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We show analytically and numerically that the performance of second order Møller-Plesset (MP)
perturbation theory (PT), coupled-cluster (CC) theory, and other perturbation theory approaches can
be rationalized by analyzing the wavefunctions of these methods. While rather large deviations for the
individual contributions of configurations to the electron correlation energy are found for MP wave-
functions, they profit from an advantageous and robust error cancellation: The absolute contribution
to the correlation energy is generally underestimated for the critical excitations with small energy
denominators and all other doubly excited configurations where the two excited electrons are coupled
to a singlet. This is balanced by an overestimation of the contribution of triplet-coupled double
excitations to the correlation energy. The even better performance of spin-component-scaled-MP2
theory is explained by a similar error compensation effect. The wavefunction analysis for the lowest
singlet states of H2O, CH2, CO, and Cu+ shows the predicted trends for MP methods, rapid but
biased convergence of CC theory as well as the substantial potential of linearized CC, or retaining the
excitation-degree (RE)-PT. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966689]

I. INTRODUCTION

Møller-Plesset (MP) perturbation theory (PT)1,2 is one
of the oldest approaches to electron correlation energy and
its second order variant (MP2) is still a very frequently used
approach in computational chemistry which is implemented
in almost all quantum chemical program packages. It is
the simplest wavefunction based approach to the correlation
energy. Thus, very efficient implementations are available3–8

and a MP2 result can generally be obtained with small or
even negligible additional effort to a Hartree-Fock calculation
which is the prerequisite for any MP2 result.

The performance of MP-PT has been carefully and
repeatedly investigated (see Refs. 9 and 2 for reviews).
Some particularly remarkable features of this method are
that Møller-Plesset perturbation theory at second order (MP2)
outperforms the formally higher third order theory (MP3)
in predicting molecular properties.10,11 Actually, even the
Coupled Cluster theory with single and double excitations
(CCSD) performs frequently poorer than the computationally
much less demanding MP2 method. Thus, CCSD is only
rarely used which is also due to the fact that the perturbative
triples correction CCSD(T) performs much better. The latter
represents a hybrid between coupled cluster and Møller-
Plesset theories and its computational demand is generally not
much higher than that of CCSD itself.

While higher order MP-PT results are challenged by the
observation that the MP-perturbation series may diverge even
for well behaved closed shell systems,12–16 MP2 is clearly an
eminent method of quantum chemistry. Its good performance
for hydrogen bonding energies,17,18 NMR chemical shifts,19,20

and polarizabilities21,22 is well established as well as the
poor performance for systems with “crowded electrons”

a)Electronic mail: reinhold.fink@uni-tuebingen.de

such as transition metal compounds2 or dispersive molecular
interactions between aromatic systems.17 MP2 is frequently
used in the context of complete basis set extrapolations23,24

as it is typically possible to evaluate MP2 energies with basis
sets that are large enough to extrapolate to the basis set limit.
MP2 is outperformed by the best available density functional
theory (DFT) methods25 but some of the most accurate
DFT-based approaches, the “double-hybrides,” incorporate
MP2.26–28 However, there exists only a relatively vague
knowledge on the reasons for the performance of MP2 on
the basis of the method itself.

A potential to improve the MP2 method was shown
by Grimme with the spin-component-scaled (SCS)-MP2
approach.29–31 The MP2 energy consists of contributions of
double excitations and can be written as a sum of opposite- and
same-spin components corresponding to the spin-orientation
of two excited electrons. Scaling of these components by
empirical factors of 6/5 = 1.2 and 1/3 ≈ 0.33, respectively,
defines the SCS-MP2 method which performs generally better
than MP2. Szabados32 showed that the Feenberg scaling
method33–35 provides spin-component scaling factors for
opposite-spin components that are consistently larger than one.
For different systems and basis sets values between 1.02 and
1.58 were obtained. Same-spin scaling factors were found to
be in the range 0.74–0.97, i.e., smaller than one. Similar results
were derived by the present author in Ref. 36 where it was also
shown that SCS-MP2 can be turned into a true wavefunction
based approach by introducing an appropriate partitioning of
the electronic Hamiltonian. An inherently consistent form
was defined by the request that the wavefunction has a
well defined spin quantum number which means that it
is an eigenfunction of the Ŝ2-operator. The corresponding
perturbation theory was named S2MP-PT. With the same
spin-scaling parameters its second order energy is identical to
SCS-MP2.
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While it is encouraging that the empirical scaling of
spin-components is supported by theoretical considerations,
the physical origin for the success of SCS-MP2 is still not fully
understood and the same holds even for MP2 itself. In this
work we provide such an explanation on the basis of a detailed
comparison of MP-type wavefunctions with those obtained
from other PT approaches and from accurate wavefunction
based approaches such as Coupled-Cluster (CC) and full
configuration interaction (FCI) methods. Our investigations
explain the generally good performance of MP2 and its
improvement by SCS-MP2 in terms of error compensations
of contributions to the correlation energy. Furthermore, it
provides insight into CC-, configuration-interaction-, and
other perturbation-theories.

The paper is structured as follows. In Sec. II the theoretical
background and the approach for investigating wavefunctions
is described. Computational details are given in Sec. III.
Results for several test systems are presented, discussed, and
put in context to each other in Sec. IV which is followed by
conclusions and an outlook in Sec. V.

II. THEORY

Wavefunction based approaches provide not only
observable properties but also (as the name of these
methods says) the wavefunction as an underlying though
non-observable intermediate result. Within a given basis set,
exact wavefunctions can be obtained with FCI-wavefunctions.
Very accurate results for example are available from
coupled-cluster calculations including all singles, doubles,
triples, quadruples excitations (CCSDTQ). In the following,
we shall compare such reference wavefunctions with CI-
and CC-wavefunctions with lower excitation degree and
wavefunctions from perturbation theories. For the latter MP-,
S2MP-PT,36 Epstein-Nesbet perturbation theory (EN-PT),37,38

and Retaining-the-Excitation-degree perturbation theory (RE-
PT)39 are going to be considered. RE-PT is a systematically
improvable true wavefunction based ab initio approach that
provides in lowest order the same result as the linearized
coupled cluster doubles (LCCD)40–42 method which is also

known as linearized CP-MET43,44 and happens to be identical
to the coupled electron pair approach zero (CEPA-0)45,46 with
doubles excitations as well as to many body perturbation
theory (all orders in double excitations diagrams),47 the
OPT-PT,48,49 and various other quantum chemical methods.
In RE-PT all interactions between configurations of the
same excitation degree are considered in the unperturbed
Hamiltonian. Thus, it is presently the PT which includes the
largest amount of the true Hamiltonian. A multireference
variant of this approach has been proposed.50

In order to make a comparison between different
wavefunctions feasible, we restrict our considerations to
systems where a closed shell reference Hartree-Fock
determinant represents the zeroth order wavefunction Φ0 and
we consider only the doubly excited configurations with
respect to Φ0, i.e., the first order interacting space. A compact
representation of the latter is given by the configuration state
functions (CSFs) proposed by Serber.51,52 For excitations of
two electrons from the spatial orbitals i and j to a and b, these
CSFs are

Φ
ab
i j,S =

1

2
(1 + δi j)(1 + δab)

(
Φ

āb
ī j
− Φāb

i j̄
− Φab̄

ī j
+ Φab̄

i j̄

)
(1)

and

Φ
ab
i j,T =

1
√

12

(
2Φāb̄

ī j̄
+ 2Φab

i j + Φ
āb
ī j
+ Φāb

i j̄
+ Φab̄

ī j
+ Φab̄

i j̄

)
,

(2)

where i and ī designate the spin orbitals corresponding to the
spatial orbital i with α and β spin, respectively. The matrix
elements between Φ0 and the CSFs in Eqs. (1) and (2) are
important for the following discussion and thus collected in
Table I.

