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Observation of an anti-PT-symmetric exceptional
point and energy-difference conserving dynamics
in electrical circuit resonators
Youngsun Choi1, Choloong Hahn2, Jae Woong Yoon1,3 & Seok Ho Song1

Parity-time (PT) symmetry and associated non-Hermitian properties in open physical sys-

tems have been intensively studied in search of new interaction schemes and their appli-

cations. Here, we experimentally demonstrate an electrical circuit producing key non-

Hermitian properties and unusual wave dynamics grounded on anti-PT (APT) symmetry.

Using a resistively coupled amplifying-LRC-resonator circuit, we realize a generic APT-

symmetric system that enables comprehensive spectral and time-domain analyses on

essential consequences of the APT symmetry. We observe an APT-symmetric exceptional

point (EP), inverse PT-symmetry breaking transition, and counterintuitive energy-difference

conserving dynamics in stark contrast to the standard Hermitian dynamics keeping the

system’s total energy constant. Therefore, we experimentally confirm unique properties of

APT-symmetric systems, and further development in other areas of physics may provide new

wave-manipulation techniques and innovative device-operation principles.
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In spite of their non-conserving nature and extra complexities,
non-Hermitian symmetries and associated dynamics have
triggered unprecedented interest in open physical systems

because of their novel properties and potential applications1,2. For
example, development of the parity-time (PT) symmetry in optics
have suggested new ways of controlling light propagation and
confinement involving spontaneous symmetry-breaking transi-
tion and non-Hermitian singularities3–8. As a plausible variant of
the PT symmetry, anti-PT (APT) symmetry has been treated in
positive−negative index multilayers9, optically dressed atom lat-
tices10, and rapid coherent photo-atomic transport experi-
ments11. An APT-symmetric Hamiltonian H(APT) can be
conveniently defined in terms of a PT-symmetric Hamiltonian H
(PT) such that H(APT)= ±iH(PT)11. Consequently, PT-symmetric-
like eigensystem structures involving exceptional points (EP),
spontaneous symmetry-breaking transition, and self-intersecting
energy-spectral topology appear and they result in PT-APT
conjugate phenomena such as refractionless propagation, flat
total transmission bands, and continuous lasing spectra9–11.

Within the context of non-conserving binary oscillator pro-
blems, a PT-symmetric system has a characteristic Hamiltonian

HðPTÞ ¼ εþ iγ κ

κ ε� iγ

� �
: ð1Þ

H(PT) describes two equally tuned oscillators at energy level ε
and with their attenuation (or amplifying, equivalently) rates
differing by 2γ. For non-dissipative inter-oscillator coupling
where κ is purely real-valued, the PT symmetry is an essential
consequence as the system is invariant under the simultaneous
parity inversion (P) and gain-loss exchange (T) operations. See
Fig. 1a for schematic illustration of this property. The APT-
symmetric counterpart is described by a Hamiltonian of the form

HðAPTÞ ¼ �εþ iγ iκ

iκ εþ iγ

� �
ð2Þ

which implies two equally amplifying oscillators at an amplifi-
cation rate γ and with their energy level differing by 2ε, as

illustrated in Fig. 1b. Importantly, no explicit physical symmetry
is found for this generic APT-symmetric system under the PT
operation. Moreover, the environmental energy-exchange scheme
is completely different from the PT-symmetric counterpart. This
argument suggests that essential dynamics in APT-symmetric
systems might be remarkably different from the PT-symmetric
counterpart even though the relation H(APT)= ±iH(PT) implies
mathematically indistinguishable eigensystem structures for H
(PT) and H(APT) in principle. Therefore, a comprehensive study
on the stationary and dynamic properties of a generic APT-
symmetric system is presently of importance in search of inter-
esting and useful interaction configurations from conceptually
diverse, open-system physics domains.

