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ABSTRACT
A simple two-state model has previously been shown to be able to describe and rationalize the convergence of the most common perturbation
method for including electron correlation, the Møller-Plesset expansion. In particular, this simple model has been able to predict the conver-
gence rate and the form of the higher-order corrections for typical Møller-Plesset expansions of the correlation energy. In this paper, the con-
vergence of nondegenerate perturbation expansions in the two-state model is analyzed in detail for a general form of two-state perturbation
expansion by examining the analytic expressions of the corrections and series of the values of the corrections for various choices of the pertur-
bation. The previous analysis that covered only a single form of the perturbation is thereby generalized to arbitrary forms of the perturbation. It
is shown that the convergence may be described in terms of four characteristics: archetype, rate of convergence, length of recurring period, and
sign pattern. The archetype defines the overall form of a plot of the energy-corrections, and the remaining characteristics specify details of the
archetype. For symmetric (Hermitian) perturbations, five archetypes are observed: zigzag, interspersed zigzag, triadic, ripples, and geometric.
Two additional archetypes are obtained for an asymmetric perturbation: zigzag-geometric and convex-geometric. For symmetric perturba-
tions, each archetype has a distinctive pattern that recurs with a period which depends on the perturbation parameters, whereas no such recur-
rence exists for asymmetric perturbations from a series of numerical corrections. The obtained relations between the form of a two-state per-
turbation and the energy corrections allow us to obtain additional insights into the convergence behavior of the Møller-Plesset and other forms
of perturbation expansions. This is demonstrated by analyzing several diverging or slowly converging perturbation expansions of ground
state and excitation energies. It is demonstrated that the higher-order corrections of these expansions can be described using the two-state
model and each expansion can therefore be described in terms of an archetype and the other three characteristics. Examples of all archetypes
except the zigzag and convex-geometric archetypes are given. For each example, it is shown how the characteristics may be extracted
from the higher-order corrections and used to identify the term in the perturbation that is the cause of the observed slow convergence or
divergence.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5110554., s

I. INTRODUCTION

Quantum mechanical perturbation theory has since its intro-
duction1 been used to calculate a large number of interactions,
including interactions between molecules and external fields, inter-
actions between nonoverlapping molecules, as well as correlation
contributions to energies and properties of molecules. In quan-
tum chemistry, the perturbation method that has most exten-
sively been used to describe electron correlation is Møller-Plesset

Perturbation Theory (MPPT),2–5 which uses the Hartree-Fock state
as the zeroth-order state and the Møller-Plesset partitioning of the
Hamiltonian.

An important characteristic of a perturbation expansion is its
asymptotic convergence: is the expansion convergent or divergent
and what is the asymptotic convergence rate? An extensive mathe-
matical literature exists on the subject of convergence of perturba-
tion theory including the seminal work for general (infinite) linear
operators6 and for finite dimensional operators,7 but it was through
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numerical studies that insight into the convergence of MPPT was
obtained. It was originally assumed that the MPPT perturbation
expansion of an electronic wave function is convergent if the wave
function is strongly dominated by its Hartree-Fock component. This
assumption was corroborated by the first calculations of high-order
energy corrections of MPPT.8 However, the question of convergence
turned out to be more complicated, and states that are strongly dom-
inated by the Hartree-Fock state may diverge. The first indication
that factors other than the dominance of the Hartree-Fock state
is important for the convergence of the MPPT expansion was the
observation that the expansion for molecules containing electron-
rich atoms, such as fluorine, show a slow convergence with oscillat-
ing signs of the corrections.9 Subsequent calculations of high-order
terms of the MPPT series for HF and Ne showed that these series
change from convergent to divergent expansions when diffuse basis
functions are added to the basis sets10,11 although the wave functions
remain strongly dominated by the Hartree-Fock state. These diver-
gences were surprising but have been observed in additional studies,
including a test using 128 bit precision to examine the numerical
stability of the series and divergences.12

