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ABSTRACT: In computing ionization potentials via perturbative solution of the
equation of motion for the ionization operator, we apply the technique of “partitioning
optimization” elaborated recently for the calculation of correlation energy. Sample
calculations indicate that second-order results may improve if the partitioning is
optimized. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 92: 160–167, 2003
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Introduction

A ccurate calculation of energy differences, es-
pecially excitation energies and ionization po-

tentials, remains a challenge in computational
chemistry [1]. It is in general accepted that direct
methods are preferred to the so-called delta tech-
niques, which evaluate these quantities as small
differences of large numbers.

Direct formulae for excitation energies and ion-
ization potentials can be derived by using the equa-
tion of motion (EOM) technique [2–4]. EOM
schemes are closely related to electron propagator

or Green’s function techniques [4–7], and practi-
cally all of these methods apply perturbation theory
(PT) to derive explicit formulae at a given order.

PT is based on splitting the Hamiltonian to a
zero-order part and a perturbation. Recently [8, 9],
we investigated the problem of repartitioning the
Hamiltonian by level shift operators, and set the
value of the level shift parameters by optimizing a
first-order Ansatz. The resulting second-order cor-
rections remained size consistent and showed a
significant improvement as compared to those ob-
tained in Møller–Plesset [10] or Epstein–Nesbet [11,
12] partitionings. In the new partitioning no third-
order corrections appear, and higher-order correc-
tions were proved to converge faster to the exact
(infinite order) results on a few examples. We noteCorrespondence to: P. R. Surján; e-mail: surjan@chem.elte.hu
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that a somewhat different procedure for optimizing
the partitioning in PT was also elaborated by Freed
and coworkers [13].

In this article we investigate if a similar optimi-
zation of partitioning is possible when solving the
EOM perturbatively for ionization potentials (IPs).
We shall select the Hartree–Fock operator as an
initial zero order, that is, we start from Koopmans’
energies, and consider the second-order Dyson
equation for the IPs. This latter correction provides
better results than Koopmans’ values, but it is
known to be insufficiently accurate [14, 15]. The
theoretical part of the article, summarizing the for-
malism and introducing the optimal partitioning, is
followed by presenting two sample calculations on
the IPs of water and the N2 molecule.

PT for the EOM

When considering ionizations or excitations of a
molecule one conveniently starts with the so-called
equation of motion

�H, �� � �� (1)

that holds for the ionization (excitation) operator �
connecting two eigenstates of H, �0 and �K, by

��0 � �K.

The ionization (excitation) energy is � � EK � E0.
The fact that excitations and ionizations may be
treated on an equal footing is due to the second
quantized representation of the Hamiltonian. In the
present work we are concerned with ionization en-
ergies, although this particular section applies to
excitations as well.

Introducing the “super” Hamiltonian or Liouvil-
lean �, which is defined by its action on any oper-
ator A being �A � [H, A], one may rewrite Eq. (1)
as [16, 17]

�� � ��. (2)

This latter form stresses that ionization (excitation)
operators are eigenfunctions of a superoperator de-
fined over ordinary operators, and one gets the
corresponding ionization (excitation) energy as an
eigenvalue.

To be able to apply standard approximations to
the solution of this eigenvalue problem, one needs

a scalar product among the operators that consti-
tute the domain of �. We return to the construction
of such a product later and suppose for the moment
that there exists one denoted by (.�.), between the
ionization (excitation) operators. Accordingly, bra-
and ket vectors of the operator space will be de-
noted by (.� and �.).

To derive a perturbative series for �, let us split
the super Hamiltonian for a zero-order superopera-
tor and a perturbation

� � �0 � � (3)

and suppose that the solutions of the zero-order
problem

�0��0) � �0��0)

are known. Expanding the exact ionization energy
� to a Brillouin–Wigner perturbation series, one
gets the super counterpart of the well-known se-
quence [18]

� � �0 � ��0����0� � ��0���0������0�

� ��0���0�����0������0� � ��4�, (4)

where the reduced resolvent is

�0� z� � �P� zI � �0���1P,

P being defined as

P � I � O

with

O � ��0)��0�

and the unity superoperator acting as

IA � A. (5)

