

The opening angle of each of these wedges is

2p

2K1e12
. ~4.4!

This pair of wedges isPT ~left–right! symmetric.

FIG. 13. A comparison of the prediction in Eq.~3.31! and a magnification of Fig. 11. Our prediction for the point at which
E7 andE8 become degenerate is not very accurate numerically but is qualitatively quite good.
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The orientation of these wedges is determined by analytically continuing the differential
equation eigenvalue problem~4.1! and associated boundary conditions in the variablee using the
techniques explained in Ref. 15. The rotation of the boundary conditions is obtained from the
asymptotic behavior of the solutionc(x) for large uxu:

c~x!;expS 6
i e/2xK111e/2

K111e/2 D . ~4.5!

~In this formula we give thecontrolling factorof the asymptotic behavior of the wave function; we
neglect algebraic contributions.! Note that at the center of the wedges the behavior of the wave
function is most strongly exponential; the centerline of each wedge is an anti-Stokes line. At the
edges of the wedges the asymptotic behavior is oscillatory. The lines marking the edges of the
wedges are Stokes lines.

For all positive integer values ofK the results are qualitatively similar. Ate50 the two
wedges are centered about the positive and negative real axes. Ase increases from 0 the wedges
rotate downward and become thinner. In the regione>0 the eigenvalues are all real and positive
and they rise with increasinge. As e→`, the two wedges become infinitely thin and lie along the
negative imaginary axis. There is no eigenvalue problem in this limit because the solution contour
for the Schro¨dinger equation~4.1! can be pushed off to infinity. Indeed, we find that in this limit
the eigenvalues all become infinite.

Whene is negative, the wedges rotate upward and become thicker. The eigenvalues gradually
pair off and become complex starting with the highest eigenvalues. Thus,PT symmetry is spon-
taneously broken fore,0. Eventually, ase approaches2K, only the lowest eigenvalue remains
real. At e52K the two wedges join at the positive imaginary axis. Thus, again there is no
eigenvalue problem and there are no eigenvalues at all. In the limite→2K the one remaining real
eigenvalue diverges logarithmically.

The spectrum for the case of arbitrary positive integerK is quite similar to that forK51.
However, in general, whenK.1, a novel feature emerges: A new transition appears for all
negative integer values ofe between 0 and2K. At these isolated points the spectrum is entirely
real. Just above each of these negative-integer values ofe the energy levels reemerge in pairs from
the complex plane and just below these special values ofe the energy levels once again pinch off
and become complex.

A. Quantum x 4
„ ix …e theory

The spectrum for the caseK52 is displayed in Fig. 14. This figure resembles Fig. 11 for the
caseK51. However, ate521 there is a new transition. This transition is examined in detail in
Fig. 15.

An important feature of the spectrum in Fig. 14 is the disappearance of the eigenvalues and
divergence of the lowest eigenvalue ase decreases to22. Following the approach of Sec. III A,
we now derive the asymptotic behavior of the ground-state energy ase→221. To do so we let
e5221d and obtain from Eq.~4.1! the Schro¨dinger equation

2c9~x!2x2~ ix !dc~x!5Ec~x!. ~4.6!

We study this differential equation for small positived.
Whend50 this differential equation~4.6! reduces to

2c9~x!2x2c~x!5Ec~x!. ~4.7!

