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This paper proposes to broaden the canonical formulation of quantum mechanics.
Ordinarily, one imposes the conditidh’=H on the Hamiltonian, where * repre-
sents the mathematical operation of complex conjugation and matrix transposition.
This conventional Hermiticity condition is sufficient to ensure that the Hamiltonian
H has a real spectrum. However, replacing this mathematical condition by the
weaker and more physical requiremétt=H, where I represents combined parity
reflection and time revers&?Z, one obtains new classes of complex Hamiltonians
whose spectra are still real and positive. This generalization of Hermiticity is in-
vestigated using a complex deformatidr= p?+ x2(ix)€ of the harmonic oscillator
Hamiltonian, wheree is a real parameter. The system exhibits two phases: When
€=0, the energy spectrum &f is real and positive as a consequencéP@isym-
metry. However, when-1<e<0, the spectrum contains an infinite humber of
complex eigenvalues and a finite number of real, positive eigenvalues be@ause
symmetry is spontaneously broken. The phase transition that occearsCamani-

fests itself in both the quantum-mechanical system and the underlying classical
system. Similar qualitative features are exhibited by complex deformations of other
standard real Hamiltoniard = p?+ x2N(ix)€ with N integer ande>—N; each of
these complex Hamiltonians exhibits a phase transitioneaD. These P7-
symmetric theories may be viewed as analytic continuations of conventional theo-
ries from real to complex phase space. 1®99 American Institute of Physics.
[S0022-248829)00105-X

I. INTRODUCTION

In a recent lettéra class of complex quantum-mechanical Hamiltonians of the form
H=p?+x%(ix)¢ (e real (1.1

was investigated. Despite the lack of conventional Hermiticity the spectrul f real and
positive for all e=0. As shown in Fig. 11 in this paper and Fig. 1 of Ref. 1, the spectrum is
discrete and each of the energy levels increases as a function of increadiegwill argue below
that the reality of the spectrum is a consequenc®binvariance.

The operatofP represents parity reflection and the oper&eepresents time reversal. These
operators are defined by their action on the position and momentum opetatody:

Px——X, p——p,
(1.2
TX—X, p——p, Ii—-—i.

0022-2488/99/40(5)/2201/29/$15.00 2201 © 1999 American Institute of Physics
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When the operatorg and p are real, the canonical commutation relation p]=i is invariant
under both parity reflection and time reversal. We emphasize that this commutation relation
remains invariant undeP and 7 even if x and p are complex provided that the above transfor-
mations hold. In terms of the real and imaginary partx @fnd p, x=Rex+i Imx and p=Rep
+ilmp, we have

P:Rex— —Rex, Imx——Imx,

Rep——Rep, Imp——Imp,

(1.3
T:Rex—Rex, Imx——Imx,

Rep— —Rep, Imp—Imp.

While there is as yet no proof that the spectruntoin Eq. (1.1) is real? we can gain some
insight regarding the reality of the spectrum dP&-invariant HamiltoniarH as follows: Note that
eigenvalues of the operat®7 have the forme'?. To see this, let be an eigenfunction oPT
with eigenvaluex: PT¥ =\ V. Recalling that P7)?=1, we multiply this eigenvalue equation by
PT and obtain\* A =1, where we have used the fact that —i underP7. Thus,\=¢€'?. We
know that if two linear operators commute, they can be simultaneously diagonalized. By assump-
tion, the operatorP7 commutes withH. Of course, the situation here is complicated by the
nonlinearity of the”7T operator(7 involves complex conjugationHowever, let us suppose for
now that the eigenfunctiong of H are simultaneously eigenfunctions of the operd®ar with
eigenvaluee'’. Then applyingP7 to the eigenvalue equatidhiy=E, we find that the energl
is real:E=E*.

We have numerically verified the supposition that the eigenfunctiohkinfEq. (1.1) are also
eigenfunctions of the operatd®7 when e=0. However, whene<0, the P7 symmetry of the
Hamiltonian is spontaneously broken; even tho@®yhcommutes wittH, the eigenfunctions dfl
arenot all simultaneously eigenfunctions @7. For these eigenfunctions &f the energies are
complex. Thus, a transition occurs @t 0. As € goes below 0, the eigenvalues as functiong of
pair off and become complex, starting with the highest-energy eigenvaluesdéareases, there
are fewer and fewer real eigenvalues and below approximately 0.57 793 only one real energy
remains. This energy then begins to increase with decreaseigd becomes infinite as ap-
proaches—1. In summary, the theory defined by Ed.1) exhibits two phases, an unbroken-
symmetry phase with a purely real energy spectrum wéei® and a spontaneously-broken-
symmetry phase with a partly real and partly complex spectrum veke.

A primary objective of this paper is to analyze the phase transitia=dt. We will demon-
strate that this transition occurs in the classical as well as in the quantum theory. As a classical
theory, the Hamiltoniatd describes a particle subject to complex forces, and therefore the trajec-
tory of the particle lies in the complexplane. The position and momentum coordinates of the
particle are complex functions of a real time parameter. We are interested only in solutions to
the classical equations of motion for which the energy of the particle is real. We will see that in
the P7-symmetric phase of the theory, the classical motion is periodic and is thus a complex
generalization of a pendulum. We actually observe two kinds of closed classical orbits, one in
which the particle oscillates between two complex turning points and another in which the particle
follows a closed orbit. In many cases these closed orbits lie on an elaborate multisheeted Riemann
surface. On such Riemann surfaces the closed periodic orbits exhibit remarkable knotlike topo-
logical structures. All of these orbits exhidRZ symmetry; they are left—right symmetric with
respect to reflections about the imaginargxis in accordance with Eq1.3). In the broken-
symmetry phase classical trajectories are no longer closed. Instead, the classical path spirals out to
infinity. These spirals laclP7 symmetry.

There have been many previous instances of non-Hermfiizmnvariant Hamiltonians in
physics. Energies of solitons orcamplexToda lattice have been found to be ré&lamiltonians
rendered non-Hermitian by an imaginary external field have been used to study population



J. Math. Phys., Vol. 40, No. 5, May 1999 Bender, Boettcher, and Meisinger 2203

biology* and to study delocalization transitions such as vortex flux-line depinning in type I
superconductordin these cases, initially real eigenvalues bifurcate into the complex plane due to
the increasing external field, indicating the growth of populations or the unbinding of vortices.
The PZ-symmetric Hamiltonian considered in this paper has many generalizatiphstro-
ducing a mass term of the fornn®x? yields a theory that exhibits several phase transitions;
transitions occur at=—1 and e=—2 as well as ate=0. (i) Replacing the condition of
Hermiticity by the weaker constraint 87 symmetry also allows one to construct new classes of
quasi-exactly solvable quantum theorfeii) In this paper we consider complex deformations of
real Hamiltonians other than the harmonic oscillator. We show that Hamiltonians of the form

H=p?+x?K(ix)¢ (1.9

have the same qualitative propertiedam Eq. (1.1). As e decreases below 0, all of these theories
exhibit a phase transition from an unbrok@&7Y-symmetric regime to a regime in whicR7
symmetry is spontaneously broken.