Ionization Operators’ Subspace

In this work, we wish to compute perturbative
corrections to the Koopmans’ approximation of ion-
ization energy [19] with the use of Eq. (2). For this
reason, as the zero-order term of (3) we take the
superoperator corresponding to the Fockian of the
neutral molecule:
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�0 � �,

with � being defined by �A � [F, A], similarly as
for �. The eigenvectors of � are easily found to be
any product of second quantized creation and an-
nihilation operators, which correspond to the mo-
lecular orbitals of the neutral system. In particular,
the zero-order solution for the ionization from the
ith canonical orbital is

��ai) � ��i�ai),

with �i standing for the ith orbital energy. Conse-
quently, �0 � ��i and the projector O of the previ-
ous section becomes

O � �ai)�ai�

in our case. To proceed further, with constructing P
and �0, we need to specify in more detail the su-
peroperator of unity. In other words, the question
arises, to what operators A in Eq. (5) should I map
itself? In the present case, we need to construct I to
span a sector of the Fock space that contains second
quantized operator products describing single ion-
ization processes. The operators of this kind are

ap, ap
†aqar, ap

†aq
†arasat, etc., (6)

with subscripts running over all orbital indices. For
any operator like this we take the binary product
most simply to be [6, 16]

� A�B� � 	
��A†, B���
�, (7)

where for 
 we take the Fermi vacuum correspond-
ing to the neutral system, �HF�. So that the product
of Eq. (7) becomes a scalar product in the strict
sense, one needs to exclude ionization operators
from the set of (6) that have zero norm. Further, it is
useful to select an orthonormal set with respect to
(7) among the operators in (6). This is usually
achieved by devising the following subset of (6) [6]:


aj� � 
ab� � 
aj
†abac�b � c� � 
ab

†ajak�j � k�

� 
aj
†ak

†abacad�j � k, b � c � d�

� 
ab
†ac

†ajakal�b � c, j � k � l� � . . . , (8)

where subscripts i, j, k, l, . . . run for the indices of
occupied orbitals of the neutral system and b, c, d, . . .
for virtuals. In what follows restriction on the occu-

pancy will rather be made by introducing occupation
numbers to reduce the length of formulae. Indices p,
q, . . . will then stand for any kind of orbitals.

Let us address shortly the question, why are just
operators in (8) selected from the set of (6)?

1. Operators that are normal ordered with re-
spect to �vac� are considered without loss of
generality.

2. Index ordering is introduced to avoid trivial
overcounting.

3. Index repetition among creation (annihila-
tion) operators is excluded, for these opera-
tors are zero.

4. Index repetition between creation and annihi-
lation operators is excluded, for the effect of
these on �HF� is the same as the effect of a
certain linear combination of operators of
lower rank (the rank of a product of second
quantized operators we define as the number
of creation and annihilation operators that it
contains).*

5. Restriction for the occupation numbers is in-
troduced to avoid operators of zero norm,
namely, because the norm of an element A
that fulfills requirements (1)–(4) A � ap

† . . . aq
†ar

. . . as, with p � . . . � q & r � . . . � s is

� A�A�1/ 2

� �np . . . nqn� r . . . n� s � n� p . . . n� qnr . . . ns,

where np is the occupation number of orbital
p in �HF� and n� p � 1 � np.

Without further studying whether or not the set
(8) is a full set in the sector in which we wish to
work, we consider operator I to span the space of
which these elements are the basis vectors. There-
fore, we take the spectral resolution of I to be

I � �
p

�ap)�ap� � �
pqr

�q�r�

Np,qr
� �ap,qr��ap,qr�

� �
pqrst

� p�q, r�s�t�

Npq,rst
� �apq,rst��apq,rst� � . . .

with the shorthands

*The particle rank of an operator is more conveniently de-
fined by half of the number of creation and annihilation opera-
tors, so that, e.g., a one-electron operator has a particle rank 1.
We take, however, twice this number now to avoid half ranks.
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ap,qr � ap
†aqar and apq,rst � ap

†aq
†arasat

Np,qr
� � �npn� qn� r � n� pnqnr� and

Npq,rst
� � �npnqn� rn� sn� t � n� pn� qnrnsnt�.

