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The description of N2 and F2 potential energy surfaces using multi reference 
coupled cluster theory·) 

William D. Laidig, Paul Saxe,b) and Rodney J. Bartlett'l) 
Quantum Theory Project, University of Florida, Gainesville, Florida 32611 

(Received 22 January 1986; accepted 1 October 1986) 

The ground state potential energy surfaces (P.ES's) ~or d~atomic n~trogen and fluorine are 
examined using a version of our recently pubbshed bn~zed mul~lreference coupled .cl~~ter 
method (MR-LCCM). Comparison calculations emploYing a vanety of standard ab mltzo 
techniques such as single reference configuration interactio~ singles and doubles (CISD), 
many-body perturbation theory (MBPT), coupled cluster single and doubles (CCSD), a~d 
multireference (MR)-CISD were also performed. In addition, the PES's were also inxestIgated 
using the newly developed CCSDT -1 method, which includes ~he domin~t effect of T3• These 
single reference procedures fail in various ways (with the posstble exceptton of the CCS~:-1 
method) while the MR-LCCM method is shown to compare favorably to the more tradttIonal 
MR-CI t~hniques. Like the MR-CIs, the MR-LCCM energy curves dissociate correctly and 
the two are nearly parallel. 

I. INTRODUCTION 

The inability of most single-reference procedures to 
qualitatively describe bond breaking severely limits their 
general applicability. Restricted-Hartree-Fock (RHF) 
based methods cannot be easily extended to remove these 
defects and even if extensive "dynamical" correlation is in­
cluded the fragments may still not separate correctly. For 
example, even at the configuration interaction singles, dou­
bles, triples, and quadruples (CISDTQ) level of theory the 
energy required to symmetrically break the O-H bond in 
water was found to be in error by over 2 kcaVmol relative to 
the corresponding full-CI result, I and many-body perturba­
tion theory (MBPT) calculations in general become diver-

12 . d H gent as the fragments separate.' Unrestncte - artree-
Fock (UHF) wave functions usually separate correctly and, 
consequently, correlated methods employing such reference 
functions generally yield good dissociation energies. How­
ever, UHF wave functions can be quite spin contaminated 
especially in the intermediate bond-breaking region and as a 
result spurious barriers are often found in even highly corre­
lated calculations, with spin projection only a partial rem­
edy. 

In CI theory these difficulties have been overcome by 
adopting a more sophisticated zeroth-order reference, which 
is typically a multiconfiguration SCF (MCSCF) func­
tion.3

-6 If the MCSCF wave function is chosen with suffi­
cient care to include the important configurations along the 
entire bond-breaking path then the so-called "nondynami­
cal" correlation is introduced and quantitative accuracy 
within the basis set can often be achieved by just adding 
additional single and double excitations from 'I1MCSCF to the 
CI to introduce "dynamical" correlation. 

In contrast to CI, the use of multi reference (MR) tech­
niques in MBPT and coupled-cluster (CC) theory is far less 
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cJ Guggenheim Fellow. Author for correspondence. 

developed. This is primarily because CI, due to its simplicity, 
was the first correlated method to be implemented and 
modification to handle multiple references is relatively 
straightforward. Nonetheless, much work is being done in 
several laboratories to adapt MR techniques to both 
MBPT7- 14 and CC,8,IS-21 though to date only a few modest 
sized calculations have been carried out employing any of 
these MBPT22-26 or CCI.18.19.27.28 methods. 

As the first step in implementing a complete multirefer­
ence coupled-cluster singles and doubles (MR-CCSD) the­
ory we recently introduced a linearized version which we 
call the multireference linearized coupled-cluster method 
(MR-LCCM).I This complete-active-space (CAS) 
MCSCF reference-based method was designed to compete 
favorably with the traditional MR-CISD approach, and, 
hence, for calculations possessing identical configuration 
lists the two methods require nearly identical amounts of 
computational time and storage space. The deficiencies of 
the single-reference linearized CCSD (L-CCSD) theory are 
well known when near degeneracies are present. 2 However, 
in the absence of such degeneracies L-CCSD typically yields 
good energies, fortuitously closer to the exact result than the 
corresponding CISD calculations.29,3o Analogously, the 
MR-LCCM energies are expected to lie closer to the full CI 
for those regions of the PES where the near degeneracy ef­
fects have been absorbed into the MCSCF reference. In addi­
tion, CC theory has the advantage of size extensivity2 which, 
e.g., is important in determining accurate dissociation ener­
gies and in proper scaling for larger molecules. 

In our initial investigation of the MR-LCCM method 1 

we studied two model MR systems: symmetric insertion of 
Be into H2 and symmetric bond dissociation in water. For 
both systems the results of a number of correlated methods 
including MR-CISD, MR-LCCM, and full-CI were com­
puted at several distinct geometries. Overall, the MR­
LCCM method performed better than any of the single-ref­
erence MBPT ICC methods and compared well with 
MR-CISD (though conflicting results were obtained for the 
two systems as to which method was "best"). However, both 
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preliminary studies employed small [double-zeta (DZ) ] ba­
sis sets and the reference space was limited to at most 12 
configurations. 

In the present investigation, the applicability of study­
ing bond breaking via the MR-LCCM approach is tested on 
ground-state F2 and N2. These two molecules were chosen 
because they are both relatively small yet possess potential 
energy curves that are difficult to correctly describe. In F2, 
for instance, the UHF potential curve is not bound3! and 
even at the valence-space CAS-MCSCF level oftheory3 the 
binding energy is found to be less than half the limiting value. 
N 2' by nature of its triple bond, is very difficult to properly 
separate requiring at least some sixfold excitations in the 
wave function for correct dissociation. In contrast to our 
previous MR-LCCM work, this investigation adopted more 
realistically sized basis sets [larger than DZ plus polariza­
tion (DZP)] since basis sets of this size are typically em­
ployed in correlated calculations. In addition, the maximum 
size of the MR space has been increased from 12 configura­
tions (in our earlier water study) to 176 configurations (in 
the present N2 work). 

Since full-CI calculations are unfeasible for such large 
systems the quality of the MR-LCCM F2 and N2 PES's is 
estimated through comparison with PES's obtained using 
more traditional techniques. For this purpose we computed 
single-reference potential curves at the CISD, CCSD, and 
MBPT through fourth-order levels of theory. In addition, 
dissociation curves were computed using the new CCSDT-l 
method3~ which approximates the effect of iteratively in­
cluding T 3 in CCSD calculations. The MR-LCCM results 
were also compared with the analogous MR-CISD calcula­
tions as well as to the MCSCF curves themselves. From 
these curves various spectroscopic constants were obtained 
including the harmonic frequencies and anharmonicities in 
addition to accurate vibrational energy differences obtained 
through numerical solution of the nuclear Schrodinger 
equation. Direct comparison with experiment is kept to a 
minimum since the basis set, while moderately large, is not 
adequate for reproducing the experimental PES to sufficient 
accuracy at the fully correlated limit, yet comparisons 
among the different methods are highly informative. 

After a brief discussion of the MR-LCCM theory in Sec. 
II, general computational details are presented in Sec. III, 
with numerical results for F2 in Secs. IV and V, and N2 in 
Secs. VI and VII. 

II. THEORY 

In our previous publication! the MR-LCCM method 
was derived starting from the MR-CC ansatz of Jeziorski 
and Monkhorst.!6 However, in the present work the same 
final equations will be derived in a simpler and more 
straightforward fashion using a slightly different ansatz. 

Define two indempotent, self-adjoint, and mutually ex­
clusive projection operators, 

(1) 

and 

A A A 

Q = 1 - P= LICI>,) (CI>,I, (2) , 
where {CI> /L} and {CI>,} are sets of orthonormal configura­
tions that span the reference space P and its orthogonal space 
Q, respectively. We also define a second set of othonormal 
functions that span the P space {~} where '11 is chosen to 
be the MCSCF function for the state of interest. That is, 

(3) 

and 

'IIMC = 'II? = LC/L!ICI>/L)' (4) 
/L 

For convenience in these initial studies, we require the space 
P to be complete, although for our purposes an SOGVB 
choice would have the same properties. That is, if the orbitals 
are partitioned into three groups: core, active, and virtual 
where the core orbitals are always doubly occupied, the ac­
tive orbitals have variable occupancy (not 0 or 2 for at least 
one configuration), and the virtual orbitals are always unoc­
cupied in all reference configurations, the P space contains 
all excitations exclusively within the active space. 

In analogy to single reference CC theory the exact wave 
function 'II can be represented as 

A 

'II = exp( T) I'IIMC )' (5) 
A 

where the cluster operator T is defined as 

T= Lt~a+r+ L t,:!a+r/3 +s (6) 
r,a a>fJ 

and the indices r,s,t, ... and a,/3,y, ... range over all core and 
active orbitals and all virtual and active orbitals, respective­
ly. As a first approximation we also exclude terms involving 
solely active to active excitations. The reason for excluding 
these fully internal excitations will become apparent in the 
discussion that follows. Substituting Eq. (5) into the Schro­
dinger X'luation, /I'll = E'II, and left multiplying by 
exp ( - T) yields 

(7) 

Projecting Eq. (7) on the left with ('II~c I yields an expres­
sion for the energy E as a function of T, 

A A A 

('IIMclexp( - T)Hexp(T)I'IIMC ) =E (8) 

and left projecting onto the set of (cfl, I, reQ yields the set of 
equations, 

A A A 

(CI>,lexp( - T)H exp( T) I 'liMe> = 0 (9) 

which define the coefficients t. Here, { CI> , } consists of nonre­
dundant single and double excitations from all references in 
'IIMC ' 

It should be pointed out that solving Eqs. (8) and (9) 
exactly, while excluding the all internal excitations from T, 
does not yield the exact wave function'll. This is because 
Eqs. (8) and (9) contain no mechanism for changing the 
relative weights of the configurations I CI> /L ), /;!:EP in Eq. (3). 

The exact'll can be expressed as 'II = exp(T) I'll?') where 
I'II~') = l:/LC~I ICI>/Ll and the internal excitations are justifi­
ably omitted from Tprovided an additional set of equations 
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are then solved to determine the exact P space coefficients, 
c'. This is normally accomplished by diagonalization of an 
effective Hamiltonian. Equivalently, the other P - 1 linear 
combinations of { cI> I'} orthogonal to '11 would have to be 
introduced into the Q space. Formally then, an iterative pro­
cedure can be envisioned whereby Eqs. (8) and (9) are first 
solved followed by the solution of np - 1 additional equa­
tions to determine improved P space coefficients c, where np 
is the number of configurations in the P space. Then Eqs. (8) 
and (9) are again solved, however now I'I1MC ) is replaced by 
the new trial wave function constructed from the modified c 
coefficients. This process would be repeated until the c coef­
ficients were converged. 

In our current MR-LCCM method we never modify the 
P space coefficients and, therefore, this method is analogous 
to truncating the iterative procedure described above after 
the firs~ step. However, since the initial P space coefficients 
are determined via the CAS-MCSCF procedure we antici­
pate that the use of this approximation will lead to a relative­
ly small error, since the CAS wave function is chosen to 
contain the dominant configurations with the MCSCF pro­
cedure determining the optimum weighting. If this is the 
case, the addition of the secondary, Q space configurations 
should mainly change the weight of the total MCSCF refer­
ence function while only slightly modifying the relative 
weights of its component configurations. 

