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Abstract 

It has recently been shown that M¢ller-Plesset perturbation calculations may diverge for single configuration dominated 
systems in extended basis sets. We examine the origin of this divergence using the neon atom as a test example. The lowest 
energies for total symmetric states are calculated for values of the perturbation parameter strength z E [ - 1 ,  1]. For 
z ~- ( - 0 . 9 ) - ( - 0 . 8 )  avoided crossings between the Hartree-Fock configuration dominated state and states dominated by 
quintuple and higher excitations are observed. The origin of the divergence is therefore "back door" intruder states, that are 
highly excited relative to the Hartree-Fock state. 

1. Background 

It has been a general, but implicit, assumption in 
quantum chemistry that M¢ller-Plesset perturbation 
theory [1] converges well for single configuration 
dominated systems. This was supported by several 
high order perturbation calculations using full con- 
figuration interaction (FCI) programs [2-4], as well 
as calculations through sixth order using recent 
progress in explicit programmed Moller-Plesset per- 
turbation theory [5]. In a recent paper [6] we found a 
surprising divergent behaviour in M¢ller-Plesset cal- 
culations for the single configuration dominated sys- 
tems Ne, HF, H 2 0  and F -  using extended basis sets. 
In this Letter we investigate the origin of these 
divergences. Calculations on Ne will be used to 
exemplify and to illustrate the origin of the divergent 
behaviour. 

In standard M¢ller-Plesset perturbation theory 
[ 1 ], the Hamilton operator is partitioned into a zeroth 
order part described by the Fock operator F and a 
perturbation operator. The perturbation is the fluctua- 
tion potential ~b describing the difference between 
the true electron-electron repulsion and the Fock 
potential representation of the average electron-elec- 
tron repulsion. Consider the Hamiltonian 

n(z) =F+zdp, (1) 

defined in terms of a complex strength parameter z. 
The physical Hamiltonian is represented by H(1). 
The electronic Schr'6dinger equation for the Hamilto- 
nian in Eq. (1) becomes, in a finite basis, 

n( z)~,(z) -- ~( z)~(z). (2) 

Moller-Plesset perturbation theory is defined as the 
Taylor expansion of the energy e(z)  around z = 0. 
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We denote the energy of  this expansion E ( z )  to 
distinguish it from the eigenvalue E(z)  in Eq. (2) 

co 

E ( z )  = ~'. e ( " ) z  ", (3 )  
n f f i 0  

with E (") being the nth order energy correction. 

The convergence of  the Mol l e r -P le s se t  series in 
Eq. (3) depends on having a well separated energy 
spectrum for the zeroth order  Hamil tonian (z  = 0) 
and for the physical  problem (z  = 1). The expansion 
in Eq. (3) has a finite radius of  convergence,  R. A 
necessary condition for the convergence of  E(1) to 

E(1) is that R >I 1. The convergence radius depends 
on the behaviour of  the eigenvalues 6 ( z )  as func- 
tions of  z in the complex plane. The eigenvalues 
e ( z )  are branches o f  analytic functions. For  physical  
reasons and because we express Eq. (2) in a finite 
basis we expect  the eigenvalues E(z)  to be finite. 
The convergence radius is the distance from the 
expansion point (zero) to the nearest point  of  degen- 
eracy of  the functions e ( z )  [7 -9 ]  (or nearest pole of  
E(z)).  Degeneracies of  E(z )  in the complex plane 
for I zl < 1 therefore lead to a divergent M o i l e r -  
Plesset series. Since ( ~ ( z  * ))* ffi e ( z ) ,  degeneracies 
occur in complex pairs at z and z*.  It can be 
expected that the degeneracies  will show up as an 
avoided crossing on the real axis [10-13]  in the 
interval - 1 ~< za~ ~< 1. 