The MPPT expansion has been generalized to a coupled clus-
ter perturbation theory (CCPT), where the zeroth-order (parent)
state is a coupled cluster state, the target state is another coupled
cluster state with a larger excitation space, and the Hamiltonian par-
titioning is the standard Møller-Plesset partitioning.13,14 The stan-
dard MPPT series is recovered by using a vanishing and full excita-
tion space for the parent and target states, respectively. The CCPT
methods give typically energies that are more accurate than those
obtained using MPPT, but the accuracy at low order and the high-
order convergence is impaired by the large errors associated with
the use of the Fock-operator as the zeroth-order operator, in par-
ticular, when the complete or nearly complete coupled cluster tar-
get state is employed.15 If a target state that includes quadruple or
higher excitations is employed for an electron-rich molecule, the
high-order terms have thus the same divergent behavior as MPPT.15

However, improved high-order convergence and lower-order results
may usually be obtained in these schemes by restricting the excita-
tion level of the target state, thereby eliminating the multiple excited
states that gives rise to the divergence of MPPT for molecules with
electron-rich atoms.

Very recently, we have introduced the cluster perturbation (CP)
methods.16–20 These methods differ from the CCPT methods by
their use of a zeroth-order Jacobian that includes the exact Jacobian
in the parent excitation space and approximates the zeroth-order
Jacobian for excitations outside the parent space with orbital energy
differences. This leads to improved convergence of the perturbation
expansion for ground state energies.16 Another attractive feature of
the CP expansions is that they can be extended to describe excitation
energies and response properties.16,17 The theoretical foundation for
the analysis of the convergence of the CP series for reference ener-
gies, excitation energies, and molecular properties is developed in
Ref. 18.

A formal difference between CP and CCPT on one hand
and standard perturbation methods including MPPT on the other
hand is that the perturbation matrix of the former are asymmetric,
whereas the perturbation matrix is symmetric for standard perturba-
tion methods. This motivates that we in the following also consider
expansions with an asymmetric perturbation.

As mentioned above, the MPPT expansion of the energy
exhibits a characteristic pattern for molecules containing electron-
rich atoms. Other patterns for the high-order corrections have been
observed and reported. The MPPT expansion for the ground state
energy of C2 at the equilibrium geometry10,12 exhibits a convergence
pattern that in Ref. 12 was described as “a fascinating pattern of
protracted, decaying ringing.” This pattern is often observed for the
CCPT energy and CP energy and excitation energy series. Additional
patterns have been observed for the ground and excited state ener-
gies using the CP series. The origin of these convergence patterns is
presently unknown. It is the origin of these patterns and, in particu-
lar, their relations to the form of the perturbation that are the focal
points of the present work. Although we will use MPPT, CPPT, and
CP perturbation series as examples of perturbation expansions, our
results are general.

The study of the convergence behavior of MPPT and other
perturbation expansions in a finite-dimensional space is greatly sim-
plified by noting that the correction vectors for these expansions
becomes nearly linear dependent as the order of the corrections
increase.8,21 The higher-order convergence of these expansions may
therefore be studied using a simple two-state expansion, including
the ground state and the asymptotic correction vector. Such a two-
state model was originally introduced by Chaudhuri, Finley, and
Freed22 and was further developed and applied to analyze the high-
order convergence of the MPPT series.21 In the latter analysis, the
two-state model was considered for a symmetric perturbation as
defined by two parameters: the gap-shift that gives the reduction
in the energies of the zeroth-order states and the coupling of the
two zeroth-order states. To accommodate the possibility of a gen-
eral asymmetric two-state perturbation matrix, this simple form of
the perturbation must be generalized. We will thus consider both
a symmetric perturbation, where the two off-diagonal elements of
the perturbation have the same sign and an asymmetric perturba-
tion where the two off-diagonal elements have opposite signs. With
these extended definitions of symmetric and asymmetric perturba-
tions, it is possible to analyze perturbation expansions of coupled
cluster states.