The anti-Stokes lines for this equation lie at 45° and at2225°. Thus, we rotate the integration
contour from the real axis to the anti-Stokes lines and substitute
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FIG. 14. Energy levels of the HamiltonianH5p21x4( ix)e as a function of the parametere. This figure is similar to Fig.
11, but now there are four regions: Whene>0, the spectrum is real and positive and it rises monotonically with increasing
e. The lower bounde50 of this PT-symmetric region corresponds to the pure quartic anharmonic oscillator, whose
Hamiltonian is given byH5p21x4. When21,e,0, PT symmetry is spontaneously broken. There are a finite number
of real positive eigenvalues and an infinite number of complex conjugate pairs of eigenvalues; as a function ofe the
eigenvalues pinch off in pairs and move off into the complex plane. By the timee521 only eight real eigenvalues remain;
these eigenvalues are continuous ate51. Just ase approaches21 the entire spectrum reemerges from the complex plane
and becomes real.~Note that ate521 the entire spectrum agrees with the entire spectrum in Fig. 11 ate51.! This
reemergence is difficult to see in this figure but is much clearer in Fig. 15 in which the vicinity ofe521 is blown up. Just
belowe521, the eigenvalues once again begin to pinch off and disappear in pairs into the complex plane. However, this
pairing is different from the pairing in the region21,e,0. Abovee521 the lower member of a pinching pair is even
and the upper member is odd~that is,E8 andE9 combine,E10 andE11 combine, and so on!; below e521 this pattern
reverses~that is,E7 combines withE8 , E9 combines withE10 , and so on!. As e decreases from21 to 22, the number of
real eigenvalues continues to decrease until the only real eigenvalue is the ground-state energy. Then, ase approaches
221, the ground-state energy diverges logarithmically. Fore<22 there are no real eigenvalues.

FIG. 15. A magnification of Fig. 14 in the vicinity of the transition ate521. Just abovee521 the entire spectrum
reemerges from the complex plane, and just belowe521 it continues to disappear into the complex plane. The spectrum
is entirely real ate521.
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x55
s

&
e25ip/4 ~Rex,0!,

r

&
eip/4 ~Rex.0!,

~4.8!

for x in the left-half and in the right-half complex plane, respectively. Note ass andr increase,x
moves towards complex infinity in both the left- and right-half plane.

The wave function in the left-half plane,cL(s), and the wave function in the right-half plane,
cR(r ), satisfy the differential equations

2
d2

ds2 cL~s!1S s2

4
2

1

2DcL~s!5ncL~s!,

~4.9!

2
d2

dr2 cR~r !1S r 2

4
2

1

2DcR~r !5~2n21!cR~r !,

where we have setn52( i /2)E2 1
2. For each of these equations the solution that vanishes at

infinity is a parabolic cylinder function:16

cL~s!5CLDn~s!5CLDn~x&e5ip/4!,
~4.10!

cR~r !5CRD2n21~r !5CRD2n21~x&e2 ip/4!,

whereCL andCR are arbitrary constants.
We impose the quantization condition by patching these solutions together atx50 on the

real-x axis according to the patching conditions

cL~x!ux505cR~x!ux50 ,
~4.11!

d

dx
cL~x!U

x50

5
d

dx
cR~x!U

x50

To eliminate the constantsCL andCR we take the ratio of these two equations and simplify the
result by cross multiplying:

FcR~x!
d

dx
cL~x!2cL~x!

d

dx
cR~x!GU

x50

50. ~4.12!

We now show that this condition cannot be satisfied by thed50 wave function in Eq.~4.10!.
For this case, the quantization condition~4.12! states that

Dn~s!
d

ds
D2n21~ is!2D2n21~ is!

d

ds
Dn~s! ~4.13!

vanishes ats50. ~We have simplified the argument by settings5x&e5ip/4!. But Eq. ~4.13! for
any value ofs is just the Wronskian for parabolic cylinder functions16 and this Wronskian equals
2 ie2 inp/2. This is anonzeroresult. Thus, whend50, there cannot be any eigenvalueE, real or
complex, and the spectrum is empty.

The quantization condition~4.12! can be satisfied whend.0. We investigate this region for
the case whend is small and positive by performing an asymptotic analysis. We assume thatE
→` asd→01, but slower than any power ofd, and that the wave functionc(x) has a formal
power series expansion ind:
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c~x!;y0~x!1dy1~x!1O~d2! ~d→01 !. ~4.14!

Next, we expand the Schro¨dinger equation~4.6! in powers ofd:

y09~x!1x2y0~x!1Ey0~x!50,
~4.15!

y19~x!1x2y1~x!1Ey1~x!52x2 ln~ ix !y0~x!,

and so on.
Of course, to zeroth order ind we obtain Eq.~4.7! for y0(x). Thus, in the left- and right-half

complexx-plane we get

y0
L~x!5CLDn~x&e5ip/4!,

~4.16!
y0

R~x!5CRD2n21~x&e2 ip/4!.

To first order ind, we simplify the differential equation fory1(x) in ~4.15! by substituting

y1~x!5Q~x!y0~x!. ~4.17!