Here, we experimentally implement a model circuit of a generic
APT-symmetric system and observe both stationary and dynamic
properties associated with an EP singularity, spontaneous
symmetry-breaking transition, and pseudo-Hermitian vector-
space properties. Using a resistively coupled amplifying LRC
resonators, we realize an APT-symmetric electrical system per-
mitting precise parametric controls. Spectral and time-domain
measurements reveal inverse PT-symmetry breaking transition of
eigenvectors, associated bifurcation of complex eigenvalues at an
APT-symmetric EP, and unique energy-difference conserving
dynamics in stark contrast to the conventional systems described
by Hermitian Hamiltonians. Therefore, we experimentally con-
firm essential consequences of the APT symmetry and associated
anomalous non-Hermitian properties. Importantly, we show that
the non-Hermitian quantum mechanics reveals the underlying
physics of the observed properties in an intuitive manner
although specific features of such properties can be understood in
the standard circuit theory.

Results
Spectral properties of an APT-symmetric circuit. The proposed
electrical circuit consists of two amplifying LRC resonators con-
nected in parallel through a coupling resistor as shown in Fig. 2a.
The system simulates the APT−symmetric environmental-
interaction scheme with negative resistor units (–R1 and –R2)
providing a gain mechanism and with a coupling resistor (RC) as
a loss mechanism. For RC= R1= R2= R and C1= C2= C,
essential dynamics of the system is described by a Schrödinger-
type equation d|v〉/dt= –iH(APT)|v〉, where H(APT) is given by Eq.
(2). Here, the state vector |v〉 is defined such that [V1 V2]T ≡ 0.5
[exp(–iω0t)|v〉+ exp(iω0t)|v〉*] with ω0= 0.5[(L2C)–1/2+ (L1C)–1/
2] being average uncoupled-resonance angular frequency. The
Hamiltonian matrix elements are determined by ε= 0.5[(L2C)–1/
2 – (L1C)–1/2], γ= 0, κ= (2RC)–1. See Supplementary Note 1 for
mathematical treatment based on the Kirchhoff’s circuit laws.
Therefore, a generic APT-symmetric Hamiltonian is readily rea-
lized in this simple model circuit.

We assemble an APT-symmetric model circuit with para-
meters R= 400Ω, C= 425 nF, L1= 1.46 mH, L2 (variable)=
1.46~0.78 mH, and RA= RB= 10 kΩ. These circuit parameters
yield constant κ= 0.468 kHz, variable ε in a range from 0 to 1.18
kHz, and variable ω0 in a range from 6.39 to 7.57 kHz. Using this
configuration, we investigate stationary APT-symmetric proper-
ties by exciting the circuit with a harmonically oscillating source
signal injected at V2 and monitoring V1(t) in the time (t) domain.
A characteristic resonance spectrum is obtained by taking a
Fourier-transformed intensity Wn(f)= |F[Vn(t)]| in the frequency
(f) domain. MeasuredW1(f) spectrum as a function of the energy-
detuning parameter ε is shown in Fig. 2b. Here, we clearly notice
a branch-point splitting of the resonance peak at a threshold
point of ε= κ. Remarkably similar spectral effects are found for
nonlinear coupled-oscillator systems associated with the
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Fig. 1 Schematic diagrams of parity-time and anti-PT symmetric binary
systems. a Parity-time (PT)-symmetric coupled oscillators implied by the
PT-symmetric Hamiltonian H(PT) in Eq. (1). b Anti-PT (APT)-symmetric
binary system derived from the relation H(APT)= ±iH(PT). In the two
diagrams, κ denotes inter-resonator coupling constant and vertical arrows
indicate directions of energy exchange between the coupled-resonator
system and environment

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04690-y

2 NATURE COMMUNICATIONS |  (2018) 9:2182 | DOI: 10.1038/s41467-018-04690-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications
Pierre-Francois Loos




injection-locking and pulling phenomena12–15. However, the
resonance-peak coalesce observed in this case is obtained in a
purely linear-gain regime and thereby it does not involve any
nonlinear relaxation processes causing the conventional injection-
locking phenomena. Instead, this property originates from an
APT-symmetric EP and spontaneous symmetry-breaking transi-
tion as we will confirm in the following analyses in a quantitative
manner.