The CSFs in Eqs. (1) and (2) both represent singlet
configurations but the two electrons that are excited in the
CSFs Φab

i j,S are coupled to a singlet while those excited
in Φab

i j,T are triplet-coupled. This hole and particle spin
coupling has important consequences for the short range
dependence of the electronic wavefunction as a function
of the inter-electronic distance: While a Coulomb cusp is
formed for singlet-coupled electrons, a Fermi hole is obtained

TABLE I. Matrix elements between a closed shell singlet reference wave function for canonical orbitals with
a closed shell singlet reference determinant Φ0. i and j represent canonical occupied spatial orbitals while
a and b are the corresponding virtual orbitals. Some relevant matrix elements of the doubly excited CSFs
are shown. Mulliken notation of the two electron integrals, (i j |kl)=  ψ∗i(1)ψ j(1) 1

r12
ψ∗
k
(2)ψl(2) dτ1 dτ2, is

employed where ψi is the spatial orbital i. Furthermore, hi j =

ψ∗i ĥψ j dτ, Ji j = (ii | j j), Ki j = (i j | j i), and

ϵi = hii+


j2Ji j−Ki j is the orbital energy of orbital i.

Φα Φβ ⟨Φα |Ĥ |Φβ⟩ Other name

Φ0 Φ0


i[2 hii+2Ji−Ki] E0

Φab
i j,S

Φ0
1√(1+δi j)(1+δab)

[(ia |b j)+ (ib |a j)]
Φab

i j,T Φ0
√

3[(ia |b j)− (ib |a j)]
Φab

i j,S
Φab

i j,S
E0+ϵa+ϵb−ϵi−ϵ j+Ji j+Jab+ (1−δi j)Ki j+ (1−δab)Kab ⟨E⟩

Φab
i j,S

−Jia−Jib−J ja−J jb+
1
2 (Kia+Kib+K ja+K jb)

Φab
i j,T Φab

i j,T E0+ϵa+ϵb−ϵi−ϵ j+Ji j+Jab−Ki j−Kab ⟨E⟩
Φab
i j,T

−Jia−Jib−J ja−J jb+
3
2 (Kia+Kib+K ja+K jb)

Φab
i j,T Φab

i j,S

√
3

2 (Kia−Kib−K ja+K jb)
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for triplet-coupled electrons.11,53,54 This difference is due to
the symmetry of the corresponding wavefunctions and their
behavior in the limit of short electron-electron distances. Its
consequences give rise to the convergence behavior of the
correlation energy as a function of the basis set size11,55

which is employed in complete basis set extrapolation.23,24 As
shown in the following, singlet- and triplet-coupled CSFs also
show systematic differences in their description by various
wavefunction based methods.

In intermediate normalization56 the considered part of the
electronic wavefunction is given by Φ0 +


i≤ j,a≤b cabi j,SΦ

ab
i j,S

+


i< j,a<b cabi j,TΦ
ab
i j,T . Plugging this wavefunction into the

Schrödinger equation, projecting with Φ0 from the left,
integration over all space, and neglecting the vanishing
contributions of single and higher than double excitations56

provides the total energy

E = ⟨Φ0|Ĥ |Φ0⟩ +


i≤ j,a≤b
cabi j,S⟨Φ0|Ĥ |Φab

i j,S⟩

+


i< j,a<b

cabi j,T⟨Φ0|Ĥ |Φab
i j,T⟩. (3)

The three terms on the right hand side of Eq. (3) represent
the energy expectation value of Φ0 as well as the singlet-
and triplet-contributions to the correlation energy Ecorr,S and
Ecorr,T , respectively. ϵabi j,S/T = cabi j,S/T⟨Φ0|Ĥ |Φab

i j,S/T⟩ provides
the contribution of the configuration Φab

i j,S/T to the correlation
energy, where cabi j,S/T is the expansion coefficient of the CSF.
Note that Ecorr, the Ecorr,S/T , and basically all ϵabi j,S/T are
negative numbers. In this work we shall speak of a large
contribution to the correlation energy if this contribution is a
large negative number.

A. Energy denominators

The wavefunction can also be expressed by energy
denominators of perturbation theory. In MP-PT the expansion
coefficients are obtained by the well known expression1,11,56

cabi j,S/T = −
⟨Φ0|Ĥ |Φab

i j,S/T⟩
ϵa + ϵb − ϵ i + ϵ j

, (4)

which contains the energy denominator represented by the
orbital energies ϵ p. Similar energy denominators can be
defined for any wavefunction based approach (X) by

∆Eab
i j,S/T(X) = − ⟨Φ0|Ĥ |Φab

i j,S/T⟩
cab
i j,S/T(X) . (5)

Note that for a given CSF the numerator in Equation (5)
is unambiguously defined. Thus, the energy denominator
∆Eab

i j,S/T , the coefficients cabi j,S/T , and the energy contributions
ϵabi j,S/T correspond to each other and represent three different
ways to represent the (first order) wavefunction.

Expressing the wavefunction by energy denominators
has important advantages: For MP- and EN-PT these energy
denominators are given by the integrals in Table I which can be
directly related to the properties of the orbitals involved in the
corresponding CSFs. Thus, it is possible to explain differences
between MP- and EN-denominators on the basis of the energy
denominators. Interpretation of the CI-coefficients, cabi j,S/T , or

the energy contributions ϵabi j,S/T requires a qualitative access
to the respective exchange-type two electron integrals in the
CI-matrix elements of the Φ0 with the respective CSF (see
Table I). We did not find a transparent approach to interpret
wavefunctions on this basis.

Other wavefunction based methods differ from EN-
PT by incorporating additional interactions between excited
CSFs. While the first order RE-PT wavefunction incorporates
all interactions within the doubly excited CSFs, CISDT
incorporates all interactions of the given CSF with the
reference wavefunction, all singly, doubly, and triply excited
configurations while, e.g., CCSDT takes into account all
interactions with the reference, the single, double, triple
excited configurations as well as all connected clusters
resulting form them. Thus, comparing MP- and RE- energy
denominators with the corresponding RE-PT, CI, and CC
results reveals the influence of these interactions on the
wavefunctions.

In the following we shall investigate the performance
of a wavefunction based method X by considering the
energy denominator ∆Eab

i j,S/T(X). We consider X = MP
for Møller-Plesset-perturbation theory, X = EN for Epstein-
Nesbet PT, X = S2MP for the PT corresponding to the SCS-
MP2 approach, X = CCSDT (CCSDTQ, etc.) for coupled
cluster singles doubles triples (quadruples, etc.), and X = FCI
for full configuration interaction. The ∆Eab

i j,S/T(FCI) can
be considered as the energy denominators of an “ideal”
perturbation theory which provides the exact doubly excited
CI coefficients and thus also the exact energy.