The two-state model with a symmetric perturbation has been
analyzed in detail for the case, where the gap-shift is much larger
than the coupling term. In particular, it has been shown that
the observed divergences of MPPT for electron-rich atoms and
molecules are caused by the large negative gap-shifts originating
from the double counting of the electron-electron repulsion in the
Fock-operator.21

To obtain an improved understanding of the convergence of
perturbation series for electron correlation and to design improved
perturbation methods, the relation between the observed patterns
of the corrections and the dominating interactions in the Hamil-
tonian must be uncovered. For example, is the ringing pattern
of the MPPT expansion for C2 due to large interactions between
two or more states or is it caused by the large errors of the
zeroth-order energies that are inherent in MPPT? To obtain this
understanding, we will consider perturbation expansions using
the two-state model for general choices of the coupling and gap-
shift and analyze this model for symmetric as well as asymmet-
ric perturbations. For symmetric perturbation, the relative size of
the two parameters of the perturbation leads to five archetypes,
which we denote zigzag, interspersed zigzag, triadic, ripple,
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and zigzag convergence. In the zigzag and geometric archetypes,
there are simple relations between two consecutive corrections,
whereas the three other types have more complicated relations
between the terms and exhibit recurring patterns over three or more
orders. The convergence pattern for an asymmetric perturbation
may belong to one of the two additional archetypes, the convex-
geometric and zigzag-geometric archetypes or to either the zigzag
or geometric archetypes.

The developed relations between the form of the archetypes
and the underlying perturbation parameters can be used to extract
estimates of the two perturbation parameters from the four char-
acteristics of a calculated perturbation expansion: archetype, rate of
convergence, length of the period, and sign pattern of consecutive
corrections. The part of the perturbation that causes slow conver-
gence and divergence can then be identified which may assist in the
development of improved perturbation methods.

The organization of the paper is as follows. In Sec. II, we give
a brief review of the criteria of convergence for perturbation expan-
sions in a finite dimensional space. This is followed in Sec. III by
the introduction of the two-state model for symmetric and asym-
metric perturbations, a discussion of the criterion for convergence
in this model, and the analytic expression for the energy-corrections
of general order. In Sec. IV, we start the analysis of specific forms
of archetypes by considering the two extreme cases where the size
of the gap-shift is either much smaller or much larger than the size
of the coupling term, giving the zigzag and geometric archetypes,
respectively. In order to proceed beyond these extremes, we consider
in Sec. V the functional form of the corrections in more detail and
develop simple geometric progressions that have the same overall
behavior as the full corrections. This also allows the determination
of rates of convergence for symmetric as well as asymmetric per-
turbations. In Sec. VI, the perturbation expansions are considered
in more detail for symmetric perturbations, and three additional
archetypes, interspersed zigzag, triadic, and ripples, are introduced
and analyzed. In Sec. VII, we perform a similar analysis for asym-
metric perturbations and introduce the two remaining archetypes,
zigzag-geometric, and convex-geometric. In Sec. VIII, we analyze
several perturbation expansions and show how they fit into our clas-
sification scheme and how the numerical values of the higher order
corrections can be used to identify the parameters of the two-state
perturbation. Finally, in Sec. IX, we summarize and perspectivize our
findings.

II. CONVERGENCE OF PERTURBATION EXPANSIONS
To put the question of convergence or divergence of a per-

turbation expansion in a mathematical setting, we introduce a per-
turbation strength z and matrix representation of the perturbation
expansion

H(z) = H0 + zV, (1)

where H0 and V are the zeroth-order Hamiltonian and perturba-
tion, respectively. The physical Hamiltonian for the system of inter-
est is H(1). As we are interested in the question of convergence
of perturbation expansions as they occur in actual calculations, the
dimension of the expansion is finite. We will furthermore restrict
it to the consideration of real matrices H0, V. Specifically, we are

interested in determining a selected root, typically the ground state,
of the eigenvalue problem

H(z)C(z) = E(z)C(z) (2)

and wish to determine the values of z for which E(z) is an ana-
lytic function, so the Taylor or power-series expansion of E(z) con-
verges to E(z). Rellich showed7 that E(z) is analytic in the region
around 0 that does not contain a critical point, i.e., a value of z
for which the eigenvalue of interest becomes degenerate. Denot-
ing the critical point with the lowest norm |z| as the primary
critical point, the perturbation expansion of the eigenvalue E(1)
is convergent if the primary critical point is outside the complex
unit-circle.