It is well  known that divergent  perturbation series 
are often obtained in multiconfiguration dominated 
systems and excited states. The origin of  the diver- 
gent behaviour in these problematic  cases has been 
investigated by several authors [9-14] .  Usually,  the 
origin of  the divergences is discussed in terms of  
intruder states. Both " f ron t  d o o r "  intruders ( z ~  > 0) 
and " b a c k  d o o r "  intruders ( z ~  < 0) have been found 
to be the cause o f  divergences,  

2 .  R e s u l t s  

We have recently [6] reported the convergence 
behaviour of  M~l le r -P lesse t  calculations on Ne 
using the cc-pVDZ [15], aug-cc-pVDZ [16] and 
cc-pVTZ [15] basis sets where in the cc-pVTZ basis 
the f function was left out (cc-pVTZ - (f)). The 1 s 
orbital was frozen to the canonical H a r t r e e - F o c k  

Table 1 
MPn and FCI results for Ne in the aug-cc-pVDZ basis set. MPn 
energies are given as the deviation from FCI in millihartree 
(MPn-FCI, EFo = - 128.709476 hartree). The ls(Ne) orbital is 
frozen. Results taken from Ref. [6] 

MP1 213.126 MP23 0.244 MP45 9.148 
MP2 6.252 MP24 - 0.275 MP46 - 11.007 
MP3 4.705 MP25 0.313 MP47 13.251 
MP4 - 0.981 MP26 - 0.359 MP48 - 15.959 
MP5 1.032 MP27 0.414 MP49 19.229 
MP6 - 0.550 MP28 - 0.480 MP50 - 23.176 
MP7 0.409 MP29 0.559 MP51 27.942 
MP8 - 0.298 MP30 - 0.655 MP52 - 33.700 
MP9 0.240 MP31 0.769 MP53 40.653 
MP 10 - 0.200 MP32 - 0.907 MP54 - 49.052 
MPI 1 0.175 MP33 1.072 MP55 59.199 
MP12 -0.159 MP34 - 1.270 M P 5 6  -71.458 
MP 13 0.149 MP35 1.509 MP57 86.270 
MP14 -0.144 MP36 - 1.797 MP58 - 104.167 
MPI5 0.142 MP37 2.143 M P 5 9  125.795 
MPI6 -0.144 MP38 - 2.559 MP60 - 151.931 
MPI7 0.148 MP39 3.061 M P 6 1  183.518 
MPI 8 - 0.156 MP40 - 3.665 MP62 - 221.694 
MPI9 0.166 MP41 4.393 M P 6 3  267.836 
MP20 - 0.180 MP42 - 5.272 MP64 - 323.609 
MP21 0.197 MP43 6.330 M P 6 5  391.024 
MP22 - 0.218 MP44 - 7.608 

orbital in all the calculations. We found that the 
Mol le r -P lesse t  series converges rapidly for the cc- 
pVDZ and c c - p V T Z ( - f )  basis, whereas the aug-cc- 
pVDZ series has a divergent and oscillating be- 
haviour. In Table 1, we give the difference between 
the Mol le r -P lesse t  energy through a given order 
(MPn)  and the full configuration interaction (FCI) 
energy for the aug-cc-pVDZ basis set. In Table 2 the 
orbital energies for the Har t r ee -Fock  aug-cc-pVDZ 
calculation are given. From the orbital energies it is 
seen that the zeroth order spectrum is well separated. 
The energy gap between the highest occupied molec- 
ular orbital and lowest  unoccupied molecular  orbital 
( H O M O - L U M O )  is 1.14 E h. The weight of  the 

Table 2 
Orbital energies in hartree, for Ne in the aug-cc-pVDZ basis set 

s p d 

- 32.79495 
- 1.94042 - 0.85304 

0.28736 0.29301 1.75769 
2.74197 1.96135 6.37247 
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Hartree-Fock determinant in the FCI wavefunction 
(WHF) is 0.964. The WUF and HOMO-LUMO gap 
are relevant parameters for the convergence of the 
M~ller-Plesset series. For the abovementioned three 
basis sets we found in Ref. [6] that the WnF is 
similar in the three calculations, clearly demonstrat- 
ing the single configuration nature of the Ne ground 
state. The HOMO-LUMO gap differs in the three 
basis sets with the smallest gap in the aug-cc-pVDZ 
basis, but the 1.14 E h is still a large gap. The 
numerical values of the MPn contributions from 
consecutive orders start to increase beyond order 
fifteen. This divergent behaviour was surprising, in 
the sense that both the zeroth order energy spectrum 
and the physical spectrum is well separated. We 
found the same type of divergences and extreme 
dependency on the basis set in calculations in other 
systems HF, H20  and F- .  In the following we will 
focus on the Ne aug-cc-pVDZ perturbation series. 

