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Abstract
An algorithm is discussed to find boundary values to partial differential equations in the knowledge of the solution of that 
equation inside a part of the domain enclosed by the boundary. The method is used as a tool of analytic continuation to 
complement a method proposed recently (Mihálka and Surján, in Phys Rev A 96:062106, 2017) for finding resummed values 
of divergent perturbation series.
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1  Introduction

In a recent paper [1], we introduced an a posteriori scaling 
of individual terms E(n) of a series

which for z = 1 recovers the original (eventually divergent) 
series, but for |z| < |z0| produces a convergent one if |z0| is 
the radius of convergence. E(0) is identified as the eigen-
value of H0 , and E(n) denotes the nth-order contribution to 
E(z = 1) . In applications to theoretical chemistry, terms E(n) 

can be resulted from a perturbation theory (PT) calculation, 
e.g., for the correlation energy in the Møller–Plesset (MP) 
partitioning. Perturbation parameter z is only a formal tool 
in such calculations, usually set equal to 1. In the present 
context, it is explicitly used as a scaling parameter to gener-
ate the sum E(z) within the convergent domain.

The idea followed in Ref. [1] was based on function E(z) 
being analytic along a path from a point z (with |z| < |z0|) 
to the point z = 1 . In such a case, analytic continuation 
techniques can be used to extrapolate the values E(z) in the 
“trusted region” (i.e., for |z| < |z0| ) to z = 1 which is the 
point of physical interest.

So far we have used simple extrapolation procedures via 
fitting by polynomials or Padé approximants as analytic con-
tinuation tools. In this work, we investigate a more sophis-
ticated technique that utilizes some mathematical proper-
ties of analytic functions. The procedure can be applied to 
regularize divergent perturbation series that often emerge 
when calculating electron correlation energy with the Har-
tree–Fock reference state in the MP partitioning.

2 � The background problem: convergence 
issues in PT

Consider the Hamiltonian split into a zero-order part H0 and 
a perturbation W as

(1)E(z) =

∞∑

n=0

znE(n),

(2)H(z) = H0 + z W,
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where the scaling parameter z is, in general, a complex num-
ber with z = 1 corresponding to the physical situation. The 
eigenproblem

implies that both the eigenvectors � (z) and the eigenvalues 
E(z) are z-dependent. Applying Rayleigh–Schrödinger PT 
(see, e.g., Ref. [2]), one expands E(z) into an infinite power 
series according to Eq. (1).

Permitting complex values for z opens a possibility for 
a mathematical analysis to investigate convergence issues. 
If the complex function E(z) is analytic, i.e., free from any 
singularities in a disk |z| < |z0| on the complex z = x + iy 
plane, then E(z) can be expanded into a convergent power 
series for any values z on this disk. Therefore, the conver-
gence radius of PT, |z0| , is determined by the location of 
the singularity of E(z) closest to the origin. Such analyses 
were systematically applied by Goodson [3], who proposed 
to locate the singularities (which are typically branchings 
when E(z) is obtained from a secular equation of H(z)) by 
fitting quadratic Padé approximants to the E(n) values. In 
Ref. [1], we emphasized that values E(z) can be obtained at 
no further cost once the PT contributions E(n) are available, 
by scaling the nth-order term by zn a posteriori (cf. Eq. (1)). 
The estimation for the convergence radius |z0| is given by the 
largest modulus |z| for which the scaled sum is convergent.

3 � Analytic continuation and the Laplace 
equation

Assume we have selected many points z in the trusted region 
( |z| < |z0| ) in which the scaled values E(z) of Eq. (1) are 
thus available, including complex values of z. The E(z) val-
ues, although obtained from scaling the terms of a diver-
gent series E(n) , represent well the analytic function E(z) to 
a desired numerical accuracy. We consider the case when the 
true function E(z) has no singularity from the right of the 
trusted region (the case of backdoor intruders, see, e.g., [4]). 
The case of front-door intruders will be mentioned later.

Let us decompose E(z) to its the real ( u(z) = u(x, y) ) and 
imaginary ( v(z) = v(x, y) ) parts ( z = x + iy):

If the function E(z) is analytic in the domain of interest, both 
u(x, y) and v(x, y) are harmonic functions [5] satisfying the 
two-dimensional Laplace equations

The Laplace equation is known to have a unique solution 
within a closed domain if the values of the solution are avail-
able along the boundary of that domain [6].

(3)H(z) � (z) = E(z) � (z)

(4)E(z) = u(x, y) + i v(x, y).

(5)Δu = 0 and Δv = 0.

The present situation is illustrated schematically in Fig. 1. 
We have determined |z0| by the above scaling procedure, 
which marks the trusted region (the inner disk in gray in the 
figure). The arrow on the figure from the trusted region to 
z = 1 simply indicates that we aim to perform an analytic 
continuation of E(z) from the trusted region to the point of 
physical interest. For this aim, we investigate the following 
procedure.

A new closed boundary is marked on the complex plane 
with a substantial overlap with the trusted region in a way 
that its boundary passes through the point z = 1 . This 
domain is symbolized by the smaller off-centered circle in 
Fig. 1. In case we knew the values of u(x, y) all along the 
boundary of this domain, values of u(x, y) could be deter-
mined inside the domain from the Laplace Eq. (5). In the 
present case, however, we only know u(x, y) = Re{(E(z)} in 
a part of the area enclosed in the boundary, i.e., for all x, y 
within the shaded region, but we do not know u(x, y) along 
the boundary outside the trusted region.