B. MP-energy denominators are larger than expected

MP-energy denominators are given by differences of
orbital energies. The latter can be interpreted along the
idea of Koopmans’ theorem which states that the orbital
energies of the occupied canonical orbitals approximate the
negative ionization potential57 while orbital energies of the
virtual ones approximate negative electron affinities.58,59 The
underlying idea of Koopmans’ theorem has been worked out
in Refs. 57–59 where it was shown that the orbital energy of
the ith occupied orbital is the difference between the Hartree
Fock energy and the energy expectation value of a Slater
determinant Φi where one electron in the orbital i is deleted
from the Hartree-Fock determinant Φ0,

ϵ i = ⟨E⟩Φ0
− ⟨E⟩Φi. (6)

Analogously, the orbital energy of the virtual orbital a is
the difference between the energy expectation value of Φa,
the HF-Slater determinant with an additional electron in the
orbital a, and the Hartree-Fock energy

ϵa = ⟨E⟩Φa − ⟨E⟩Φ0
. (7)

This means that the MP-energy denominator does not
account for interactions between the excited electrons and
created holes. For example, for a singly excited configuration
Φa

i the MP energy denominator ϵa − ϵ i is the energy required
to put an electron into the orbital a (which results in a system
with one additional negative charge) plus the energy needed
to extract one electron from the occupied orbital i. In the
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latter case an electron is removed from the system. Thus,
the MP-energy denominator does not include the generally
rather significant attraction between the electron in orbital a
and the hole in orbital i. For the doubly excited CSF Φab

i j the
MP energy denominator does not account for the (positive)
repulsion between the holes i and j and the electrons a and b
as well as the four (negative) attraction contributions between
the electrons and holes.

This peculiarity of the MP energy denominators causes
that for an n fold excited Slater determinant the energy
denominator does not account for n(n − 1)/2 hole repulsions,
the same number of electron repulsions and n2 electron hole
attractions. In general this effect will cause that the MP
energy denominators are substantially larger than the energy
difference between the expectation values of the excited and
reference wavefunctions which are given in Table I for doubly
excited CSFs.

C. Energy denominators of corresponding singlet-
and triplet-coupled CSFs

Let us consider singlet- and triplet-coupled CSFs with
the same hole and particle indexes. While the MP-energy
denominators are identical, the diagonal CI-matrix elements
in Table I and the numerical results in Sec. IV prove that this is
systematically incorrect. In this section, we provide analytical
evidence for this behavior.

We consider Epstein-Nesbet-(EN)-PT37,38 with the energy
denominator

∆Eα(EN) = ⟨Φα |Ĥ |Φα⟩ − ⟨Φ0|Ĥ |Φ0⟩, (8)

where α =abi j,S/T . We note that triplet-coupled doubly excited
CSFs, Φab

i j,T , require that i , j and a , b. Furthermore, we
are mostly interested in those CSFs that provide a significant
contribution to the correlation energy which means that the
Hamiltonian matrix element (Table I)

⟨Φab
i j,T |Ĥ |Φ0⟩ =

√
3 [(ia|bj) − (ib|a j)] (9)

has a large absolute value. As the two-electron integrals
in Eq. (9) have generally the same sign, this means that the
absolute value of one of the integrals is big while the other one
is small. As we shall now show, this requirement causes that
the difference between corresponding singlet-coupled CSFs
with their triplet-coupled counterparts

⟨E⟩
Φab
i j,T
− ⟨E⟩

Φab
i j,S
= Kia + K jb + Kib + K ja

− 2Ki j − 2Kab (10)

is generally positive.
For this purpose we first consider the case |(ia|bj)|

≫ |(ib|a j)| which means that the orbital pairs i-a and b- j must
have large differential overlap or in other words the absolute
amplitudes of the corresponding orbitals have large values in
the same spatial region. Furthermore, the orbital pairs i-b and
a- j have small differential overlap. It can be expected that
these conditions come along with small differential overlap
between the orbital pairs i- j and a-b. In this case the exchange
matrix elements Kia = (ia|ai) and K jb = ( jb|bj) are supposed
to be large while Kib, K ja, Ki j, and Kab should be small. Note

that all these exchange integrals are always positive. Under
these conditions, we expect that the difference between the
energy expectation value of the triplet- and the singlet-coupled
doubly excited CSFs [Eq. (10)] is positive. The same energetic
order is also expected if |(ia|bj)| is much smaller than |(ib|a j)|.

Simultaneously, the interaction matrix element between
the singlet- and triplet-doubly excited configuration

⟨Φab
i j,S |Ĥ |Φab

i j,T⟩ =
√

3
2

�
Kia + K jb − K ja − Kib

�
(11)

should have a large absolute value for the two cases considered
above, i.e., these CSFs will have a significant interaction and
repel each other within the CI-matrix. For the following
discussion, it is important to recognize that the interaction
matrix elements in Eq. (11) are the only non-zero interactions
between singlet and triplet-coupled CSFs in the CI-matrix.

In summary, we have derived the following propen-
sity rules for CI-matrix elements: |⟨Φ0|Ĥ |Φab

i j,T⟩| ≫ 0
⇒ ⟨E⟩

ΦAB
i j,T
≫ ⟨E⟩

ΦAB
i j,S

and |Φab
i j,S |Ĥ |Φab

i j,T⟩| ≫ 0.

D. SCS-MP2 and S2MP2

SCS-MP2 has been introduced as a modification of the
MP2 method where two contributions to the correlation
energy which correspond to the double excitation of two
electrons with either the same and with opposite spins are
multiplied with empirical factors of cOS = 6/5 and cSS = 1/3,
respectively.30 Thus, in its original definition this method does
only provide an energy and there is no unique relation to
a wavefunction. In Ref. 36 it was shown that it is possible
to convert the SCS-MP2 recipe to a perturbation theory by
introducing an appropriate unperturbed Hamiltonian. This PT
was named S2MP-PT and its first order wavefunction can be
written as

Ψ
(1) =


i≤ j ;a≤b

cOS

⟨Φ0|Ĥ |Φab
i j,S⟩

∆Eab
i j,S(MP) Φ

ab
i j,S

+


i< j ;a<b

cOS + 2cSS
3

⟨Φ0|Ĥ |Φab
i j,T⟩

∆Eab
i j,T(MP) Φ

ab
i j, t, (12)

where ∆Eab
i j,S/T(MP) is the MP-energy denominator in Eq. (4).