The HamiltoniarH in (1.1) is especially interesting because it can be generalized to quantum
field theory. A number of such generalizations have recently been examine@®7Fsgmmetric
scalar field theory described by the Lagrandian

L=3(0¢)*+m*p*+g¢(id)¢ (e=0) (1.9

is intriguing because it is not invariant under parity reflection. This is manifested by a nonzero
value of (¢). It is interesting that this broken symmetry persists even whe® is an even
integer’ The Hamiltonian for this theory is not Hermitian and, therefore, the theory is not unitary
in the conventional sense. However, there is strong evidence that the spectrum for this theory is
real and bounded below. Fer=1 one can understand the positivity of the spectrum in terms of
summability. The weak-coupling expansion for a conventigpat theory is real, and apart from
a possible overall factor af, the Green’s functions are formal power seriegin These series are
not Borel summable because they do not alternate in sign. Nonsummability reflects the fact that
the spectrum of the underlying theory is not bounded below. However, when we repigde,
the perturbation series remains real but now alternates in sign. Thus, the perturbation series
becomes summable, and this suggests that the underlying theory has a real positive spectrum.
Replacing conventionaj ¢* or g¢° theories byPZ-symmetric—g¢* or ig ¢ theories has
the effect of reversing signs in the beta function. Thus, theories that are not asymptotically free
become asymptotically free and theories that lack stable critical points develop such points. There
is evidence that-g¢* in four dimensions is nontrividl.
Supersymmetric quantum field theory that/§ invariant has also been studigdVhen we
construct a two-dimensional supersymmetric quantum field theory by using a superpotential of the
form S(¢)=—ig(i )1 "¢, the supersymmetric Lagrangian resulting from this superpotential is

L=30$)?+ 5 b+ 3S' () P+ Y S( )12
=H0)2+ Si b+ 39(1+ €) (i p) pp— 3%(i )22, (1.6)

whereys is a Majorana spinor. The Lagrangiéh3) has a broken parity symmetry. This poses the
question, Does the parity violation induce a breaking of supersymmetry? To answer this question,
both the ground-state ener§y, and the fermion—boson mass raRowvere calculated as series in
powers of the parametet Through second order i E,=0 andR= 1, which strongly suggests
that supersymmetry remains unbroken. We believe that these results are valid to all orders in
powers ofe. This work and our unpublished numerical studies of SUSY quantum mechanics show
that complex deformations do not break supersymmetry.

Quantum field theories having the propertyRif invariance exhibit other interesting features.
For example, the Ising limit of @7-invariant scalar quantum field theory is intriguing because it
is dominated by solitons rather than by instantons as in a conventional quantum fieldthieory.
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addition, a model ofPZ-invariant quantum electrodynamics has been stutliethe massless
theory exhibits a stable, nontrivial fixed point at which the renormalized theory is finite. Moreover,
such a theory allows one to revive successfully the original electron model of Casimir.
Since(¢)+#0 in PZ-symmetric theories, one can in principle calculate dire¢tiging the
Schwinger—Dyson equations, for examptlee real positive Higgs mass in a renormalizaBl&
symmetric theory in which symmetry breaking occurs naturally. No symmetry-breaking parameter
needs to be introduced. This most intriguing idea could lead to an experimental vindication of our
proposed generalization of the notion of Hermiticity2@ symmetry.
This paper is organized as follows: In Sec. Il we study the classical version of the Hamiltonian
in Eq. (1.1). The behavior of classical orbits reveals the nature of the phase transitioaCat
Next, in Sec. lll we analyze the quantum version of this Hamiltonian. We derive several
asymptotic results regarding the behavior of the energy levels near the phase transition. In Sec. IV
we discuss the classical and quantum properties of the broad cl@&syimmetric Hamiltonians
in Eq. (1.4) of whichH in Eq. (1.1) is a special case.

Il. CLASSICAL THEORY

The classical equation of motion for a particle describedHoyn (1.1) is obtained from
Hamilton’s equations:

dx dH _,
aap 2P
(2.1
dp JH H ivilte
a——E—I(Z'FE)(IX) .

Combining these two equations gives
dZ

WzZi(ZJre)(ix)”f, (2.2)
which is the complex version of Newton’s second l&ws ma.
Equation(2.2) can be integrated once to give

1 dx

N Ul 23

whereE is the energy of the classical partidiae time-independent value 6f). We treat timet
as a real variable that parametrizes the complex péthof this particle.

This section is devoted to studying and classifying the solutions tqZ8). By virtue of the
PT invariance of the Hamiltoniahl, it seems reasonable to restrict our attention to real values of
E. Given this restriction, we can always rescalandt by real numbers so that without loss of
generality Eq.(2.3) reduces to

%= =1+ (ix)?Te. (2.9

The trajectories satisfying E@2.4) lie on a multi-sheeted Riemann surface. On this surface
the functiony1+ (ix)27 € is single valued. There are two sets of branch cuts. The cuts in the first
set radiate outward from the roots of

1+(ix)?*€=0. (2.9

These roots are the classical turning points of the motion. There are many turning points, all lying
at a distance of unity from the origin. The angular separation between consecutive turning points
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FIG. 1. Classical trajectories in the complexylane for the harmonic oscillator whose HamiltoniarHis- p+ x?. These
trajectories represent the possible paths of a particle whose enegyis The trajectories are nested ellipses with foci
located at the turning points &at= + 1. The real line segmeittlegenerate ellipge€onnecting the turning points is the usual
periodic classical solution to the harmonic oscillator. All closed pgske Eq.(2.6)] have the same periodn2

is 27/(2+€). The second set of branch cuts is present only whénnoninteger. In order to
maintain explicitP7 symmetry(left—right symmetry in the complex-plang, we choose these
branch cuts to run from the origin to infinity along the positive imaginary axis.

A. Case €=0

Because the classical solutions to Ef.4) have a very elaborate structure, we begin by
considering some special valuesefThe simplest case is=0. For this case there are only two
turning points and these lie on the real axistt.

In order to solve Eq(2.4) we need to specify an initial conditiox(0). Thesimplest choice
for x(0) is a turning point. If the path begins atl, there is a unique direction in the compbex-
plane along which the phases of the left side and the right side of2&=j.agree. This gives rise
to a trajectory on the real axis that oscillates between the two turning points. This is the well-
known sinusoidal motion of the harmonic oscillator.

Note that once the turning points have been fixed, the energy is determined. Thus, choosing
the initial position of the particle determines the initial veloditip to a plus or minus sigras
well. So, if the path of the particle begins anywhere on the real axis between the turning points, the
initial velocity is fixed up to a sign and the trajectory of the particle still oscillates between the
turning points.

Ordinarily, in conventional classical mechanics the only possible initial positions for the
particle lie on the reak axis between the turning points because the velocity is real; all other
points on the real axis lie in the classically forbidden region. However, because we are analytically
continuing classical mechanics into the complex plane, we can choose anyxp@)nin the
complex plane as an initial position. For all complex initial positions outside of the conventional
classically allowed region the classical trajectory is an ellipse whose foci are the turning points.
The ellipses are nested because no trajectories may ¢8ess.Fig. 1. The exact solution to Eq.

(2.9 is

X(t)=cogarccox(0)*+t], (2.6

where the sign of determines the directiotclockwise or anticlockwisein which the particle
traces the ellipse. Fany ellipse the period of the motion isi2 The period is the same for all
trajectories because we can join the square-root branch cuts emanating from the turning points,
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FIG. 2. Classical trajectories in the complexylane for a particle described by the Hamiltonids- p?+ix® and having
energyE=1. An oscillatory trajectory connects the turning poirts. This trajectory is enclosed by a set of closed, nested
paths that fill the finite complex-plane except for points on the imaginary axis at or above the turning pgint.
Trajectories originating at one of these exceptional points go afbtor else they approacky,, stop, turn around, and then
move up the imaginary axis tieo.

creating a single finite branch cut lying along the real axis fxom—1 tox= 1. The complex path
integral that determines the period can then be shfbgkCauchy’'s theorejnto the usual real
integral joining the turning points.