As discussed previously, the Moller-Plesset se- 
ries diverges if degeneracies appear in the energy 
spectrum of the Hamiltonian in Eq. (1) for real 
values of z, I z I ~< 1. We therefore carried out calcu- 

lations of the total energies of the lowest states of the 
Hamiltonian in Eq. (1) for - 1 ~< z < 1. The calcula- 
tions were carded out with the LUCIA FCI program 
[17] using FCI techniques [18]. In Table 3 the values 
of the total energies of the ground and Is excited 
states are given for selected z values. Also given in 
Table 3 are the weights of various excitation levels 
with respect to the Hartree-Fock reference state. At 
z = 1, the ground state is dominated by the Hartree- 
Fock configuration. The first excited state is domi- 
nated by the 2p ~ 3p excitation, while the second 
excited state is dominated by the 2s ~ 3s excited 
configuration. The results in Table 3 confirm that the 
physical spectrum (z = 1) is well separated. The 
dominant configuration for the ground and first ex- 
cited state for z = 1 is maintained in the whole 
interval for z larger than --- - 0 . 6 .  

In Fig. 1 the total energies of the three lowest 
states are plotted as a function of z. In Fig. 2, we 
display the energy difference between the total en- 
ergy of the lowest excited states and the ground state 
total energy for the most interesting z interval. At 
z = -0 .7 ,  an avoided crossing occurs between the 
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Fig. 1. Total energies in Hartree for the three lowest total symmetric singlet states as a function of the perturbation parameter z. 
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Table  3 

Total  energies  (in har t ree)  fo r  the three lowest  iS states for  selected values  o f  z 