For singlet-coupled CSFs the energy denominators of S2MP
(SCS-MP2) are given by

∆Eab
i j,S(S2MP) = 1

cOS
∆Eab

i j,S(MP). (13)

The factor 1/cOS amounts to 5/6 ≈ 0.83 while for triplet-
coupled CSFs we obtain

∆Eab
i j,T(S2MP) = 3

(cOS + 2cSS)                    
≈1.61

∆Eab
i j,T(MP). (14)

This means that the energy denominators of singlet-coupled
CSFs are reduced by about 17% while those of triplet-coupled
CSFs are increased by a rather significant factor of 1.61. Note
that it is in line with the results of Sec. II C that energy
denominators of triplet-coupled CSFs are larger than those of
the singlet analogues.
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III. COMPUTATIONAL DETAILS
Calculations were performed for the lowest closed

shell singlet wavefunctions of the water (H2O), methylene
(CH2), and carbon monoxide (CO) molecules as well as
for the Cu+ ion using the correlation-consistent valence-
double- and -triple-zeta basis sets (cc-pVDZ and cc-
pVTZ).60 Experimental or near experimental structures of
these states were used with the following structural data:
H2O R(OH) = 0.9578 Å, φ(HOH) = 104.49◦ [O: (0,0,0)
H: (0, ±1.429 937 284, 1.107 175 113) a0];12 CH2 R(CH)
= 1.116 56 Å, φ(HCH) = 102.4◦; [C: (0,0,0) H: (0,
±1.644 403, 1.322 13) a0];12 CO RCO = 1.128 323 Å
(2.232 222 3 a0).61 The considered systems are rather small
and the basis sets are moderate but sufficiently large to allow
for general conclusions.

Coupled-cluster wavefunctions were obtained with the
MRCC program package of Kallay et al.62–65 Full-CI
calculations were done with the OFCI-program of Rolik
et al.66 Perturbation calculations were performed with a
local program package.36,39,50,67,68 In order to allow for
comparisons between the CC-, CI-, and PT-calculations, the
integrals were interfaced between the programs. Furthermore,
the coefficients of the doubly excited configurations were
compared. The contribution of single excitation amplitudes
of the coupled cluster amplitudes (t) to the corresponding
doubles CI-coefficients, cabi j , was included at spin orbital level
by (see Refs. 11 and 69)

cabi j = tabi j + tai tbj − tbi taj . (15)

IV. RESULTS AND DISCUSSION

A. Water molecule with the cc-pVTZ basis

Table II collects the FCI correlation energy contributions
of the two energetically lowest CSFs and those singlet- and
triplet-coupled CSFs that provide the largest contributions
to the correlation energy in the H2O molecule. The FCI
correlation energy and the energy denominators of the FCI,
CCSDTQ, CCSDT, CCSD, CISD, MP, RE, EN, and S2MP
(SCS-MP2) methods of these CSFs are shown. All values
were obtained with the cc-pVDZ basis.

The CSF with the energetically lowest energy denomi-
natorΦ4a14a1

1b11b1,S
provides only a small contribution (−0.15 mEh)

to the correlation energy (Ecorr ≈ −215 mEh). The “ideal”
(FCI) energy denominator of this configuration is 0.836 Eh,
while all other methods provide higher values. That is,
these methods give rise to CI coefficients with smaller
absolute values and thus underestimate the contribution of
this electronic configuration to the correlation energy. This
is most pronounced for MP which overestimates the energy
denominator of this CSF by more than 50%! Accordingly, the
energy denominator of S2MP (SCS-MP2), which is obtained
by multiplying the MP denominator by a factor of 5/6, is still
about 30% too large and only marginally smaller than the EN

TABLE II. Energy denominators for CSFs in the water molecule as obtained with different methods and
the cc-pVDZ basis. The first CSFs are those with the smallest energy denominators. Then the singlet- and
triplet-coupled CSFs contributing most to the correlation energy are shown.

ϵα/mEh ∆Eα/Eh

Φα FCI FCI CCSDTQ CCSDT CCSD CISD MP RE EN S2MP

Φ
4a1 4a1
1b1 1b1,S

−0.152 0.8361 0.8362 0.838 0.943 1.047 1.358 0.860 1.056 1.131

Φ
4a1 4a1
3a1 3a1,S

−0.348 1.1323 1.1326 1.135 1.226 1.353 1.505 1.176 1.214 1.254

Φ
3b2 5a1
1b2 3a1,S

a −3.399 2.2215 2.2217 2.226 2.318 2.426 2.910 2.249 2.320 2.425

Φ
3b2 3b2
1b2 1b2,S

−3.331 2.4148 2.4150 2.418 2.485 2.606 2.978 2.402 2.237 2.481

Φ
2b2 2b1
1b2 1b1,S

−1.855 2.4163 2.4168 2.427 2.495 2.661 2.649 2.474 1.849 2.208

Φ
2b2 6a1
1b2 3a1,S

−1.076 2.4386 2.4391 2.449 2.505 2.677 2.686 2.501 1.959 2.238

Φ
5a1 5a1
1b2 1b2,S

−2.140 2.4984 2.4985 2.501 2.578 2.680 3.108 2.490 2.353 2.590

Φ
3b2 6a1
1b2 3a1,S

a −0.332 2.5956 2.5961 2.615 2.616 2.788 3.219 2.690 2.344 2.683

Φ
4a1 2b1
2a1 1b1,S

−2.005 2.6032 2.6035 2.610 2.661 2.821 3.216 2.629 2.543 2.680

Φ
2b1 2b1
1b1 1b1,S

−8.281 3.0794 3.0797 3.091 3.107 3.275 3.387 3.057 2.440 2.823

Φ
6a1 2b1
3a1 1b1,S

a −4.420 3.1052 3.1055 3.116 3.148 3.308 3.424 3.091 2.431 2.853

Φ
6a1 6a1
3a1 3a1,S

−4.070 3.1568 3.1571 3.166 3.201 3.358 3.460 3.152 2.585 2.884

Φ
2b1 4b2
1b2 1b1,S

a −2.839 3.2944 3.2948 3.306 3.339 3.494 3.646 3.274 2.679 3.039

Φ
2b1 8a1
2a1 1b1,S

−2.064 4.2058 4.2060 4.215 4.217 4.389 4.898 4.151 4.039 4.081

Φ
2b2 6a1
1b2 3a1,T

a −2.425 3.0866 3.0875 3.101 3.238 3.434 2.686 3.308 2.068 4.317

Φ
2b2 2b1
1b2 1b1,T

a −2.799 3.1918 3.1928 3.210 3.319 3.535 2.649 3.428 2.006 4.258

Φ
3b2 6a1
1b2 3a1,T

a −2.331 3.6057 3.6064 3.619 3.780 3.957 3.219 3.804 2.520 5.174

Φ
6a1 2b1
3a1 1b1,T

a −5.100 4.1027 4.1034 4.123 4.172 4.396 3.424 4.217 2.608 5.503

Φ
2b1 4b2
1b2 1b1,T

a −3.710 4.2896 4.2903 4.309 4.372 4.581 3.646 4.407 2.848 5.860

aThe corresponding triplet-coupled configuration provides a large contribution to the correlation energy and is included in
Table IV.
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denominator. RE is the PT which predicts by far the most
accurate energy denominator. It is only 0.024 Eh (3%) too
large.

For the energetically lowest CSF, the energy denominators
of the PTs follow the trend that can be expected due to the
character of the unperturbed Hamiltonian. Note that this CSF
has important consequences for the general performance of
the perturbation theory which fails if an energy denominator
approaches zero. Thus, it is actually a good sign that all
perturbation theories overestimate the correct value. As the
lowest CSF contributes only 0.03% to the total correlation
energy, it is not a severe problem that this contribution is
underestimated by all perturbation theories.