Expanding the exponentials in Eq. (8) using the Baker­
Campbell-Hausdorff commutator expansion yields 

A AA 

E = ('I1MC IH I'I1Me> + ('I1MC I[H,T] I'I1MC ) 
AA A 

+ !('I1MC I [[H,T ],T] I'I1Me> + .... (10) 

Since for these initial MR-CC investigations we are adopting 
a linearized theory only the first two terms are retained leav­
ing 

A. A. AA 

E = EMC + ('I1MC IHT I'I1MC ) - ('I1Mc I TH I'I1MC )' 
(11) 

after the commutator has been expanded. This expression 
can be simplified to 

AA 

E = EMC + ('I1Mc IHT I'I1MC )' (12) 

since the third term on the right-hand side of Eq. (11) is 
AA A A 

zero because ('I1Mc ITHI'I1Mc ) = (T+'I1MC IHI'I1Me> and 
A 

T +'I1MC = 0 since no internal to internal excitations are al-
A 

lowed in T, i.e., the MCSCF wave function is complete. Un-
like standard CC/MBPT approaches, in the following we 
choose to work exclusively in the spin-adapted configuration 
space description. Hence, we introduce the resolution of 
the identity in terms of orthonormal configurations 
1 = l:~ICltI')(CltI' + l:reQICIt,)(CIt,1 into Eq. (12) to give 

E =EMC + L ('I1McIHICltI')(CltI'ITI'I1MC) 
q,,,eP 

+ L ('I1Mc IHICIt,)(CIt,ITI'I1MC )' (13) 
q,,eQ 

The second term on the right-hand side ofEq. (13) is also 
A A 

zero since (CIt I' I T I'll MC) = 0 due to our definition of T and 
the completeness of '11 MC' Therefore, the final energy equa­
tion written in matrix notation is 

E = E MC + HJ.MC T Q,MC' (14) 

To solve Eq. (14) an equivalent matrix equation must 
be derived for T Q,MC' Expanding the exponentials in Eq. (9) 
yields 

A AA 

(CIt,ITI'I1Me> + (CIt,1 [H,T] I'I1Me> 
AA A 

+ !(CIt,1 [[H,T],T] I'I1Me> + ... (15) 
A 

for all reQ. Truncating Eq. (15) to first order in T, expand-
ing the commutator and inserting the identity resolution 

AA AA 

between HT and TH we obtain for all reQ, 

(CIt,IHI'I1Me> + L (CIt,IHI'I1~)('I1~ITI'I1MC) 
"'"eP 

- L (CIt,ITI~)(~ IH I'I1Me> 
"'"eP 

A A - L (CIt,ITIClts)(CltsIH I'I1Me> = O. (16) 
q,.eQ 

The second term on the left-hand side ofEq. (16) is zero and 
A 

('111' IH I'I1MC ) in the fourth term is ~I',McE MC due to com-
pleteness of the MCSCF. In matrix form, then, the equation 

A 

for Tis 

HQ,MC - EMC TQ,Mc - TQ,QHQ,MC + HQ,QTQ,MC = o. 
(17) 

Our last approximation is to drop the T Q,QHQ,MC term in Eq. 
( 16). The justification for this is detailed in the Appendix. 
Using this approximation Eq. (17) simplifies to 

(HQ,Q - EMC 1Q,Q ) T Q,MC = - HQ,MC' (18) 

This linear equation for the T amplitUdes along with the 
energy expression [Eq. (14)] constitutes the basis for the 
multireference linearized coupled cluster method (MR­
LCCM). 

III. COMPUTATIONAL CONSIDERATIONS 

The matrices HQ,MC and HQ,Q in our implementation 
are computed in a spin adapted configuration basis obtained 
using the graphical unitary group approach (GUGA) for­
malism.33 In fact our MR-LCCM program was obtained 
from a relatively simple and straightforward modification of 
an existing GUGA-CI program, the shape-driven GUGA 
program of Saxe et al. (SDGUGA).16 This brings up the two 
main points we wish to stress in this section: First, that the 
capacity to perform MR-LCCM calculations can be rela­
tively easily added to most existing CI programs and, sec­
ond, that equivalent MR-CISD and MR-LCCM calcula­
tions (i.e., those employing identical configuration lists) 
require virtually the same amount of CPU time and similar 
amounts of external disk space. 

To modify an existing CI code to perform MR-LCCM 
calculations requires three changes: The Hamiltonian sub­
matrices Hp,p and HQ,p must be constructed efficiently; 
Hp,p must be diagonalized via V + Hp,p V to yield E MC and 
HQ,p transformed to HQ,p where HQ,p = HQ,p V; and the 
diagonalization procedure must be replaced by a procedure 
to solve a large system of linear equations. 

Let us examine these points one by one. For CI pro-
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grams in which an explicit representation of the configura­
tions are stored (i.e., configuration-driven programs), for­
mation of Hp,p and HQ,p should be quite simple to 
implement and negligible computationally compared to the 
cost of the entire calculation. For other schemes, such as 
integral- or loop-driven methodologies this construction 
may be more involved, but unless the number of reference 
configurations is very large and the construction procedure 
extremely inefficient, the time required to build these matri­
ces should not be prohibitive. 

The diagonalization of Hp,p and the transformation of 
HQ,p to yield HQ,MC are both straightforward matrix opera­
tions and should ordinarily require negligible amounts of 
CPU time (in comparison to the total calculation length). 
However, for largePspaces in which the entire HQ,MC vector 
is stored on disk this step can become I/O bound. To circum­
vent this bottleneck HQ,MC can be stored in a compressed 
format in which only the nonzero elements are retained. 
Since HQ,p becomes increasingly sparce as the number of 
reference functions increase the required storage space will 
be greatly reduced as well as the concomitant I/O difficul­
ties. 

The most complicated modification required is the re­
placement of the diagonalization routine with a procedure to 
solve a large system of linear equations. Because HQ,Q can­
not be held in core an iterative method in which HQ,Q is 
either computed once per iteration or stored on disk must be 
employed. Most such solvers are based on a method such as 
the reduced linear equation method proposed by Purvis and 
Bartlett34 which has been shown to be a variant of the conju­
gated gradient method.35 However, since virtually all large­
scale CI programs compute their desired eigenvalues by 
means of an iterative eigenvalue procedure such as the meth­
od of Bartlett and Brandas36 or Davidson,37 and since the 
two types of procedures are computationally very similar, 
much of the same computer code can be used. 

IV_ CALCULATIONAL DETAILS FOR F2 

In all calculations performed on F2 a basis set of better 
than double zeta plus polarization quality (DZP + ) was 
employed. A modified Huzinaga-Dunning double zeta basis 
set, originally designated (9s5p/4s2p),38 was used in which 
the normal p contraction of 4,1 was changed to 3,1,1, by 
uncontracting the most diffuse p function while keeping the 
remaining 3 p exponents unchanged. In addition, a set of six 
Cartesian d functions with exponent 1.580 were included as 
polarization functions. We expect that this basis is good 
enough for meaningful comparisons among the different 
methods yet is not adequate to describe very accurately dis­
sociation energies and other experimently significant di­
atomic properties. 

The calculations can be divided into three categories: 
those employing restricted Hartree-Fock (RHF), unres­
tricted Hartree-Fock (UHF), and multiconfiguration self­
consistent field (MCSCF) reference functions. In the one 
reference RHF and UHF based categories the calculations 
consist of single reference SCF, CISD, MBPT through full 

fourth order and CCSD. In addition, the sum of the CCSD 
plus the fourth order MBPT triples (CCSD + E4T) and 
CCSDT -1 energies are reported. In all RHF based calcula­
tions D 2h point group symmetry was used and in the UHF 
based calculations all spatial orbital symmetry was allowed 
to break. In all single reference correlated calculations the 
two Is core orbitals and their corresponding virtual orbitals 
were frozen. 

The calculations based on the MCSCF reference func­
tions can be subdivided into two groups. In both groups an 
initial MCSCF optimization is carried out at each geometry 
followed by subsequent MR-CISD and MR-LCCM calcula­
tions. The configuration list for these latter calculations is 
composed of the MCSCF configurations as reference func­
tions plus the superset of their single and double excitations. 
These single and double excitations are required to spatially 
interact directly with the reference space. In addition, where 
applicable a subset of the spin noninteracting space is re­
moved.39,40 In the first set of calculations a valence complete 
active space (CAS) MCSCF consisting of ten reference 
functions was employed. The second group of calculations 
are based upon a 32 configuration CAS MCSCF among the 
3ug , l1Tg, 30' u' and 21T u orbitals. The first and second sets of 
calculations will be distinguished via either a -lO or a -32 
suffix. The total number of configurations in the MR-lO and 
MR-32 calculations are 31334 and 123018, respectively 

In the MR-CISD-lO and MR-LCCM-lO calculations 
the two Is core orbitals and their complementary virtual 
orbitals were frozen. Freezing these virtual orbitals, how­
ever, introduces a degree of arbitrariness into the results. 
Initially, the orbitals generated in the MCSCF procedure 
were believed to be canonical. However, after completion of 
the MR-CISD and MR-LCCM curves we discovered that 
only the core and active orbitals were canonicalized. Several 
additional MR-CISD calculations were performed in which 
just the core was frozen and these results show that deleting 
these virtual orbitals has little effect on the shape of the 
curve. In the MR-CISD-32 and MR-LCCM-32 calculations 
only the core was frozen, so this arbitrariness does not exist. 

One additional problem occurred initially in the MR­
CISD-lO and MR-LCCM-lO calculations. Though the 
MCSCF-lO curve yielded a 0.04 eV barrier in the region 
centered at about 6 bohr (similar nonphysical barriers were 
previously seen by Jonsson et aC and Blomberg and Sieg­
bahn41 in various MCSCF calculations on F2 ) the MR­
CISD-lO and MR-LCCM-lO results both yielded a steep, 
roughly 1 eV hump at about 5.8 bohr. This puzzling result 
was later discovered to have been due to freezing the Is 
MCSCF orbitals in the subsequent MR calculations. Since 
we employed a valence space CAS as our configuration 
space in the MCSCF and there is only a single vacancy in the 
F atom valence shell the correlation energy goes to zero in 
the limit of F2 separation as a consequence of Brillouin's 
theorem.42 Therefore, at some intermediate distance (in our 
case after about 5 bohr) the occupation of the lowest lying 
active orbital (the a 1 2s + 2s orbital in D 2h symmetry) will 
become essentially 2 and the energy dependent rotation cou­
pling this orbital with the Is + Is core will become nearly 
redundant. What this implies is that massive mixing between 
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the Is and 2s orbitals will cause only a minor change in the 
MCSCF energy. However, if one of these orbitals is frozen in 
the later MR calculations and the other is not, the MR ener­
gy will change radically in this region as the molecule is 
separated. To remedy this situation the rotation among these 
a 1 orbitals was not optimized for F2 distances beyond 5 
bohr. The resulting MCSCF energies were then identical 
with the original MCSCF energies to all reported figures. 

For the RHF based calculations a preliminary set of 
geometries was chosen to represent the F2 potential surface 
from 2.0 bohr to complete dissociation. These geometries 
and energies are displayed in Table I. For the MCSCF-lO, 
MR-CISD-lO, MR-LCCM-lO, and MCSCF-32 calcula­
tions this same grid was also employed. The MR-CISD-32 
and MR-LCCM-32 calculations, however, were each per­
formed at only four geometries, three to describe the mini­
mum and one at large r to yield the dissociation energy. 
These results are displayed in Table II. Only six geometries 
were considered for the UHF based calculations (except 
CCSDT-l for which only the infinitely separated result was 
computed) since for internuclear distances less than about 
2.7 bohr the RHF and UHF SCF results were nearly identi­
cal. Fewer energies were also computed along the remainder 
of the curve since we are primarily interested in the general 
shape of the UHF curves. The UHF geometries and energies 
are listed in Table III. 

