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We study the quantum brachistochrone problem for a spin-1 system in a magnetic field of constant absolute
value. Such a system gives us the possibility to examine in detail the statement that the state vectors realizing
evolution with the minimal time of passage evolve along the subspace spanned by the initial and final state
vectors �Carlini et al., Phys. Rev. Lett. 96, 060503 �2006�; Brody and Hook, J. Phys. A 39, L167 �2006��.
Considering an explicit example, we show the existence of a quantum brachistochrone with the minimal
possible time; however, the state vector we study leaves the subspace spanned by the initial and final state
vectors during evolution. This is the result of our choice of a more constrained Hamiltonian than the one
assumed in the general quantum brachistochrone problem. It is worth noting that such an evolution, being more
complicated, is time optimal but with larger time than in the general case. This might be important for
experiments, where a general Hamiltonian with all the allowed parameters is difficult to implement, but a
constrained one, depending on the magnetic field, can be realized. However, for the preconstrained Hamil-
tonian not all final states are accessible. The present result does not contradict the general statement of the
quantum brachistochrone problem, but gives additional insight into possible realization of the time-optimal
passage.
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Recently Carlini et al. �1� generalized the classical bra-
chistochrone problem for the quantum case. The quantum
brachistochrone problem can be formulated in the following
way: What is the optimal Hamiltonian, under a given set of
constraints, such that the evolution from a given initial state
��i� to a given final one �� f� is achieved in the shortest time?
Using the variational method, the authors solved this prob-
lem for some specific examples of constraints which lead to
a fixed distance between the largest and smallest energy lev-
els of the Hamiltonian. In �2� it was shown that the quantum
brachistochrone problem could be solved more directly using
symmetry properties of the quantum state space. That paper
was based on the idea considered in �3�, where an elementary
derivation was provided for passage of time from the initial
quantum state into another orthogonal state.

Later, the variational method was extended to allow find-
ing the time-optimal realization of a target unitary operation,
when the available Hamiltonians are subjected to certain
constraints dictated by either experimental or theoretical con-
ditions �4�. In �5� the authors considered the brachistochrone
problem for quantum evolution of mixed states. Very re-
cently, Bender et al. studied the brachistochrone problem for
a PT-symmetric non-Hermitian two-dimensional matrix
Hamiltonian �6� and showed that, among the non-Hermitian
PT-symmetric Hamiltonians satisfying the same energy con-
straint, the time evolution between the two fixed states could
be made arbitrarily small. Such an interesting phenomenon
was observed also for dissipative systems described by a
non-Hermitian Hamiltonian with eigenvalues having a nega-
tive imaginary part �7�. Some discussion on this subject can
be found also in �8,9�.

The important statement of �1,2� �see also �6�� is that
finding the minimal time of general evolution reduces to
finding the optimal time evolution for the Hamiltonian acting
on the two-dimensional subspace spanned by the initial and
final state vectors ��i� and �� f�. This means that the optimal
evolution that realizes a quantum brachistochrone can be
written as a linear combination of ��i� and �� f� with time-
dependent coefficients. One of the aims of our paper is to
examine this statement in detail within a three-dimensional
quantum system.

We consider the brachistochrone problem for the case
when the optimal Hamiltonian belongs to a preconstrained
class of Hamiltonians, less general, with a smaller than al-
lowed number of free parameters that can be used for the
problem. Such a case is important from the physical point of
view when an experimentalist has the possibility to change
only a few parameters of the Hamiltonian but not all. As an
example of such a scenario, we consider a three-level sys-
tem, namely, spin 1 in an external magnetic field described
by a Hamiltonian of the following form:

H = ���n · s� , �1�

where s are dimensionless spin-1 operators, n is the direction
of the magnetic field, and �� is proportional to the strength
of the magnetic field. The eigenvalues of this Hamiltonian
are −��, ��, and 0. The difference between the largest and
smallest eigenvalues is fixed as �E=���=2��, which cor-
responds to the fixed absolute value of the magnetic field.

