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In parity-time-symmetric (P7-symmetric) Hamilt-
onian theory, the optimal evolution time can be
reduced drastically and can even be zero. In this
article, we report our experimental simulation of
the fast evolution of a P7-symmetric Hamiltonian
in a nuclear magnetic resonance quantum system.
The experimental results demonstrate that the P7-
symmetric Hamiltonian system can indeed evolve
much faster than the quantum system, and the
evolution time can be arbitrarily close to zero.

1. Introduction

The brachistochrone problem, i.e. the minimum time
evolution between two states, is an interesting and
important problem. In quantum mechanics, the brachis-
tochrone between two states is bounded by the
maximum difference of the eigenvalues of the Hamil-
tonian [1-8]. Brachistochrone has important applications.
For instance, the time-optimal approach to the quantum
algorithmic complexity has attracted much interest
recently [9,10].

The Hermiticity requirement of a Hamiltonian
guarantees that its eigenvalues are real. It also implies
that the evolutionary operator e~ (/MH! js unitary.
However, Hermiticity is a sufficient condition but not
necessary for real eigenvalues, and the entire spectrum
of a wide class of non-Hermitian Hamiltonians can
also be real. Among these Hamiltonians [11] is a
class that is parity-time symmetric (P7-symmetric).
The P7-symmetric Hamiltonian has been investigated
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intensively in recent years, both in theory [11-31] and in experiments [32-36]. P7-symmetries
have been experimentally observed in table-top optical systems [32-35] and in spin-polarized Rb
atoms [36].

The novel character of PT-symmetric Hamiltonians brings about many new features and may
lead to interesting applications. Faster than Hermitian quantum mechanics evolution is one of
these important aspects [12]. In this paper, we design and carry out an experiment that simulates
the time evolution of a P7-symmetric Hamiltonian with a nuclear magnetic resonance (NMR)
quantum system. We build a system in Hilbert space that admits both unitary and non-unitary
evolution, and observe the time evolution of a P7-symmetric Hamiltonian. The experimental
result shows that the minimal evolutionary time in a P7-symmetric system is faster than that in
the Hermitian case and can be arbitrarily close to zero.

2. Theoretical frame

A simple PT-symmetric non-Hermitian Hamiltonian for a two-level system is

sel® S
H= ( . seio‘>' 2.1

According to Bender ef al. [12], the largest and smallest eigenvalues are E+ =2scosa and 0,
respectively. The difference between them is

w=E; —E_=2scosa. (2.2)

Under the influence of e~ @/MH!, the PT-symmetric system that is initially in |0) = (1 0)T will go
to [12]

wt
. —(i/h)ts cosa COS\ 57 — &

e-tmmr (1) e T 2 2.3)

0 cos o isin a)ftL
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It takes the time
2h bid

T= ; (0[ =+ E) (2.4)

to evolve to state [1) = (0 1)T. When o — —x /2, it approaches zero, which is an impossible task
for a regular Hermitian Hamiltonian.
For comparison, the equivalent Hermitian Hamiltonian, Hp, was calculated [12] as

HO — (S cos o SCOSO(), (25)

S§COsSH ScCOosu

the eigenvalues of which are E4 = 2s cosa and 0, respectively. Here, E; — E_ = w, which is exactly
the same as that in the P7-symmetric case.
The evolution under this equivalent Hermitian Hamiltonian is given by

Scosa
Ccos ( t)
o~ (/M Hot 1) _ o= (i/Mtscosa h (2.6)
0 _isin SCoS ;
h
and the time it takes to evolve to the final state |1) is
h
n="-, (2.7)
w

which is constant for a fixed w.
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Figure 1. Quantum circuit for a 27 -symmetric system. Operations from left to right are a single-qubit operation V, CGo_in
(a 0-controlled Uy), G;_; (a1-controlled U;) and a Hadamard operation H. When the ancillary qubit is in |0),, the final state of
the work qubit is e~ /M0y,

3. Construction of a parity-time-symmetric Hamiltonian system

We now construct a system with a P7-symmetric Hamiltonian equation (2.1) and simulate its
time evolution. The vital part of the simulation is achieved using the idea of duality quantum
computing [37,38]. Duality quantum computing can be achieved by using an ancilla qubit using a
conventional quantum computer [37,38]. The principle to simulate a duality quantum computing
is shown in a quantum circuit in figure 1. Simulating the non-unitary evolution of a P7-symmetric
quantum system requires the determination of the explicit forms of the operators in figure 1.

For a conventional quantum computer, the idea to use an extended space consisting of a
system, and an ancilla for simulating a non-unitary evolution in a P7-symmetric system by a
unitary evolution in an extended space was proposed in Gunther & Samsonov [39]. This is similar
to our scheme used in the experiment in this work.

