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In this review, we explore the extension of quantum chemistry in the complex plane. We observe that the
physics of a quantum system is intimately connected to the position of the energy singularities in the complex
plane. After a presentation of the fundamental notions of quantum chemistry and perturbation theory in the
complex plane, we provide a historical overview of the various research activities that have been performed on
the physic of singularities.

I. INTRODUCTION

A. Background

Due to the ubiquitous influence of processes involving elec-
tronic excited states in physics, chemistry, and biology, their
faithful description from first principles has been one of the
grand challenges faced by theoretical chemists since the dawn
of computational chemistry. Accurately predicting ground-
and excited-state energies (hence excitation energies) is par-
ticularly valuable in this context, and it has concentrated most
of the efforts within the community. An armada of theoretical
and computational methods have been developed to this end,
each of them being plagued by its own flaws. The fact that
none of these methods is successful in every chemical scenario
has encouraged chemists to carry on the development of new
excited-state methodologies, their main goal being to get the
most accurate excitation energies (and properties) at the lowest
possible computational cost in the most general context.

One common feature of all these methods is that they rely on
the notion of quantized energy levels of Hermitian quantum me-
chanics, in which the different electronic states of a molecule or
an atom are energetically ordered, the lowest being the ground
state while the higher ones are excited states. Within this quan-
tized paradigm, electronic states look completely disconnected
from one another. Many current methods study excited states
using only ground-state information, creating a ground-state
bias that leads to incorrect excitation energies. However, one
can gain a different perspective on quantization extending quan-
tum chemistry into the complex domain. In a non-Hermitian
complex picture, the energy levels are sheets of a more compli-
cated topological manifold called Riemann surface, and they
are smooth and continuous analytic continuation of one an-
other. In other words, our view of the quantized nature of
conventional Hermitian quantum mechanics arises only from
our limited perception of the more complex and profound struc-
ture of its non-Hermitian variant.1,2 The realization that ground
and excited states both emerge from one single mathematical
structure with equal importance suggests that excited-state en-
ergies can be computed from first principles in their own right.
One could then exploit the structure of these Riemann surfaces
to develop methods that directly target excited-state energies
without needing ground-state information.3,4

By analytically continuing the electronic energy E(λ) in the
complex domain (where λ is a coupling parameter), the ground
and excited states of a molecule can be smoothly connected.

This connection is possible because by extending real numbers
to the complex domain, the ordering property of real numbers
is lost. Hence, electronic states can be interchanged away from
the real axis since the concept of ground and excited states has
been lost. Amazingly, this smooth and continuous transition
from one state to another has recently been experimentally
realized in physical settings such as electronics, microwaves,
mechanics, acoustics, atomic systems and optics.5–22

Exceptional points (EPs) are branch point singularities
where two (or more) states become exactly degenerate.1,23–29

They are the non-Hermitian analogs of conical intersections,30

which are ubiquitous in non-adiabatic processes and play a
key role in photo-chemical mechanisms. In the case of auto-
ionizing resonances, EPs have a role in deactivation processes
similar to conical intersections in the decay of bound excited
states.29 Although Hermitian and non-Hermitian Hamiltoni-
ans are closely related, the behavior of their eigenvalues near
degeneracies is starkly different. For example, encircling non-
Hermitian degeneracies at EPs leads to an interconversion of
states, and two loops around the EP are necessary to recover
the initial energy.1,28,29 Additionally, the wave function picks
up a geometric phase (also known as Berry phase31) and four
loops are required to recover the initial wave function. In
contrast, encircling Hermitian degeneracies at conical inter-
sections only introduces a geometric phase while leaving the
states unchanged. More dramatically, whilst eigenvectors re-
main orthogonal at conical intersections, at non-Hermitian EPs
the eigenvectors themselves become equivalent, resulting in a
self-orthogonal state.1 More importantly here, although EPs
usually lie off the real axis, these singular points are intimately
related to the convergence properties of perturbative methods
and avoided crossing on the real axis are indicative of singular-
ities in the complex plane.32–38