Finding the missing boundary values can be called as the 
inverse boundary value problem.

Practically, we set up the following procedure:

1.	 Find the trusted region by scaling the PT terms by zn
2.	 Draw a closed domain (hereafter: the working domain) 

including many points in the trusted region and its 
boundary passing through z = 1 (the shape needs not be 
a circle)

3.	 Initialize the unknown boundary values, e.g., by some 
extrapolation procedure

4.	 Solve the Laplace equation numerically inside the 
boundary

1-1

i

-i

*

* trusted region

Fig. 1   Scheme for analytic continuation. The asterisks indicate sin-
gularities of E(z), and the gray disk shows the trusted region. The 
smallest, off-centered circle, referred to as the working region, whose 
perimeter intentionally embeds the point z = 1 , represents the bound-
ary within which the Laplace equation is solved



Theoretical Chemistry Accounts         (2018) 137:149 	

1 3

Page 3 of 4    149 

5.	 Calculate a measure of the error as a root-mean-square 
difference between the computed and known values of 
u(x, y) for all x, y points in the overlap of the trusted 
region and the working domain

6.	 Optimize the unknown (initialized) boundary values by 
minimizing the above error.

Once this procedure is carried out until convergence, we 
have an estimation for the boundary values of the working 
domain, including the point (x, y) = (1, 0) which is of our 
interest. As an eigenvalue of a Hermitian operator E(z) is 
real for real z; thus, E(z = 1) = u(1, 0) is the estimation of 
the true eigenvalue of H(z = 1) , that is, a resummation of the 
original, eventually divergent, PT series.

The above procedure can be repeated for the imaginary 
part v(x, y), and the satisfaction of the Cauchy–Riemann 
equations can also be checked. This is merely for control 
purposes, since v(x, y) = 0 on the real axis; thus, it has no 
contribution to the physical energy E(1).

Utilization of the Laplace equation as a tool of analytic 
continuation has been previously proposed in Ref. [7] in a 
quite different context. In that approach, the solution of the 
Laplace equation is approximated as a linear combination 
of logarithmic functions (recall that − 1

2�
log(r) is the funda-

mental solution of the Laplace equation in two dimensions).
The case of a front-door intruder has to be mentioned. 

In this situation, the branching points closest to the origin, 
whose location determines a convergence radius, appear at 
the right of the trusted domain. In order to apply the present 
procedure, one has to more carefully devise the working 
domain in which the Laplace equation is to be solved, to 
avoid the singularities.

4 � Numerical example

As a preliminary numerical illustration, we consider the case 
of the symmetrically stretched water molecule in the 6-31G∗ 
basis set [8] at R(OH) being 2.25 times of the Hartree–Fock 
equilibrium distance. At this geometry, the Møller–Plesset 
PT is divergent for this system. The large-order results are 
illustrated in Fig. 2, exhibiting also a few low-order results, 
the exact (frozen core) full configuration interaction (FCI) 
level, as well as the value we obtained from the present 
Laplace equation-based analytic continuation technique. To 
illustrate the results by numbers, the low-order MP results 
as well as the resummed value for the electron correlation 
energy are also collected in Table 1.

Boundary values, following the recipe described in 
the previous section, were iteratively determined with 
stopping the iteration at a root-mean-square error of 
1.41002 × 10−4 . The grid size for solving the Laplace 

equation was 1.000 × 10−2 in the direction of the x-axis 
and 9.804 × 10−4 in the direction of the y-axis.

The message of the figure and the table is clear. The 
MPn series is divergent, and the error of low-order results 
is quite large. The MP6 value is accidentally quite close 
to full CI, but after that heavily divergent oscillatory pat-
tern is seen. Using these divergent numbers in the scaling 
procedure, and performing their resummation by analytic 
continuation using the Laplace equation, we obtain the 
resummed value whose error is less than a millihartree. 
Since this value is obtained from a numerical procedure, 
it is not necessarily an upper bound, and in the case inves-
tigated here, the resummed energy is slightly below FCI.

The technique described in this paper is appropriate for 
testing rather than being practical, since large-order PT 
results were admitted to enter the scaling procedure. In the 
future, it has to be investigated what can be done if only low-
order results are available. Work in this line is in progress.

-0.42

-0.4

-0.38

-0.36

-0.34

-0.32

-0.3

 10  20  30  40  50  60  70  80  90

MP3

MP4
MP5

FCI

resummation

 c
or

re
la

tio
n 

en
er

gy
 [a

.u
.]

order of PT

Fig. 2   Convergence pattern of the MP perturbation series for the cor-
relation energy for the water molecule at 2.25 equilibrium distance. A 
few low-order results are marked with horizontal lines, as well as the 
exact (FCI) level and the estimation obtained by the present Laplace 
equation-based analytic continuation resummation method

Table 1   Correlation energy and energy error (deviation from the FCI 
energies) of the symmetrically stretched water molecule at various 
orders of MP PT and their resummed value [a.u]

Method E
corr

Energy error

MP2 − 0.299483 0.099773
MP3 − 0.299209 0.100047
MP4 − 0.373205 0.026051
MP5 − 0.374127 0.025129
AnalCont − 0.400171 − 0.000915
FCI − 0.399256 0.0
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