Finally, we remark that all of the classical patledliptical orbitg are symmetric with respect
to parity P (reflections through the origirand time reversal (reflections about the real axiss
well asPT (reflections about the imaginary axi§urthermore and 7 individually preserve the
directions in which the ellipses are traversed.

B. Case €=1

The casee=1 is significantly more complicated. Now there are three turning points. Two are
located below the real axis and these are symmetric with respect to the imaginary axis:
=e 576 andx, =e '™, That is, underPT reflectionx_ andx. are interchanged. The third
turning point lies on the imaginary axis g§=i.

As in the casee=0, the trajectory of a particle that begins at the turning pgintfollows a
unique path in the complexplane to the turning point at, . Then, the particle retraces its path
back to the turning point a_, and it continues to oscillate between these two turning points.

This path is shown on Fig. 2. The period of this motion @F(%)/F(%). The periodic motion
betweenx.. is clearly time-reversal symmetric.
A patrticle beginning at the third turning poimt, exhibits a completely distinct motion: It

travels up the imaginary axis and reachesin a finite time 7 I'(£)/T'(2). This motion is not
periodic and is not symmetric under time reversal.

Paths originating from all other points in the finite compleplane follow closed periodic
orbits. No two orbits may intersect; rather they are all nested, like the ellipses for thes case
=0. All of these orbits encircle the turning points and, by virtue of Cauchy’s theorem, have the

same period 37T (£)/T(2) as the oscillatory path connecting. . Because these orbits must
avoid crossing the trajectory that runs up the positive imaginary axis from the turning>goint
=i, they are pinched in the region just beloyy, as shown on Fig. 2.

As these orbits become larger they develop sharper indentations in the viciniy. e
observe that the characteristic radius of a large orbit approaches the reciprocal of the distance
betweernx, and the point where the orbit intersects the positive imaginary axis. Thus, it is appro-
priate to study these orbits from the point of view of the renormalization group: We scale the
distanced down by a factoiL and then plot the resulting orbit on a graph whose axis are scaled
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FIG. 3. Approach to the limiting cardioid in E¢2.8). As the orbits shown in Fig. 2 approach the turning paint they

get larger. Using a renormalization-group approach, we plot successively larger(ongitsuch orbit is shown as a dashed

line) scaled down by the characteristic size of the orbit. The limiting cardioid is indicated by a solid line. The indentation

in the limiting cardioid develops because classical trajectories may not intersect and thus must avoid crossing the trajectory
(shown in Fig. 2 on the imaginary axis abovg,.

down by the same factdr. Repeated scaling gives a limiting orbit whose shape resembles a
cardioid(see Fig. 3 The equation of this limiting orbit is obtained in the asymptotic regime where
we neglect the dimensionless energy 1 in Eq4):

—==*(ix)¥ (2.7)

The solution to this differential equation, scaled so that it crosses the negative imaginary axis at
—3i, is

4i

U= 2

(—oo<t<oo). (2.9

This curve is shown as the solid line in Fig.(Strictly speaking, this curve is not a true cardioid,
but its shape so closely resembles a true cardioid that we shall refer to it in this paper as the
limiting cardioid)

In the infinite scaling limit all periodic orbitgall these orbits have perioch@ 7T (£)/T ()],
which originally filled the entire finite complexplane, have been squeezed into the region inside
the limiting cardioid(2.8). The nonperiodic orbit still runs up the positive imaginary axis. The
obvious question is, What complex classical dynamics is associated with all of the other points in
the scaled complexplane that lie outside of the limiting cardioid? We emphasize that all of these
points were originally at infinity in the unscaled compbeyplane.

We do not know the exact answer to this question, but we can draw a striking and suggestive
analogy with some previously published work. It is generally true that the region of convergence
in the complexx plane for an infinitely iterated function is a cardioid-shaped region. For example,
consider the continued exponential function

f(x)=ex®® (2.9

The sequence®,e*¥,... isknown to converge in a cardioid-shaped region of the complelane

(see Figs. 2—4 in Ref. 13It diverges on the straight line that emerges from the indentation of the
cardioid. The remaining part of the complgyplane is divided into an extremely elaborate mosaic

of regions in which this sequence converges to limit cycles of period 2, period 3, period 4, and so
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FIG. 4. Classical trajectories in the compleylane for a particle described by the Hamiltonidr= p?—x* and having
energyE=1. There are two oscillatory trajectories connecting the pairs of turning pringdx, in the lower-half

x-plane andk; andx, in the upper-hali-plane.[A trajectory joining any other pair of turning points is forbidden because

it would violate P7 (left-right) symmetry] The oscillatory trajectories are surrounded by closed orbits of the same period.

In contrast to these periodic orbits there is a class of trajectories having unbounded path length and running along the real-
axis. These are the only paths that violate time-reversal symmetry.

on. These regions have fractal structure. It would be interesting if unbounded complex classical
motion exhibits this remarkable fractal structure. In other words, does the breakiRgaofl 7
symmetry allow for unbounded chaotic solutions?

C. Case €=2

Whene=2 there are four turning points, two located below the real axis and symmetric with
respect to the imaginary axis;=e~ 3™ andx,=e '™, and two more located above the real
axis and symmetric with respect to the imaginary axiss € ™* andx,=e%™*. Classical trajec-
tories that oscillate between the pair andx, and the paix; andx, are shown on Fig. 4. The

period of these oscillations is\2 7' (3)/T'(3). Trajectories that begin elsewhere in the comptex-
plane are also shown on Fig. 4. Note that by virtue of Cauchy’s theorem all these nested nonin-
tersecting trajectories have the same period. All motion is periodic except for trajectories that
begin on the real axis; a particle that begins on the xeatis runs off to+oo, depending on the

sign of the initial velocity. These are the only trajectories that are nonperiodic.

The rescaling argument that gives the cardioid for the easé& yields a doubly indented
cardioid for the case&=2 (see Fig. 5 This cardioid is similar to that in Fig. 5 of Ref. 13.
However, for the case=2 the limiting double cardioid consists of two perfect circles, which are
tangent to one another at the origirs 0. Circles appear becauseet 2 in the scaling limit the
equation corresponding 1@.7) is dx/dt= = x?. The solutions to this equation are the inversions
x(t)==x[2/(t+1i)], which map the real-axis into circles in the complexlane.

D. Case €=5

When e=5 there are seven turning points, one located atd three pairs, each pair sym-
metric with respect to reflection about the imaginary af9 symmetrig. We find that each of
these pairs of turning points is joined by an oscillatory classical trajectéryrajectory joining
any other two turning points would violate7 symmetry) Surrounding each of the oscillatory
trajectories are nested closed loops, each loop having the same period as the oscillatory trajectory
it encloses. These classical trajectories are shown on Fig. 6. The periods for these three families of
trajectories are
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FIG. 5. Limiting double cardioid for the case=2. As the orbits in Fig. 4 approach the real axis, they get larger. If we
scale successively larger orbits down by their characteristic size, then in the limiting case the orbits approach two circles
tangent at the origin. In this limit the four turning points in Fig. 4 coalesce at the point of tangency.