Since full CI results are not available in this basis set we 
decided to use our predicted diatomic curves to compute 
various spectroscopic properties and compare with experi­
ment, although the modest basis set size prohibits any defini­
tiveness. After the initial RHF and MCSCF based curves 
were obtained a number of additional geometries were se­
lected for each method to better represent the minimum re­
gion and the entire PES as a whole. These supplemental geo­
metries were in general unique to each method since the 
predicted eqUilibrium distances varied substantially from 
curve to curve. While these extra calculations were used to 
compute the spectroscopic properties listed in Tables IV and 
V, the individual internuclear distances and energies will not 
be reported. 

A Taylor's series expansion about re was least-squares 
fit to the final sets of energies obtained for each RHF and 
MR based method and the harmonic vibrational frequency 
We' the anharmonicity WeXe' the rotational constant Be' the 
rovibronic coupling constant a e , and the centrifugal distor­
tion ]j e were obtained via second order perturbation the­
ory.43 For all F2 curves ten terms were retained in the Tay­
lor's series with the exception of the CCSDT -1 curve which 
was approximated using an eight-term series instead. The 
dissociation energies were not taken from this fit, but were 
deduced directly from the computed energies. The dissocia­
tion energy was taken as the difference between the 100 bohr 

TABLE I. Selected RHF F2 energies as a function of internuclear separation for various single-reference meth-
ods.a 

r(F-F) SCF MBPT(2) MBPT(3) SDQ-MBPT(4) SDTQ-MBPT(4) 

2.0 - 198.59731 - 198.99468 - 198.997 13 - 199.00104 - 199.00862 
2.2 - 198.69660 - 199.105 18 - 199.10581 - 199.111 00 - 199.12003 
2.4 - 198.733 11 - 199.154 13 - 199.15261 - 199.15945 -199.17024 
2.5 - 198.73743 - 199.164 94 - 199.16234 - 199.17011 - 199.181 89 
2.6 - 198.73572 - 199.16981 - 199.166 19 - 199.17496 - 199.18777 
2.7 - 198.72973 - 199.17043 - 199.16588 - 199.17570 - 199.18961 
2.8 - 198.72078 - 199.16808 - 199.16275 - 199.17365 - 199.18871 
2.9 - 198.709 85 - 199.16375 - 199.15779 - 199.16979 -199.18606 
3.0 - 198.69767 - 199.158 17 - 199.151 77 - 199.164 87 - 199.18240 
3.2 - 198.67145 - 199.14529 - 199.13854 - 199.15381 - 199.17406 
3.5 - 198.631 57 - 199.12631 - 199.12035 - 199.13854 - 199.16350 
4.0 - 198.571 85 - 199.10545 - 199.104 34 - 199.12527 - 199.160 31 
5.0 - 198.48897 - 199.11867 - 199.14236 - 199.142 30 - 199.20893 
6.0 - 198.44328 - 199.18725 - 199.25505 - 199.13973 - 199.25555 

100.0 -198.344 72 - 207.656 60 - 211.73916 3736.95935 3688.53722 

r(F-F) CCSD CCSD +E4T CCSDT-l CISD 

2.0 - 199.000 67 - 199.00825 - 199.00809 - 198.98020 
2.2 -199.11043 -199.11946 - 199.11925 - 199.08780 
2.4 - 199.15681 - 199.16761 - 199.169 19 - 199.13340 
2.5 - 199.169 12 - 199.18089 - 199.18071 -199.14244 
2.6 - 199.17379 - 199.18660 - 199.18651 - 199.14554 
2.7 - 199.17433 - 199.18824 - 199.18829 - 199.144 38 
2.8 -199.17206 - 199.187 12 - 199.18739 -199.14027 
2.9 - 199.16794 -199.18421 - 199.18478 - 199.134 19 
3.0 - 199.16271 -199.18024 - 199.181 18 - 199.12686 
3.2 -199.15077 - 199.17103 - 199.172 93 -199.11036 
3.5 - 199.133 13 -199.15809 - 199.16162 - 199.085 15 
4.0 -199.11099 - 199.14603 - 199.15036 - 199.04969 
5.0 - 199.092 21 - 199.15884 - 199.14598 - 199.009 90 
6.0 -199.08772 - 199.203 54 - 199.146 80 - 198.995 16 

100.0 - 198.98056 

a All energies and distances in a.u. 
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TABLE II. Selected F2 energies as a function ofinternuc1ear separation for various multireference methods.' 

r(F-F) MCSCF-IO MR-CISD-IO MR-LCCM-1O MCSCF-32 MR-CISD-32 MR-CCSD-32 

2.0 - 198.62873 - 198.98526 - 199.00589 - 198.671 23 
2.2 - 198.73933 - 199.09685 - 199.118 32 - 198.78288 
2.4 -198.79001 -199.14695 - 199.168 87 - 198.83241 
2.5 - 198.80248 - 199.15858 - 199.18056 - 198.84357 
2.6 - 198.809 57 - 199.164 53 -199.18646 - 198.84895 
2.65 - 198.85005 - 199.17194 - 199.19046 
2.7 - 198.81296 - 199.16651 - 199.18832 - 198.85032 -199.17246 - 199.190 54 
2.75 - 198.84993 - 199.172 30 - 199.18995 
2.8 - 198.813 89 - 199.16584 - 199.18746 - 198.84902 
2.9 - 198.813 25 - 199.16349 - 199.18490 - 198.84601 
3.0 - 198.811 68 - 199.160 18 - 199.181 37 - 198.84204 
3.2 - 198.80732 - 199.15247 - 199.17326 - 198.83308 
3.5 - 198.800 73 - 199.141 68 - 199.162 10 - 198.82085 
4.0 - 198.79355 -199.13014 - 199.15034 - 198.808 18 
5.0 - 198.78945 - 199.12391 - 199.144 13 - 198.800 84 
6.0 - 198.789 13 - 199.123 15 - 199.14338 - 198.79986 

100.0 - 198.78930 - 199.121 65 - 199.14347 - 198.79948 - 199.12562 - 199.14440 

'For the MR-CISD and MR-LCCM calculations at 5.0 and 6.0 bohr the Is-2s orbital rotation was not optmized in the MCSCF. The MCSCF energies are 
unchanged to the reported accuracy. See the text for details. 

and equilibrium energies except in the single reference 
MBPT/CC cases. In these cases due either to convergence 
difficulties or to severe divergence of the perturbation series 
the dissociation energy was estimated as the difference 
between the equilibrium value and the farthest "reasonable" 
energy (in most cases 4.0 bohr). Also, for the methods 
where the 100 bohr UHF result is known a second hybrid 
dissociation result is reported. 

Lastly, the zero-point energies and several of the low 
lying vibrational frequencies were computed for all RHF 
and MR based methods via numerical solution of the rovi­
bronic equations. For each set of computed points a much 
larger set of interpolated points was generated from succes­
sive fourth-order polynomial fits to adjacent groups of five 
points. The small and large , regions were approximated 
differently via ,-12 and decaying exponential functions, re­
spectively. Using this interpolated data the Schrodinger 
equation was numerically solved for the nuclear motion via 
the Numerov method.44 

v. RESULTS AND DISCUSSION FOR F2 

Examining first the RHF-SCF, UHF-SCF, and 
MCSCF-1O PES's both SCF curves are found to be particu­
larly poor. (See Fig. 1.) The RHF dissociation energy is over 
six times as large as the experimental value of 1.66 e V and the 
UHF curve is purely repulsive, since F2 is the classic exam­
ple of a molecule that would not exist in the UHF approxi-

mation. The behavior of the RHF curve is due to the inability 
of the restricted SCF to separate correctly into two neutral F 
atoms at dissociation. The UHF wave function, however, 
does dissociate correctly, but fails to predict any binding. 
This is because the 3uu orbital, which is essential for a cor­
rect qualitative description of the bonding in F2, is not in­
cluded in the SCF wave function. The MCSCF-1O wave­
function, which does include this 30; .... 3~ configuration, is 
found to be bound by 0.67 eV. However, the computed mini­
ma of the two bound curves are both quite far from the ex­
perimental value of 1.412 A (all experimental parameters 
cited are taken from Ref. 45). The RHF-SCF and MCSCF-
10 values of 1.332 and 1.482 A, respectively, are both nearly 
0.1 A in error. This suggests that inclusion of the 3uu orbital 
alone is not sufficient if an accurate equilibrium geometry is 
required. 

Given the poor performance of the RHF-SCF PES, can 
any ordinary single-reference RHF based correlated method 
improve the surfaces until the point where their overall 
shape and dissociation energies are essentially correct? In 
Fig. 2 the results of the finite order MBPT calculations are 
plotted along with our best estimate of the full CI curve. As 
the order in perturbation theory is increased the MBPT se­
ries appears to converge to the limiting value in the region up 
to approximately 3.5 bohr. However, beyond 4 bohr the per­
turbation series diverges, no doubt due to the near degener­
acy of the 3ug and 3u~ orbital energies. In fact at 100 bohr 

TABLE III. Selected UHF F2 energies in a.u. as a function ofinternuc1ear separation. 

r(F-F) SCF MBPT(2) MBPT(3) SQD-MBPT(4) SDTQ-MBPT( 4) CCSD CCSD+E'T 

2.7 - 198.74395 - 199.12480 - 199.133 18 - 199.14596 -199.15470 -199.172 70 - 199.18144 
3.0 - 198.76336 - 199.110 33 - 199.12359 - 199.131 56 - 199.13765 - 199.15932 - 199.16540 
4.0 - 198.792 18 - 199.118 10 - 199.13398 - 199.13705 - 199.14100 - 199.13857 - 199.14252 
5.0 - 198.79562 - 199.119 72 - 199.13579 - 199.13851 - 199.14224 - 199.139 15 - 199.14288 
6.0 -198.79614 -199.11994 - 199.13603 - 199.13871 -199.14241 - 199.13932 - 199.14302 

100.0 -198.79642 - 199.12012 -199.13622 - 199.13889 - 199.14258 - 199.13950 - 199.143 18 
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TABLE IV Spectroscopic constants for F2. 

Type Taylor expansion fitd 

of 
Calculation" R/ De" w. (J)~Xe /3. a. D. 

SCF 1.3319 10.688 1254 7.6 1.000 8.6 255 
CISD 1.3852 4.491 1050 9.1 0.925 10.3 287 
SDQ-MBPT(4) 1.4135 1.376 930 12.1 0.888 12.9 324 

( 1.005) 
CCSD 1.4102 2.362 945 12.6 0.892 12.7 318 

(0.953) 
SDTQ-MBPT(4) 1.4343 0.798 850 14.4 0.863 14.9 356 

( 1.280) 
CCSD+E4T 1.4300 1.149 870 19.1 0.868 14.9 345 

( 1.226) 
CCSDT-l 1.4338 1.129 844 14.8 0.863 15.9 361 

( 1.219) 
MCSCF-1O 1.4824 0.669 653 17.3 0.808 21.1 494 
MR-CISD-1O 1.4386 1.222 821 15.2 0.858 16.1 375 
MR-LCCM-1O 1.4350 1.221 842 15.3 0.862 15.7 361 
MCSCF-32 1.4256 1.384 871 14.3 0.873 14.9 351 
MR-CISD-32 1.436 1.275 
MR-LCCM-32 1.439 1.257 
Experiment" 1.412 1.66 917 11.2 0.8902 14.1 330 

a All calculations are spin restricted. 
b Equilibrium geometries in angstroms. MR-CISD-1O and MR-LCCM-1O values estimated via parabolic fit. 
e Dissociation energy in eV. In the SCF, MCSCF, CISD, MR-CISD, and MR-LCCM cases D. was computed 
as R( 100 a.u.) - r •. For SDQ-MBPT(4), SDTQ(MBPT), CCSD, and CCSD + E4T the first values are 
R(4.0a.u.) - r. [except forCCSD and CCSDT-l whichareR(6.0a.u.) - r.] while the value in parentheses 
is the corresponding UHF value at 100 a.u.less the RHF r. value. 

d W., W.X., and/3. in em-I. ae and De are in cm- I scaled by lcr and 10", respectively. 