Loci and bandwidths of the resonance peaks in the measured
spectral profiles correspond to the real and imaginary parts of the
eigenvalue

λ± ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � κ2

p ð3Þ

of H(APT). In the measured spectral profiles, the resonance-peak
location and full-width at half-maximum (FWHM) in the
frequency domain follow fpeak= (2π)–1[ω0+ Re(λ±)] and
Δfpeak= π–1[δ+ Im(λ±)], respectively. Here, δ denotes a residual
background absorption rate due to parasitic internal resistance in
the constituent elements and its empirical value is around 25 Hz
in our experiment. Therefore, Re(λ±) and Im(λ±) in experiment
can be inferred from the peak location and bandwidth,
respectively, as shown in Fig. 3a, b. Excellent agreement of the
experimental values with the theory confirms that a generic APT-
symmetric system is indeed realized in the model circuit with
high degree of precision. In addition, a PT-APT conjugate
property in the eigenvalue spectrum is evident therein. λ± shows a
purely imaginary splitting for ε < κ, merging (λ+= λ–) at ε= κ,
and a purely real splitting for ε > κ. Resulting from the
fundamental relation of H(APT)= ±iH(PT), this characteristic is

exactly in parallel with the eigenvalue property near a PT-
symmetric EP2,16.

The threshold condition ε= κ corresponds to the APT-
symmetric EP where eigenvalues and eigenvectors simultaneously
coalesce. In Fig. 3c, we show measured amplitude ratio v1/v2 of
the state vector |v〉 at the resonance-center frequency as a
function of ε. The amplitude ratio is uniquely defined for a state
and the measured values clearly coalesce in the Gauss plane at ε
= κ, confirming that this threshold condition represents an APT-
symmetric EP. On top of the v1/v2 plot in Fig. 3c, we indicate (v1,
v2) for the corresponding eigenvectors |λ±〉. For ε ≤ κ, both |λ+〉
and |λ–〉 are invariant under simultaneous P (exchange of the two
arrows each other) and T (complex conjugation of the arrows)
operations, i.e., the eigenvectors are in the exact PT-symmetry
phase. In contrast, the PT symmetry in |λ±〉 is broken for ε > κ.
Therefore, the stationary response of the APT-symmetric circuit
undergoes a spontaneous PT-symmetry breaking at the EP even
though the system does not have any explicit physical symmetry
as pointed out earlier.

In the eigensystem analysis so far, we have experimentally
showed that a binary APT-symmetric EP involves a spontaneous
PT-symmetry breaking in the eigenvector configuration and, in
addition, the real/imaginary eigenvalue splitting property is
reversed with respect to the PT-symmetric counterpart, i.e.,
real-eigenvalue splitting for the broken PT-symmetry phase (ε >
κ) and imaginary-eigenvalue splitting for the exact PT-symmetry
phase (ε < κ). In this respect, APT-symmetric binary systems and
associated phenomena can be treated in a manner similar to the
PT symmetry as far as their stationary responses are treated.

Dynamic properties of an APT-symmetric circuit. We further
study dynamic properties of a generic APT-symmetric system in
our resistively coupled LRC resonators. In particular, we inves-
tigate temporal responses for the broken PT-symmetry phase
where the eigenvalue splitting is purely real-valued and the sys-
tem’s time-evolution does not involve a measurement-instability
problem due to rapid exponential growth of the probe-voltage
signals. The experimental procedures include following steps in
the temporal order: Isolation of resonator 2 with the remaining
parts including the coupling resistor RC and resonator 1; con-
necting the V1 terminal to the ground to set V1= 0; time-
harmonic excitation of resonator 2 at the resonance-center fre-
quency by gain-assisted self-oscillation; disconnection of the V1

terminal off the ground; connection of resonator 2 with the
remaining parts; and acquiring V1(t) and V2(t) to determine the
dynamic state |v(t)〉= [v1(t) v2(t)]T evolved from the initial state |
v(0)〉= [0 1]T. We conduct this experiment for ε= 1.48κ and the
result is summarized in Fig. 4a. Measured electric energy En=
0.5CnVn