T'(8/7)
4 ﬁr(9/14)

cosé,
where 6=57/14 for the lowest pair of turning point®)==/14 for the middle pair, and)
=3/14 for the pair above the real axis.

One other class of trajectory is possible. If the initial position of the classical particle lies on
the imaginary axis at or above the turning pointi,athen depending on the sign of the initial

1} (\/\ .
0.5 S

05 1

FIG. 6. Classical trajectories in the complexylane for a particle described by the Hamiltonids- p?+ix” and having
energyE=1. Shown are oscillatory trajectories surrounded by periodic trajectories. Unbounded trajectories run along the
positive-imaginary axis above=i.
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velocity, the particle either runs off i@ or it approaches the turning point, reverses its direction,
and then goes off toee. These purely imaginary paths are the only possible nonperiodic trajec-
tories. They are also shown on Fig. 6.

E. General case: Noninteger values of €>0

Because Eq(2.4) contains a square root function, the turning points, which are solutions to
Eqg. (2.5, are square root branch points for all valueseofThus, in principle, the complex
trajectoriesx(t) lie on a multi-sheeted Riemann surface. However, wkeéa a non-negative
integer, we can define the branch cuts so that the classical trajectories satisfyi(®ydEqever
leave the principal sheet of this Riemann surface. We do this as follows: We choose to join the
‘PT-symmetric(left—right-symmetri¢ pairs of turning points by branch cuts that follow exactly the
oscillatory solutions connecting these paif&here are three such pairs in Fig. 6, two in Fig. 4, and
one in Figs. 2 and 1If eis odd, there is one extra turning point that lies on the positive imaginary
axis (see Figs. 2 and)6the branch cut emanating from this turning point runs up the imaginary-
axis toiw. Since classical paths never cross, there are no trajectories that leave the principal sheet
of the Riemann surface.

When € is noninteger, we can see from the argument of the square root function {2.Bx.
that there is an entirely new branch cut, which emerges from the origin in the complare. To
preserveP7 symmetry we choose this branch cut to run offetcalong the positive-imaginary
x-axis. If e is rational, the Riemann surface has a finite number of sheets, bigd ifrational, then
there are an infinite number of sheets.

If a classical trajectory crosses the branch cut emanating from the origin, then this trajectory
leaves the principal sheet of the Riemann surface. In Fig. 7 we illustrate some of the possible
classical trajectories for the case- w— 2. The top plot shows some trajectories that do not cross
the positive-imaginaryaxis and thus do not leave the principal sheet of the Riemann surface. The
trajectories shown are qualitatively similar to those in Fig. 2; all trajectories have the same period.

In the middle plot of Fig. 7 is a trajectory that crosses the positive-imagixaris and visits
threesheets of the Riemann surface. The solid line and the dotted line outside of the solid line lie
on the principal sheet, while the remaining two portions of the dotted line lie on two other sheets.
Note that this trajectory doawt cross itself; we have plotted the projection of the trajectory onto
the principal sheet. The trajectory continues to exHifiitsymmetry. The period of the trajectory
is greater than that of the period of the trajectories shown in the top plot. This is because the
trajectory encloses turning points that are not on the principal sheet. In general, as the size of the
trajectory increases, it encloses more and more complex turning points; each time a new pair of
turning points is surrounded by the trajectory the period jumps by a discrete quantity.

Although the trajectory in the bottom plot in Fig. 7 has the same topology as that in the middle
plot, it is larger. As the trajectory continues to grow, we observe a phenomenon that seems to be
universal; namely, the appearance of a limiting cardioid stispied line) on the principal surface.

The remaining portion of the trajectofdotted ling shrinks relative to the cardioid and becomes
compact and knotlike.

In Fig. 8 we examine the case=0.5. In this figure we observe behavior that is qualitatively
similar to that seen in Fig. 7; namely, as the trajectory on the principal sheet of the Riemann
surface becomes larger and approaches a limiting cardioid, the remaining portion of the trajectory
becomes relatively small and knotlike.

To summarize, for ang>0 the classical paths are alwaPg symmetric. The simplest such
path describes oscillatory motion between the pair of turning points that lie just below the real axis
on the principal sheet. In general, the period of this motion as a functierio§iven by

T:4\/;E75/(4+25)

I'(3+e)/(2+¢€)) { €T . 2.10

T((4+ e)l(4+2€)) N 2+ 2¢

Other closed paths having more complicated topologiesl longer periogsalso exist, as shown
in Figs. 7 and 8.
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FIG. 7. Classical trajectories féf = p?— (ix) ™ corresponding to the case= 7— 2. Observe that as the classical trajectory
increases in size, a limiting cardioid appears on the principal sheet of the Riemann surface. On the other sheets the
trajectory becomes relatively small and knotlike.

Whenever the classical motion is periodic, we expect, the quantized version of the theory to
exhibit real eigenvalues. Although we have not yet done so, we intend to investigate the conse-
quences of quantizing a theory whose underlying classical paths have complicated topological
structures traversing several sheets of a Riemann surface. The properties of such a theory of
quantum knots might well be novel.
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FIG. 8. Classical trajectories for the case 0.5. As the classical path on the principal sheet of the Riemann surface
increases in size it approaches a limiting cardioid, just as in Fig. 7. The remaining portion of the path becomes relatively
small and knotlike.

F. Case —1<e<0

Classical paths for negative valuesesdire fundamentally different from those corresponding
to non-negative values e&f such paths no longer exhilfaZ7 symmetry. Furthermore, we no longer
see paths that are periodic; all paths eventually spiral outwards to infinity. In general, the time that
it takes for a particle to reach infinity is infinite.
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We interpret the abrupt change in the global nature of the classical behavior that oceurs as
passes through 0 as a change in phase. For all valueshef Hamiltonian in Eq(1.1) is PT
(left—right) symmetric. However, foe<0 the solutions cease to exhil7 symmetry. Thus, we
say thate=0 is aP7-symmetric phase and that 0 is a spontaneously brokepZ-symmetric
phase.

To illustrate the loss oPT (left—right) symmetry, we plot in Fig. 9 the classical trajectory for
a particle that starts at a turning point = — 7(4+€)/(4+2¢) in the second quadrant of the
complexx plane(Rex<0, Imx>0) for three values o0& —0.2,—0.15, and—0.1. We observe that
a path starting at this turning point moves toward missesthe P7-symmetric turning point
x,.=—(el(4+2€)) because it crosses the branch cut on the positive-imaginaxis. This path
spirals outward, crossing from sheet to sheet on the Riemann surface, and eventually veers off to
infinity asymptotic to the angl®.., where

2+e€
0= — . (2.11)
2€

This formula shows that the total angular rotation of the spiral is finite foeal0 but becomes
infinite ase—0~. In the top figure é=—0.2) the spiral makes32urns before moving off to
infinity; in the middle figure €=—0.15) the spiral makes:3turns; in the bottom figure
=—0.1) the spiral makes34urns.

Note that the spirals in Fig. 9 pass many classical turning points as they spiral clockwise from
Xx_. {From Eqg. (2.5 we see that thenth turning point lies at the anglg(4—e—4n)/(4
+2¢€)]m (x_ corresponds tm=0).} As € approaches 0 from below, when the classical trajectory
passes a new turning point, there is a corresponding merging of the quantum energyasvels
shown in Fig. 11 As pointed out in Ref. 1, this correspondence becomes exact in thedimit
—0~ and is a manifestation of Ehrenfest’s theorem.