B. An illustrative example

In order to highlight the general properties of EPs mentioned
above, we propose to consider the following 2× 2 Hamiltonian
commonly used in quantum chemistry

H =

(
ε1 λ
λ ε2

)
, (1)

which represents two states of energies ε1 and ε2 coupled with
a strength of magnitude λ. This Hamiltonian could represent,
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for example, a minimal-basis configuration interaction with
doubles (CID) for the hydrogen molecule.39

For real λ, the Hamiltonian (1) is clearly Hermitian, and it
becomes non-Hermitian for any complex λ value. Its eigenval-
ues are

E± =
ε1 + ε2

2
±

1
2

√
(ε1 − ε2)2 + 4λ2. (2)

One notices that the two states become degenerate only for a
pair of complex conjugate values of λ

λEP = ±i
ε1 − ε2

2
, (3)

with energy

EEP =
ε1 + ε2

2
, (4)

which correspond to square-root singularities in the complex-λ
plane. These two λ values, given by Eq. (3), are the so-called
EPs and one can clearly see that they connect the ground and
excited states. Starting from λEP, two square-root branch cuts
run on the imaginary axis towards ±i∞. In the real λ axis, the
point for which the states are the closest (λ = 0) is called an
avoided crossing and this occurs at λ = Re(λEP). The “shape”
of the avoided crossing is linked to the magnitude of Im(λEP):
the smaller Im(λEP), the sharper the avoided crossing is.

Around λ = λEP, Eq. (2) behaves as1

E± = EEP ±
√

2λEP
√
λ − λEP, (5)

and following a complex contour around the EP, i.e., λ =

λEP + R exp(iθ), yields

E±(θ) = EEP ±
√

2λEPR exp(iθ/2), (6)

and we have

E±(2π) = E∓(0), E±(4π) = E±(0).

This evidences that encircling non-Hermitian degeneracies at
EPs leads to an interconversion of states, and two loops around
the EP are necessary to recover the initial energy. Additionally,
the wave function picks up a geometric phase and four loops
are required to recover the starting wave function.1

II. PERTURBATION THEORY

A. Rayleigh-Schrödinger perturbation theory

Within the Born-Oppenheimer approximation,

Ĥ = −
1
2

n∑
i

∇
2
i −

n∑
i

N∑
A

ZA

|ri − RA|
+

n∑
i< j

1∣∣∣ri − r j

∣∣∣ (7)

is the exact electronic Hamiltonian for a chemical system with
n electrons (where ri is the position of the ith electron) and
N (fixed) nuclei (where RA and ZA are the position and the

charge of the Ath nucleus respectively). The first term is the
kinetic energy of the electrons, the two following terms account
respectively for the electron-nucleus attraction and the electron-
electron repulsion. Note that we use atomic units throughout
unless otherwise stated.

Within (time-independent) Rayleigh-Schrödinger perturba-
tion theory, the Schrödinger equation

ĤΨ = EΨ (8)

is recast as

Ĥ(λ)Ψ(λ) = (Ĥ(0) + λV̂)Ψ(λ) = E(λ)Ψ(λ), (9)

where Ĥ(0) is the zeroth-order Hamiltonian and V̂ = Ĥ − Ĥ(0)

is the so-called perturbation. The “physical” system of inter-
est is recovered by setting the coupling parameter λ to unity.
This decomposition is obviously non-unique and motivated by
several factors as discussed below.37

Accordingly to Eq. (9), the energy can then be written as a
power series of λ

E(λ) =

∞∑
k=0

λkE(k). (10)

However, it is not guaranteed that the series (10) has a radius
of convergence |λ0| < 1. In other words, the series might well
be divergent for the physical system at λ = 1. One can prove
that the actual value of the radius of convergence |λ0| can be
obtained by looking for the singularities of E(λ) in the complex
λ plane. This is due to the following theorem:40

“The Taylor series about a point z0 of a function
over the complex z plane will converge at a value
z1 if the function is non-singular at all values of
z in the circular region centered at z0 with radius
|z1 − z0|. If the function has a singular point zs
such that |zs − z0| < |z1 − z0|, then the series will
diverge when evaluated at z1.”