The system we use contains two qubits: the work qubit e and the ancillary qubit a. A qubit is
a two-level quantum system that is the building block in quantum information processing. The
input two-qubit state on the left is |0)4]|0).. We then perform the V unitary operation,

V= <C0s¢v —sin¢v>/ (3.1)

singy  cos ¢y

on the ancillary qubit, where ¢y is

(3.2)

arccos V 2s(sin(wt/2h) /w))? + cos?(wt/2h)
V@s(sin(wt/2h) /w))? + cos?(wt/2h) + (2s sina(sin(wt/2h) [w))2 )

Next, we apply two controlled unitary operations,

U 0 I 0
CO‘”1=<01 1) and CH’Z:(O u2>’

= (cos ¢u, isin ¢u1> (3.3)

isingy, cosdy,

where

(3.4)

¢u, = arcsin (- 2s(sin(wt/2h) /o) >

V @s(sin(wt/2h) /w))? + cos?(wt/2h)
and Up = 0. Finally, a Hadamard operation is used on the work qubit e. Here, t is the evolution
time in the P7-symmetric system, s is the parameter in the Hamiltonian in equation (2.1) and

is the difference between the two eigenvalues of the Hamiltonian.
After performing the operations shown in figure 1, the final state becomes

: 1
% [|0>a e~ W/MH ), 4 |1)a5(COS¢vU1 - Sin¢VU2)\0)e], (3.5)
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where g is
e(i/h)ts cos o

(3.6)

V2s(sin(wt/2h) /)2 + cos2(wt/2h) + (25 sin e (sin(wt/2h) /)2

which is a non-zero number and tends to 1/+/3 as @« — —7/2 and t = 7. If we observe the work
qubit conditioned on the ancillary qubit to be in state |0),, the evolution associated with the work
qubit becomes

e~ W/MHY ) 3.7)

which is the P7-symmetric Hamiltonian evolution.

It is worth explaining the symbols. We use t to denote the evolution time in the P7-symmetric
quantum system. The time it takes to complete the evolution in the work-ancilla two-qubit system
is designated as . The time it takes for the P7-symmetric quantum system to evolve from |0) to
|1) is indicated as t and the corresponding time it takes to complete the operations in the work-
ancilla two-qubit system is represented by 7. As we construct the P7-symmetric system with a
one-qubit subspace of a two-qubit Hilbert space, in which the sub-system evolves non-unitarily
while the whole system evolves unitarily, the evolving time f of the whole system depends on
the evolution time t of the PT-symmetric system, and vice versa. The evolving time t for the P7-
symmetric system can approach zero when « tends to —(i7/2), which is faster than the counterpart
Hermitian system.

4. Experimental realization

We simulated the evolution process in an NMR quantum system, C'3-labelled chloroform that
consists of two qubits. The C!® nuclear spin works as the work qubit and the proton nuclear spin
works as the ancillary qubit. We begin from the state 0),]0).. We then evolve the P7-symmetric
system to some time ¢ by applying the corresponding operations given in figure 1. Next, we
measure the state of the work qubit conditioned on the ancillary qubit a being in state |0),. By
varying the instant ¢, we observe the state evolution of the P7-symmetric system.

The following NMR notations are adopted. The free evolution of the two-qubit system for a
period of X is denoted as [X],

[X] _ efi(n[X/Z)afaZf, (41)

where ] =215.23 Hz is the coupling constant between C!3 and H'. A rotation of spin m through
angle ¢ about axis j is denoted as [¢]", and [¢]!" = e 199" /2,

The spatial-averaging method [40] was used to prepare the pseudo-pure state |0),|0).. The
single-qubit rotation operation V is realized by a pulse

[2¢v]; (4.2)

on the ancillary qubit. Here, Co_j, and C;_yy, are realized by the following two pulse sequences:

G-l ) o Gl el e

and
ot g (g G, G- G- - GI- B
(4.4)

respectively. Finally, the pulse sequence

[%]“ Sl 4.5)
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Figure 2. Typical spectra of the work qubit with @« = —z/8: (a) pseudo-pure state at the beginning of evolution; (b) final
state after evolving for a time of 7.

is applied to implement the Hadamard operation on the ancillary qubit. The evolution is observed
by looking at both the state of the ancillary and the work qubit. If the ancillary qubit is in state
|0)4, the state of the work qubit gives the evolution under the P7-symmetric Hamiltonian.