G. Case e=-1

For this special case we can solve the equafibd) exactly. The result,
x(1)=(1—b?+#?)i+bt (b real, (2.12

represents a family of parabolas that are symmetric with respect to the imaginargexibig.
10). Note that there is one degenerate parabola correspondibg @that lies on the positive
imaginary axis above

lll. QUANTUM THEORY

In this section we discuss the quantum properties of the Hamiltodiam Eq. (1.1). The
spectrum of this Hamiltonian is obtained by solving the corresponding 8iclyer equation

— ¢ () +[X(ix) ‘= E]y(x)=0 3.9

subject to appropriate boundary conditions imposed in the complglene. These boundary
conditions are described in Ref. 1. A plot of the spectruntiaé shown in Fig. 11.

There are several ways to obtain the spectrum that is displayed in Fig. 11. The simplest and
most direct technique is to integrate the differential equation using Runge—Kutta. To do so, we
convert the complex differential equati@g®.1) to a system of coupled, real, second-order equa-
tions. We find that the convergence is most rapid when we integrate along anti-Stokes lines and
then patch the two solutions together at the origin. This procedure, which is described in Ref. 1,
gives highly accurate numerical results.

To verify the Runge—Kutta approach, we have solved the differential equ&idnusing an
independent and alternative procedure. We construct a matrix representation of the Hamiltonian in

Eq. (1.1 in harmonic oscillator basis functiores *2H (x) 7~ X4/ 2"n!:
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FIG. 9. Classical trajectories that viol#® symmetry. The top plot corresponds to the case— 0.2, the middle plot to
e=—0.15, and the bottom plot te= —0.1. The paths in each plot begin at a turning point and spiral outwards to infinity
in an infinite amount of time.

M =—fw dx—1 e X2H _(x) d—2—im+n
mn o \m2™ " min! ™ dx?

Xcos{g(e—m—n) |x|2+E] e X2H (x). (3.2
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FIG. 10. Classical trajectories in the compleplane for a particle described by the Hamiltonidr= p?—ix and having
energyE=1. Shown are parabolic trajectories and a turning poirit Atl trajectories are unbounded.

TheKth approximant to the spectrum comes from diagonalizing a truncated version of this matrix
Mmn (0=m, n=K). One drawback of this method is that the eigenvalues!gf, approximate

those of the Hamiltoniak in (1.1) only if —1<e<2. Another drawback is that the convergence

to the exact eigenvalues is slow and not monotone because the Hamiltbigarot Hermitian in

a conventional sense. We illustrate the convergence of this truncation and diagonalization proce-
dure fore=—3 in Fig. 12.

A third method for finding the eigenvalues in Fig. 11 is to use WRBentzel-Kramers—
Brillouin). Complex WKB theory(see Ref. 1 gives an excellent analytical approximation to the
spectrum.

In the next two subsections we examine two aspects of the spectrum in Fig. 11. First, we study

Energy

FIG. 11. Energy levels of the Hamiltoniad=p?+x?(ix)€ as a function of the parameter There are three regions.:
Whene=0, the spectrum is real and positive and the energy levels rise with increasihg lower bound of this region,
e=0, corresponds to the harmonic oscillator, whose energy level§are2n+ 1. When —1<e<O0, there are a finite
number of real positive eigenvalues and an infinite number of complex conjugate pairs of eigenvakidscrenses from

0 to —1, the number of real eigenvalues decreases; whken 0.57793, the only real eigenvalue is the ground-state energy.
As € approaches- 1%, the ground-state energy diverges. kst — 1 there are no real eigenvalues.
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Energy

FIG. 12. Real eigenvalues of th& ¢-1)X (K+1) truncated matriM, , in Eq. (3.2) (K=0,1,...,17) fore:f%. As K

increases, the three lowest eigenvalues converge to the three real energy levels in Fig=11 -12‘1t The other real
eigenvalues do not stabilize, and instead disappear in pairs.

the asymptotic behavior of the ground-state energyg-as—1. Second, we examine the phase
transition in the vicinity ofe=0.

A. Behavior of the ground-state energy near e=—1

In this subsection we give an analytic derivation of the behavior of the lowest real energy
level in Fig. 11 ase— — 1. We show that in this limit the eigenvalue grows logarithmically.
When e= — 1, the differential equatiof3.1) reduces to

=" (X) —ixgp(x)=E(x), 3.3

which can be solved exactly in terms of Airy functiofsThe anti-Stokes lines at= — 1 lie at 30°
and at—210° in the complex plane. We find the solution that vanishes exponentially along each
of these rays and then rotate back to the reakis to obtain

Y r(X)=Cp g Ai(Fxe™ ™04 Ee 2B), (3.4

We must patch these solutions togethekat0 according to the patching condition

=0. (3.9

x=0

d
O|—)(|¢(X)|2

But for real E, the Wronskian identity for the Airy functidfiis

1

<0 2

(3.6)

d : .
&|A| (Xeflﬂ'lﬁ_i_ Ee*ZIﬂ'/3)|2

instead of 0. Hence, there is no real eigenvalue.
Next, we perform an asymptotic analysis for — 1+ § where § is small and positive:

=" () = (i) 2y (x) = E(x),

) 3.7
W0~ Yo(X) + 8y1(0 +O(8)  (6-0+).
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We assume thdE—» as §—0+ and obtain

Yo(X) +iXyo(X) + Eyo(x)=0,
(3.9
y1(X) +ixy (x) +Eyi(x)=—ix In(ix)ye(x),

and so on.

To leading order we again obtain the Airy equati@?d) for yy(x). The solution foryy(x)
(x=0) is given by#r(x) in Eg. (3.4) and we are free to choo$g;=1. We can expand the Airy
function inyy(x) for large argument in the limiE— c:

yo(x):Ai(Xefiﬂ'/G_’_ Ee72i17/3)~(xe7i77/6+ Ee72i17/3)71/4exq:%(xefiﬂ'/6+ Ee*Ziﬂ'/B)S/Z].
(3.9

At x=0 we get
Yo(0)=Aj (Ee 273 ¢l 77/6E—1/4e(2/3)E3/2/(2 \/;)_ (3.10
To next order ine we simplify the differential equation foy;(x) in (3.8 by substituting
Y1(X) = Q(X)Yo(X). (3.11
Using the differential equation fory(x) in (3.8), we get
Yo(X)Q"(X) +2yo(X)Q" (x) = —ix In(iX)yo(X). (3.12
Multiplying this equation by the integrating factgp(x), we obtain
[Y500Q" ()]"==ix In(ix)y5(x), (313
which integrates to
[
Yo(X)

Q' (x)= Locdttln(it)yg(t), (3.19

where the upper limit of the integral ensures tRE{(x) is bounded fox— . Thus, we obtain

’ _ I * H 2
Q (0)—)7(2)(T)f0 dx xIn(ix)yg(x). (3.1

To determine the asymptotic behavior of the ground-state eigenvalde-&s we insert

P(X)~Yo(X) + 8y1(X) + O(8%) =yo(x)[1+ 6Q(x) ]+ O(6) (3.19

into the quantization condition:

d d
0= [¥* (9] ~g LYo+ 8Q* () (L +6Q(x))]

x=0 x=0

+28]yo(0)|>R4Q’(0)]
x=0

d
~ [ Yo(0I?]

d
+25d—x[|yO(X)|2] R Q(0)]. (3.17
0

X=
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TABLE |. Comparison of the exact ground-state enegyeare=—1 and
the asymptotic results in Eq43.21). The explicit dependence & on e=
—1+ & is roughlyEx(—In 8% as6—0+.