This theorem means that the radius of convergence of the
perturbation series is equal to the distance to the origin of the
closest singularity of E(λ). To illustrate this result we consider
the simple function32

f (x) =
1

1 + x4 . (11)

This function is smooth for x ∈ R and infinitely differentiable
in R. One would expect that the Taylor series of such a function
would be convergent ∀x ∈ R. However this series is divergent
for x ≥ 1. This is because the function has four singularities
in the complex plane (x = eiπ/4, e−iπ/4, ei3π/4, and e−i3π/4)
with a modulus equal to 1. This simple yet powerful example
emphasizes the importance of the singularities in the complex
plane to understand the convergence properties on the real axis.

B. The Hartree-Fock Hamiltonian

In the Hartree-Fock (HF) approximation, the many-electron
wave function is approximated as a single Slater determinant
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ΨHF(x1, . . . , xn) [where x = (σ, r) is a composite vector gather-
ing spin and spatial coordinates] defined as an antisymmetric
combination of n (real-valued) one-electron spin-orbitals φp(x),
which are, by definition, eigenfunctions of the one-electron
Fock operator

f (x)φp(x) = [h(x) + vHF(x)]φp(x) = εpφp(x), (12)

where

h(x) = −
∇2

2
+

N∑
A

ZA

|r − RA|
(13)

is the core Hamiltonian and

vHF(x) =
∑

i

[Ji(x) − Ki(x)] (14)

is the HF mean-field potential with

Ji(x)φp(x) =

[∫
dx′φi(x′)

1
|r − r′|

φi(x′)
]
φp(x) (15a)

Ki(x)φp(x) =

[∫
dx′φi(x′)

1
|r − r′|

φp(x′)
]
φi(x) (15b)

being the Coulomb and exchange operators (respectively) in the
spin-orbital basis.39 If the spatial part of the spin-orbitals are
restricted to be the same for spin-up and spin-down electrons,
one talks about restricted HF (RHF) theory, whereas if one does
not enforce this constrain it leads to the so-called unrestricted
HF (UHF) theory. From hereon, i and j are occupied orbitals,
a and b are unoccupied (or virtual) orbitals, while p, q, r, and
s indicate arbitrary orbitals.

Rather than solving Eq. (8), HF theory uses the variational
principle to find an approximation of Ψ as a single Slater de-
terminant. Hence a Slater determinant is not an eigenfunction
of the exact Hamiltonian Ĥ. However, it is, by definition,
an eigenfunction of the so-called (approximated) HF many-
electron Hamiltonian defined as the sum of the one-electron
Fock operators

ĤHF =
∑

i

f (xi). (16)

C. Møller-Plesset perturbation theory

The HF Hamiltonian (16) can be used as the zeroth-order
Hamiltonian of Eq. (9). This partitioning of the Hamilto-
nian leads to the so-called Møller-Plesset (MP) perturbation
theory.41 The discovery of a partitioning of the Hamiltonian
that allowed chemists to recover a large chunck of the correla-
tion energy (i.e., the difference between the exact energy and
the Hartree-Fock energy) using perturbation theory has been a
major step in the development of post-HF methods. This yields

Ĥ(λ) =

n∑
i

[
−
∇2

i

2
−

N∑
A

ZA

|ri − RA|

+ (1 − λ)vHF(xi) + λ

n∑
i< j

1∣∣∣ri − r j

∣∣∣
]
. (17)

If one considers a RHF or UHF reference wave functions, it
leads to the RMP or UMP series, respectively.