"Reference 45. 

the MBPT ( 4) energy is in error by over 3000 hartree! 
How well do the CISD and CCSD methods represent 

the F2 potential? Since both are "infinite-order" methods in 
certain senses (CISD is exact perturbation theory in a SO 
truncated configuration space while the CCSD energy is de­
termined by a summation of certain MBPT diagrams 
derived from T 1 and T 2 cluster operators and their products 
to all orders) the PES's are expected to behave better at long 
range than the finite order results. In addition, due to the 
variational nature of CI, the CISD curve must lie between 

the SCF and full CI results. In Fig. 3 the potential curves for 
CISD and CCSD along with the SCF, CCSDT-l, and the 
various MR-IO curves are plotted so that the minimum ener­
gies of all curves coincide. The CISD dissociation value is 
found to be 4.5 eV. Though a vast improvement over the 
RHF-SCF value of 10.7 e V, the CISD well depth is still near­
ly three times too deep. In contrast the size-extensive CCSD 
model provides a De of 2.4 eV which is only about 40% in 
error. (Due to convergence difficulties with the CC equa­
tions at large internuclear separations caused by the incor-

TABLE V. Zero-point energy and the first five vibrational frequencies obtained via numerical solution of the rovibronic equations for F2 using several 
different RHF-based methods. 

Type of 
calculation G(O)" 1l.G

'
/2 1l.G3 / 2 1l.GS / 2 1l.G7 / 2 1l.G9 / 2 

SCF 625 1239 1224 1209 1194 1180 
CISD 523 1032 1014 996 979 961 
SDQ-MBPT(4) 462 906 881 857 832 807 
CCSD 470 926 910 894 873 848 
SDTQ-MBPT(4) 421 820 790 759 727 693 
CCSD+E4T 431 843 819 796 772 746 
CCSDT-l 418 814 784 753 723 691 
MCSCF-I0 322 618 583 548 511 477 
MCSCF-32 432 842 813 784 754 724 
MR-CISD-1O 406 790 759 728 698 665 
MR-LCCM-1O '417 811 780 749 717 685 
Experiment 456b 894 870 846 821 796 

• G(O) and the vibrational frequencies are all in cm - I and are for the J = 0 rotational state. 
bThe experimental zero-point energy is estimated via G(O) = l/2w. - l/4w.x •. w. and w.x. are listed in Table III. 
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FIG. I. RHF- and UHF-SCF, MCSCF-IO, 
RHF- and UHF-CCSD, and MR-LCCM-1O 
potential curves for F 2. The various curves are 
identified as follows: (0) RHF-SCF; (e) 
UHF-SCF; (+) MCSCF-IO; (0) RHF­
CCSD; (e) UHF-CCSD; and (+) MR­
LCCM. 
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rect dissociation of the RHF reference, the CCSD De was 
computed as the difference between the energies computed 
at 6.0 bohr and re .) 

Compared to the re values predicted by the RHF-SCF 
and MCSCF-1O calculations both the CISD and CCSD 
equilibrium geometries are a major improvement. The CISD 
value of 1.385 A is within 0.03 A of experiment while the 
CCSD value 1.410 A is nearly identical with experiment. 
The CCSD geometry wo!:!.ld appear to be somewhat fortui­
tous since the addition of T 3 effects to the CCSD model as in 

either the CCSD + E 4T or CCSDT -1 methods lengthens the 
predicted minimum by at least 0.02 A. Also, we would ex­
pect some error due to basis set size. Since the RHF CISD 
and CCSD methods both require the same order-of-magni­
tude computation time and the overall shape of the the 
CCSD curve is superior to that for the CISD PES, of the two, 
the CCSD method would appear to be the method of choice 
when dissociating a single bond. Obviously, such a conclu­
sion follows both from CCSD introducing quadruple and 
higher excitations and its being size extensive.46 We will 
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FIG. 2. RHF-based MBPT(2), MBPT(3), 
SDQ-MBPT(4), MBPT(4), and MR­
LCCM-lO potential curves for F2• The var­
ious curves are identified as follows: (0) 
MBPT(2); (e) MBPT(3); (0) SDQ­
MBPT(4); ( + ) MBPT(4), and (*) MR­
LCCM-IO. 
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FIG. 3. RHF-based SCF, CISD, CCSD and 
CCSDT-l, MCSCF-IO, MR-CISD-IO and 
MR-LCCM-1O potential curves for F2• All p0-

tential curves are shifted such that their respec­
tive energy minima are zero. The various curves 
are identified as follows: (---) SCF; (0) 
CISD; (D) CCSD; (+) CCSDT-l; (e) 
MCSCF-IO; (D) MR-CISD-IO; and «(9) MR­
LCCM-IO. 
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6 

postpone the discussion on the effects of including triple ex­
citations in RHF-based CC methods (in our case the 
CCSD + E 4T and CCSDT -1 methods) until after the UHF 
based results have been presented. 

In contrast to the RHF methods, the calculations em­
ploying the UHF reference function should dissociate to the 
correct limit, as shown in Fig. 4. This is reflected in the im­
proved De values that are obtained by subtracting the RHF­
MBPT re energy from the corresponding UHF-MBPT ener­
gy at dissociation. (The UHF-MBPT energies converge to 
the RHF-MBPTat re.) ForMBPT(2) De is 1.37 eV and for 

MBPT( 4) the value is 1.28 eV. Both ofthese values are far 
superior to the RHF based single-reference CISD and 
CCSD results. However, since ~e UHF wave function is not 
in general an eigenfunction of S 2 the description of a given 
spin state can be contaminated by contributions from states 
of differing spin. For example, the UHF-SCF spin multiplic­
ity at 3.0 bohr is 1.99 nearly twice as large as the pure singlet 
value. For the ground state of F2 the multiplicity must ap­
proach 1.00 in the full CI limit, however, even at the CCSD 
level the multiplicity is still only 1.38. The effect of this state 
mixing is most visible in the so-called recoupling region 
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FIG. 4. UHF-based MBPT(2), MBPT(3), 
SDQ-MBPT(4), and MBPT(4) and MR­
LCCM-IO potential curves for F2• The var­
ious curves are identified as follows: (e) 
MBPT(2); (0) MBPT(3); (D) SDQ­
MBPT(4); ( + ) MBPT(4); and (*) MR­
LCCM-IO. 
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which normally occurs at geometries somewhat beyond the 
equilibrium distance. For example, in all finite order UHF­
MBPT calculations performed a nonphysical barrier is ob­
served in the region between 2.8 and 2.9 bohr, as seen in Fig. 
4. Due to the limited number of geometry points computed 
along the UHF curves the barrier height is not known accu­
rately, but it is at least 0.3 eV for MBPT(2) and MBPT(3), 
and is still over 0.1 eV at MBPT(4). Clearly, spin annihila­
tion of contaminating multiplicities is appropriate for UHF 
based correlated methods. We have considered spin annihil­
ation as a by-product of monitoring 82 in such calcula­
tions,47 and others have implemented such an approach.48 

Before examining the UHF-CCSD PES and comparing 
the results with experiment it is important to determine how 
closely this limit can be approached within this DZP + ba­
sis set. Two earlier studies by Jonsson et al. (JRTS)3 and 
Urban et al. (UNK)49 both employed basis sets similar to 
the one used presently. When comparable calculations were 
carried out such as JRTS's two configuration (TC) CISD 
and our MR-CISD-IO calculations and UNK's and our 
SDQ-MBPT ( 4) and MBPT( 4) calculations very similar re­
sults are obtained. For example, the predicted re and De 
obtained by JRTS from their TC-CISD calculations were 
1.434 A and 1.31 eV, respectively. These results are quite 
close to our values of 1.439 A and 1.22 eV. Also good agree­
ment is found for We' WeXe and Be . 

In the best theoretical study ofF2 to date, Siegbahn and 
Blomberg41 pointed out two major deficiencies with the ear­
lier calculations of JRTS. First that the configurations 30'g 

11Tg ..... 30'u 21Tu are qualitatively important49 and should be 
included in the reference space and second, that for accurate 
geometry predictions! functions are required in the basis set. 
Inclusionofthe30'g 11Tg ..... 30'u 21Tu reference configurations 
did indeed raise our estimate of De from 1.22 to 1.28 eV, 

however, the equilibrium bond distance only changed by 
0.003 A. Comparing our best calculations for F2 (RHF­
CCSDT -I at reo UHF-CCSDT -I at D eo and the various MR· 
10 and MR-32 calculations at bothre and De ) leads us to the 
conclusion that our basis set limit for re is 1.440 ± 0.005 A 
and for De is 1.26 ± 0.05 eV. 

Returning to the discussion of the UHF results the 
UHF-CCSD curve in contrast to the finite order results does 
not appear to have a barrier. In fact the only substantial 
defect in the curve lies in the region between about 2.6 and 
3.2 bohr. In Fig. 5 the UHF-CCSD curve can be seen to 
deviate more than its counterpart RHF PES from the pre­
sumably more accurate MR-LCCM curve. This latter PES 
will henceforth be used as our best estimate to the complete 
CI result in this basis set. This causes the minimum of the 
UHF-CCSD curve to shift inwards with respect to the RHF­
CCSD curve and lie even further from the basis set limiting 
value. However, as was the case with the finite order UHF 
based calculations too few points were computed in the equi­
librium region to quantitatively determine the re value. Ex­
amining the PES as a whole, however, (see Fig. I) the long 
range behavior of the UHF-CCSD curve is seen to be far 
superior to that of the RHF-CCSD PES. In fact, the comput-
ed UHF-CCSD De of 0.95 eV is only about 0.3 eV below our 
estimate of the limiting De value while the RHF-CCSD val­
ue of2.38 eV is over I eV too high. 

The addition of triple excitations to CCSD as in either 
the CCSD + E 4T or CCSDT -I models substantially im­
proves the shape of the PES in the short-range and equilibri­
um regions. 

The RHF-CCSD + E 4T curve is quite similar to the 
RHF -MBPT ( 4 ) surface except that it generally lies closer to 
the MR-LCCM-lO PES out to roughly 3.5 bohr beyond 
which point both curves rapidly become divergent. The 
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FIG. 5. Closeup view of the equilibrium of the 
RHF·CCSD, UHF·CCSD, RHF·CCSDT·l, 
and MR·LCCM·lO potential curves for F2• 

The various curves are identified as follows: 
( + ) RHF·CCSD; (0) UHF·CCSD; (e) 
RHF·CCSDT-l; and (D) MR·LCCM·lO. 
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RHF-CCSDT-l curve agrees exceptionally well with the 
MR-LCCM-I0 curve from inside the equilibrium region out 
to around 4 bohr as can be seen in Figs. 3 and 5. Unlike the 
RHF-MBPT( 4) and RHF-CCSD + E 4T curves, however, 
the CCSDT -1 PES does not become divergent even close to 
6.0 bohr (the CCSDT-l equations would not converge at 
100.0 bohr). The slight reduction of the CCSDT-l curve 
below the correct separated atom limit shown in Fig. 3 is due 
to the emerging instability encountered at large internuclear 
separations. Yet it still yields a respectable dissociation ener­
gy of 1.129 eV which is only 0.1 eV lower than the MR­
LCCM-1O value. This result suggests that the CCSDT-l 
method can correctly separate single bonds for most pur­
poses even when an RHF reference is employed. 