State 1 2 3 

z = i .0  E - 128.70948 - 127.86697 - 127.01552 

0 0 .9645  0 .1755 >( 10 - 2  0.2461 >( 10 - 3  

1 0 .9139  >( 10 - 3  0 .9215  0.8191 

2 0 .3378  >( 1 0 -  J 0 .5817  X 1 0 -  t 0 .1518  

3 0 .2998  >( i 0  - 3  0 .1627  >( 1 0 -  l 0 .2568  >( 1 0 -  i 

4 0 .4900>(  l 0  - 3  0 .2210>(  l 0  - 2  0.2881 >( l 0  - 2  

5 0 .1343 >( 10 - 4  0 .9923  X l 0  - 4  0 .2327  X i 0  - 3  

6 0 .2568  >( l 0  - 5  0 .1824  >( l 0  - 4  0 .2427  >( l 0  - 4  

7 0 .1150  >( l 0  - 6  0 .3654  >( 10 - ~  0 .6675  >( l 0  - 6  

8 0 .2062  >( 10 - s  0 .1847  X 10 - 7  0 .2694  X 10 - 7  

z == - 0 . 2  E - 9 7 . 7 2 6 5 8  - 9 6 . 5 5 1 0 9  - 9 5 . 4 9 7 5 3  

0 0 .9987  0 .6264>(  10 - 5  0 .4203  X 10 - 4  

1 0 .2178  x 10 - 5  0.9921 0 .4633 >( 10 - 2  

2 0 .1323 >( l 0  - 2  0 .6293 x 10 - 2  0 .9782  

3 0 .8962  >( 10 - 6  0 .1577  × 10 - 2  0 .1548  >( 1 0 -  J 

4 0 .8305 X l 0  - 6  0 .1915  >( l 0  - 4  0 .1548  >( 1 0 - J  

5 0 .1706  >( l 0  - 8  0 .1205  x 10 - 5  0 .3352  >( 10 - 4  

6 0.2231 >( l 0  - 9  0.1451 >( 10 - 7  0 .1043  >( l 0  - 5  

7 0 .5756  >( 1 0 -  ,2 0 .2780  x 10 -  9 0 .1247  >( 1 0 -  7 

8 0 .1113 >( 1 0 -  l~ 0 .1429  >( 1 0 -  H 0 .1042  X 10 - 9  

z = - 0 . 5  E - 9 0 . 0 7 5 7 8  - 8 8 . 9 1 5 3 2  - 8 8 . 1 2 9 8 0  

0 0.9913 0.3936 × lO -3 0.2959 >( 10 -3 

I 0.I 146 >( 10 -3 0.9163 0.6078 >( I0- 

2 0.8508 >( 10 -2 0.6013 >( lO- ' 0.5674 

3 0.5213 × 10 -4 0.2040>( I0 -~ 0.2402 

4 0.3843 × 10 -4 0.2369 >( 10 -2 0.9805 >( I0- J 

5 0.7148 X 10 -6 0.3462 >( I0- 3 0.2763 >( 10- 

6 0.9168 >( 10 -7 0.3248 X 10 -4 0.5184>( 10 -2 

7 0.2007 >( I0 -a 0.2019>( lO -5 0.4388 >( 10 -3 

8 0.5315 X I0 -~° 0.6101 >( 10 -7 0.1651 X 10 -4 

z = - 0 . 6  E - 8 7 . 5 3 4 1 2  - 8 6 . 4 1 1 4 8  - 8 5 . 8 7 2 9 7  

0 0 .9870  0 .1005  >( 10 - 2  0 .1142  >( 10 - 3  

1 0 .2713  >( 10 - 3  0 .8345  0 .9285 X 1 0 -  

2 0 .1247  >( I 0 -  ~ 0 .1050  0 .1853  
3 0 .1306  >( 10 - 3  0 .4537  >( 10 -  J 0 .2462  

4 0 .8859  >( l 0  - 4  0 .1067  >( 1 0 -  ~ 0 .2353 

5 0.2931 >( i 0  - 5  0 .2839  >( 10 - 2  0 .1626  

6 0 .4003 >( l 0  - 6  0 .5816  X 10 - 3  0 .6648  X 1 0 -  

7 0 .1633  >( l 0  - 7  0 .6914>(  10 - 4  0 .1055  × 1 0 -  

8 0 .5770  >( l 0  - 9  0 .3729  >( l0  - 5  0 .6267  >( 10 - 3  

z = - 0 . 7  E - 84 .99703 - 84 .00964  - 83 .85914  

0 0.9815 0.1462 x 10 -2 0.8284 x I0- 3 

I 0.5900 x 10 -3 0.2927 0.4665 

2 0.1739 X I0- ~ 0.1201 0.4363 X lO- ' 

3 0.3092 X 10 -3 0.1253 0.1781 × I0- 

4 0.1944 X 10 -3 0.1381 0.6104 X I0 -m 

5 0.1252 x 10 -4 0.1562 0.1576 

6 0.2236 X 10 -5 0.1248 0.1838 

7 0.2193 X 10 -6 0.3616 X I0- ~ 0.5943 X I0- l 

8 0.1609>( 10 -7 0.5225>( 10 -2 0.9396 X 10 -2 
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Tab le  3 (cont inued)  

State 1 2 3 

z = - 0 .8  E - 82 .46492  - 82 .21762  - 81 .57100  

0 0 .9735 0 .7116  X 10 - 3  0 .4087  X 1 0 -  2 

1 0 .1250  X 10 - 2  0 .1152  X 10 - 2  0 .3596  

2 0 .2365 X lO-~ 0 .5648  X lO - z  0 .2013  

3 0 .8012  X t 0  -3  0 .2676  X l O -  ~ 0 .1803  

4 0 .5245  X lO - 3  0 .9663  X l O -  = 0 .1014  

5 0 .1503 X 10 - 3  0 .2425  0 .2996  X 1 0 - t  

6 0 .9927  X 10 - 4  0 .3668  0 .4675 X 1 0 -  

7 0 .4004  X 10 - 4  0 .2021 0 .5075  X I 0 -  t 

8 0 .9276  X 10 - 5  0 .5769  X 1 0 -  = 0 .2585 X 10-  ' 