As mentioned earlier, in perturbation theory, the energy is a
power series of λ and the physical energy is obtained at λ = 1.
The MPm energy is defined as

EMPm =

m∑
k=0

E(k), (18)

where E(k) is the kth-order MP correction, and it is well known
that EMP1 = E(0) + E(1) = EHF.39 The MP2 energy reads

EMP2 =
1
4

∑
i j

∑
ab

| 〈i j||ab〉|2

εi + ε j − εa − εb
, (19)

with 〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉, and where

〈pq|rs〉 =

"
dx1dx2

φp(x1)φq(x2)φr(x1)φs(x2)
|r1 − r2|

(20)

are two-electron integral in the spin-orbital basis.42

As mentioned earlier, there is, a priori, no guarantee that
the MPm series converges to the exact energy when m → ∞.
In fact, it is known that when the HF wave function is a poor
approximation to the exact wave function, for example in multi-
reference systems, the MP method yields deceptive results.43–46

A convenient way to investigate the convergence properties of
the MP series is to analytically continue the coupling parame-
ter λ into the complex variable. By doing so, the Hamiltonian
and the energy become complex-valued functions of λ, and the
energy becomes a multivalued function on K Riemann sheets
(where K is the number of basis functions). As mentioned
above, by searching the singularities of the function E(λ), one
can get information on the convergence properties of the MP
series. These singularities of the energy function are exactly
the EPs connecting the electronic states as mentioned in Sec. I.
The direct computation of the terms of the series is quite man-
ageable up to fourth order in perturbation, while the fifth and
sixth order in perturbation can still be obtained but at a rather
high cost.47 In order to better understand the behavior of the
MP series and how it is connected to the singularity structure,
we have to access high-order terms. For small systems, one can
access the whole terms of the series using full configuration
interaction (FCI). If the Hamiltonian H(λ) is diagonalized in
the FCI space, one gets the exact energies (in this finite Hilbert
space) and the Taylor expansion with respect to λ allows to
access the MP perturbation series at any order.

Obviously, although practically convenient for electronic
structure calculations, the MP partitioning is not the only pos-
sibility, and alternative partitioning have been proposed in the
literature: i) the Epstein-Nesbet (EN) partitioning which con-
sists in taking the diagonal elements of Ĥ as the zeroth-order
Hamiltonian.48,49 Hence, the off-diagonal elements of Ĥ are
the perturbation operator, ii) the weak correlation partitioning
in which the one-electron part is consider as the unperturbed
Hamiltonian Ĥ(0) and the two-electron part is the perturbation
operator V̂ , and iii) the strong coupling partitioning where the
two operators are inverted compared to the weak correlation
partitioning.50
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III. HISTORICAL OVERVIEW

A. Behavior of the Møller-Plesset series

When one relies on MP perturbation theory (and more gen-
erally on any perturbative partitioning), it would be reasonable
to ask for a systematic improvement of the energy with respect
to the perturbative order, i.e., one would expect that the more
terms of the perturbative series one can compute, the closer the
result from the exact energy. In other words, one would like a
monotonic convergence of the MP series. Assuming this, the
only limiting process to get the exact correlation energy (in a
finite basis set) would be our ability to compute the terms of
this perturbation series. Unfortunately this is not as easy as
one might think because i) the terms of the perturbative series
become rapidly computationally cumbersome, and ii) erratic
behavior of the perturbative coefficients are not uncommon.
For example, in the late 80’s, Gill and Radom reported de-
ceptive and slow convergences in stretched systems43,44 (see
also Refs. 45 and 46). In Ref. 43, the authors showed that the
RMP series is convergent, yet oscillatory which is far from
being convenient if one is only able to compute the first few
terms of the expansion (for example here RMP5 is worse than
RMP4). On the other hand, the UMP series is monotonically
convergent (except for the first few orders) but very slowly.
Thus, one cannot practically use it for systems where only the
first terms can be computed.