Using the differential equation fory0(x) in ~4.15!, we get

y0~x!Q9~x!12y08~x!Q8~x!52x2 ln~ ix !y0~x!. ~4.18!

Multiplying this equation by the integrating factory0(x), we obtain

@y0
2~x!Q8~x!#852x2 ln~ ix !y0

2~x!. ~4.19!

The integral of this equation gives

QL8~x!5E
x

`e25ip/4

dt t2 ln~ i t !F y0
L~ t !

y0
L~x!G

2

,

~4.20!

QR8 ~x!5E
x

`eip/4

dt t2 ln~ i t !F y0
R~ t !

y0
R~x!G

2

,

where the limit of the integral at infinity ensures thatQ8(x) is bounded foruxu→`.
To determine the asymptotic behavior of the ground-state eigenvalue asd→01, we insert

cL,R~x!;y0
L,R~x!1dy1

L,R~x!1O~d2!5y0
L,R~x!@11dQL,R~x!# ~4.21!

into the quantization condition~4.12!:

05FcR~x!
d

dx
cL~x!2cL~x!

d

dx
cR~x!GU

x50

5Fy0
R~x!

d

dx
y0

L~x!2y0
L~x!

d

dx
y0

R~x!GU
x50

@11d~QR~0!1QL~0!!#

1dy0
R~0!y0

L~0!@QL8~0!2QR8 ~0!#. ~4.22!

We are free to chooseQR(0)1QL(0)50 to simplify this result.
Substituting the Wronskian for the parabolic cylinder function and the result fory0(0) in Eq.

~4.16!, we obtain
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&e2pE/4;dDn~0!D2n21~0!@QR8 ~0!2QL8~0!#. ~4.23!

We can simplify this result using the identity

Dn~0!5
Ap2n/2

G~ 1
22n/2!

~4.24!

andn52( i /2)E2 1
2 to obtain

Dn~0!D2n21~0!5
G~ 1

21n/2!cos~pn/2!

G~11n/2!&
;

e~p/4!E

AE
, ~4.25!

where we have used the reflection formula,G(z)G(12z)5p/sin(pz), and the asymptotic behav-
ior G(x11/2)/G(x11);x21/2 for largex. Thus, Eq.~4.23! reduces to

A2E

d
e2pE/2;QR8 ~0!2QL8~0!. ~4.26!

We can further show that

QR8 ~0!2QL8~0!5E
0

`eip/4

dt t2 ln~ i t !FD2n21~&te2 ip/4!

D2n21~0! G2

2E
0

`e25ip/4

dt t2 ln~ i t !FDn~&te5ip/4!

Dn~0! G2

52E
0

` t2dt

23/2 e2 ip/4 lnS s

&
e3ip/4D F D2n21~ t !

D2n21~0!G
2

2E
0`

t2dt

23/2 eip/4 lnS s

&
e23ip/4D F Dn~ t !

Dn~0!G
2

. ~4.27!

We observe that the previous expression is real becausen* 52n21 implies that Dn(t)*
5D2n21(t) and thus the two integrals are complex conjugates. Thus, Eq.~4.27! is real, andE is
a real function ofd. Furthermore, because the ratioDn(t)/Dn(0) appears in both integrals, the
expression can at most vary as a power ofE. Hence, the contribution ofQR8 (0)2QL8(0) to the
balance in Eq.~4.26! is subdominant and can be neglected. Our final result for the small-d
behavior of the lowest eigenvalue is that

E;2
2

p
ln d1O@ ln~ ln d!# ~d→01!. ~4.28!

In Fig. 16 we show that Eq.~4.28! compares well with the numerical data for the lowest eigen-
value in the limit asd→0.

B. Classical x 4
„ ix …e theory

It is instructive to compare the quantum mechanical and classical mechanical theories for the
caseK52. Our objective in doing so is to understand more deeply the breaking ofPT symmetry
that occurs ate50. For the caseK51 we found thatPT symmetry is broken at the classical level
in a rather obvious way: Left–right symmetric classical trajectories become spirals ase becomes
negative~see Fig. 9!. However, we find that whenK52 spirals do not occur untile,22. The
classical manifestation ofPT symmetry breaking for22<e,0 and the transition that occurs at
e50 is actually quite subtle.