PT Formulae for Single Ionization

The basis vectors that are selected to span our
subspace are eigenvectors of �, as mentioned pre-
viously; therefore, the spectral resolution of � and
that of �0(z) may also be given as

� � �
p

���p��ap)�ap�

� �
pqr

�q�r�

��p � �q � �r��ap,qr��ap,qr�Np,qr
� � . . . (9)

and

�0� z� � �
p�i

�ap)�ap�
z � �p

� �
pqr

�q�r�

�ap,qr�ap,qr�
z � �p � �q � �r

Np,qr
� � . . . , (10)

where when getting this latter equation we used that

P � I � �ai)�ai� � �
p�i

�ap��ap�

� �
pqr

�q�r�

�ap,qr��ap,qr�Np,qr
� � . . . .

Substituting Eqs. (9) and (10) into the PT correc-
tion terms of Eq. (4), one finds

�i
�2� � �ai���0��i���ai�

� �
pqr

�q�r�

�ai��ap,qr��ap,qr��ai�

�i � �p � �q � �r
Np,qr

� (11)

for the second-order term and

�i
�3� � �ai���0��i���0��i���ai�

� �
pqr

�q�r�
� �

stu
�t�u�

�ai��as,tu��as,tu��ap,qr�

�i � �s � �t � �u
Ns,tu

�

� �
stuvx

�s�t, u�v�x�

�ai��ast,uvx��ast,uvx��ap,qr�

�i � �s � �t � �u � �v � �x

� Nst,uvx
� � �ap,qr��ai�

�i � �p � �q � �r
Np,qr

� (12)

for the third-order term.
The relative simplicity of formulae (11) and (12)

is due to the fact that the rank of an operator string
is reduced by two upon commutation with another.
Because of this, when the superoperator � acts on
an operator it raises its rank by four—for � is a
two-electron operator—and reduces it by two—for
it forms a commutator. Therefore, after having op-
erated with � the rank is increased by two alto-
gether. This has the consequence that matrix ele-
ments like (apq,rst��ai), (apqr,stuv��ai), etc. vanish if
apq,rst and apqr,stuv obey rules (1)–(4). For this reason,
at most operators of rank 3 contribute to the sec-
ond-order term, and it can be reasoned in a similar
way why at most operator products of rank 5 ap-
pear at third order.

Inspecting expression (12), the non-Hermitean
property of � with the scalar product (7) becomes
apparent. The reason for the appearance of a second
term on the right side of Eq. (12) is due to the fact
that, apq,rst fulfilling requirements (1)–(4), the matrix
element (ai��apq,rst) is nonzero unlike (apq,rst��ai),
which is zero.

By utilizing the basic anticommutation rules, and
computing expectation values with �HF�, the sec-
ond-order correction of Eq. (11) is easily shown to
be identical with the ordinary second-order Dyson
correction or Born collision [16, 20, 21] for the IPs.

It may also be simply verified that

�ap��aq� � 0

in the canonical basis; consequently, the first-order
correction in Eq. (4) vanishes. The fact that

�i � ��i � ��2�

may be interpreted as the formulation of Koop-
mans’ theorem [19] in this framework.

Optimal Level Shifts for the Ionization
Potential

The second-order Dyson correction to the ioniza-
tion potential, Eq. (11), is known to perform poorly
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[14, 15], and a great deal of effort has been put into
going beyond it. The perturbative approximation
can be improved in two ways: once by stepping to
the next term in the series or at least computing
certain terms of the third order [22, 23]. Alterna-
tively, or at the same time the convergence of the
series may be graded up by incorporating some
correlation effect in the reference function �
� in Eq.
(7) or even taking a different expression for the
binary product [24–27]. Level shifts have also been
used to affect the convergence and consequently
alter the performance of low-order approximations
[21].

Another way to step beyond Eq. (11) is to apply
a strategy different from a simple PT (e.g., Green’s
functions techniques, which use nondiagonal ap-
proximation of the self-energy matrix, fall into this
category [15, 26–28]).