When a bond is stretched, in most cases the exact wave func-
tion becomes more and more of multi-reference nature. Yet the
HF wave function is restricted to be a single Slater determinant.
It is then inappropriate to model (even qualitatively) stretched
systems. Nevertheless, the HF wave function can undergo
symmetry breaking to lower its energy by sacrificing one of
the symmetry of the exact wave function in the process (see for
example the case of H2 in Ref. 39). One could then potentially
claim that the RMP series exhibits deceptive convergence prop-
erties as the RHF Slater determinant is a poor approximation
of the exact wave function for stretched system. However,
even in the unrestricted formalism which clearly represents a
better description of a stretched system, the UMP series does
not have the smooth and rapidly convergent behavior that one
would wish for.

In the unrestricted framework the singlet ground state wave
function is allowed to mix with triplet wave functions, leading
to the so-called spin contamination issue. Gill et al. high-
lighted the link between slow convergence of the UMP series
and spin contamination for H2 in a minimal basis.44 Handy and
coworkers reported the same behavior of the series (oscillatory
and slowly monotonically convergent) in stretched H2O and
NH2.45 Lepetit et al. analyzed the difference between the MP
and EN partitioning for the UHF reference.46 They concluded
that the slow convergence is due to the coupling of the singly-
and doubly-excited configurations. Cremer and He analyzed 29
atomic and molecular systems at the FCI level51 and grouped
them in two classes: i) the class A systems where one observes
a monotonic convergence to the FCI energy, and ii) the class
B systems for which convergence is erratic after initial oscilla-
tions. Their system set contains stretched molecules as well as

molecules at their equilibrium geometry for various basis sets.
They highlighted that51 “Class A systems are characterized by
electronic structures with well-separated electron pairs while
class B systems are characterized by electronic structures with
electron clustering in one or more regions.” As one can only
compute the first terms of the MP series, a smart way of get-
ting more accurate results is to use extrapolation formula, i.e.,
estimating the limit of the series with only few terms. Cremer
and He proved that using specific extrapolation formulas of
the MP series for class A and class B systems improves the
precision of the results compared to the formula used without
resorting to classes. The mean absolute deviation taking the
FCI correlation energies as reference is 0.3 millihartree with
the class-specific formula whereas the deviation increases to
12 millihartree using the general formula. Even if there were
still shaded areas in their analysis and that their classification
was incomplete, the work of Cremer and He clearly evidenced
that understanding the origin of the different modes of conver-
gence could potentially lead to a more rationalized use of MP
perturbation theory and, hence, to more accurate correlation
energy estimates.

B. Cases of divergence

In the late 90’s, Olsen et al. discovered an even more pre-
occupying behavior of the MP series.33 They showed that the
series could be divergent even in systems that they considered
as well understood like Ne and HF.33,52 Cremer and He had
already studied these two systems and classified them as class
B systems. However, the analysis of Olsen and coworkers was
performed in larger basis sets containing diffuse functions. In
these basis sets, they found that the series become divergent at
(very) high order.

The discovery of this divergent behavior is worrying as in
order to get meaningful and accurate energies, calculations
must be performed in large basis sets (as close as possible from
the complete basis set limit). Including diffuse functions is
particularly important in the case of anions and/or Rydberg
excited states where the wave function is much more diffuse
than the ground-state one. As a consequence, they investigated
further the causes of these divergences as well as the reasons
of the different types of convergence. To do so, they analyzed
the relation between the dominant singularity (i.e., the closest
singularity to the origin) and the convergence behavior of the
series.34 Their analysis is based on Darboux’s theorem:

“In the limit of large order, the series coefficients
become equivalent to the Taylor series coefficients
of the singularity closest to the origin. Following
the result of this theorem, the convergence pat-
terns of the MP series can be explained by looking
at the dominant singularity.”