z = - 0 . 9  E - 80 .65279  - 80 .00597  - 79 .93783  

0 0.9831 X 10 -5 0.6323 X 10 -2 0,9557 

I 0.6964 X 10 -4 0.8422 X I0- 3 0.2347 X I0- 2 

2 0.6728 X I0 -3 0.4413 X IO -2 0.3081 X I0- t 

3 0.5217 X I0 -2 0.1882 X 10- t 0.1330 X IO- 2 

4 0.3012 X I0- ~ 0.7238 X I0- t 0.9098 X I0- 3 

5 0.I 197 0.1918 0.1708 X I0 -2 

6 0.2900 0.2765 0.3776 X I0- 2 

7 0.3497 0.1498 0.1439 x 10 -2 

8 0.2045 0.2792 0.1945 x 10 -2 
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i i i / t i 
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Fig. 2. The  ene rgy  di f ference in har t ree  be tween  the two  lowest  exci ted states and  the g round  state as a funct ion  o f  the perturbat ion 

paramete r  z. 
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first excited state and a state that is dominated by 
quintuple and higher excitations. An avoided cross- 
ing between this highly excited state and the 
Hartree-Fock configuration dominated state occurs 
at z ~ - 0 . 8 2 .  For z larger than - - - 0 . 8 2 ,  the 
lowest state is thus dominated by the Hartree-Fock 
configuration, whereas for z < - 0 . 8 2 ,  the lowest 
state is dominated by quintuple and higher excited 
configurations. The Hartree-Fock dominated state 
has another avoided crossing with the second excited 
state at z ~ - 0 . 8 9 .  For z = - 0 . 9 ,  the reference 
state is thus the third state of  ~S symmetry. Thus we 
clearly see that several intruder states enter for I z l 
< 1. The radius of  convergence for the series is thus 
less than one, (0.8-0.9) giving a divergent Moiler-  
Plesset series. 

An important finding in these calculations is that 
the intruder states are highly excited relative to the 
Hartree-Fock reference. Typically, the intruder states 
are physical states that are energetically nearby for 
z = 1 [10-13]. A well separated energy spectrum for 
the physically relevant spectrum z = 1 and the ze- 
roth order spectrum z = 0 does not guarantee con- 
vergence, since states of no physical interest may act 
as backdoor intruders. It is interesting to note that the 
Hartree-Fock dominated state undergoes more than 
one crossing with states that are highly excited. From 
Fig. 1 we observe that on a large scale the HF 
configuration dominated states follow almost a 
straight line as a function of z. The intruder states 
have a smaller slope for z < - 0 . 5 ,  and therefore 
undergo crossings with the reference configuration. 
The Hartree-Fock state is thus destabilized faster as 
z goes to - 1  from the right, than are the highly 
excited intruder states. 

The fluctuation potential describes the difference 
between the true electron-electron repulsion and the 
effective Fock potential. As such, the fluctuation 
potential contains both attractive and repulsive parts 
as a function of the interelectronic distance. For 
z = 1 the overall effect for the Hartree-Fock domi- 
nated state is stabilization. Correspondingly, we ob- 
serve a destabilization for negative z. Highly diffuse 
and delocalized states may have a significantly dif- 
ferent dependency on z than the localized Hartree- 
Fock state as different electronic structures give dif- 
ferent distributions of interelectronic distances. 
Changing the sign of the fluctuation potential favours 

different interelectronic distances. States that are very 
different from the Hartree-Fock dominated state in 
the electronic structure, may therefore be destabi- 
lized less than the Hartree-Fock state, and for some 
complex value of z these states may obtain a lower 
energy than the Hartree-Fock dominated state. This 
is in fact what is seen in Fig. 2. The exact position of 
the point of degeneracy will depend on the relative 
destabilization of the Hartree-Fock state and the 
other states. This relative destabilization of the 
Hartree-Fock state will in turn depend on the basis 
set and the nature of the electron distribution. 