The CSF Φ2b12b1
1b11b1,S

contributes about 4% to Ecorr which
is the largest contribution to the correlation energy of an
individual CSF for the considered canonical orbitals. The
“ideal” energy denominator of this CSF is 3.08 Eh. MP-PT
overestimates this value by about 0.31 Eh while the S2MP and
EN energy denominators are 0.26 Eh and 0.64 Eh lower than the
“ideal” value. Here the RE-PT error of the energy denominator
is only −0.02 Eh. A similar behavior is also seen for the other
singlet-coupled CSFs listed in Table II. MP-PT provides too
large energy denominators and underestimates the electron
correlation due to these CSFs while S2MP (SCS-MP2) and
even more EN-PT overestimate the contribution to the electron
correlation energy. In contrast to the behavior discussed above,
MP-PT underestimates all energy denominators for the triplet-
coupled CSFs in Table II. S2MP-energy denominators are 1.61
times bigger than those of MP and happen to be significantly
larger than the “ideal” values.

RE-PT provides rather good estimates for the energy
denominators which are only too large by 3%-7% while
EN-energy denominators that are about 10%–40% too small.
Thus, correlation effects are significantly overestimated by
this theory which explains its rather poor performance.

As expected, the coupled-cluster theory provides gener-
ally very accurate energy denominators but the CC-values are
consistently larger than the “ideal” (FCI) counterparts. While
the CCSD energy denominators are by about 0.01-0.3 Eh
larger than the ideal values, this error converges rapidly to
zero if additional excitations are included in the coupled-
cluster treatment. The energy denominator errors are already
consistently smaller than a few tenths (hundredth) of a percent
at the CCSDT (CCSDTQ) level. As this holds for all CSFs
and as the accuracy of CCSDT is much better than that of any

method that does not explicitly account for triple excitations,
we can conclude that the coupled-cluster theory, as expected,
does the right thing for the right reason by rapidly converging
to the correct wavefunction. However, this convergence is
biased as the (signed) correlation energy converges “from
above,” i.e., with increasing number of excitations all energy
denominators decrease and the total amount of the recovered
correlation energy in Table III converges to 100% from below.
As coupled-cluster theory of CCSDT level or better is anyhow
much more accurate than any of the perturbation theories,
we will not consider several coupled cluster results with
varying maximal excitation degrees in the following but we
shall just provide the most accurate coupled-cluster result as
reference.

Configuration Interaction with Single and Double
excitations (CISD) behaves similar to CCSD as it reproduces
all energy denominators with about the same relative error.
However, the CISD error is larger than that of CCSD. As
shown in Table III, the total CISD correlation energy as well as
the contributions of singlet- and triplet-coupled CSFs amounts
to 94.5% ± 0.1%. By applying the Davidson correction70 this
amount is increased to 99.2%.

Table II contains those 17 CSFs which contribute most
to the correlation energy of the water molecule with the
cc-pVDZ basis. This amounts to only about 25% of the total
correlation energy and for larger basis sets an even smaller
amount of the correlation energy is recovered in such a small
number of CSFs.71 Table III shows the summed contributions
of all singlet-coupled CSFs, all triplet coupled CSFs, and the
sum of these. This proves that the trends discussed above
are actually correct for the summed energy contributions.
The singlet-coupled doubly excited configurations give rise
to 68% of the total correlation energy. MP2 recovers only
94% of the total correlation energy as the contributions of
the singlet-coupled configurations are underestimated by 14%
while the correlation energy contribution of the triplet-coupled
CSFs is by almost 10% too high. EN overestimates the total
correlation energy substantially by 19% and the contribution
by the triplet-coupled CSFs by 41%. S2MP recovers about
the same amount of correlation energy as MP2 but the spin-
component scaling changes the relative amount of the singlet
and triplet-coupled CSFs such that the contribution of the
former overestimates the true value by 4% while the latter
underestimates it by as much as 32%! RE reproduces 100.2%
of the contributions of singlet-coupled CSFs to the correlation

TABLE III. Correlation energies for the water molecule with the cc-pVDZ basis. Total correlation energies and
the contributions of singlet- and triplet-coupled CSFs to the correlation energy are given for the FCI method. For
coupled cluster-, CISD, MP-, RE-, EN-, and S2MP-PT the errors of these correlation energies are shown as well
as the percentage of the correlation energy with respect to the exact (FCI) values.

FCI CCSDTQ CCSDT CCSD CISD MP RE EN S2MP

∆Ecorr (mEh) −214.840a 0.02 0.47 3.7 11.7 13.2 1.4 −41.4 16.9
Ecorr (%) 100 99.99 99.78 98.3 94.6 93.8 99.4 119.3 92.2
∆Ecorr,S (mEh) −145.485a 0.01 0.28 2.3 7.8 19.9 −0.2 −13.0 −5.2
Ecorr,S (%) 100 99.99 99.81 98.4 94.6 86.3 100.2 108.9 103.6
∆Ecorr,T (mEh) −69.355a 0.01 0.20 1.4 3.9 −6.7 1.6 −28.4 22.0
Ecorr,T (%) 100 99.99 99.72 98.0 94.4 109.7 97.7 141.0 68.2

aFCI correlation energy (contribution) Ecorr,(S/T ).
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energy and does also perform good for the triplet-coupled
contributions (96.7%).

The results for the water molecule confirm the
interpretation of the MP energy denominators. Furthermore,
it becomes clear that the wavefunction corresponding to SCS-
MP2 does not represent a substantial improvement. However,
both methods turn out to provide a relatively balanced
description of the correlation energy while EN overshoots
the correlation energy substantially. As this holds also for all
other examples considered in this work, the EN-PT results are
not shown in the following.

The propensity rule derived in Sec. II C states that
triplet coupled CSFs which give rise to the large absolute
contributions to the correlation energy have larger diagonal
matrix elements than the corresponding singlet-coupled CSFs.
Table IV collects the expectation energy difference and the
related exchange matrix elements as well as the interaction
matrix element between the corresponding singlet- and triplet-
coupled CSFs for the five CSFs of the water molecule which
contribute most to the correlation energy. In all cases shown
here and in more than 90% of all systems investigated in the
course of this study the propensity rule is fulfilled. Generally,
only one of the matrix elements (ai |bj) and (a j |bi) has
a large absolute value. Additionally, if |(ai |bj)| ≫ |(a j |bi)|
then the exchange matrix elements Kia and K jb are larger
than Ka j and Kbi and vice versa. Simultaneously, the
exchange matrix elements Ki j and Kab are small. Due to
this behavior of the exchange matrix elements, the propensity
rule derived in Sec. II C is fulfilled for the CSFs in
Table IV.

The rules discussed above hold for expectation values of
the CSFs and thus also for EN-energy denominators. They
cause that the triplet-coupled CSFs are about 0.1–0.2 Eh higher
in energy than the corresponding singlet coupled CSFs. The
last row of Table IV shows the same trend for the “ideal”
(FCI) energy denominators which are significantly larger (in
the order of 0.8–1.0 Eh). One reason for this is that FCI takes
into account the rather significant interaction matrix elements
HST which are neglected in RE-PT. Further interaction matrix
elements to lower-lying CSFs such as the HOMO-HOMO
to LUMO-LUMO singlet-coupled CSFs are responsible for
the remaining effect. As the FCI-energy denominators are
only in the order of 2–4 Eh, the degeneracy of MP energy

denominators for the corresponding singlet- and triplet-
coupled CSFs causes significant deviations from the correct
wavefunctions. However, the underestimation of the energy
contribution of singlet-coupled CSFs is partly compensated
with the overestimation of the triplet counterparts.