A singularity in the unit circle is designated as an intruder
state, more precisely as a front-door (respectively back-door)
intruder state if the real part of the singularity is positive (re-
spectively negative). Their method consists in performing a
scan of the real axis to detect the avoided crossing responsible
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for the pair of dominant singularities. Then, by modeling this
avoided crossing via a two-state Hamiltonian one can get an
approximation of the dominant conjugate pair of singularities
by finding the EPs of the following 2 × 2 matrix(

α δ
δ β

)
︸︷︷︸

H

=

(
α + αs 0

0 β + βs

)
︸              ︷︷              ︸

H(0)

+

(
−αs δ
δ −βs

)
︸       ︷︷       ︸

V

, (21)

where the diagonal matrix is the unperturbed Hamiltonian
matrix H(0) and the second matrix in the right-hand-side V is
the perturbation.

In Ref. 35, the simple 2 × 2 model proposed by Olsen et al.
is generalized to a non-symmetric (i.e, non-Hermitian) Hamil-
tonian and various choice of perturbation (not only the MP
partioning). Interestingly, they showed that the convergence
pattern of a given perturbation method can be characterized by
its archetype which defines the overall “shape” of the energy
convergence and can be subdivided in five classes for Hermitian
Hamiltonians (zigzag, interspersed zigzag, triadic, ripples, and
geometric), while two additional archetypes (zigzag-geometric
and convex-geometric) are observed in non-Hermitian Hamilto-
nians. Other features characterizing the convergence behavior
of a perturbation method are its rate of convergence, its length
of recurring period, and its sign pattern.

They first studied molecules with low-lying doubly-excited
states of the same spatial and spin symmetry. The exact wave
function has a non-negligible contribution from the doubly-
excited states, so these low-lying excited states were good
candidates for being intruder states. For CH2 in a large basis
set, the series is convergent up to the 50th order. They showed
that the dominant singularity lies outside the unit circle but
close to it causing the slow convergence.

Then they demonstrated that the divergence for Ne is due to
a back-door intruder state. When the basis set is augmented
with diffuse functions, the ground state undergo sharp avoided
crossings with highly diffuse excited states leading to a back-
door intruder state. They used their two-state model on this
avoided crossings and the model was actually predicting the
divergence of the series.

Moreover they proved that the extrapolation formulas of
Cremer and He51 cannot be used for all systems, and that these
formulas were not mathematically motivated when looking
at the singularity causing the divergence. For example, the
hydrogen fluoride molecule contains both back-door intruder
states and low-lying doubly-excited states which results in
alternated terms up to 10th order. For higher orders, the series
is monotonically convergent. This surprising behavior is due
to the fact that two pairs of singularities are approximately at
the same distance from the origin.

C. The singularity structure

In the 2000’s, Sergeev and Goodson53,54 analyzed this prob-
lem from a more mathematical point of view by looking at the
whole singularity structure where Olsen and collaborators were
trying to find the dominant singularity causing the divergence.

They regrouped singularities in two classes: i) α singulari-
ties which have “large” imaginary parts, and ii) β singularities
which have very small imaginary parts. Singularities of type α
are related to large avoided crossing between the ground and
low-lying excited states, whereas β singularities come from a
sharp avoided crossing between the ground state and a highly
diffuse state. They succeeded to explain the divergence of the
series caused by β singularities following previous work of
Stillinger.55

To understand the convergence properties of the perturbation
series at λ = 1, one must look at the whole complex plane, in
particular, for negative (i.e., real) values of λ. If λ is negative,
the Coulomb interaction becomes attractive but the mean field
(which has been computed at λ = 1) remains repulsive as it is
proportional to (1 − λ):

Ĥ(λ) =

n∑
i

[ independent of λ︷                      ︸︸                      ︷
−

1
2
∇

2
i −

N∑
A

ZA

|ri − RA|

+ (1 − λ)vHF(xi)︸           ︷︷           ︸
repulsive for λ < 1

+ λ

n∑
i< j

1
|ri − r j|︸          ︷︷          ︸

attractive for λ < 0

]
. (22)