Including diffuse functions expands the region in 
which the electrons can move, and thus makes it 
possible to describe states which are highly diffuse 
and delocalized, i.e. states where more electrons are 
far away from each other. This may explain why in 
the cc-pVDZ basis set a convergent Moller-Plesset 
series is found, while in the aug-cc-pVDZ basis set, 
highly excited states become intruder states and 
causes divergences in the Moller-Plesset series. Fur- 
thermore, the more close-lying the electrons in the 
Hartree-Fock reference, the larger the relative en- 
ergy advantage that may be obtained by redistribut- 
ing the electrons in space. Divergent Moller-Plesset 
series were obtained for H20,  HF, Ne and F -  in 
basis sets including diffuse functions. Convergent 
Moller-Plesset series were obtained in the less elec- 
tron-rich but more multiconfiguration dominated 
molecules BH and CH 2. We may thus expect that 
the divergent behaviour will become even more pro- 
nounced in more extensive basis sets and for systems 
with more electrons. 

A number of schemes for transforming a slowly 
convergent - or divergent - series into a better 
convergent series have been devised. The Feenberg 
scaling method [19] has recently received special 
attention, partly due to its connection with the so- 
called A-transformed perturbation theory [8-12,20]. 
Following Schmidt, Warken and Handy [20] we note 
that the use of Feenberg scaling in connection with 
MP theory, corresponds to the following repartition- 
ing of the Hamiltonian 

H ( z ,  A ) =  1 ) t F + z  q o - - - F  . (4) 
- 1 - A  

The A parameter is a parameter at the user's dis- 
posal, and should be chosen to make the conver- 
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gence optimal. Since the Hamiltonian is independent 
of A for z = 1, a convergent sequence will converge 
to the same limit. However, since the Hamiltonian 
depends on h for z different from 1, the conver- 
gence behaviour is a function of h. The energy 
contributions (/~,(A)) of the repartitioned Hamilto- 
nian as in Eq. (4) can be related to the energy 
contributions of the original MP series as [20] 

( n - 2 ) A . - k - ' ( 1 - - A ) k E ( k + l ) ,  
k = l  

n I> 2, (5) 

The parameter A is usually chosen so that the third 
order energy correction vanishes; i.e. 

E (2) 

A = 1 E(2) _ E(3). (6) 

Provided that the energy corrections form a geomet- 
ric sequence i.e. the ratio between energy contribu- 
tions E ("+ 1) and E (") is a constant independent of n, 
the exact energy is obtained to second order of the 
transformed series, and the third and higher order 
corrections vanish. 

In Fig. 3 we have plotted the convergence of the 
Feenberg series for the choice of h in Eq. (6). The 
original MP series corresponding to A = 0 is pro- 
vided for reference. The choice h = -0.007537 ob- 
tained from Eq. (3) does not modify the MP se- 
quence significantly, the series is still oscillating and 
diverges. Using a larger negative shift, - 0 .1 ,  leads 
to a faster divergent expansion. The use of positive 
values of h stabilizes the series. For example, using 
A = 0.16 one obtaines an expansion free of oscilla- 
tions in the first eight orders, and the total energies 
from order eight to twenty are close to the FCI 
energies. Divergence is, however, observed at higher 
orders. With a large positive shift, A = 0.64, one 
obtains a nearly monotonic sequence, without any 
signs of divergence through the first 65 orders. In 
Fig. 4 we have plotted this series together with the 
original MP series. It is seen that the rate of conver- 
gence in the Feenberg series is now slow; the energy 
corrections decrease typically by less than a factor of 
1.5 in each of the first twenty orders, and to obtain 
an energy error of less than 10 -3 E h, it is necessary 
to proceed through order 15. 

The Feenberg scaling method is thus not suffi- 
cient to change the current MP sequence to a fast 
convergent series. It is not surprising that the stan- 
dard value of A does not lead to convergence, since 
the divergent behaviour first starts at higher order. It 
is evident that our perturbation series is not well 
described by a geometric progression. Increasing h 
to large positive values, enlarges the zeroth energy 
separation and seemingly a convergent series is ob- 
tained. However, the rate of convergence is now 
slow. This exhibits clearly the conflict between ob- 
taining a good wavefunction at low order (first and 
second order), and obtaining a series that gives good 
overall convergence. 