B. CH2 with cc-pVTZ basis

Table V shows the energy denominators of the CSFs
which contribute most to the correlation energy of the CH2
molecule in its a1A1 state. The results were obtained with the
cc-pVTZ basis. Here the HOMO-LUMO double excitation
Φ

1b11b1
3a13a3,S

has the largest contribution to the correlation
energy. The corresponding energy denominator has a very
low value of 0.20 Eh for “ideal” perturbation theory while the
corresponding MP-PT value is more than four times larger.
As the scaling of the spin-components in SCS-MP2 cannot
compensate for this, S2MP does also predict a much too
large energy denominator and accordingly a much too small
correlation energy contribution. RE provides a rather realistic
estimate for the energy denominator but underestimates it
by 22%. The energy denominators of the other singlet-
coupled doubly excited CSFs is reasonable but the correlation
contributions of the triplet-coupled CSFs are underestimated.

As shown in Table VI, MP2 obtains only 81% of
the correlation energy of the singlet state of methylene,
while SCS-MP2 recovers 87%. In this case RE-PT again
performs rather good although the good prediction of the total
correlation energy (100.7%) is due to an error cancellation
between the overestimated contribution of the singlet-coupled
CSFs and the underestimated contribution of the triplet-
coupled ones.

C. CO

Table VII presents the energy denominators of the CSFs
with an absolute contribution of more than 2 mEh to the
correlation energy of the CO molecule as calculated with
the cc-pVTZ basis. In order to keep the information of
the table concise, the rather similar energy denominators of
configurations with the same orbital occupation but different
angular momentum coupling in degenerate π and δ orbitals
are combined. We provide only an abbreviated representation

TABLE IV. Properties of those triplet-coupled CSFs which give rise to the largest contributions to the correlation
energy in the water molecule and the cc-pVDZ basis. The difference of the energy expectation values of these
configurations and the corresponding singlet-coupled CSFs, ∆ETS = ⟨E⟩

Φab
i j,T
− ⟨E⟩

Φab
i j,S

, the interaction matrix

elements between these CSFs, HST = ⟨Φab
i j,S

|Ĥ |Φab
i j,T⟩, and two-electron integrals contributing to these values

are given in Eh as well as the differences between the “ideal” energy denominators of the corresponding CSFs,
∆ETS(FCI)=∆Eab

i j,T (FCI)−∆Eab
i j,S

(FCI).

Φab
i j ∆ETS HST (ai |b j) (a j |bi) Ki j Kab Kai Kb j Ka j Kbi ∆ETS(FCI)
Φ

2b2 6a1
1b2 3a1

0.109 0.109 0.051 0.001 0.041 0.005 0.050 0.113 0.025 0.012 0.865

Φ
2b2 2b1
1b2 1b1

0.158 0.165 0.061 0.006 0.030 0.005 0.050 0.160 0.013 0.006 0.776

Φ
3b2 6a1
1b2 3a1

0.175 0.103 0.041 −0.012 0.041 0.015 0.090 0.113 0.025 0.059 1.010

Φ
6a1 2b1
3a1 1b1

0.177 0.204 0.100 0.017 0.043 0.024 0.113 0.160 0.019 0.019 0.998

Φ
2b1 4b2
1b2 1b1

0.169 −0.188 0.012 0.085 0.030 0.020 0.013 0.013 0.084 0.160 0.995
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TABLE V. FCI energy contributions and energy denominators for those
CSFs that contribute most to the correlation energy of the CH2 molecule with
cc-pVTZ basis.

ϵα/mEh ∆Eα/Eh

Φα FCI FCI MP RE S2MP

Φ
1b1 1b1
3a1 3a1,S

−5.081 0.196 0.887 0.153 0.739

Φ
1b1 2b1
3a1 3a1,S

−1.615 0.336 1.338 0.277 1.115

Φ
1b1 1b1
2a1 3a1,S

−1.473 0.716 1.381 0.859 1.151

Φ
1b1 3b1
3a1 3a1,S

−2.002 0.805 1.632 0.719 1.360

Φ
2b2 6a1
1b2 3a1,S

−1.199 1.181 1.727 1.203 1.439

Φ
1b1 3b1
2a1 3a1,S

−2.816 1.243 2.126 1.141 1.771

Φ
1b1 1b1
2a1 2a1,S

−3.041 1.327 1.875 1.483 1.562

Φ
5a1 6a1
3a1 3a1,S

−1.601 1.337 1.786 1.263 1.489

Φ
6a1 4b2
1b2 3a1,S

−2.623 1.482 2.144 1.513 1.787

Φ
2b2 4b2
1b2 1b2,S

−2.217 1.477 1.974 1.469 1.645

Φ
5a1 5a1
3a1 3a1,S

−1.287 1.512 1.676 1.472 1.397

Φ
1b1 2b1
2a1 2a1,S

−2.070 1.536 2.325 1.639 1.938

Φ
1b1 1a2
2a1 1b2,S

−2.944 1.557 2.245 1.541 1.871

Φ
6a1 6a1
1b2 1b2,S

−1.210 1.733 2.231 1.742 1.860

Φ
6a1 7a1
2a1 3a1,S

−1.131 1.828 2.475 1.815 2.063

Φ
4b2 4b2
1b2 1b2,S

−2.648 1.832 2.391 1.829 1.993

Φ
8a1 8a1
3a1 3a1,S

−1.913 1.930 2.261 1.990 1.884

Φ
4b2 7a1
2a1 1b2,S

−1.987 2.014 2.722 1.979 2.269

Φ
1a2 1a2
1b2 1b2,S

−1.144 2.226 2.616 2.169 2.180

Φ
2b2 5a1
1b2 3a1,T

−1.291 1.498 1.617 1.568 2.598

Φ
3b2 8a1
1b2 3a1,T

−1.170 1.771 2.068 1.780 3.324

Φ
1b1 3b1
2a1 3a1,T

−1.310 1.787 2.126 1.774 3.416

Φ
5a1 4b2
1b2 3a1,T

−1.726 1.934 2.034 1.998 3.269

Φ
4b2 8a1
1b2 3a1,T

−1.932 2.067 2.326 2.132 3.739

of CSFs which does not account for the angular momentum
coupling. That is, several CSFs with the same hole and
particle excitations are collected as Φ2π2π

1π1π,S. The range of the
slightly different energy denominators is shown in the table.
The behavior of the MP denominators follows the trends
of the water and the methylene molecules discussed above.
As before, the energy denominators of singlet-coupled CSFs
are generally overestimated by MP for about 0.3 Eh–0.9 Eh.
For the CSFs presented in Table VII, the only exception
is that of the Φ2δ2δ

1π1π,S configuration where the MP-energy
denominator is underestimated by 0.008 Eh (0.17%) to the

TABLE VI. Correlation energy contributions for the 1A1 state of the CH2
molecule and a cc-pVTZ basis using different perturbation theories.