As is typical of the other single reference methods, mov­
ing to the UHF framework can significantly improve the 
predicted De's of the CCSD + E 4T and CCSDT -1 methods. 
The dissociation energy obtained by subtracting the UHF 
value for De from the RHF value at re for CCSD ± E 4T of 
1.226 eV is substantially closer to our MR-LCCM (10) re­
sult than the analogous MBPT( 4) value of 1.280 eV. How­
ever, the corresponding CCSDT-l result of 1.219 eV lies 
even closer (within 0.002 eV) to the MR-LCCM-1O value 
(the energy for the UHF-CCSDT-ll00.0 bohr geometry is 
- 199.14350 hartree). Unfortunately, we did not compute 

any additional points on the UHF-CCSDT -1 PES, so there is 
still a question as to its shape in the recoupling region. In 
fact, experience suggests that an erroneous curvature due to 
the remaining spin contamination would still be present in 
fine detail.29 However, the quality of the RHF-CCSDT-l 
curve and the improvement in the overall shape of the UHF­
CCSD PES compared to the RHF-CCSD curve suggests 
that the UHF-CCSDT-l surface should be at least reasona­
ble over its entire length. 

It is seen from the preceding analysis that none ofthese 
RHF and UHF single-reference based methods (at least in 
the absence of spin projection) can describe all regions of the 
F2 PES to high accuracy (with the possible exception of the 
CCSDT -1 method). In Fig. 3, where various single reference 
RHF and MR based curves are plotted such that their mini­
mum energies coincide, the MR-CISD-1O and MR-LCCM-
10 curves indeed display the qualitatively correct long range 
behavior and are in fact nearly superimposable upon each 
other. The De for the curves are virtually identical being 
1.222 and 1.221 eV for MR-CISD-1O and MR-LCCM-IO, 
respectively. Likewise, the MR-CI and MR-CC equilibrium 
distances of 1.439 and 1.435 A., respectively, are quite close. 
The main qualitative differences between the two curves are 
in their absolute energies and in the more gradual approach 
to the dissociation limit energy observed in the MR-CI case. 
Examining the energy difference first, the MR-LCCM-1O 
PES is found to lie substantially lower than the MR-CISD-
10 surface at all geometries. Similar behavior was observed 
in previous studies on BeH2 and H20.1 In fact, in the case of 
water the MR-LCCM curve was found to be exceedingly 
close to the full CI value (within 30 ,uhartree) at a geometry 
near re and to lie only 250,uhartree above the full CI energy 
at dissociation. Although we would expect the proper MR­
CCSD method to be closer to the full CI than a comparable 

MR-CISD, we attribute this close agreement to some fortui­
tous error cancellation in the MR-LCCM method, and non­
linear terms must be evaluated to resolve this question. The 
more gradual approach of the MR-CISD-I0 curve to the 
dissociation energy as F2 is stretched is visible in Fig. 3. 
Though the gap between the two shifted MR-1O curves is 
small it widens to 0.042 eV at 6.0 bohr and then tapers to 
0.001 eV at dissociation. 

How closely do the MR-1O curves parallel the full CI 
PES? Earlier, the valence CAS reference space was shown to 
be qualitatively deficient due to the lack of reference func­
tions involving excitations into the 211" u orbital. In Fig. 6 the 
MCSCF PES's computed using the 10 configuration valence 
CAS and the larger 32 configuration CAS among the 3ug , 

l11"g, 3uu , and 211"u orbitals are plotted. The differences are 
striking. Comparing the MCSCF-32 to the MCSCF-1O cal­
culations the De has been improved by 0.72 eV to 1.38 eV 
and the equilibrium geometry has been dramatically short­
ened from 1.482 to 1.426 A.. However, in going from the 
MR-1O to the equivalent MR-32 calculations De and re are 
found·in both the CI and CC cases to change only slightly. 
While the De's are improved by 0.05 and 0.04 e V to 1.28 and 
1.26 eV in the MR-CISD-32 and MR-LCCM-32 calcula­
tions, respectively, the bond lengths change negligibly: 0.001 
A. or less in either case. Hence it appears that there are no 
serious defects in the overall shape of the MR-1O curves at 
least in the equilibrium and dissociation regions. 

Comparison of the absolute energies ofthe MR-1O and 
MR-32 curves indicate that, potentially, the MR-LCCM re­
sults might be closer in magnitUde to the corresponding full 
CI energies than are the corresponding MR-CISD results. 
Comparing the energy lowerings obtained by expanding the 
reference space from 10 to 32 configurations at 2.7 bohr 
(near equilibrium) the CI lowering is found to be 0.00595 
hartree while the CC value is 0.002 22 hartree. This same 
lowering at dissociation is 0.003 97 hartree in the CI, but 
only 0.000 93 hartree in the CC case. The relative stability of 
the MR-LCCM calculations, with different sized referenced 
spaces, may be a consequence of their being close to size 
extensive, I unlike the corresponding MR-CI. 

Another indication of the accuracy of the MR-LCCM 
curve is offered through comparison of the best single-refer­
ence (SR) calculations and the MR results. Our estimate of 
the most accurate SR PES (closest in deviation from the full 
CI surface) are the RHF-CCSDT-l results in the equilibri­
um region and the UHF-CCSDT -1 results at dissociation. In 
the minimum region (2.7 bohr) the RHF-CCSDT-l result 
of 199.18829 hartree is 0.000 03 and 0.00225 hartree above 
the CC-1O and CC-32 results, respectively, but is 0.021 78 
and 0.015 83 hartree below the CI-1O and CI-32 energies, 
respectively. A similar trend is visible at dissociation where 
the UHF-CCSDT-l energy is within 0.9 mhartree of either 
MR-LCCM result, but is 17.9 mhartree below the MR­
CISD-32 value. In fact, the RHF-CCSDT-l curve lies with­
in 1 mhartree of the MR-LCCM-1O curve from roughly 2.2 
to 4.0 bohr (see Fig. 3). 

Examining the spectroscopic constants of the various 
curves yields another estimate of their quality, at least in the 
equilibrium region. The inappropriateness of the F2 RHF-
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MR-LCCM-1O potential curves for F 2 shifted 
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SCF surface is clearly reflected in the values for the harmon­
ic frequency {j)e and the first adiabatic frequency aG 112. Or­
dinarily, SCF frequencies are 10%-20% above the 
corresponding full CI frequencies, but in this case the error 
exceeds 40% (assuming that our best calculations are a good 
estimate to the full CI limit). In addition, the anharmonicity 
(j)eXe is roughly one half of the full CI estimate which implies 
that the higher adiabatic frequencies will show even poorer 
agreement. 

The importance of including the effect of higher than 
single and double excitations on the spectroscopic constants 
is clearly visible in Tables IV and V. The lowest CISD fre­
quency, which is ordinarily within 5% of the full CI value, is 
still in error by approximately 20% and progressing from 
the SCF to the CISD model reduces the error in the anhar­
monicity by only one-fifth. The SDQ-MBPT( 4) and CCSD 
PES's, which take into account most of the quadruple excita­
tion effects in the equilibrium region, yield frequencies that 
are roughly 10% below the CISD frequencies and anhar­
monicities which are 30%-40% higher. Most of the remain­
ing discrepancies are alleviated if triple excitations are expli­
citly included. In the full MBPT ( 4), CCSD + E 4T> and 
CCSDT -1 calculations the frequencies have again been 
lowered substantially and the {j)eXe values significantly in­
creased. (In fact, theCCSD + E4T (j)eXe valueof19.1 cm- 1 

is too high, probably reflecting the mismatch of the infinite 
and finite order quantities.) 

Good agreement is found between the CCSDT -1 con­
stants and those obtained from the MCSCF and MR-1O cal­
culations with the exception of the MCSCF-1O results. As 
would be expected due to its shallow well depth the MCSCF-
10 vibrational frequencies are quite low and {j)eXe is too 
large. On the other hand, the MCSCF-32 frequencies are 
only marginally larger than the CCSDT -1 values and the 

two curves have quite similar anharmonicities. Our best 
complete curves, the MR-CISD-1O and MR-LCCM-1O 
PES's, both have lower corresponding vibrational frequen­
cies and somewhat higher {j)eXe values than in the CCSDT-l 
case, though the MR-LCCM-1O and CCSDT-l harmonic 
frequencies only differ by 3 cm - 1 • While there is a larger 21 
cm -1 difference between either of the MR-CISD-1O har­
monic and first adiabatic frequencies and their MR-LCCM-
10 counterparts, respectively, the two anharmonicities are 
within 0.1 cm - 1 • A similar frequency difference is also visi­
ble in the aG 112 -+ aG 7/2 series, where the CI frequencies are 
lower than the corresponding CC frequencies by a nearly 
constant 19 to 21 cm -1. Although perhaps accidentally due 
to error cancellation, of the two surfaces we consider the 
MR-LCCM-I0 PES to be the most accurate for the reasons 
presented above and this is supported by its closer proximity 
to the CCSDT-l and MCSCF-32 results. 

VI. CALCULATION DETAILS FOR N2 

As in F2 all N2 calculations employ a modified Huzin­
aga-Dunning double-zeta (9s5p/4s2p) basis sees augment­
ed with six Cartesian d polarization functions of exponent 
0.900.51 Again the primitive p functions are combined to 
yield three contracted functions instead of the ordinary two 
in a manner equivalent to that described earlier for F2. The 
symbol DZP + will be used to represent this basis set. 