The purpose of this article is to investigate
whether a simple level shift of the form

�0� � � � �
pqr

�q�r�

�p,qr�ap,qr)�ap,qr�Np,qr
�

�� � � � �
pqr

�q�r�

�p,qr�ap,qr)�ap,qr�Np,qr
�

can help to get the second-order result better. Pre-
viously [9], applying Rayleigh–Schödinger (RS) PT
for correlation energies we found that a modifica-
tion like this does improve the convergence of the
series, as well as low-order approximations, if the
shift parameters are chosen in a way that the third-
order RS correction (i.e., substituting ��i for �i in
our case) vanishes term by term in the new parti-
tioning. The resulting partitioning is addressed as
“optimal” for it can be shown that this criterion
arises from an almost variational condition for the
first-order wave function in the shifted partitioning
[9]. Rewriting Eq. (12) for the new partitioning, and
equating it zero term by term, one is led to

�
stu

�t�u�

�ai��as,tu��as,tu���ap,qr�

��i � �s � �t � �u � �s,tu
Ns,tu

�

� �
stuvx

�s�t, u�v�x�

�ai��ast,uvx��ast,uvx��ap,qr�

��i � �s � �t � �u � �v � �x
Nst,uvx

� � 0

(13)

for each pqr, q � r, ((p � occ) � (q, r � virt)) � ((p �
virt) � (q, r � occ)). Condition (13) is a linear
inhomogeneous system of equations for 1/(�tu

is �

�s,tu) with �tu
is � ��i � �s � �t � �u, which can be

seen by rearranging Eq. (13) to the form

�
stu

�t�u�

�	sp	tq	ur�qr
ip �

�ai��as,tu��as,tu�ap,qr�

�ai��ap,qr�
�

� Ns,tu
�

1
�tu

is � �s,tu
� Np,qr

�

� �
stuvx

�s�t, u�v�x�

�ai��ast,uvx��ast,uvx��ap,qr�

�ai��ap,qr�

�
1

���i � �s � �t � �u � �v � �x�
Nst,uvx

� . (14)

In our implementation so far we have neglected the
terms arising from operators of rank 5 when deter-
mining the shift parameters, that is, our working
equation for computing �s,tus is simplified to

�
stu

�t�u�

�	sp	tq	ur�qr
ip �

�ai��as,tu��as,tu�ap,qr�

�ai��ap,qr�
�

� Ns,tu
�

1
�tu

is � �s,tu
� Np,qr

� . (15)

The level shifts of the so-called shifted Born col-
lision approximation [21] can be derived, further
simplifying Eq. (15) by ignoring the off-diagonal
matrix elements of � of the type (as,tu��ap,qr) if (s �
p) � (t � q) � (u � r). Like this the level shifts
become simply

�p,qr � ��ap,qr��ap,qr�, (16)

which leads to the Epstein–Nesbet partitioning in
this framework.

Note that level shifts defined by criteria (13) or
(14) depend on index i. This means that to each
ionization potential there is a different set of level
shift parameters that set the third-order correction
to zero.

Solution of Eq. (15) for �-s requires either an
explicit inversion of the coefficient matrix or a suit-
able iteration procedure. According to our experi-
ence, convergence properties of such an iteration
are usually satisfactory. In case of convergence
problems, it is preferable to collect dominant ele-
ments of the coefficient matrix into one block that
should be inverted explicitly before starting with
iterations.
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Also, it may be worth noting that a single-elec-
tron attachment can be dealt with in a similar man-
ner. Carrying out the derivation one is led to just
the same structure for the PT corrections as Eqs.
(11) and (12) with signs reversed. The same holds
for the PT terms of the level shifted partitioning if
shift parameters are introduced with proper signs.
For the interested reader, formulae for electron at-
tachment are collected in the Appendix.

Having determined the value of the shifts from
Eqs. (16) or (15) we are interested in how the sec-
ond-order PT correction in the shifted partitioning

�i
�2�� � �

pqr
�q�r�

�ai��ap,qr��ap,qr��ai�

�i � �p � �q � �r � �p,qr
Np,qr

� (17)

behaves if compared to the unshifted formula (11).
A few preliminary examples for this are given in
the following section.