2 in capacitor Cn, magnetic energy Mn= 0.5LnIn2 in
inductor Ln, and total energy Tn= En+Mn for resonator n are
plotted as functions of time. An unprecedented property revealed
in the measured time-domain response is beating patterns that
conserve the energy difference ΔT= T2–T1. This is in stark
contrast to the standard Hermitian dynamics keeping the sys-
tem’s net energy T1+ T2 constant and also to the PT-symmetric
dynamics conserving a cross-conjugate product v1v2*+ v1*v2.

Within the context of the classical circuit theory, this unusual
property is explained as originating from a specific configuration
of the circuit and associated energy-variation rate properties.
Configuring the circuit for the APT-symmetric environmental
energy-exchange scheme in Fig. 1b, we required a set of circuit
constant conditions such that RC= R1= R2= R and C1= C2= C.
These conditions result in the resonator’s energy-variation rate

dTn

dt
¼ V1V2

R
ð4Þ
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Fig. 2 APT-symmetric model circuit and its spectral property. a Circuit
diagram of APT-symmetric LRC resonators. The circuit consists of two
resistively coupled amplifying LRC resonators with negative resistor units. A
variable inductor is used for L2 to precisely control the energy-detuning
parameter ε. b ε-dependent resonance-excitation spectrum W1(f)
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which is essentially identical for the two resonators because the
voltage-product energy rate R–1V1V2 on the right-hand side of
Eq. (4) is independent of the resonator index n. See Supplemen-
tary Note 2 for details. The energy-difference conserving
dynamics implies that there is no net energy exchange between
the two coupled resonators. In conventional coupled-resonator
systems following the Hermitian dynamics, beating is a natural
consequence of an inter-resonator energy exchange. In this
respect, the specific beating patterns appearing in Fig. 4a for the
Tn profiles are not explained by the standard interpretation.

The counterintuitive beating pattern in the APT-symmetric
circuit is induced by a periodic energy exchange between the
whole resonator system and the environment. According to Eq.
(4), the resonator’s energy amplification or dissipation is
determined by the sign of the voltage-product V1·V2. Therefore,
the specific beating patterns in Fig. 4a are understood by the
periodic change of the V1V2-product sign for the two resonators
oscillating at slightly different frequencies. Note that the electric
current IC through the coupling resistor RC is high for V1V2 < 0
and the Ohmic dissipation exceeds the system’s net gain, resulting
in attenuation of the resonant excitation. In contrast, IC for V1V2

> 0 is low and the response of the system is led by the gain that
renders the excitation stronger. As key evidences, we provide
measured voltage-product energy rate R–1V1V2 in Fig. 4b and its
integrated profile J(ta)= Σb [R–1V1(tb)V2(tb)]Δt in Fig. 4c, where
the dummy sampling-time index b is running over 0 to a. The
beating pattern in J(t) in Fig. 4c shows a quantitative agreement
with the Tn(t) patterns in Fig. 4a, confirming the validity of the
energy-variation rate relation given by Eq. (4).