5 EEXECI Eq (321)
0.01 1.6837 2.0955
0.01 2.6797 3.9624
0.001 3.4947 3.6723
0.0001 4.1753 4.3013
0.00 001 4.7798 4.8776
0.000 001 5.3383 5.4158
0.0 000 001 5.8943 5.9244

We are free to choos®(0)=0, and doing so eliminates the last term on the right side. The
leading-order result for the quantization condition in E2}6) then gives

1
5—~28lyo(0)|*ReQ"(0)]. (3.18

Next, we substitute the asymptotic form fgy in Eq. (3.10 and the result fo’(0) in Eq.(3.15
and obtain

Yo(X) |2
0

JEe*<4’3>E3’2~25Ref dx ixIn(ix) 319
o Yo(0)

Because the ratio of the unperturbed wave functions in the integrand 8828 is bounded

and vanishes exponentially for largewe know that the integral can grow at most as a power of
E. Thus,

5~ CE®e~ (43E% (3.20

for some powera and constanC and the controling behavior of the ground-state energy as
—0 is given by

E~[—3In&8]%8 (3.21)

where we have neglected terms that vary at most like &iy(BBquation(3.21) gives the asymptotic

behavior of the lowest energy level and is the result that we have sought. This asymptotic behavior
is verified numerically in Table I.

B. Behavior of energy levels near €=0
In this subsection we examine analytically the phase transition that occersQatin particu-

lar, we study high-lying eigenvalues for small negative values afid verify that adjacent pairs
of eigenvalues pinch off and become complex.

For smalle we approximateH in Eq. (1.1) to first order ine:
H=p2+x%+ ex?In(ix)+ O(€?). (3.22

Using the identity Inik)=In(|x|)+ 3i7sgn), we then have

i
H=p?+x%+ ex? In(|x|)+?sgr(x) +0(€?). (3.23
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The simplest way to continue is to truncate this approximate Hamiltonian tg 2 2atrix.
We introduce a harmonic oscillator basis as follows: Mtieeigenvalue of the harmonic oscillator
Hamiltonianp?+x? is E,=2n+1 and the correspondingspace normalized eigenstdi is

—14
Pn(X)= o

where H,(x) is the nth Hermite polynomial[Ho(x)=1, Hy(X)=2x, Hy(x)=4x2—2, H5(X)
=8x3—12x, and so oh We then have the following diagonal matrix elements:

e X4 (x), (3.24)

(n|p?+x2n)=2n+1, (3.29
0% 1
(n|x2In(|x|)|ny=a,— > +In2|{n+ 3/, (3.2
wherey is Euler’'s constant and
[n+1/2]
=n+1+|5|(+(n+5| X 1 (3.27
&n=" 2 2] 4 2k—1 '
We also have the off-diagonal matrix element
) 11, , X _1_8 1 I'?(n+1/2)]%2 -
(2n |§'7TX sgr(x)| n)—§|( n )m (3.28

In the (2n—1)—(2n) subspace, the matrid — E then reduces to the following>22 matrix:

(A—E iB )
iB C-E/) (329

where for largen and smalle we have
A~4n—1+¢€(n—1/2)In(2n),
B~ %en, (3.30
C~4n+1+enin(2n).
The determinant of the matrix in E¢3.\29 gives the following roots foE:
E=1A+C+\(A-C)2—4B?). (3.30)
We observe that the roots are degenerate when the discrimingthte square rootin Eq.
(3.31) vanishes. This happens when the condition

€=— (3.32

is met. Hence, the sequence of points in Fig. 11 where the eigenvalues pinch off appreaches
=0 asn—o. For example, Eq(3.32 predicts(usingn=4) that E; andEg become degenerate
and move off into the complex plane at=—0.1. In Fig. 13 we compare our prediction for the
behavior ofE in Eq. (3.31) with a blow-up of of a small portion of Fig. 11. We find that while our
prediction is qualitatively good, the numerical accuracy is not particularly good. The lack of
accuracy is not associated with truncating the expansion in powerbutfrather with truncating
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FIG. 13. A comparison of the prediction in E@.31 and a magnification of Fig. 11. Our prediction for the point at which
E, andEg become degenerate is not very accurate numerically but is qualitatively quite good.

the HamiltonianH to a 2< 2 matrix. Our numerical studies indicate that as the size of the matrix
truncation increases, we obtain more accurate approximations to the behavior of the energy levels
E in Fig. 11.

IV. MORE GENERAL CLASSES OF THEORIES

In this section we generalize the results of Secs. Il and Il to a much wider class of theories.
In particular, we consider a complex deformation of #f# anharmonic oscillator, wherk
=1,2,3,...[see Eq.1.4)]. The Schrdinger equation for this oscillator has the form

— " (X)+[x®(ix)¢ = E]y(x) =0. 4.9

To determine the energy levels as functions of the deformation parameterwe must
impose appropriate boundary conditions on &ql). We require that the wave function vanish as
|x|—c inside of two wedges symmetrically placed about the imagixaayis. The right wedge is
centered about the angtgy,, where

- 7 4.2
TS “2

and the left wedge is centered about the arfilg, where
O\ert= il 4.3
= T K 2e+ 4" 43

The opening angle of each of these wedges is

—277 4.4
2K+€e+2° 4.9

This pair of wedges i$7 (left—right) symmetric.
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The orientation of these wedges is determined by analytically continuing the differential
equation eigenvalue proble(.1) and associated boundary conditions in the variahlsing the
techniques explained in Ref. 15. The rotation of the boundary conditions is obtained from the
asymptotic behavior of the solutian(x) for large |X|:

. | e/2XK+1+ €2
Y ~exq T ren

(In this formula we give theontrolling factorof the asymptotic behavior of the wave function; we
neglect algebraic contributiondNote that at the center of the wedges the behavior of the wave
function is most strongly exponential; the centerline of each wedge is an anti-Stokes line. At the
edges of the wedges the asymptotic behavior is oscillatory. The lines marking the edges of the
wedges are Stokes lines.

For all positive integer values df the results are qualitatively similar. A4=0 the two
wedges are centered about the positive and negative real axesné&®ases from 0 the wedges
rotate downward and become thinner. In the regierD the eigenvalues are all real and positive
and they rise with increasing As e— o, the two wedges become infinitely thin and lie along the
negative imaginary axis. There is no eigenvalue problem in this limit because the solution contour
for the Schrdinger equatior{4.1) can be pushed off to infinity. Indeed, we find that in this limit
the eigenvalues all become infinite.

Whene is negative, the wedges rotate upward and become thicker. The eigenvalues gradually
pair off and become complex starting with the highest eigenvalues. Hiisymmetry is spon-
taneously broken foe<<0. Eventually, as approaches-K, only the lowest eigenvalue remains
real. At e=—K the two wedges join at the positive imaginary axis. Thus, again there is no
eigenvalue problem and there are no eigenvalues at all. In thedimit K the one remaining real
eigenvalue diverges logarithmically.

The spectrum for the case of arbitrary positive intefeis quite similar to that folkK=1.
However, in general, wheK>1, a novel feature emerges: A new transition appears for all
negative integer values efbetween 0 and-K. At these isolated points the spectrum is entirely
real. Just above each of these negative-integer valuethefenergy levels reemerge in pairs from
the complex plane and just below these special valuestloé energy levels once again pinch off
and become complex.