For purposes of comparison we begin by examining the classical trajectories for the positive
valuee50.7. In Fig. 17 we plot three classical trajectories in the complex-x plane. The first is an
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arc that joins the classical turning points in the lower-half plane. The other two are closed orbits
that surround this arc. The smaller closed orbit remains on the principal sheet and has a period
(T'4.9), which is equal to that of the arc. The more complicated trajectory is left–right sym-
metric but extends to three sheets of the Riemann surface. The period (T'26.1) of this third orbit
is significantly different from and larger than the period of the other two.

Next, we consider the negative valuee520.7. In Fig. 18 we plot two classical trajectories for
this value. The first~solid line! is an arc joining the classical turning points in the upper-half plane.
This arc extends to three sheets of the Riemann surface. The other trajectory~dashed line! is a
closed orbit that surrounds this arc. Both have the periodT'22.3. This figure illustrates the first

FIG. 16. A comparison of the lowest eigenvalue of the HamiltonianH5p21x4( ix)e ~solid circles! with the asymptotic
prediction in~4.28! ~solid line! neare522. The solid line includes a one parameter fit of terms that grow like ln(lnd) as
d→01.

FIG. 17. Three classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21x4( ix)e

with e50.7. The solid line represents oscillatory motion between the classical turning points. The long-dashed line is a
nearby trajectory that encloses and has the same period as the solid-line trajectory. The short dashed line has a different
topology~it enters three sheets of the Riemann surface! from the long-dashed line, even though these trajectories are very
near one another in the vicinity of the turning points. The period of this motion is much longer than that of the solid and
long-dashed trajectories.
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of two important changes that occur ase goes below zero. The trajectory that joins the two turning
points no longer lies on the principal sheet of the Riemann surface; it exhibits a multisheeted
structure.

Figure 19 illustrates the second important change that occurs ase goes below zero. On this
figure we again plot two classical trajectories for the negative valuee520.7. The first~solid line!
is the arc joining the classical turning points in the upper-half plane. This arc is also shown on Fig.
18. The second trajectory~dashed line! is a closed orbit that passes near the turning points. The
two trajectories do not cross; the apparent points of intersection are on different sheets of the
Riemann surface. The period of the dashed trajectory isT'13.7, which is considerablysmaller
than that of the solid line. Indeed, on the basis of extensive numerical studies, it appears that all
trajectories for22,e,0, while they arePT ~left–right! symmetric, have periods that are less
than or equal to that of the solid line. Whene.0, the periods of trajectories increase as the
trajectories move away from the oscillatory trajectory connecting the turning points.

FIG. 18. Two classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21x4( ix)e

with e520.7. The solid line represents oscillatory motion between the classical turning points. This trajectory enters three
sheets of the Riemann surface. The dashed line is a nearby trajectory that encloses and has the same period as the solid-line
trajectory.

FIG. 19. Two classical trajectories in the complex-x plane for a particle described by the HamiltonianH5p21x4( ix)e

with e520.7. The solid line represents oscillatory motion between the classical turning points and is the same as that in
Fig. 18. The dashed line is a nearby trajectory whose period is smaller than the period of the solid-line trajectory.
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We speculate that for negative values ofe the appearance of complex eigenvalues in the
quantum theory~see Fig. 14! is associated with an instability. The path integral for a quantum
theory is ordinarily dominated by paths in the vicinity of the classical trajectory connecting the
turning points. However, whene is negative, we believe that these trajectories no longer dominate
the path integral because there are more remote trajectories whose classical periods aresmaller.
Thus, the action is no longer dominated by a stationary point in the form of a classical path having
PT symmetry. Hence, the spectrum can contain complex eigenvalues.

The appearance of a purely real spectrum for the special valuee521 is consistent with this
conjecture. For integer values ofe.22 we find that all classical trajectories lie on the principal
sheet of the Riemann surface and have thesameperiod.

C. Quantum x 6
„ ix …e theory

The spectrum for the caseK53 is displayed in Fig. 20. This figure resembles Fig. 14 for the
caseK52. However, now there are transitions at bothe521 ande522.
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