3. Conclusion 

M¢ller-Plesset perturbation theory is one of the 
most commonly used methods for including dynamic 
correlation in electronic structure calculations and it 
is therefore important to understand its convergence 
behaviour. Second order M¢ller-Plesset calculations 
give remarkably good results and it is the simplest 
and most widespread method for treating dynamical 
correlation. During the last decade it has been still 
more common to carry out Mcfller-Plesset perturba- 
tion calculations through fourth order and recently 
explicit calculations of the fifth and sixth order terms 
have been reported [5]. This development towards 
extending M¢ller-Plesset calculations through still 
higher order emphasizes the importance of under- 
standing more fully the convergence behaviour of 
the perturbation series. 

In a recent paper, we have shown that M¢ller- 
Plesset perturbation calculations may diverge in ex- 
tended basis sets, even for single configuration domi- 
nated molecules. Divergent behaviour was found for 
H 2 0  , HF ,  Ne and F-  using basis sets containing 
diffuse functions. In this Letter, we have examined 
the origin of this divergence by carrying out addi- 
tional calculations on Ne. 

For convergence of a M¢ller-Plesset perturbation 
series, it is a necessary, but not sufficient, condition 
that the energy spectrum is well separated for the 
physical spectrum where the perturbation is turned 
on (z  = 1) and also for the zeroth order spectrum 
where the perturbation is absent (z = 0). In both 
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cases, this is satisfied for the Ne calculation where 
the Moller-Plesset series showed a divergent be- 
haviour. A Moller-Plesset series will diverge if de- 
generacies in the energy spectrum for I zl ~< 1 are 
present. For z ~ -0 .82 ,  we have found an avoided 
crossing between the Hartree-Fock configuration 
dominated state and a state dominated by quintuple 
and higher excitations. The Hartree-Fock dominated 
state that in Moller-Plesset perturbation theory is 
assumed to be the lowest state is thus for z smaller 
than -- - 0 . 8 2  an excited state. We thus have degen- 
eracies for I z[ < 1, and a divergent Moller-Plesset 
series is consequently obtained. 

The lowest order Moller-Plesset energy contribu- 
tions may still contain a large fraction of the correla- 
tion energy and useful physical information may be 
obtained from the lowest order contributions. How- 
ever, it is extremely difficult to decide a priori to 
what extent the perturbation calculation is meaning- 
ful. For example, in a calculation on F -  which also 
had a well separated energy spectrum for z = 0 and 
z = 1, the divergent behaviour started at third order 
while for Ne, it started at a much higher order [6]. 
The divergent behaviour has so far only been found 
in extended basis set calculations. However, ex- 
tended basis sets are necessary to describe many 
physical situations, for example, in calculations on 
anions and excited states and also for the determina- 
tion of such fundamental molecular properties as the 
dipole moment and polarizability. Thus the use of 
extended basis sets cannot be avoided. Since the 
intruder states causing the divergence are non-physi- 
cal, it is extremely difficult to predict a priori the 
convergence behaviour of a MOIler-Plesset perturba- 
tion series without explicitly studying the spectrum 
of H ( z )  for [ z[ ~< 1. The strong dependence on the 
basis set reported previously certainly does not im- 
prove this aspect. We therefore cannot advise the use 
of higher order perturbation calculations as a vehicle 
for obtaining increasing accuracy of quantum chemi- 
cal calculations. 

The highly excited nature of the intruder states 
makes the approach of increasing the size of the 
reference space [9-14] of little practical value. Inves- 
tigations of the energy spectrum for - 1  ~< z ~< 1 
based on restricted excitation spaces e.g. single and 
double excitations is not reliable either. It was 
demonstrated that resummation techniques seem- 

ingly eliminate the divergences to arbitrary order at 
the price of a slowly convergent expansion in low 
order. However, in our opinion high order perturba- 
tion theory will not be valuable as a practical ap- 
proach if it only has meaning in connection with 
resummation techniques. The advantage of the 
Moller-Plesset partitioning is that it gives a good 
zeroth and first order wavefunction in single config- 
uration dominated cases and the simplest MP2 
method may still be a valuable tool for computa- 
tional chemistry. However, it is probably advanta- 
geous to turn to other approaches for obtaining hier- 
archies of approximations that in a systematic fash- 
ion give results of increasing accuracy. 
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