Application

A limited amount of examples are presented in
this section for the effect of level shift parameters
when computing the second-order Dyson correc-
tion to Koopmans’ ionization potentials. The aim
with getting these few numbers were two-fold:
first, to investigate whether the earlier elaborated
determination of level shifts performs similarly
well if applied for IPs as it does for the correlation
energy; second, to have an impression of whether
it may be worth using Eq. (14) instead of the
simplified Eq. (15) to set the value of the shift

parameters. Clearly, the third-order correction
vanishes in the new partitioning only if Eq. (14) is
used, but Eq. (15) is considerably cheaper to ful-
fill.

Several perturbative approximations to the low-
est IP of the water and nitrogen molecules are
shown in Table I. For comparison, the relatively
costly but more accurate EOMIP results are also
given [29–31], computed using a CCSD wave func-
tion. The PT corrections are computed from Eq.
(17), iterating the expression for �i. Level shifts are
taken from Eq. (16) in the case of the shifted Born
collision (SBC) and from Eq. (15) for �OPTDY2.
Unshifted results are got iterating Eq. (11) for �i;
these are denoted by DY2 in Table I. Comparing the
zeroth- and second-order PT results with the
EOMIP figures, one sees that DY2 significantly im-
proves the Koopmans’ approximation but still has
an error in the second significant digit. The shifted
Born collision approximation worsens DY2 in each
case tabulated. If the simplified form of the optimal
condition for the shift parameters, Eq. (15), is used,
the DY2 values are improved in all cases shown
except for the minimal basis result for H2O, where
the DY2 correction is already accurate. Typical dif-
ferences between �OPTDY2 and EOM-IP results
are merely a few tenths of an electron volt, the
partial optimization reducing the error of the DY2
results by about 70% on average. We cannot claim,
however, that �OPTDY2 performs so well in other
cases. Work in our laboratory is in progress toward
studying whether levels shifts got from Eq. (14)
have a similar but amplified effect on the second-
order PT correction.

TABLE I ______________________________________________________________________________________________
First ionization potentials (a.u.) for the H2O molecule, at geometry ROH � 0.96 Å, �(H, O, H) � 105° and for the
N2 molecule, the bond length being R � 1.1 Å.

Basis EOMIP Koopmans DY2 SBC �OPTDY2

H2O molecule
STO-3G 0.308 0.391 0.303 0.282 0.299
6-31G 0.427 0.501 0.398 0.387 0.417
6-311G** 0.442 0.499 0.410 0.404 0.429

N2 molecule
6-31G 0.544 0.629 0.529 0.498 0.545
6-31G** 0.562 0.630 0.545 0.522 0.557

Koopmans’ values and perturbative approximations, such as second-order Dyson correction (DY2), SBC, and shifted second-order
Dyson correction with shifts got from Eq. (15) (�OPTDY2) are tabulated. The so-called EOMIP results, got with using the CCSD wave
function, are given for comparison.
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Appendix: PT Formulae for Electron
Attachment

aqr,p
† � aq

†ar
†ap and arst,pq

† � ar
†as

†at
†apaq

Nqr,p
� � �nqnrn� p � n� qn� rnp� and

Nrst,pq
� � �nrnsntn� pn� q � n� rn� sn� tnpnq�

I � �
p

�ap
†)�ap

†� � �
pqr

�q�r�

Nqr,p
� �aqr,p

† ��aqr,p
† �

� �
pqrst

�r�s�t,p�q�

Nrst,pq
� �arst,pq

† ��arst,pq
† � � . . .

� � � � �

��ab
†) � �b�ab

†); O � �ab
†)�ab

†�; P � I � �ab
†��ab

†�

�0� z� � �
p�b

�ap
†)�ap

†�
z � �p

� �
pqr

�q�r�

�aqr,p
† )�aqr,p

† �
z � �p � �q � �r

Nqr,p
� � . . .

�b � �b � �ab
†��ab

†� � �ab
†���0��b���ab

†�

� �ab
†���0��b���0��b���ab

†� � . . .