The major difference between these two terms is that the
repulsive mean field is localized around the nuclei whereas
the interelectronic interaction persist away from the nuclei. If
λ becomes more and more negative the mean field becomes
more and more repulsive so there exists a critical (negative)
value of λ, λc, for which the Coulombic field created by the
nuclei cannot bind the electrons anymore because of the λ-
independent nature of the the electron-nucleus attraction. For
λ = λc, the electrons dissociate from the nuclei and form a
bound cluster which is infinitely separated from the nuclei.
According to Baker,56 this value is a critical point of the sys-
tem and, by analogy with thermodynamics, the energy E(λ)
exhibits a singularity at λc. At this point the system undergo
a phase transition and a symmetry breaking. Beyond λc there
is a continuum of eigenstates thanks to which the electrons
dissociated from the nuclei.

This reasoning is done on the exact Hamiltonian and energy,
i.e., the Hamiltonian in the complete Hilbert space, this is the
exact energy which exhibits this singularity on the negative
real axis. However, in a finite basis set which does not span
the complete Hilbert space, one can prove that, for a Hermi-
tian Hamiltonian, the singularities of E(λ) occurs in complex
conjugate pairs with non-zero imaginary parts. Sergeev and
Goodson proved,53 as predicted by Stillinger,55 that in a fi-
nite basis set the critical point on the real axis is modeled by
a cluster of sharp avoided crossings with diffuse functions,
equivalently by a cluster of β singularities in the negative half
plane. This explains that Olsen et al., because they used a
simple 2 × 2 model, only observed the first singularity of this
cluster of singularities causing the divergence.34

Finally, it was shown that β singularities are very sensitive to
changes in the basis set but not to the stretching of the system.
On the contrary, α singularities are relatively insensitive to
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the basis sets but very sensitive to bond stretching. According
to Goodson,57 the singularity structure of stretched molecules
is difficult because there is more than one significant singu-
larity. This is consistent with the observation of Olsen and
coworkers34 on the HF molecule at equilibrium geometry and
stretched geometry. To the best of our knowledge, the effect of
bond stretching on singularities, its link with spin contamina-
tion and symmetry breaking of the wave function has not been
as well understood as the ionization phenomenon and its link
with diffuse functions.

D. The physics of quantum phase transitions

In the previous section, we saw that a careful analysis of the
structure of the Hamiltonian allows us to predict the existence
of a critical point. In a finite basis set this critical point is model
by a cluster of β singularities. It is now well known that this
phenomenon is a special case of a more general phenomenon.
Indeed, theoretical physicists proved that EPs close to the real
axis are connected to quantum phase transitions (QPTs).23,58–63

In quantum mechanics, the Hamiltonian is almost always de-
pendent of, at least, one parameter. In some cases the variation
of a parameter can lead to abrupt changes at a critical point.
These QPTs exist both for ground and excited states as shown
by Cejnar and coworkers.61,64–68 A ground-state QPT is char-
acterized by the derivatives of the ground-state energy with
respect to a non-thermal control parameter.61,64 The transition
is called discontinuous and of first order if the first derivative
is discontinuous at the critical parameter value. Otherwise, it
is called continuous and of mth order if the mth derivative is
discontinuous. A QPT can also be identify by the discontinuity
of an appropriate order parameter (or one of its derivatives).