If a critical point is within the unit-circle, the additional state
giving rise to the degeneracy is termed an intruder state, and the
intruder state associated with a primary critical point is the primary
intruder state. An intruder state associated with a critical point that
has a negative real value of z is a back-door intruder, whereas a
positive real value leads to a front-door intruder.

The primary critical point is of special interest as it determines
the convergence radius of the perturbation expansion of E(z). The
primary critical point may be identified without the use of com-
plex arithmetic by scanning the spectrum of E(z) as a function of
real z and determine the avoided crossing with the lowest absolute
value of z. The two states comprising this avoided crossing define
a two-dimensional space. The zeroth-order Hamiltonian and the
perturbation are then calculated in this two-dimensional space, and
the critical values of z for this two-dimensional problem are deter-
mined and used as an approximation to the primary critical point
of the full eigenvalue problem. If the imaginary part of the criti-
cal z is small, the above procedure reproduces critical points with
high accuracy, but the approach may otherwise have a significant
error.

For the MPPT series, it has been shown that the primary crit-
ical point may be obtained from the vector that defines the higher-
order corrections to the wave function.21 It has also been demon-
strated that the two states that determines the avoided crossing
with the lowest values of |z| may be used to identify the conver-
gence rate and the higher-order corrections.21 For MPPT series,
there exists thus a fundamental and nontrivial relation between
the primary intruder state and the higher-order corrections. In the
present paper, it is demonstrated that the convergence rate and pat-
tern of the higher order corrections of the CCPT and CP series
may also be obtained from the perturbation expansion in a two-
dimensional space spanned by the two states of the first avoided
crossing.

In the above discussion, we considered a perturbation expan-
sion of a Hermitian eigenvalue equation. In coupled cluster theory,
a set of nonlinear equations is expanded in the perturbation and
the convergence behavior then becomes connected with the proper-
ties of the non-Hermitian Jacobian as a function of the perturbation
strength, rather than the Hamiltonian matrix per se.15 Convergence
of the perturbation expansion of the ground state energy is ensured
if the Jacobian does not have any singularities for complex pertur-
bation strengths within the complex unit circle.15 The convergence
behavior of these expansions can again be understood in terms of
two states: the ground-state and the lowest excited state obtained
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from the Jacobian; both are obtained at the perturbation strength of
the first avoided crossing. For coupled cluster perturbation expan-
sions of a given excitation energy, the convergence of the pertur-
bation expansion is also defined by the Jacobian, with the addi-
tional convergence criterion that the excitation energy obtained as
an eigenvalue of the perturbation dependent Jacobian does not have
any degeneracy for perturbation strengths within the unit-circle.18

Assuming that the perturbation expansion of the ground-state is
converging, the convergence of the perturbation expansion of an
excitation energy can thus be understood in terms of the energies
and interactions of the excitations to the two states comprising the
first avoided crossing of the excitation energy curve as a function of
the perturbation strength. As the Jacobian is a nonsymmetric matrix,
the two-state model has to be extended to consider a nonsymmetric
Hamiltonian to describe these series.

III. THE TWO-STATE HAMILTONIAN
We consider a real general two-state HamiltonianH and choose

a basis, where the zeroth-order Hamiltonian H0 is diagonal

H = H0 + V, (3)

H0 = (
α 0

0 β + γ
), (4)

V = (
0 δ2

δ1 −γ
). (5)

The diagonal terms α and β + γ are the zeroth-order energies of the
reference and the additional state, respectively, γ is the gap-shift, and
δ1, δ2 are the coupling terms between the two states. All these param-
eters are assumed real. Note that the perturbation is not assumed to
be Hermitian. In the following, we will use the assumption of non-
degeneracy to require that the states have been ordered so α < β + γ,
so the first state has the lowest zeroth-order energy of the two states.
We will also for convenience assume that α < β, so the numerical
ordering of the diagonal does not change in the interval z ∈ [0, 1].
However, most of the general features in the following, in partic-
ular, the types and forms of archetypes, does not depend on this
assumption.