. (4.9

A. Quantum x“(ix)€ theory

The spectrum for the casé=2 is displayed in Fig. 14. This figure resembles Fig. 11 for the
caseK=1. However, atte=—1 there is a new transition. This transition is examined in detail in
Fig. 15.

An important feature of the spectrum in Fig. 14 is the disappearance of the eigenvalues and
divergence of the lowest eigenvalue @decreases te-2. Following the approach of Sec. Il A,
we now derive the asymptotic behavior of the ground-state energy-as2*. To do so we let
e=—2+ 6 and obtain from Eq(4.1) the Schrdinger equation

— ¢ (X) = X3(iX) °(x) = Eg(X). (4.6)

We study this differential equation for small positive
When =0 this differential equationi4.6) reduces to

— ¢ () = X2P(x) = Eg(X). (4.7

The anti-Stokes lines for this equation lie at 45° and-&25°. Thus, we rotate the integration
contour from the real axis to the anti-Stokes lines and substitute
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FIG. 14. Energy levels of the Hamiltoniath= p?+ x*(ix) € as a function of the parameter This figure is similar to Fig.

11, but now there are four regions: Wher 0, the spectrum is real and positive and it rises monotonically with increasing
e. The lower bounde=0 of this PZ-symmetric region corresponds to the pure quartic anharmonic oscillator, whose
Hamiltonian is given byH =p2+x* When—1<e<0, P7 symmetry is spontaneously broken. There are a finite number
of real positive eigenvalues and an infinite number of complex conjugate pairs of eigenvalues; as a funetibe of
eigenvalues pinch off in pairs and move off into the complex plane. By thedime 1 only eight real eigenvalues remain;
these eigenvalues are continuougatl. Just as approaches-1 the entire spectrum reemerges from the complex plane
and becomes real(Note that ate=—1 the entire spectrum agrees with the entire spectrum in Fig. kk=4t) This
reemergence is difficult to see in this figure but is much clearer in Fig. 15 in which the vicinéty f1 is blown up. Just
below e= — 1, the eigenvalues once again begin to pinch off and disappear in pairs into the complex plane. However, this
pairing is different from the pairing in the region1<e<0. Abovee= —1 the lower member of a pinching pair is even
and the upper member is odthat is,Eg and Eq combine,E;, and E;; combine, and so gnbelow e= —1 this pattern
reversegthat is,E; combines withEg, Eq combines withE;, and so oh As e decreases from-1 to —2, the number of

real eigenvalues continues to decrease until the only real eigenvalue is the ground-state energy. & hppraeches

— 27", the ground-state energy diverges logarithmically. Esr— 2 there are no real eigenvalues.

R
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Energy

20 ¢

FIG. 15. A magnification of Fig. 14 in the vicinity of the transition &t — 1. Just abovee=—1 the entire spectrum
reemerges from the complex plane, and just betew— 1 it continues to disappear into the complex plane. The spectrum

is entirely real ate=—1.



J. Math. Phys., Vol. 40, No. 5, May 1999 Bender, Boettcher, and Meisinger 2223

s
Ee"r’"”“ (Rex<0),
X= (4.9

ro
5e‘”’4 (Rex>0),

for x in the left-half and in the right-half complex plane, respectively. Note asdr increasex
moves towards complex infinity in both the left- and right-half plane.

The wave function in the left-half plang (s), and the wave function in the right-half plane,
YRr(r), satisfy the differential equations

d? 2 1
T P (s)+ 2 E) I (s)=vip(s),
4.9
d? r2 1 49
_W‘//R(r)"' Z_§>1//R(r):(_v_1)‘//R(r):

where we have set=—(i/2)E— 3. For each of these equations the solution that vanishes at
infinity is a parabolic cylinder functiot?

#1(S)=C_D,(s)=C_ D, (xv2e° ™),

: (4.10
Yr(r)= CRD*V*l(r):CRD—V—l(X\/Qe7IWI4),

whereC, andCg are arbitrary constants.
We impose the quantization condition by patching these solutions together @ton the
realx axis according to the patching conditions

wL(X)|x=0: ¢R(X)|x=01
(4.11)

d d
d_X‘ﬁL(X) x=o_d_x Ur(X) .

To eliminate the constants, and Cr we take the ratio of these two equations and simplify the
result by cross multiplying:

d d
lﬁR(X)d_Xl//L(X)_lﬂL(X)d_X‘ﬁR(X) =0. (4.12

x=0

We now show that this condition cannot be satisfied bydké® wave function in Eq(4.10.
For this case, the quantization conditighl2 states that

d d
D.(8) ggP-v-1(i8) =D ,-1(is) 5o Du(s) (4.13

vanishes as=0. (We have simplified the argument by settisg xv2e® ™). But Eq. (4.13 for
any value ofs is just the Wronskian for parabolic cylinder functidhand this Wronskian equals
—ie”'"™2 This is anonzeroresult. Thus, whe=0, there cannot be any eigenvalBgereal or
complex, and the spectrum is empty.

The quantization conditiofd4.12 can be satisfied whef>0. We investigate this region for
the case wher is small and positive by performing an asymptotic analysis. We assum& that
— as6— 0+, but slower than any power a@f and that the wave functiog(x) has a formal
power series expansion if
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P(X)~Yo(X)+ 8y1(x)+0O(8%)  (6—0+). (4.14

Next, we expand the Schdimger equatior(4.6) in powers of&:

Y(X) +X2yo(X) + Eyo(x) =0,
(4.15
Y1(X)+X2y1(X) + Ey1(X) = = X2 In(iX)yo(X),

and so on.
Of course, to zeroth order iiwe obtain Eq(4.7) for yo(x). Thus, in the left- and right-half
complexx-plane we get

Y6(x)=C D (xv2e° ™4,
(4.16
Yo(X)=CrD_,_1(xv2e™"™),
To first order ing, we simplify the differential equation for,(x) in (4.15 by substituting
Y1(X)=Q(X)Yo(X). (4.17
Using the differential equation forg(x) in (4.15, we get

Yo(X)Q"(x)+2y5(x)Q" (x)==x?In(ix)yo(X).- (4.18

Multiplying this equation by the integrating factgp(x), we obtain
[Y500Q" ()]"==x*In(ix)y3(X). (4.19

The integral of this equation gives

, _ ooe*5i77/4 ) . yla(t) 2
QL(X)_L dt t=In(it) yé(x) ,
1 (4.20
N T LI Yo(t)
QR(X)—JX dttoIn(it) yff(x) ,

where the limit of the integral at infinity ensures ti@t(x) is bounded fofx|— .
To determine the asymptotic behavior of the ground-state eigenvalie:&S, we insert

PR~ Y6 () + 8:R(0 +0(8%) =yg ROO[ 1+ 6Q-R(x)] (.29

into the quantization conditiot4.12):

d d
0= lﬁR(X)&lﬂL(X)_lﬁL(X)&lﬂR(X)
x=0
= yR<x>iyL<x>—yL<x>iyR<x> [1+ 8(Qr(0)+QL(0))]
0 dX 0 0 dX 0 o R L
+ 8yR(0)y5(0)[ Q[ (0)— QR(0)1. (4.22

We are free to choos®g(0)+ Q. (0)=0 to simplify this result.
Substituting the Wronskian for the parabolic cylinder function and the resuit,{@) in Eq.
(4.16), we obtain
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v2e™ ™4~ 5D ,(0)D -, 1(0)[QR(0)— Q[ (0)]. (4.23
We can simplify this result using the identity