In a more fundamental viewpoint, the energy-difference
conserving dynamics is associated with a bi-orthogonal vector-
space property. Following the pseudo-Hermitian representation
of quantum mechanics17 for our case with an APT-symmetric
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Measured time evolution of the total energy Tn, electric energy En, and
magnetic energy Mn for an initial state |v(0)〉= [0 1]T. We set ε=
1.48κ in this measurement. b Measured voltage-product energy rate
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Hamiltonian H(APT), the inner-product that permits a prob-
abilistic description of state vectors should take a
form (ψ,ϕ)= 〈ψ|η|ϕ〉, where η is a Hermitian metric operator
satisfying η–1H(APT)†η=H(APT). In our case with a binary H
(APT), the metric operator is given by

η ¼ 1 0

0 �1

� �
ð5Þ

and it yields a conserved quantity

vh jη vj i ¼ jv1j2 � jv2j2 ¼
2
C

T1h i � Th i2
� �

; ð6Þ

where 〈···〉 indicates a time average of its argument over an
oscillation cycle at ω0. Here, we use a relation 〈Tn〉= 0.5 C|vn|2

implied from the definition of vn (see Supplementary Note 1).
Therefore, the energy-difference conserving time-evolution is
understood as a general property that applies to any APT-
symmetric system regardless of system’s details.

Discussion
In conclusion, we have experimentally demonstrated an electrical
circuit that simulates a generic APT-symmetric system. Stationary
and dynamic properties were investigated using a resistively
coupled amplifying-LRC-resonator circuit where precise para-
metric control and time-resolved measurement are highly feasible.
We experimentally observed an APT-symmetric EP, inverse PT-
symmetry breaking transition, and energy-difference conserving
time-evolution as essential consequences of the APT symmetry.
Although included in this paper is experimental confirmation of
fundamental properties, our results propose the APT symmetry as
a novel non-Hermitian interaction scheme where PT-symmetric-
like eigensystem appears while associated dynamics is funda-
mentally different from standard Hermitian systems and even
from the PT-symmetric counterpart. In particular, notion of the
APT symmetry in optics and photonics is of great interest because
APT-symmetric EPs and associated complex eigenvalue-splitting
properties may provide new ways of creating EP-related phe-
nomena such as unidirectional or non-reciprocal states of light4–6,
mode selection by a spontaneous symmetry-breaking transition18,
virtually diverging parametric sensitivity19,20, and anti-adiabatic
topological time-asymmetry21,22.

In this consideration, it is worth mentioning that the mathe-
matical distinction between PT and APT-symmetric systems is
semantic in the framework of the pseudo-Hermitian quantum
mechanics17. In addition, there is a wide variety of pseudo-
Hermitian Hamiltonians that can be studied in substantially
simplified experimental configurations by means of appropriate
transformations. For example, a binary APT-symmetric Hamil-
tonian H(APT) is transformed into a PT-symmetric Hamiltonian
H(PT) by a similarity transformation with a unitary operator

U ¼ 1ffiffiffi
2

p 1 1

1 �1

� �
ð7Þ

implying that consequences of the PT symmetry might be
equivalently studied in APT-symmetric systems or vice versa,
depending on relative feasibility in experiments. Therefore, var-
ious PT-symmetric effects have a one-to-one correspondence to
the APT-symmetric counterparts and this property could be used
for generating novel non-Hermitian systems and devices with a
comprehensive physical foundation. Further study of significant
interest within this context is to realize time-varying APT-sym-
metric systems enabling topological operations around an EP23,24.
This unique non-Hermitian interaction scheme was recently
established for PT-symmetric EPs in the microwave-

transmission21 and opto-mechanical oscillator22 experiments.
The subject is presently attracting a special attention because of
its potential for robust time-asymmetric or nonreciprocal devices.
In the potential APT-symmetric circuit configurations, required
time-varying topological operations with an APT-symmetric EP
can be readily created by introducing electrical tunability in the
resistor and capacitor elements with appropriate transistors and
varactor diodes. Furthermore, realization of optical systems
involving mathematically identical non-Hermitian Hamiltonians
should be feasible in coupled resonators or integrated-waveguide
systems where required complex-index profiles can be effectively
generated using impurity doping, functional thin films, and
photonic nanostructures3–8.

Data availability. The data that support the findings of this study
are available from the corresponding authors on request.
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