The categories and types of calculations performed are 
equivalent to those detailed previously for F2. For the RHF 
and MCSCF based calculations a set of 13 geometries was 
initially selected to represent the N2 PES. These geometries 
are shown explicitly in Table VI. UHF based calculations 
were also carried out at several of these geometries and are 
listed in Table VII (for UHF -CCSDT -1 only the dissociated 
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TABLE VI. Selected RHF N2 energies as a function of internuclear separation.· 

r(N-N) SCF MBPT(2) MBPT(3) SDQ-MBPT(4) MBPT(4) CCSD 

1.500 - 108.43726 -108.700 86 - 108.71095 - 108.71274 -108.72011 - 108.71269 
1.800 - 108.904 55 - 109.19682 -109.200 87 - 109.20530 - 109.21676 -109.20472 
1.900 -108.95142 - 109.25562 -109.25605 -109.26213 - 109.27558 - 109.26115 
2.000 - 108.96801 - 109.28553 - 109.281 19 -109.28956 - 109.30543 - 109.28797 
2.068 - 108.96662 -109.29403 - 109.28565 -109.29606 - 109.313 85 - 109.29388 
2.500 - 108.83561 -109.24415 - 109.18666 - 109.228 16 - 109.26594 - 109.21504 
2.750 -108.72623 - 109.19773 - 109.08291 - 109.172 56 -109.23075 - 109.13919 
3.000 - 108.61885 - 109.16547 - 108.960 76 - 109.14549 - 109.233 17 -109.06702 
4.000 - 108.28943 - 109.24161 - 108.16354 - 110.004 65 - 110.33014 - 108.92926 
5.000 -108.10000 -109.57697 - 106.43540 - 115.16796 -115.94364 
6.000 - 107.99052 -110.06605 - 103.30290 - 130.34367 - 131.76845 

100.000 - 107.69824 

r(N-N) CCSD+E4T CCSDT-l CISD MCSCF MR-CISD MR-LCCM 

1.500 - 108.72006 - 108.71598 - 108.70005 - 108.52680 - 108.710 80 -108.71854 
1.800 - 109.216 18 - 109.211 57 - 109.18794 - 109.02217 - 109.20805 - 109.21663 
1.900 - 109.27460 -109.26925 - 109.24260 -109.07999 - 109.26634 - 109.275 17 
2.000 - 109.30384 - 109.29766 - 109.26741 - 109.108 32 - 109.295 16 - 109.30422 
2.068 - 109.311 68 -109.304 83 - 109.271 82 - 109.11534 - 109.30254 - 109.311 76 
2.500 - 109.25282 - 109.236 15 - 109.18054 - 109.04536 - 109.23566 - 109.24590 
2.750 - 109.19738 - 109.16796 -109.09500 - 108.97652 - 109.16931 - 109.18019 
3.000 - 109.15470 - 109.10525 -109.01092 - 108.913 10 - 109.10861 -109.12020 
3.500 - 109.14007 - 109.02744 -108.86780 - 108.82749 - 109.02613 - 109.03901 
4.000 - 109.25475 - 109.044 83 - 108.761 69 - 108.79695 - 108.98477 -109.00561 
5.000 -109.10245 - 108.631 23 - 108.78943 - 108.98040 - 108.99285 
6.000 - 108.56262 -108.78903 - 108.97879 - 108.991 10 

100.000 - 108.421 18 -108.78880 -108.97786 -108.99004 

• All energies and distances in a.u. 

energy was computed and it is specified in Sec. VI). As was 
the case previously for F2 all RHF and MCSCF based calcu­
lations again employ D 211 symmetry and all spatial symme­
try was allowed to break in the UHF based computations. 
Again the Is core and their corresponding virtual orbitals 
are kept frozen in all correlated calculations (except in the 
MCSCF procedure itself). 

The MR-CISD and MR-LCCM calculations employ a 
176 configuration reference space determined from a va­
lence space CAS MCSCF calculation. The complete config­
uration space in the multireference calculations is composed 
of the references plus all their single and double excitations 
yielding a total of 182 656 spin and space adapted interacting 
configurations. 

geometries were also computed for each method to better 
describe the minimum region. These energies will not be ex­
plicitly reported. In the Taylor's expansion eight to nine 
terms were retained in the series depending on the calcula­
tional type. The predicted equilibrium geometries, dissocia­
tion energies and Taylor's expansion parameters are dis­
played in Table VIII and the zero-point energies and lowest 
vibrational frequencies are collected in Table IX. 

Spectroscopic properties are computed for the various 
methods based on least square fits to a Taylor's series expan­
sion about re and numerical solution of the rovibronic equa­
tions as described previously for F2 • In the course of deter­
mining these properties, energies at several additional 

VII. RESULTS AND DISCUSSION FOR N2 

Examining the SCF curves first, both the RHF and 
UHF PES's do a very poor job of describing the ground state 
of N2 • The RHF-SCF potential well is over three times as 
deep as the experimental value of9.91 eV and the equilibri­
um bond distance is nearly 0.03 A shorter. Furthermore, for 
reasons that will soon become apparent we estimate that the 
full CI limit equilibrium bond distance is actually around 
1.113 A making the SCF agreement even worse. The UHF-

TABLE VII. Selected UHF N2 energies as a function of internuclear separation. 

r(N-N) SCF MBPT(2) MBPT(3) SDQ-MBPT(4) SDTQ-MBPT(4) CCSD CCSD+E4T 

2.25 - 108.93381 -109.24091 - 109.24031 - 109.25929 - 109.27668 - 109.277 19 - 109.29458 
2.5 - 108.88258 - 109.13748 - 109.15276 - 109.16936 - 109.18122 -109.21407 - 109.22592 
2.75 - 108.83765 -109.06900 -109.09003 - 109.10200 -109.11112 - 109.13981 - 109.14892 
3.0 - 108.80284 - 109.01761 -109.04253 - 109.05220 - 109.05931 - 109.07694 - 109.08405 
3.5 - 108.77935 - 108.95892 -108.98661 - 108.99307 - 108.99635 - 109.00725 - 109.01054 
4.0 - 108.78446 - 108.95050 -108.97772 - 108.982 18 - 108.98419 -108.98662 -108.98863 
5.0 - 108.793 16 -108.95260 -108.97944 - 108.983 17 - 108.98463 - 108.98393 - 108.98539 

00 -108.79509 -108.95288 - 108.97958 - 108.98323 - 108.98457 - 108.98377 - 108.985 11 
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TABLE VIII. Spectroscopic constants for N2.' 

Type Taylor expansion fitd 

of 
calculation r b . De" w. (j)exe P. a • D. 

SCF 1.0703 34.57 2721 10.7 2.102 13.6 502 
(4.719) 

CISD 1.0958 23.15 2471 11.8 2.005 15.0 528 
SDQ-MBPT(4) 1.1075 8.524 2316 16.2 1.963 17.9 564 
CCSD 1.1037 8.445 2384 12.8 1.977 15.9 544 
SDTQ-MBPT( 4) 1.1205 9.022 2148 21.9 1.918 21.9 611 
CCSD+E4T 1.1156 8.935 2232 16.6 1.934 18.8 581 
CCSDT-l 1.1110 8.703 2304 13.3 1.951 16.5 559 
MCSCF 1.1098 8.903 2319 13.8 1.955 16.7 556 
MR-CISD 1.1120 8.857 2296 14.1 1.947 17.1 560 
MR-LCCM 1.1128 8.778 2288 14.2 1.944 17.2 561 
Experiment' 1.0977 9.91 2359 14.3 1.998 17.3 576 

• All calculations are spin restricted. 
b Equilibrium geometries in angstroms. 
C Dissociation energy in eV. In the SCF, MCSCF, CISD, MR-CISD, and MR-LCCM cases De was computed 
as E(100 a.u.) -E(r.), while the UHF result is in ( ). For SDQ-MBPT(4), SDTQ(MBPT), and 
CCSD + E4T the perturbation theory is divergent, so these values are obtained from the UHF-CC/MBPT 
energy at infinite separation less the RHF-CCIMBPT r. value. 

d W., W,X" andP. in cm- I
• a. and D. are in cm- I scaled by 103 and 108

, respectively. 

'Reference 45. 

SCF curve, on the other hand, is far too shallow. The UHF 
De is only 4.72 eV, which is less than half the experimental 
value. In addition, the UHF wave function is highly spin 
contaminated (e.g., the multiplicity at 2.25 bohr is 1.63) and 
as a consequence a barrier of at least 0.43 eV is found in the 
spin recoupling region. Unlike F2 the bifurcation point 
between the RHF and UHF curves is at a distance larger 
than equilibrium and, therefore, the re values for the RHF 
and UHF based methods are identical. 

From the finite-order RHF-MBPT calculations the per­
turbation series is found to diverge beyond approximately 
3.0 bohr. Even in the vicinity of the minimum the series is 
oscillatory and appears to be more slowly convergent than is 
the norm within equilibrium regions. This is reflected in the 
values of the predicted equilibrium distances for the various 

truncations of the MBPT series. The predicted re values for 
MBPT(2), MBPT(3), and MBPT( 4) are 1.121, 1.096, and 
1.121 A. In contrast to F2 where MBPT(4) gave an excel­
lent value for re the corresponding value for N2 is much less 
certain and due to the oscillatory behavior of the above 
numbers, one suspects that the true equilibrium distance lies 
somewhat inside of this value. If the UHF reference function 
is employed in the MBPT expansion beyond the bifurcation 
point (about 2.2 bohr) the perturbation series is convergent 
and nonoscillatory out to the dissociation limit. Overall, the 
shapes ofthe various MBPT curves are qualitatively correct, 
but rise too rapidly beyond the equilibrium region (see Fig. 
7) even showing an erroneous curvature as discussed pre­
viously.29(b) Also, in the MBPT(2), MBPT(3), and SDQ­
MBPT ( 4) PES's small nonphysical barriers are still ob-

TABLE IX. Zero-point energy and first five vibrational frequencies obtained via numerical solution of the 
rovibronic equations for N2 using several different RHF-based methods. 

Type 
of 
calculation G(O)" I!.GJ12 I!.G3/2 I!.G~/2 I!.G7J2 I!.G9 /2 

SCF 1358 2700 2678 2657 2636 2615 
CISD 1233 2447 2423 2400 2377 2353 
SDQ-MBPT(4) 1157 2282 2243 2210 2179 2141 
CCSD 1189 2358 2331 2304 2279 2255 
CCSDT-l 1148 2276 2248 2219 2194 2168 
SDTQ-MBPT(4) 1068 2104 2058 2008 1953 1892 
CCSD+E4T 1111 2197 2162 2127 2094 2059 
MCSCF 1156 2291 2262 2234 2207 2181 
MR-CISD 1149 2267 2232 2207 2179 2153 
MR-LCCM 1140 2258 2228 2198 2172 2145 
Experiment 1176b 2330 2301 2273 

• G(O) and the vibrational frequencies are all in cm - I and are for the J = 0 rotational state. 
bThe experimental zero-point energy was computed via G(O) = l/2w. - l/4w.x. and w. and w.x. are listed 
in Table III. 
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FIG. 7. The UHF-based MBPT(2), 
MBPT(3), SDQ-MBPT(4), and MBPT(4) 
and MR-LCCM-1O potential curves for N2• 

The various curves are identified as follows: 
(0) MBPT(2); (0) MBPT(3); ( + ) SDQ­
MBPT(4); (*) MBPT(4); and (e) MR­
LCCM. 
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tained. In MBPT (4) no barrier is found, but there is a very 
shallow nonphysical second minimum between 4 bohr and 
dissociation that is roughly 0.02 e V deep (see Table VII). 

Do the single-reference RHF-CISD, RHF-, and UHF­
CCSD and RHF-CCSDT -1 PES's overcome the deficiencies 
found in the SCF and MBPT treatments? In Fig. 8 the CISD 
results are plotted along with the results of the various other 
RHF and MCSCF based calculations. The CISD surface 
offers only a modest improvement over the RHF-SCF PES. 
Though the CISD De is over 11 e V lower than the RHF-SCF 

De value the CISD dissociation energy is still too high by 
over a factor of2 compared to experiment. At first glance the 
CISD re result appears to be a substantial improvement over 
the methods considered so far since the CISD and experi­
mental re values differ by only 0.002 A. However, from ex­
amination of our best calculations a more realistic estimate 
of the limiting value of rein this basis set is 1.113 A. If this is 
the case the CISD geometry is still nearly 0.02 A too short. 

The RHF-CCSD calculations, on the other hand, ap­
pear to give a much better estimate of the actual re within 

-0. 7 r-r---~----~--~----'----~--""""-----r---~------. 