The Hamiltonian �1� contains only two free parameters,
namely, two angles � and � that set the direction of the
magnetic field,

nx = sin � cos �, ny = sin � sin �, nz = cos � . �2�

Note that a general Hamiltonian in a three-dimensional space
can be represented by a 3�3 Hermitian matrix, which con-
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tains nine free parameters �eight if we consider the su�3�
case�. We examine here the preconstrained class of Hamilto-
nians �1� with only two free parameters.

The brachistochrone problem in this restricted case is as
follows: What is the optimal choice of the preconstrained
Hamiltonian, namely, what is the optimal direction of the
magnetic field n at the fixed �, such that the evolution from
a given initial state ��i� to a given final one �� f� is achieved
in the shortest time? Obviously, with such a restriction of
possible evolutions, not all general final states can be
reached. This is the price for taking a narrower family of
Hamiltonians. However, as we will show below, the shortest
time achieved in optimal evolution in our case is the same as
in the general setting, despite the fact that evolution in our
case is more complicated �the system leaves the subspace
spanned by the initial and final states when time is not the
shortest one�. Let us consider it in detail.

The vector of the state for spin 1 contains four param-
eters. We can write

��� = �a

b

c
� = ��a�ei�1

�b�ei�2

�c�ei�3
� = ei�1� �a�

�b�ei�

�c�ei��� , �3�

where the normalization condition is �a�2+ �b�2+ �c�2=1.
Hence four independent parameters, for instance �a�, �b�, �,
and ��, define the quantum state. Therefore, with only two
parameters to change the Hamiltonian we cannot reach an
arbitrary quantum state starting from a given initial one; in
other words, the evolution defined by the Hamiltonian �1�
cannot relate two arbitrary quantum states. In our restricted
quantum brachistochrone problem, we consider only the
states that can be connected by the implemented precon-
strained evolution.

The evolution of the state vector can be realized as fol-
lows:

���t�� = e−iHt/���i� = e−i��n·s�t��i� . �4�

It is convenient to represent the unitary operator of evolution
in the form

e−i��n·s�t = 1 − �n · s�22 sin2�t

2
− i�n · s�sin �t . �5�

In order to prove this let us note that n ·s is the operator of
the projection of spin 1 on the direction n and it has three
eigenvalues −1,0 ,1 with the corresponding eigenvectors
�−1�,�0�,�1� which can play the role of the basis vectors. An
arbitrary vector of state can be written as a linear combina-
tion of these vectors. It is enough to prove formula �5� only
for the basis vectors, which are eigenvectors of n ·s with
eigenvalues −1,0 ,1. It is easy to verify that for 	, which
takes only three values −1,0 ,1, we have

e	x = �1 − 	��1 + 	� +
1

2
	�	 + 1�ex +

1

2
	�	 − 1�e−x. �6�

Then, using �6� for the unitary operator of evolution, we just
obtain �5�.

Let us take the initial vector of state as the eigenvector of
sz with the eigenvalue −1,

��i� = �0

0

1
� , �7�

and the accessible final state in the form given by �3�. Then
using �4� and representation �5� for the operator of evolution,
and the matrix representation for a spin in which sz is diag-
onal, we finally find

���t��

=�
− e−i2� sin2 � sin2�t

2

	2e−i� cos � sin � sin2�t

2
−

i
	2

e−i� sin � sin �t

1 − �1 + cos2 ��sin2�t

2
+ i cos � sin �t

� .

�8�

The first component gives the necessary condition that ���t��
reaches the final state

sin2 � sin2�t

2
= �a� . �9�

From �8� it follows that the second component depends on
the first one. Substituting sin2 �t

2 from �9� into the second
component of �8�, we have

�b�2 = 2�a��1 − �a�� . �10�

Then the normalization condition yields the relation

�c�2 = 1 − �a�2 − �b�2 = �1 − �a��2. �11�

Thus we cannot reach an arbitrary state, but only those that
have components satisfying conditions �10� and �11�. In ad-
dition, note that the phases for the second and third compo-
nents are not independent but related according to �8�. If all
necessary conditions are satisfied, then the time of evolution
from the initial state to the allowed final one can be found
from �9� as

tf =
4

��
arcsin
 	�a�

sin �
� , �12�

where sin �
	�a�, and ���=2�� is the distance between
the largest and smallest energy levels.