FCI MP RE S2MP

∆Ecorr (mEh) −167.675a 31.9 −1.2 22.3
Ecorr (%) 100 81.0 100.7 86.7
∆Ecorr,S (mEh) −135.561a 30.2 −2.2 9.2
Ecorr,S (%) 100 77.7 101.7 93.2
∆Ecorr,T (mEh) −32.114a 1.7 1.1 13.2
Ecorr,T (%) 100 94.7 96.7 58.9

aCCSDTQ correlation energy (contribution).

TABLE VII. Energy denominators for CSFs in the CO molecule as obtained
with different methods and the cc-pVTZ basis.

ϵα/mEh ∆Eα/Eh

Φα CCSDT CCSDT MP RE S2MP

Φ2π2π
5σ5σ,S

−6.582 0.857 1.384 0.804 1.154

Φ2π3π
5σ5σ,S

−2.224 0.930 1.699 0.839 1.415

Φ2π2π
1π1π,S −19.667 1.24-1.25 1.555 1.35-1.40 1.296

Φ2π1δ
1π5σ,S

−2.452 1.332 2.149 1.365 1.791

Φ2π3π
1π1π,S −3.413 1.422 1.869 1.677 1.558

Φ2π5π
5σ5σ,S

−2.977 1.593 2.311 1.444 1.926

Φ7σ7σ
5σ5σ,S

−2.511 1.647 1.982 1.620 1.652

Φ2π4π
1π1π,S −8.292 1.89-1.96 2.234 1.94-2.04 1.861

Φ2π5π
1π1π,S −2.763 2.024 2.482 1.892 2.068

Φ2π9σ
3σ1π,S −3.517 2.562 3.130 2.630 2.608

Φ4π4π
1π1π,S −3.386 2.831 2.912 2.712 2.427

Φ2π10σ
3σ1π,S −2.428 3.425 3.892 3.489 3.243

Φ4π10σ
3σ1π,S −2.131 4.083 4.570 4.006 3.809

Φ2δ2δ
1π1π,S −2.766 4.835 4.827 4.570 4.022

Φ2π2π
1π1π,T −7.441 1.784 1.555 2.296 2.499

Φ2π9σ
1π5σ,T

−4.599 2.050 2.163 2.320 3.476

Φ2π4π
1π1π,T −3.491 2.913 2.234 3.442 3.590

Φ2π9σ
4σ1π,T −2.088 3.137 2.413 3.564 3.877

Φ2π10σ
4σ1π,T −4.157 3.822 2.934 4.152 4.715

Φ2δ2δ
1π1π,T −2.450 5.091 4.827 4.852 7.758

corresponding CCSDT value. For the CSFs in Table VII
the energy denominators of the triplet-coupled CSFs are
again overestimated with the exception of the CSF Φ2π9σ

1π5σ,T .
As shown in Table VIII, MP2 recovers about 95% of the
correlation energy of the CO molecule. The singlet-coupled
CSFs provide only 87% of the correlation energy which is
partially compensated by the overestimation of the correlation
energy due to triplet-coupled CSFs (110%). This is rather
similar to the performance of MP-PT for the water molecule
where the singlet-coupled CSFs also gave rise to about two
third of the correlation energy in the CO molecule.

In order to judge the performance of S2MP, it is worth
to consider again the ratio between the MP and the “ideal”
energy denominators. The largest value of this ratio (≈1.6)
is found for the HOMO-LUMO double excitation Φ2π2π

5σ5σ,S
which has the smallest energy denominator. Rescaling of these
denominators by the SCS-MP2 factor of 5/6 still provides a

TABLE VIII. Correlation energy contributions for the CO molecule and the
cc-pVTZ basis using different perturbation theories.

CCSDT MP RE S2MP

∆Ecorr (mEh) −375.255a 20.2 10.2 27.3
Ecorr (%) 100 94.6 97.3 92.7
∆Ecorr,S (mEh) −252.611a 32.8 2.4 −11.2
Ecorr,S (%) 100 87.0 99.0 104.4
∆Ecorr,T (mEh) −122.644a −12.6 7.8 38.5
Ecorr,T (%) 100 110.3 93.6 68.6

aCCSDT correlation energy (contribution).
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substantially too large denominator and thus the correlation
energy contribution of this CSF is underestimated by S2MP.
The same holds for the CSFs of the typeΦ2π2π

1π1π,S/T which have
rather small energy denominators and provide a significant
contribution to the correlation energy.

Table VIII shows that RE-PT again performs rather
well for the CO molecule. For the singlet-coupled double
excitations, 99% of the correlation energy is recovered while
the percentage of the obtained triplet-coupled correlation
energy is clearly smaller (94%).

D. Cu+

The performance of MP-, RE-, and S2MP-PT for the
molecules H2O, CH2, and CO, which are discussed above,
are rather similar and the same was also observed for
other molecules containing main group elements such as
N2, HF, and NH3. In general, MP2 performs relatively well for
such molecules while a much less appropriate description of
systems with crowded electron pairs was observed.2 Typical
and critical systems of that kind are late transition metal
compounds with strongly occupied d-shells. A prototype
system is the 1S ground state of the copper cation with
the occupation (1s22s22p63d10) which is considered in this
section. It should be noted that the lowest excitation in the
copper cation leads to the 3D (3d94s1) state which is about
2.7 eV higher than the electronic ground state.72 In the CH2
molecule the lowest excitation energy is only about 0.34 eV73

while that of the CO molecule is in the order of 6 eV.61

Thus, the open-shell character of the copper cation may be
judged to be between that of the methylene and the CO
molecule.

In Table IX the energy denominators up to about 1.2 Eh
and those of the configurations that contribute most to
the correlation energy are collected. The smallest energy
denominators correspond to CSFs where two 3d electrons
are excited to the 4s and the 4p orbital. Due to the rather
small interaction matrix elements between the reference and
the corresponding excited CSFs, these excitations contribute
only little to the total correlation energy. MP overestimates
the energy denominators of the energetically lowest singlet-
coupled CSFs by factors of about 1.5. This is also the case
for the low lying triplet-coupled CSFs. However, for those
CSFs which contribute most to the correlation energy, MP is
now underestimating the energy denominators for the singlet-
and triplet-coupled CSFs. Thus, as shown in Table X, MP2
is overestimating the correlation energy of the Cu+ system
for contributions of the singlet- and triplet-coupled CSFs by
about 5% and 17%, respectively.

It is worth to note that from the systems considered in
the present work the copper cation is the only one where both
contributions are overestimated by MP-PT. Another important
difference to the other systems is that the total (absolute)
amount of the triplet-coupled CSFs to the correlation energy
is larger than that of the singlet-coupled CSFs. In the other
cases the triplet contribution was in the order of 20%-30% of
the total correlation energy.

As before, RE-PT provides much more accurate energy
denominators with a similar trend as for the other systems.

TABLE IX. Energy denominators for CSFs in the Cu+ ion molecule as
obtained with different methods and the cc-pVTZ basis.