Ul 
Q) 
Q) ..... 
t 
c 

::c 
a 
a:i a 

Ul 
:J 
a: 
>, 
CI ..... 
Q) 

c:: w 

-0.8 

-0.9 

-1.0 

-1.1 

-1.2 

-1.3 

-1.4 '---__ ~ ____ ~ __ ~ ____ ....L...-__ ~ ____ ....L..-__ ~ ____ ~ __ ~ 

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
N - N Bond Length in Bohr 

5.5 6.0 

J. Chern. Phys., Vol. 86, No.2, 15 January 1987 

FIG. 8. The RHF-based CISD, CCSD and 
CCSDT-l, MCSCF, MR-CISD, and MR­
LCCM potential curves for N2• The various 
curves are identified as follows: (e) CISD; 
(0) CCSD; (Ll.) CCSDT-l; (0) MCSCF; 
( + ) MR-CISD; and (*) MR-LCCM. 
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this basis set. The equilibrium bond distance is 0.008 A lon­
ger than in the CISD case, which is roughly half of the re­
maining error in the geometry. Also, the RHF-CCSD curve 
is surprisingly accurate out to about 4.0 bohr especially 
when compared to the RHF-MBPT(4) surface. The RHF­
CCSD PES along with the UHF-CCSD and MR-LCCM 
curves are displayed in Fig. 9. If the dissociation energy is 
computed as the difference between the minimum and 4.0 
bohr energies a value of9.93 eV is obtained which is over 1 
eV above our best estimate of the limiting De in this basis. 
However, as is visible from the figure, there is a nonphysical 
hump in the RHF-CCSD curve, forced by the incorrect dis­
sociation of the RHF function. Unfortunately, convergence 
difficulties in the CC equations prohibit us from extending 
the RHF-CCSD curve beyond 4.5 bohr so whether the 
RHF-CCSD curve can dissociate to the correct limit re­
mains unanswered. 

By comparison the UHF-CCSD curve in Fig. 8 appears 
to behave at least qualitatively correct along its entire length, 
and, in particular, largely corrects the UHF + MBPT 
curves of Fig. 7. Assuming the MR-CISD and MR-LCCM 
surface are reasonable estimates to the full CI potential the 
only qualitative defect in the shape of the UHF-CCSD curve 
visible from the figure is the increased separation of the two 
curves in the 2.5 to 3.5 region. In fine detail, we might also 
expect an artificial hump in this region as previously ob­
served for UHF based correlated studies of N 2 .29 These ef­
fects are most likely a consequence of spin contamination 
which is still relatively large in the UHF-CCSD wave func­
tion.29

(b) For example, at 3.0 bohr the multiplicity is 2.22. 
The RHF-CCSDT-l surface in N2 like its counterpart 

in F2 is extremely accurate, virtually paralleling the MR-CI 
and MR-CC curves from inside the minimum geometry to 

approximately 3.4 bohr. This might be seen better in Fig. 10 
where the minima for the CISD, CCSD, CCSDT-1 and the 
two muItireference curves are superimposed. Beyond about 
3.4 a.u., however, the PES rapidly deteriorat,.es and past 
about 5.0 bohr we were unable to solve the T amplitude 
equations for all geometries. This contrasts to the situation 
in F2 where the CCSDT-l curve behaved correctly out to 
close to 6.0 bohr. This is most likely a consequence of the 
high levels of excitation needed to correctly break the N2 
triple bond starting from an RHF reference. A dissociation 
energy may be estimated if the UHF-CCSDT-l energy for 
dissociation ( - 108.98570 hartree) is subtracted from the 
equilibrium RHF-CCSDT -1 result in computing De. This 
De of8.703 eVis less than 0.1 eV from the MR-LCCM value 
and should be close to the best basis set result, since for 
most cases CCSDT-1 agrees with the full CI to within -1 
kcallmol. 54 

The valence CAS-MCSCF surface, in contrast to the 
analogous surface in F2, contains no substantial qualitative 
defects. This has been pointed out previously by Siegbahn.52 
The quality of the MCSCF surface is apparent in Fig. 11 
where the MCSCF, MR-CISD and MR-CCSD curves are 
plotted so that their energy minima coincide. The re value 
for the MCSCF PES is quite close to both the MR equilibri­
um distances being only 0.0022 and 0.0030 A shorter than in 
the CI cases, respectively. Likewise the MCSCF dissociation 
energy of 8.903 eV is within 0.125 eV of either MR result. 
The largest defect visible from the figure is in the region 
surrounding 3.5 bohr where the MCSCF curve deviates 
most from either MR surface. As the N2 bond is stretched 
from 3.5 bohr to dissociation the MCSCF-MR-LCCM gap 
narrows by over a factor of 2. 

Examining next our two best complete PES's, in Figs. 8, 
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FIG. 9. The RHF-CCSD, UHF-CCSD, and 
MR-LCCM potential curves for N2• The var­
ious curves are identified as follows: (e) 
RHF-CCSD; (0) UHF-CCSD; and (0) 
MR-LCCM. 
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10, and 11, the MR·CISD and MR·LCCM curves are found 
to yield very similar values for re , 1.1120 and 1.1128 A, reo 
spectively, and are virtually superimposable out to approxi· 
mately 2.5 bohr. However, beyond this distance the curves 
are no longer parallel. If the two surfaces are positioned as in 
Fig. 11 the largest separation is again found near 3.5 bohr. 
However, in contrast to the MCSCF results, the difference 
between the curve separations at 3.5 bohr and at dissociation 
is now just 0.02 eV compared to the analogous difference of 
0.28 eV obtained from the MCSCF and MR·LCCM sur· 
faces. 
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FIG. 10. The RHF based CISD, CCSD, 
CCSDT-l, and the MR-CISD and MR-LCCM 
curves for N2 with their minima superimposed. 
The various curves are identified as follows: 
(e) CISD; (0) CCSD; (lI.) CCSDT-l; ( + ) 
MR-CISD; and (*) MR-LCCM. 

Of the two MR curves, which one does a better job of 
describing the DZP + full CI PES? Unlike the situation for 
F2 the choice of the MR·LCCM potential is somewhat un· 
clear. First, as opposed to F2 the single reference calcula· 
tions in the equilibrium region are not as useful in helping to 
determine which of the two MR re values is the most accu· 
rate. The equilibrium geometries of the best SR surfaces, 
MBPT(4), CCSD, CCSD + E4T> and even CCSDT-l, are 
all farther from either of the MR re values than the two MR 
re values are to each other and, in addition, all of these SR 
methods except possibly CCSDT·l have significant defects 

FIG. 11. The MCSCF, MR-CISD, and MR­
LCCM potential curves for N 2 shifted such 
that their respective minimum energies are 
zero. The various curves are identified as fol­
lows: (e) MCSCF; (0) MR-CISD; and (0) 
MR-LCCM . 
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in the equilibrium region for this particular case as was 
pointed out earlier. Second, a similar problem exists for N2 
when comparing the De's and the absolute energies. How­
ever, the trends observed in the MR N2 calculations can be 
compared to those found for the MR calculations in F2 . 

In the F2 MR-32 calculations a relatively minor change 
in the equilibrium geometry was found between the two 
curves compared with a more significant change in the disso­
ciation energies. Similar behavior is seen in the N2 MR cal­
culations. For example, in going from the MR-CISD-32 to 
MR-LCCM-32 surfaces De decreased by 1.4%. In N2 the 
analogous De lowering is 0.9%. In the smaller MR-10 calcu­
lations performed on F 2 there was virtually no change in the 
dissociation energy. However, as stated earlier the MCSCF-
10 reference does a poor job of describing the F 2 potential, so 
comparison with the MR-32 curves would be more valid. 

Around the minimum region the RHF-CCSDT-1 ener­
gies are much closer to the corresponding MR-CISD than 
they are to the corresponding MR-LCCM energies. This is 
in contrast to the situation in F 2 where the opposite was true. 
However, at dissociation the UHF-CCSDT-1 energy is clos­
er to the analogous MR-LCCM than the MR-CISD result. 
Since we no longer have variational results to compare 
against as we did for F2 it is impossible for us to know if the 
MR-LCCM energies have overshot the "exact" results and, 
consequently, to predict which of the two curves lie closest to 
the full-CI, but the similar energies obtained by MBPT ( 4), 
CCSDT-1, and MR-CISD suggest a likely overestimate of 
correct binding energy in the MR-LCCM result. 

Lastly, the spectroscopic constants obtained from the 
various RHF PES's will be examined (see Tables VIII and 
IX). Since the differences between the harmonic frequencies 
for the various methods are nearly identical with the differ­
ences between the "true" first vibrational frequencies 
(11G1/2 values from Table IX) only the trends in We (and 
wexe) will be discussed. 

Unlike F 2' the SCF and CISD harmonic frequencies for 
N2 are typical, lying 15% and 5%, respectively, above the 
experimental We value of 2359 cm -I. However, as was also 
the case in F 2' progressing to the CISD level does little to 
improve the anharmonicity. (In N2 only 31 % of the remain­
ing error in WeXe relative to experiment is recovered.) The 
SDQMBPT(4), CCSD, and CCSDT-1 harmonic frequen­
cies are somewhat of an improvement over the CISD result, 
especially since the full CI value for We in this basis set is 
probably between 2250 and 2300 cm - I, but MBPT( 4) is 
poorer. The CCSDT-1 anharmonicity is also slightly im­
proved over the CI result, however, the full fourth-order 
value for WeXe is nearly twice the experimental value. This is 
a consequence of the apparent slow rate of convergence of 
the perturbation series even for the eqUilibrium region ofN2, 
and, in particular, the effect of triple excitations as measured 
by SDTQ-MBPT( 4) compared to SDQ-MBPT( 4) is seen to 
move the answer away from experiment. However, once tri­
ples are included iteratively as in CCSDT-1, which reduces 
their net effect as may be measured by comparison to CCSD, 
agreement is once again achieved. In F2, where the perturba­
tion series converges much faster, the We and WeXe values at 
MBPT( 4) are probably close to the "full CI" limiting value. 

Another indicator of the slow convergence of perturbation 
theory for N2 is seen in the large changes between the SDQ­
MBPT ( 4) and the infinite-order sum of such terms as com­
puted by CCSD for WeXe' or by SDTQ-MBPT(4) vs 
CCSDT-1. 

The spectroscopic constants computed using any of the 
MRPES's (including also the CAS MCSCFPES) appear to 
be much more accurate than those obtained from any of the 
single reference approaches that were tried with the excep­
tion of CCSDT -1. The quality of the MCSCF reference func­
tions is reflected in the small changes that occur in We and 
WeXe in proceeding from the MCSCF to either the MR­
CISD or MR-LCCM methods. For example, the difference 
between the MCSCF and MR-LCCM harmonic frequencies 
is 31 cm - 1 compared to the corresponding difference in F2 
between the MCSCF-1O and MC-LCCM-1O We values of 
189 cm -I. However, the MCSCF We for F2 changes by 218 
cm - 1 just be expanding the reference space from 10 to 32 
functions. The CCSDT -1 anharmonicity is worse than the 
MCSCF value (assuming that the MR-CISD and MR­
LCCM results are in fact closer to the limiting value), while 
We is improved, with the other constants negligibly different. 
The 63 and 71 cm -I discrepancies between the experimental 
and our MR-CISD and MR-LCCM values for We are most 
likely due to deficiencies in the basis set, although the poten­
tial for errors in the curve fitting procedure cannot be entire­
ly discounted. Siegbahn's study of the N2 ground and excit­
ed states41 reveals the importance of employing larger than 
DZP basis sets and including! functions if high accuracy in 
the N2 spectroscopic constants is desired. In light of this, the 
excellent agreement of both the MR-CISD and MR-LCCM 
anharmonicities with experiment (14.1, 14.2, and 14.3 
cm - I, respectively) might be partly fortuitous. 