A. Eigenvalues
The eigenvalues of the matrix H0 + zV are the solutions to the

equation det(H0 + zV − E1) = 0, which leads to the identifications

E±(z) =
α + β + (1 − z)γ

2
±

√
(α − β − (1 − z)γ)2 + 4δ1δ2z2

2
. (6)

It is noted that the eigenvalues for an arbitrary value of z depend
on the product δ1δ2 and not on the individual values of δ1 and δ2.
Introducing a geometrically averaged non-negative coupling term δ
and a symmetry factor σ,

δ1δ2 = σδ2, σ = {
+1 if δ1δ2 ≥ 0,

−1 if δ1δ2 < 0,
(7)

and the eigenvalues of Eq. (6) may be written as

E±(z) =
α + β + (1 − z)γ

2
±

√
(α − β − (1 − z)γ)2 + 4σδ2z2

2
. (8)

The perturbation with σ = 1 will be denoted a symmetric per-
turbation, whereas a perturbation with σ = −1 is an asymmetric
perturbation.

The eigenvalues E± = E±(1) according to Eq. (8) are given as

E± =
α + β

2
±

√
(α − β)2 + 4σδ2

2
. (9)

The relations between the eigenvalues E± and the diag-
onal elements of H = H(1) depend on the symmetry fac-
tor. Since the square root is a monotonically increasing func-
tion, it is first noted that

√
(α − β)2 + 4σδ2 is larger than

β − α for σ = 1 and smaller than β − α for σ = −1. The symmetric
perturbation problem for real z therefore has a lowest eigenvalue,
E−, that is below α and a largest eigenvalue, E+, that is above β. For
an asymmetric perturbation and δ < β−α

2 , one obtains a real lowest
eigenvalue that for real z is larger than α and a real largest eigenvalue
that is lower than β, whereas the eigenvalues for δ > ∣β−α

∣
2 become a

pair of complex conjugated numbers

E± =
α + β

2
±

√
4δ2 − (α − β)2

2
i, σ = −1, δ >

β − α
2

. (10)

If δ = ∣β−α∣
2 , the eigenvalues of the asymmetric problem become

degenerate. A general two-dimensional matrix may be defective, i.e.,
have only a one-dimensional space of eigenvectors. In Appendix A,
it is shown that a general two-dimensional matrix is defective if
and only if the two eigenvalues are degenerate and at least one of
the off-diagonal matrix elements is nonvanishing. The use of the
word degenerate to describe the case where the two eigenvalues are
identical does therefore here not imply that there are two linearly
independent eigenvectors.

B. General expressions for the energy-corrections
in the two-state model

The perturbation expansion of Eq. (8) in Ref. 21 was considered
for a symmetric perturbation. This treatment may be generalized to
include the asymmetric perturbation, and one obtains the energy-
corrections E(n) of the lowest state for a general order n as

E(0) = α,

E(1) = 0,

E(n) =
γn

(β + γ − α)n−1 e(n)(σ, ∣
δ
γ
∣),n > 1,

(11)

where

e(n)(σ, ∣
δ
γ
∣) =

[n/2]

∑
i=1

e(n)i (σ, ∣
δ
γ
∣), (12)

e(n)i (σ, ∣
δ
γ
∣) = (−σ)if (n)i (

δ
γ
)

2i, (13)
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f (n)i =
(n − 2)!