�b
�2� � �

pqr
�q�r�

�ab
†��aqr,p

† ��aqr,p
† ��ab

†�

�b � �p � �q � �r
Nqr,p

� . (A1)

�b
�3� � �

pqr
�q�r�

� �
stu

�t�u�

�ab
†��atu,s

† ��atu,s
† ��aqr,p

† �

�b � �s � �t � �u
Ntu,s

�

� �
stuvx

�u�v�x, s�t�

�ab
†��auvx,st

† ��auvx,st
† ��aqr,p

† �

�b � �s � �t � �u � �v � �x

� Nuvx,st
� � �aqr,p

† ��ab
†�

�b � �p � �q � �r
Nqr,p

� . (A2)

� � �0� � ��

�0� � � � �
pqr

�q�r�

�qr,p�aqr,p
† )�aqr,p

† �Npq,r
�

�� � � � �
pqr

�q�r�

�qr,p�aqr,p
† )�aqr,p

† �Nqr,p
�

�b
�2�� � �

pqr
�q�r�

�ab
†��aqr,p

† ��aqr,p
† ��ab

†�

�b � �p � �q � �r � �qr,p
Nqr,p

� .

(A3)

�b
�3�� � �

pqr
�q�r�

� �
stu

�t�u�

�ab
†��atu,s

† ��atu,s
† ��aqr,p

† �

�b � �s � �t � �u � �tu,s
Ntu,s

�

� �
stuvx

�u�v�x, s�t�

�ab
†��auvx,st

† ��auvx,st
† ��aqr,p

† �

�b � �s � �t � �u � �v � �x

� Nuvx,st
� � �aqr,p

† ��ab
†�

�b � �p � �q � �r � �qr,p
Nqr,p

� .

�
stu

�t�u�

�	sp	tq	ur�bp
qr �

�ab
†��atu,s

† ��atu,s
† ��aqr,p

† �

�ab
†��aqr,p

† � �
� Ntu,s

�
1

�bs
tu � �tu,s

� Nqr,p
�

� �
stuvx

�u�v�x, s�t�

�ab
†��auvx,st

† ��auvx,st
† ��aqr,p

† �

�ab
†��aqr,p

† �

�
1

��b � �s � �t � �u � �v � �x�
Nuvx,st

� . (A4)

Differences between formulae (11) and (A1), (12)
and (A2), (14) and (A4), and (17) and (A3) appear
only in the signs as

�as
†��aqr,p

† � Nqr,p
� � �as��ap,qr� Np,qr

�

�aqr,p
† ��as

†� Nqr,p
� � �ap,qr��as� Np,qr

�

�atu,s
† ��aqr,p

† � Nqr,p
� Ntu,s

� � ��as,tu��ap,qr�Np,qr
� Ns,tu

�

�ap
†��auvx,st

† � Nuvx,st
� � ��ap��ast,uvx�Nst,uvx

�

�aqr,p
† ��auvx,st

† � Nqr,p
� Nuvx,st

� � �ap,qr��ast,uvx� Np,qr
� Nst,uvx

� .
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5011.

16. Pickup, B. T.; Goscinski, O. Mol Phys 1973, 26, 1013.
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25. Purvis, G. D.; Öhrn, Y. J Chem Phys 1976, 65, 917.
26. Ortiz, J. V. J Chem Phys 1998, 109, 5741.
27. McKellar, A. J.; Heryadi, D.; Yeager, D. L. Int J Quantum

Chem 1998, 70, 729.
28. Schirmer, J.; Cederbaum, L. S. J Phys B 1977, 11, 1889.
29. Haque, A.; Mukherjee, D. J Chem Phys 1984, 80, 5058.
30. Chaudhuri, R.; Mukhopadhyay, D.; Mukherjee, D. Chem

Phys Lett 1989, 162, 393.
31. Stanton, J. F.; Gauss, J. J Chem Phys 1994, 101, 8938.
32. Poirier, R. A.; Peterson, M. Program MUNGAUSS; Depart-

ment of Chemistry, Memorial University: St. Johns, Canada,
1989.

33. Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.;
Bartlett, R. J. Program ACESS II, Quantum Theory Project;
University of Florida: Gainesville, FL, 1991.

OPTIMIZED PARTITIONING IN PT

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 167