It is interesting to note that this expression is very similar
to the corresponding one for spin 1/2 �see, for instance, �6�,
Eq. �5��. The difference is that �12� contains 	�a� instead of
�a� and is twice larger �in �6� a is denoted as b and �� is
denoted as ��.

We obtain the minimal time that just corresponds to the
quantum brachistochrone for �=� /2, when the magnetic
field is perpendicular to the z axis,
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tmin =
4

��
arcsin�	�a�� . �13�

As an explicit example let us consider the case �a�=1; then
�b�= �c�=0. The vector of the final state in this case,

�� f� = �1

0

0
� , �14�

is the eigenvector of sz with the eigenvalue 1; it is orthogonal
to the initial one �7�. We have a solution for time only when
�=� /2. Thus the initial state �7� evolves to the final one �14�
only when the magnetic field is perpendicular to the z axis.
For the time of evolution we have tf = tmin=2� /��. This
time is twice longer than the shortest possible time obtained
in �1,2�. Note that the state vector describing the evolution in
our case is not a superposition of the initial and final states.
Therefore, it is not strange that the time of evolution is
longer than the minimal possible one.

Let us consider the next example with the initial state

��i� = �0

1

0
� . �15�

Now the evolution is given by the state vector

���t�� =�
−

1
	2

e−i�
2 cos � sin � sin2�t

2
+ i sin � sin �t�

1 − 2 sin2 � sin2�t

2

1
	2

ei�
2 cos � sin � sin2�t

2
− i sin � sin �t� �

= � − z�

1 − 2�

z
� , �16�

where

z =
1
	2

ei�
2 cos � sin � sin2�t

2
− i sin � sin �t� = �z�ei��−��,

�z�2 = 2��1 − ��, � = sin2 � sin2�t

2
, �17�

tan � =
cos��t/2�

cos � sin��t/2�
.

Finally, the evolution of the state vector can be represented
in the form

���t�� = �1 − 2���0

1

0
�

+ 	2��1 − ���− e−i��−��

0

ei��−�� � , �18�

where � and � are functions of time as given in �17�. Let us
consider the final state

�� f� =
1
	2�− 1

0

1
� �19�

which is orthogonal to the initial one �15�. In order to reach
this state we put ��tf�=1 /2. This condition gives us the time
of evolution

tf =
4

��
arcsin
 1

	2 sin �
� . �20�

Then choosing additionally that �=��tf� we find that
���tf��= �� f�.

For �=� /2 we obtain the minimal time of evolution

tmin =
�

��
. �21�

It is interesting to note that this time is equal to the minimal
possible time which can be obtained according to the state-
ment �1,2� where the state vector of evolution for the mini-
mal possible time belongs to the subspace spanned by the
initial and final state vectors or, in other words, the vector of
evolution for the minimal possible time is a superposition of
the initial and final states. In our first example, the state
vector during evolution does not stay in the subspace
spanned by the initial and final state vectors. Therefore, we
can conclude that, in order to achieve the minimal possible
time during the evolution with preconstrained Hamiltonian,
it is not necessary for the state vector to remain all the time
in the subspace spanned by the initial and final state vectors.
A preconstrained family of Hamiltonians can yield a more
complicated evolution with the optimal time which is larger
than the shortest time obtained for the general family of
Hamiltonians. This fact can have a practical value for experi-
ments. There is no contradiction with the results of �2,3�; the
present result also shows that, to stay on the subspace
spanned by the initial and final states, one should essentially
use the full freedom in the general family of Hamiltonians
for the system under consideration.
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