Because we are interested in the behaviour of the system near o = —m/2, we restricted the
parameter in the range o € (—/2,0]. We performed a series of experiments with values of « at 0,
—m/4, =37 /8, =71 /16, =157 /32 and —31x /64. Figure 2a shows the spectrum of the work qubit in
the pseudo-pure state. A right single upward peak in the spectrum indicates that the work qubit
and the ancillary qubit are all in state |0). Figure 2b shows the spectrum of the work qubit for
o = —m /8. The downward peak on the right indicates that the two-qubit state is |0),4]1),, whereas
the peak on the left corresponds to the ancillary qubit in state |1),, which is not of interest to the
present study.

We now examine the simulation when t =0. Here, V operation becomes an identity operator
and it does not require time to simulate. The two free evolution [¢;1/(27])] pulses and the last
single-qubit pulse [—¢y71]5 in the Co_yy, in equation (4.3) also do not require any time. The other
pulses in Cp_y;, and the whole pulse sequence of C;_y;, and H still require a constant (with respect
to t) time to complete. Thus, the simulation performed in the two-qubit system still requires time
f to complete, even though ¢ is zero.

Quantitative results for the evolution in the P7-symmetric system were obtained by
performing quantum state tomography. Figure 3 gives the density matrices of the work qubit for
o = —0.4844x at the beginning (f =0), middle (t = t/2) and end (f = 1) of the evolution. Figure 3a
is the density matrix at the beginning where the state is |0), figure 3b shows the state in the middle
of the process and figure 3c gives the final state. For comparison, we draw the corresponding
theoretical density matrices on the right-hand side of each picture. Clearly, the experiments agree
with theory very well.

The total experimental time 7 to finish the simulation of the evolution from |0), to |1), in the
two-qubit system is shown in figure 4. As « approaches —m/2, T decreases remarkably; however,
it does not reach zero. As the P7-symmetric Hamiltonian is realized in a larger quantum system,
7 depends, not only on the evolution time 7 in the P7-symmetric system, but also on the time it
takes to set up the P7-symmetric system. The relation between t in the P7-symmetric system and
t in the two-qubit system is determined through the four operations shown in figure 1. Of the four
operations, V and Cy_y;1 are dependent on f, whereas C1_j» and H are constant operations that
are independent of t. In the simulation, ¢ represents a parameter in determining the operations of
V and Co_u1.

The relation between 7 and « predicted in Bender ef al. [12] appears in the data remarkably
well. An evolution faster than the Hermitian Hamiltonian system evolution is clearly observed.
The evolution time 7 taken by the P7-symmetric system to go from |0) to state |1) is shown in
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Figure 3. State tomography of the work qubit with « = —317r /64 = —0.48447: (a) pseudo-pure state |0),, (b) middle
state at t = 7/2 and (c) final state. In each picture, the left-hand side provides the experimental results, whereas the
right-hand side provides the theoretical results. (Online version in colour.)

figure 5. In figure 5, the evolutionary time for the P7-symmetric Hamiltonian system approaches
zero when o approaches — /2.

For comparison, we simulated the evolution of the equivalent Hermitian Hamiltonian Hy. The
quantum circuit is similar to that for the P7-symmetric case shown in figure 1. However, we
substituted Uy, Up and H by

os (s cosat) isin (s cosat>

(sin [ 595, cos (26952,
h h

(4.6)
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Figure 4. Total experimental time 7 for simulating evolution from |0) to |1). The circles denote the 77 -symmetric case, while
the squares indicate the Hermitian case. The connected lines are used as visual guides only. (Online version in colour.)
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Figure 5. Evolution time 7 versus c. The circles indicate the 727 -symmetric case, while the squares denote the Hermitian
case. (Online version in colour.)

and V1, respectively, where VT is the Hermitian conjugate of the V operator in equation (3.1). The
total time 7 to implement the simulation and the evolution time 7 for the equivalent Hermitian
system are obtained and shown in figures 4 and 5, respectively. The evolutionary time 7 for
the Hermitian case is clearly constant, regardless of the value of «. The faster-than-Hermitian
evolution of the P7-symmetric system is evident.

5. Conclusions

In conclusion, we experimentally simulated the evolution of a P7-symmetric system in an NMR
quantum system with two qubits. The faster-than-Hermitian quantum mechanics evolution of a
PT-symmetric system predicted in [12] is clearly observed. When the parameter o approaches
—m/2, the evolution time also approaches zero.
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When the difference between the large and small eigenvalues of a Hermitian two-level
quantum system is fixed, the fastest evolving time is invariant for a spin flipping in Hermitian
quantum mechanics. However, for a P7-symmetric quantum system, the brachistochrone time
can be varied by changing the parameters in the Hamiltonian. It can not only accelerate the
evolution, as predicted in Bender et al. [12] and demonstrated in this work, but also decelerate
the evolving time, as shown in Gunther & Samsonov [41].

This work was supported by the National Natural Science Foundation of China (grant no. 11175094) and the
National Basic Research Program of China (2009CB929402, 2011CB9216002).
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