\/;21//2
D,(0)= ——— 4.2
A0) - (4.24

andv=—(i/2)E— 3 to obtain

T (3+v/2)cogmvl2) € ™HE
T(1+v/2)v2 E

D,(0)D_,-1(0)= (4.25

where we have used the reflection formuldz)I'(1—z) = #/sin(w2), and the asymptotic behav-
ior I'(x+1/2)/T (x+ 1)~x~? for largex. Thus, Eq.(4.23 reduces to

J2E

e Q0 - QI (0). (4.26

We can further show that

R(0)—Q[(0 _fmeimd 2In(i D, 1(2te 12 fwe—S‘“”d 2in(i D, (v2teSi™4) ]2
QR(O=QuUO)= ] - AtV =5~ 5| ~ J, te (it =5 57—
= t2dt s D_._.(1)]?
= — —I'n'/4| _ p3iml4 [v—l}
fo PR n(\/fe 5 .(0)
tdt s . \[D,n?
i w4 _— - 3iwml4 v
0. 292 € In<‘/§ [—DV(OJ : (4.27

We observe that the previous expression is real becafise—v—1 implies thatD,(t)*
=D_,_4(t) and thus the two integrals are complex conjugates. Thus(42jJ) is real, anckE is

a real function ofés. Furthermore, because the rafig(t)/D,(0) appears in both integrals, the
expression can at most vary as a powetEoHence, the contribution oRx(0)— Q[ (0) to the
balance in Eq.(4.26 is subdominant and can be neglected. Our final result for the small-
behavior of the lowest eigenvalue is that

E~—%In 5+0[In(In 8] (5—0%). (4.28

In Fig. 16 we show that Eq4.28 compares well with the numerical data for the lowest eigen-
value in the limit asé—0.

B. Classical x*(ix)¢€ theory

It is instructive to compare the quantum mechanical and classical mechanical theories for the
caseK =2. Our objective in doing so is to understand more deeply the breakifRy sfymmetry
that occurs at=0. For the cas& =1 we found thatP7 symmetry is broken at the classical level
in a rather obvious way: Left—right symmetric classical trajectories become spiralbeammes
negative(see Fig. 9. However, we find that wheK =2 spirals do not occur unté<—2. The
classical manifestation d?7 symmetry breaking for-2<e<0 and the transition that occurs at
e€=0 is actually quite subtle.

For purposes of comparison we begin by examining the classical trajectories for the positive
valuee=0.7. In Fig. 17 we plot three classical trajectories in the complplane. The first is an
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FIG. 16. A comparison of the lowest eigenvalue of the Hamiltorilenp?+ x*(ix)€ (solid circleg with the asymptotic
prediction in(4.28 (solid line) neare= —2. The solid line includes a one parameter fit of terms that grow like B)(bs
6—0".

arc that joins the classical turning points in the lower-half plane. The other two are closed orbits
that surround this arc. The smaller closed orbit remains on the principal sheet and has a period
(T=~4.9), which is equal to that of the arc. The more complicated trajectory is left—right sym-
metric but extends to three sheets of the Riemann surface. The p&ro2i6(1) of this third orbit
is significantly different from and larger than the period of the other two.

Next, we consider the negative valae —0.7. In Fig. 18 we plot two classical trajectories for
this value. The firstsolid line) is an arc joining the classical turning points in the upper-half plane.
This arc extends to three sheets of the Riemann surface. The other trajetzehed lingis a
closed orbit that surrounds this arc. Both have the pefisd®2.3. This figure illustrates the first

FIG. 17. Three classical trajectories in the compleptane for a particle described by the Hamiltonides= p?+ x*(ix) €

with €e=0.7. The solid line represents oscillatory motion between the classical turning points. The long-dashed line is a
nearby trajectory that encloses and has the same period as the solid-line trajectory. The short dashed line has a different
topology (it enters three sheets of the Riemann surfdicem the long-dashed line, even though these trajectories are very

near one another in the vicinity of the turning points. The period of this motion is much longer than that of the solid and
long-dashed trajectories.
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FIG. 18. Two classical trajectories in the compleplane for a particle described by the Hamiltonidr= p?+ x*(ix) €

with e=—0.7. The solid line represents oscillatory motion between the classical turning points. This trajectory enters three
sheets of the Riemann surface. The dashed line is a nearby trajectory that encloses and has the same period as the solid-line
trajectory.

of two important changes that occur @agoes below zero. The trajectory that joins the two turning
points no longer lies on the principal sheet of the Riemann surface; it exhibits a multisheeted
structure.

Figure 19 illustrates the second important change that occuesgass below zero. On this
figure we again plot two classical trajectories for the negative vatue- 0.7. The first(solid line)
is the arc joining the classical turning points in the upper-half plane. This arc is also shown on Fig.
18. The second trajectorfglashed lingis a closed orbit that passes near the turning points. The
two trajectories do not cross; the apparent points of intersection are on different sheets of the
Riemann surface. The period of the dashed trajectoly~id 3.7, which is considerablgmaller
than that of the solid line. Indeed, on the basis of extensive numerical studies, it appears that all
trajectories for—2<e<0, while they areP7 (left—right) symmetric, have periods that are less
than or equal to that of the solid line. When>0, the periods of trajectories increase as the
trajectories move away from the oscillatory trajectory connecting the turning points.

FIG. 19. Two classical trajectories in the compleplane for a particle described by the Hamiltonidr= p?+ x*(ix) €
with e=—0.7. The solid line represents oscillatory motion between the classical turning points and is the same as that in
Fig. 18. The dashed line is a nearby trajectory whose period is smaller than the period of the solid-line trajectory.
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FIG. 20. Energy levels of the Hamiltoniath=p?+ x8(ix) € as a function of the parameter This figure is similar to Fig.

14, but now there are five regions: Whe® 0, the spectrum is real and positive and it rises monotonically with increasing
e. The lower bounde=0 of this PZ-symmetric region corresponds to the pure sextic anharmonic oscillator, whose
Hamiltonian is given byH =p?+x8. The other four regions are 1<e<0, —2<e<—1, —3<e<-—2, ande<—3. The

‘PT symmetry is spontaneously broken wheis negative, and the number of real eigenvalues decreagdseasmes more
negative. However, at the boundaries — 1,— 2 there is a complete real positive spectrum. When- 1, the eigenspec-
trum is identical to the eigenspectrum in Fig. 14eat1. For e< — 3 there are no real eigenvalues.

We speculate that for negative values eothe appearance of complex eigenvalues in the
qguantum theorysee Fig. 14 is associated with an instability. The path integral for a quantum
theory is ordinarily dominated by paths in the vicinity of the classical trajectory connecting the
turning points. However, wheais negative, we believe that these trajectories no longer dominate
the path integral because there are more remote trajectories whose classical persdallere
Thus, the action is no longer dominated by a stationary point in the form of a classical path having
PT symmetry. Hence, the spectrum can contain complex eigenvalues.

The appearance of a purely real spectrum for the special wauel is consistent with this
conjecture. For integer values ef>—2 we find that all classical trajectories lie on the principal
sheet of the Riemann surface and havegameperiod.

C. Quantum x5(ix)€ theory

The spectrum for the casé=3 is displayed in Fig. 20. This figure resembles Fig. 14 for the
caseK = 2. However, now there are transitions at beth—1 ande= —2.
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