VIII. SUMMARY 

A new derivation of the MR-LCCM equations has been 
presented which is based upon applying the CC ansatz di­
rectly to an MCSCF reference function. The MR-LCCM 
method is designed to compete directly against the tradition­
al MR-CISD procedure and it has been shown how this 
method can be implemented in an efficient and straightfor­
ward manner via modification of existing MR-CI programs. 
This procedure has been used to investigate the ground-state 
PES's ofF2 and N2. Taken as a whole, the MR-LCCM re­
sults were shown to compare favorably with those from anal­
ogous MR-CISD calculations. For F2 and N2 the overall 
shape of the MR-LCCM PES's (based upon valence-space 
CAS-MCSCF reference functions) were qualitatively cor­
rect and the corresponding MR-CISD curves were nearly 
superimposible. In both cases, however, the MR-LCCM 
curves were lower in energy along their entire lengths than 
the analogous MR-CISD curves. We would hope that this 
difference is an accurate measure of the difference due to 
MR-LCCM being nearly size extensive while MR-CISD is 
not, but further work will have to determine this. In Fz com­
parison with the results of the various highly correlated sin­
gle-reference methods such as MBPT(4), CCSD and espe­
cially CCSDT-1 and the larger 32 configuration MR 
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calculations suggest that the MR-LCCM results lie closer to 
the "exact" (full-CI) potential than the comparable MR­
CISD results, although perhaps fortuitously. For Nz the sit­
uation is less clear cut, but at least in the dissociation region 
our analysis suggests that the MR-LCCM results are reason­
ably accurate. 

Additionally, it was discovered that the MR-LCCM 
procedure could overcome a serious qualitative defect in the 
reference function. For Fz the valence-space CAS-MCSCF 
wave function only yields about 50% of our best estimate of 
the basis set dependent binding energy. However, if the ac­
tive orbitals are augmented with the 211'" orbital the CAS­
MCSCF only overestimates this binding energy by roughly 
10%. What is surprising is the similarity ofthe MR-LCCM 
curves computed employing either of the two MCSCF refer­
ence choices; the PES's are shown to be quite close in those 
regions where both were computed. In addition, the two 
comparable MR-CISD curves generally show larger discre­
pancies between themselves than do the two MR-LCCM 
curves. This suggests that the MR-LCCM method might 
converge faster to the full-CI limit as a function of increased 
reference size than does the traditional MR-CISD method, 
which would be expected for a properly linked-diagram, size 
extensive method. 

One additional very positive result is that the recently 
proposed single reference CCSDT-l modepz has sufficient 
flexibility that it can largely overcome a very poor RHF sin­
gle-reference approximation and provide an accurate poten­
tial curve far beyond the equilibrium geometry, all the way 
to dissociation for Fz, and to about 2 Re for Nz . In the latter 
case a UHF-CCSDT-l result for the atoms is necessary to 
obtain a reasonable dissociation energy. The comparative 
simplicity of single-reference methods, and necessity of us­
ing such methods in extended systems, recommends the con­
tinued extensions of the single-reference theory to include 
more of T 3 and part of T 4' At that level, it would appear that 
the approach to the full CI might be sufficiently close that 
such a method will suffice except for the most difficult cases. 
However, when nondynamica1 correlation is very important 
as in the bond breaking of Nz, some single but multiconfi­
gurational reference CC approach should be quite powerful. 
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APPENDIX 

In proceeding from Eq. (17) to Eq. (18) we neglect the 
the term T Q.Q HQ.MC ; in this Appendix some justification is 
presented. 

A given element in the column vector T Q,QHQ,MC can be 
expressed as [see Eq. (16)] 

A A 

2: (<I>,ITI<I>")(<I>"IHI'IIMC>, 
«I>.eQ 

(AI) 

where the functions <1>", u = 1, nQ are a set of orthonormal 
configurations that span the single and double excitation 
space relative to the MCSCF reference functions and nQ is 
the number of linearly independent functions required to 
span this space. For reasons that will become apparent later, 
it is useful to replace the Q space projection operator above 
(1: I <1>" ) (<I>" I) with an alternate Q space projector over the 
nonorthonormal functions 4>, where the functions 4>vEQ are 
the set of all functions formed by acting with a + r, a + r{J + s, 
a + r{J + sr+ t, etc., upon'llMc where the creation and annihil­
ation operators are defined following Eq. (6) with the re­
striction that all completely internal excitations are ex­
cluded. This restriction is a consequence of the P and Q space 
partitioning. Using this definition ofQ then, 

A -1 A. 

= 2: (<I>,ITI4>v)Svw (4)wIH I'IIMC )' (A2) 
;",;u!'Q 

where Sv~ I is the inverse of the 4>-basis overlap matrix. 
Next, partition the sets of <I> and 4> functions into singly 

and doubly excited subsets (also triply, quadruply, etc., ex­
cited subsets in the latter case) and label these sets with the 
lowercase letters s, d, t, q, etc. To distinquish the <I> from the 
4> functions a prime will be added to the subsets formed from 
the 4> functions (s', d', etc.). In determining the excitation 
class of a particular <I> and 4> function rearrangement among 
the active electrons is not considered to constitute an addi­
tional excitation. We also introduce a classification scheme 
that groups elements of the various excitation categories and 
the individual elements in 1'into several subcategories. Each 
subcategory will be identified via an ordered pair (i,j) where 
i represents the decrease in the number of core electrons andj 
represents the increase in the number of virtual electrons 
relative to either the SCF or MCSCF vacuum. [The SCF 
and the MCSCF reference configurations are in the subcate­
gory (0,0).] These two numbers uniquely determine the 
number of electrons in each of the three categories: core, 
active, and virtual. The terms in l' and the excitation classes 
s, s', d and d' break down into the following subcategories: 

Subcategory 
number 

1 
2 
3 

4 
5 
6 
7 
8 

s,s' 

(0,1) 
( 1,0) 
(1,1 ) 

A 

d,d' T 

(0,1) 
( 1,0) 
(1,1 ) 

(0,2) (0,2) 
(2,0) (2,0) 
(2,2) (2,2) 
(2,1) (2,1) 
(1,2) (1,2) 

Thes' and d ' submatrix of the Sv-;;' I matrix can be expressed in 
terms of these excitation classes as 
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s' d' where, e. g., (111) is the inverse overlap matrix between all 
functions in the (0, 1) space. The t' and higher excitations 

{ (111) 0 0 0 0 0 0 0 would also breakdown into diagonal blocks, but these terms 
s' 0 (212) 0 0 0 0 0 0 will" not contribute to T Q.Q H Q.MC since terms like 

0 0 (313) 0 0 0 0 0 (t ' I H I'll MC) are zero because all functions in t' differ by 

l 
0 0 0 (414) 0 0 0 0 more than two excitations from 'I1MC ' 

0 0 0 0 (515) 0 0 0 Exploiting the s' and d ' block structure ofEq. (A3), Eq. 

d' 0 0 0 0 0 (616) 0 0 (A2) can be rewritten as 

0 0 0 0 0 0 (717) 0 
0 0 0 0 0 0 0 (818) 

(A3) 
I 

A A A A 

[ (sITls')(s'ls,)-I(s'IHI'I1Mc ) + (sITld')(f ld ,)-I(d'IHI'I1Mc ) ] 
T H MC = A A A A. 

Q.Q Q. (d ITls') (s'ls') -1(s'IH I'I1Mc ) + (d ITld') (d 'Id') -1(d'IH I'I1Mc ) 
(A4) 

Employing the generalized Brillouin theorem (GBT),53 
which states that ('I1MC IB I U+j -;;;ri)'I1MC ) = 0 for i <j, 
all matrix elements of the type (s' IH I'll MC ) involving "true" 
single excitations can be shown to be zero. By true we mean 
the single excitation subset of s' that does not include any 
active to active excitations. This is because the Q space for 
this subset does not include any terms involving only all in­
ternal excitations and these terms are the only ones for which 
both the i+jl'l1Mc ) andril'l1Mc ) functions exist. In all the 
other cases at most one of these two functions is nonzero 
and, therefore, by the GBT the remaining must be equal to 
zero. 

To estimate the magnitude of the remaining terms in Eq. 
(A4) we next expand the cluster operator matrix elements 
into sets of matrix elements over the various subcategories. 
The only nonzero combinations are 

A 

(sITls') = {(31 112), (31211)}, 

(siT Id') = 0, 
A 

(d ITls') = {(41111), (51212), (61313), (71 213), 

(71312), (81113), (81311), (71511), 

(81412), (61711), (61812)}, 

(dITld') ={(71 115), (81214), (61117), (61218), 

(61415), (61514)}, 

where the integers in the matrix elements on the right-hand 
side of the equalities above label the particular subcategories 
involved. For example, the term (31112) represents the 
(sl Tis') c~ss of matrix elements between the s subcategory 
( 1,1), the Tsubcategory (0,1 ), and the s' subcategory ( 1,0). 

Combining the individual matrix element expressions 
above into nonzero t~rms in the TQ.QHQ.M~ matrix element 
summation, the (d ITld')(d'ld,)-I(d'IH I'I1Mc ) term is 
the only one which is not zero when semi-internal excita­
tions are excluded. We argue that since we are employing an 
MCSCF wave function as our reference function all terms 
involving semi-internal excitations will be small. This is be­
cause the effect of including semi-internal excitations is re­
laxation within the active space and since the active space 
configuration coefficients (along with all the orbitals) have 
already been optimized the subsequent change should be 

rather small, especially as the size ofthe MCSCF configura­
tion space increases. (Similar arguments have been used pre­
viously by others to justify the complete omission of semi­
internal excitations from another multireference CC 
method. 17

) Neglecting the terms involving semi-internal ex­
citations, then, Eq. (A4) simplifies to 

o 
A 

(61 117) (717) -I (71H I'I1Mc ) 
A 

+ (61218)(818)-1(8IHI'I1Mc) 

+ (61415)(515)-1(5IBI'I1Mc) , 
A 

+ (61514)(41 4)-1(4IH I'I1Mc ) 

(71115) (515) -I (51B I'I1Mc ) 

(81214) (414) -I (41B I'I1Mc ) 
(A5) 

where the 0 submatrix corresponds to the single and 1-5 type 
double excitation terms of T Q.Q H Q.MC ' In other words, if 
T Q.QHQ.MC is equivalenced to A than the submatrices A s•Mc 
and Ad ".MC are zero where d" represents the (0,1), (1,0), 
( 1,1), (0,2), and (2,0) subcategories of double excitations. 

Of the remaining doubly excited terms all involve core 
to active excitations. If in addition to removing the semi­
internal excitation containing terms from T Q.Q H Q.MC either 
the core is kept frozen in the calculation or only excitations 
from the occupied (core plus active) to the virtual orbitals 
are permitted, then, T Q.Q HQ,MC is zero. This implies that 
MR-LCCM to MR-CISD comparisons for equivalent con­
figuration sets should be more favorable when either the core 
is frozen or when all occupied orbitals are treated as active. 
By neglecting the column vector T Q.Q H Q.MC ' then, we intro­
duce two possible additional sources of error. The first, 
which involves the incorrect treatment of semi-internal exci­
tations will become less important as the size of the MCSCF 
increases (i.e., as the number of reference configurations in­
crease); and the second, is the incorrect handling of the core 
which is only important if core orbitals are present and not 
frozen. 
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