ϵα/mEh ∆Eα/Eh

Φα CCSDTQ CCSDTQ MP RE S2MP

Φ4s4s
3d3d,S −0.233 0.744 1.154 0.991 0.962

Φ4s5s
3d3d,S −0.185 0.877 1.357 1.112 1.131

Φ
4p5p
3d3d,S −0.327 1.08-1.37 1.589 1.38-1.66 1.324

Φ4s4d
3d3d,S −0.196 1.040 1.712 1.139 1.427

Φ
4p5p
3d3d,T −0.379 1.036 1.589 1.409 2.553

Φ
5p5p
3d3d,T −0.109 1.201 1.796 1.558 2.887

Φ4d4d
3d3d,S −13.571 2.42-2.51 2.271 2.95-3.08 1.892

Φ4d5d
3d3d,S −29.415 4.47-4.66 4.050 4.80-5.02 3.375

Φ5d5d
3d3d,S −34.625 5.41-6.65 5.829 5.30-6.78 4.858

Φ
4 f 4 f
3d3d,S −28.741 8.45-9.89 9.012 8.38-9.93 7.510

Φ5d6d
3d3d,S −16.243 13.5-13.9 12.044 13.5-14.0 10.036

Φ6d6d
3d3d,S −15.162 19.1-19.4 18.258 19.2-19.5 15.215

Φ
4 f 5 f
3d3d,S −11.296 19.4-20.3 19.513 19.2-20.1 16.261

Φ
5 f 5 f
3d3d,S −15.627 29.8-32.3 30.014 29.7-32.2 25.011

Φ
5g 5g
3d3d,S −6.030 30.5-32.5 30.352 30.2-32.2 25.293

Φ4d4d
3d3d,T −16.386 2.67-2.90 2.271 3.36-3.78 3.649

Φ4d5d
3d3d,T −33.323 5.07-5.71 4.050 5.56-6.41 6.509

Φ5d5d
3d3d,T −33.660 4.81-8.02 5.829 4.76-8.42 9.369

Φ
4 f 4 f
3d3d,T −44.108 8.52-9.71 9.012 8.44-9.79 14.485

Φ4d6d
3d3d,T −4.767 14.2-15.6 10.264 14.5-16.2 16.497

Φ5d6d
3d3d,T −19.958 14.6-15.9 12.044 14.8-16.1 19.357

Φ6d6d
3d3d,T −13.736 20.0-20.7 18.258 20.2-21.0 29.345

Φ
4 f 5 f
3d3d,T −20.776 19.7-21.5 19.513 19.5-21.4 31.361

Φ
5 f 5 f
3d3d,T −21.174 31.4-31.5 30.014 31.2-31.6 48.238

Φ
5g 5g
3d3d,T −6.974 30.9-31.7 30.352 30.6-31.4 48.782

This means the correlation energy due to the singlet-coupled
CSFs is slightly underestimated by about 2.7% while 95.9%
of the amount of the correlation energy due to triplet-
coupled configurations is recovered. As before, the interaction
between the doubly excited CSFs gives rise to a substantial
improvement of the wavefunctions that are predicted by this
perturbation theory.

TABLE X. Correlation energy contributions for the Cu+ ion and the cc-pVTZ
basis using different perturbation theories.

Correlation energy contributions

CCSDTQ MP RE S2MP

Ecorr (mEh) −424.063 −471.5 −409.5 −415.9
∆Ecorr (mEh) 0.000 −47.5 14.6 8.2
Ecorr (%) 100 111.2 96.6 98.1
Ecorr,S (mEh) −201.417 −212.0 −196.0 −254.4
∆Ecorr,S (mEh) 0.000 −10.6 5.4 −53.0
Ecorr,S (%) 100 105.3 97.3 126.3
Ecorr,T (mEh) −222.646 −259.5 −213.5 −161.5
∆Ecorr,T (mEh) 0.000 −36.9 9.2 61.2
Ecorr,T (%) 100 116.6 95.9 72.5
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SCS-MP2 shows a relatively good performance by
reproducing 98% of the total correlation energy of Cu+.
However, the correlation energy contribution of the singlet-
coupled CSFs is significantly overestimated by 26% while that
of the triplet-coupled ones is about as much underestimated.
Thus, most likely the good performance of SCS-MP2 for the
correlation energy of the copper cation will not be retained
for systems with changed electronic structure.

V. CONCLUSIONS AND OUTLOOK

As a major achievement, this work presents a method-
ology to identify systematic errors in correlated electronic
wavefunctions of different wavefunction based approaches.
This is obtained by considering energy denominators of the
CSFs in the first order interacting space. Energy denominators
of perturbation theories can be interpreted in terms of the one-
and two-electron matrix elements, which provides analytical
evidence for the differences between wavefunction based
methods. A numerical analysis for H2O, CH2, CO, and the
Cu+-ion shows that MP2 and SCS-MP2 profit from fortuitous
error compensations.

As a peculiarity of the MP2 method, we identified the
neglect of large Coulomb-type interactions in the MP-energy
denominators which causes them to be significantly larger than
the EN-PT counterparts. However, MP energy denominators
are often rather reasonable for those configurations that
contribute the largest amount to the correlation energy as
interactions between the configurations tend to shift the
“ideal” (FCI) energy denominators in the region of the
MP counterparts. MP-PT generally overestimates energy
denominators of singlet-coupled CSFs but this is at least
partially compensated by the tendency to underestimate the
denominators of triplet-coupled CSFs. As singlet-coupled
CSFs generally represent the lowest lying configurations
(in particular the HOMO-HOMO to LUMO-LUMO double-
excitation), it is advantageous that the corresponding energy
denominator is overestimated. Additionally, in most cases
this does not lead to large errors as the energetically lowest
configurations generally do not contribute significantly to the
correlation energy. While the errors of MP2 wavefunctions
compensate each other for systems consisting of main
group elements, the substantially larger energy denominators
combined with a relatively larger number of low lying CSFs
existing in transition metal compounds are a challenge for
MP-PT.

The scaling of the energy denominators in S2MP-PT
(SCS-MP2) is slightly improving the denominators for the
lowest excited states but keeps them in a safe range above the
“ideal” value of the denominator. The scaling increases the
correlation energy amount of the singlet-coupled CSFs above
the “ideal” value which is compensated by decreasing the
contribution of the triplet-coupled CSFs way below the exact
one. It can be concluded that the SCS-MP2 scaling corrects
for a systematic error of MP2 which seems to be the physical
reason for the success of SCS-MP2. Nevertheless, S2MP
wavefunctions are not more accurate than those obtained
by MP-PT. However, the success of SCS-MP2 shows that
the error compensation between singlet- and triplet-coupled

configurations in SCS-MP2 is in several important cases more
favorable than that in MP2.

Our results provide insight into the performance of
different wavefunction based quantum chemical methods on
the basis of the wavefunctions and thus on the basis of
the method itself. This makes it possible to gain additional
and new insight into the performance of wavefunction based
quantum chemical methods like the error compensation effects
in the MP2 and SCS-MP2 methods. It was also shown that the
coupled-cluster theory tends to systematically underestimate
contributions to the correlation energy. This seems to be the
key to the puzzling observation that MP2 often performs
comparably well or even better than the conceptually more
advanced CCSD approach. Possibly, also the improvement
of the performance of CCSD by introducing spin-component
scaling in the SCS-CCSD method74 can now be addressed
from a different point of view. Further work is required to
gain insight into the performance of wavefunction based
methods for the large variety of properties of interest.
Furthermore, the newly available tools to analyze and to
understand wavefunction based methods can be used to
develop approaches with better error compensation due to
a better setup of configuration interactions within the method.
Work in this line is presently ongoing in our laboratory.
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