The presence of an EP close to the real axis is characteristic
of a sharp avoided crossing. Yet, at such an avoided crossing,
eigenstates change abruptly. Although it is now well under-
stood that EPs are closely related to QPTs, the link between the
type of QPT (ground state or excited state, first or higher order)
and EPs still need to be clarified. One of the major obstacles
that one faces in order to achieve this resides in the ability to
compute the distribution of EPs. The numerical assignment
of an EP to two energies on the real axis is very difficult in
large dimensions. Hence, the design of specific methods are
required to get information on the location of EPs. Following
this idea, Cejnar et al. developed a method based on a Coulomb
analogy giving access to the density of EP close to the real
axis.59,60 More recently Stransky and coworkers proved that
the distribution of EPs is characteristic on the order of the
QPT.69 In the thermodynamic limit, some of the EPs converge
towards a critical point λc on the real axis. They showed that,
within the interaction boson model,70 EPs associated to first-
and second-order QPT behave differently when the number of
particles increases. The position of these singularities converge
towards the critical point on the real axis at different rates (ex-
ponentially and algebraically for the first and second orders,
respectively) with respect to the number of particles.

It seems like our understanding of the physics of spatial
and/or spin symmetry breaking in HF theory can be enlight-

ened by QPT theory. Indeed, the second derivative of the
HF ground-state energy is discontinuous at the point of spin
symmetry-breaking which means that the system undergo a
second-order QPT. Moreover, the β singularities introduced
by Sergeev and coworkers to describe the EPs modeling the
formation of a bound cluster of electrons are actually a more
general class of singularities. The EPs close to the real axis
(the so-called β singularities) are connected to QPT because
they result from a sharp avoided crossings at which the eigen-
states change quickly. However, the α singularities arise from
large avoided crossings. Thus, they cannot be connected to
QPT. The avoided crossings generating α singularities gen-
erally involve the ground state and low-lying doubly-excited
states. Those excited states have a non-negligible contribution
to the exact FCI solution because they have (usually) the same
spatial and spin symmetry as the ground state. We believe
that α singularities are connected to states with non-negligible
contribution in the CI expansion thus to the dynamical part
of the correlation energy, while β singularities are linked to
symmetry breaking and phase transitions of the wave function,
i.e., to the multi-reference nature of the wave function thus to
the static part of the correlation energy.

IV. CONCLUSION

In order to model accurately chemical systems, one must
choose, in a ever growing zoo of methods, which computa-
tional protocol is adapted to the system of interest. This choice
can be, moreover, motivated by the type of properties that
one is interested in. That means that one must understand
the strengths and weaknesses of each method, i.e., why one
method might fail in some cases and work beautifully in others.
We have seen that for methods relying on perturbation theory,
their successes and failures are directly connected to the posi-
tion of EPs in the complex plane. Exhaustive studies have been
performed on the causes of failure of MP perturbation theory.
First, it was understood that, for chemical systems for which
the HF Slater determinant is a poor approximation to the exact
wave function, MP perturbation theory fails too. Such systems
can be, for example, molecules where the exact ground-state
wave function is dominated by more than one configuration,
i.e., multi-reference systems. More preoccupying cases were
also reported. For instance, it has been shown that systems
considered as well-understood (e.g., Ne) can exhibit divergent
behavior when the basis set is augmented with diffuse functions.
Later, these erratic behaviors of the perturbation series were
investigated and rationalized in terms of avoided crossings and
singularities in the complex plane. It was shown that the sin-
gularities can be classified in two families. The first family
includes α singularities resulting from a large avoided crossing
between the ground state and a low-lying doubly-excited states.
The β singularities, which constitutes the second family, are
artifacts generated by the incompleteness of the Hilbert space,
and they are directly connected to an ionization phenomenon
occurring in the complete Hilbert space. These singularities
are close to the real axis and connected with sharp avoided
crossing between the ground state and a highly diffuse state.



7

We have found that the β singularities modeling the ionization
phenomenon described by Sergeev and Goodson are actually
part of a more general class of singularities. Indeed, those sin-
gularities close to the real axis are connected to quantum phase
transition and symmetry breaking, and theoretical physics have
demonstrated that the behavior of the EPs depends of the type
of transitions from which the EPs result (first or higher orders,

ground state or excited state transitions).
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