(n − 2i)!i!(i − 1)!
. (14)

In Eq. (12), [n/2] is the largest integer not exceeding n
2 . The energy-

correction E(n) is the product of the prefactor, γn

(β+γ−α)n−1 , and a fac-

tor, e(n), which depends on the symmetry factor and the absolute
value of the ratio between the coupling parameter and the gap-shift.
The prefactor is a simple geometric series in n, whereas e(n) gives rise
to a number of patterns in the perturbation expansions and is exam-
ined in Sections V and VI. The signs of the corrections will also show
a number of patterns, arising from rather complicated sign-changes
of e(n) and the signs of the prefactors, which for nonvanishing γ have
the simple form

sign(
γn

(β + γ − α)n−1 ) = (sign(γ))n. (15)

For γ = 0, the energy-corrections are straightforwardly obtained
in the closed form by expanding the energy in Eq. (8) in z2 and are
equal to the values obtained by taking limit γ→ 0 in Eq. (11),

E(2n+1)
= 0,

(16)

E(2n) = (−σ)n
δ2n

(β − α)2n−1 f
(2n)
n

= (−σ)n
(2n − 2)!δ2n

n!(n − 1)!(β − α)2n−1 .

C. Points of degeneracy for the energy function
and radii of convergence

To examine whether the expansion in z of the eigenvalues
E± = E±(1) is convergent or divergent, we determine, in accordance
with the discussion of Sec. II, the complex values zc where the two
eigenvalues are degenerate, E−(zc) = E+(zc). As mentioned above and
shown in Appendix A, a two-dimensional matrix with degenerate
eigenvalues is defective unless both off-diagonal elements are zero.
Except for a trivial perturbation with vanishing coupling elements,
the values zc may alternatively be characterized as the values where
the matrix H(z) becomes defective. To identify zc, we express the
term inside the square-root of Eq. (8) as a second-order polynomial
in z,

(α − β − (1 − z)γ)2 + 4σδ2z2
= (4σδ2 + γ2

)z2 + 2γ(α − β − γ)z

+ (α − β − γ)2. (17)

The critical points are the values of z for which the polynomial in
Eq. (17) vanishes. For 4σδ2 + γ2 = 0, there is a single critical point

zc =
β − α + γ

2γ
, 4σδ2 + γ2

= 0, (18)

whereas a nonvanishing value of 4σδ2 + γ2 leads to a pair of critical
points

zc± =
β − α + γ
4σδ2 + γ2 (γ ± 2

√
−σδ2), 4σδ2 + γ2

≠ 0. (19)

For a symmetric perturbation, the critical points of Eq. (19)
become a pair of complex conjugated numbers

zc± =
β − α + γ
4δ2 + γ2 (γ ± 2δi), σ = +1, (20)

and the common norm of the critical points is

∣zc±∣ =
β − α + γ
√

4δ2 + γ2
, σ = 1. (21)

The perturbation expansion is absolutely convergent if ∣zc±∣ > 1 and
divergent if ∣zc±∣ < 1. If ∣zc±∣ = 1, a thorough analysis is needed to
determine whether the expansion is convergent or divergent. As it is
unlikely that the condition ∣zc±∣ = 1 will be observed in any actual cal-
culations, such an analysis will not be attempted here. The condition
for divergence from Eq. (21) is seen to correspond to

sign(β − α)γ <
∣β − α∣

2
⎛

⎝
(

2δ
β − α

)

2

− 1
⎞

⎠
⇔ ∣zc±∣ < 1, σ = 1. (22)

From Eq. (22), it follows for β − α > 0 that

γ < γc = −
β − α

2
⇒ ∣zc±∣ < 1. (23)

There exists thus a critical value γc = − β−α
2 for which the expansions

are divergent for γ < γc for all values of δ.
From Eq. (20), it is seen that a positive value of the gap-shift

gives a pair of critical points in the half-plane with positive real val-
ues of z±, whereas a negative value of the gap-shift gives critical
points in the negative half-plane. Intruder states corresponding to
a positive or negative value of gap-shift are thus front door or back
door intruder states, respectively. It is also noted that the argument
(the angle between a point in the complex plane and the positive real
axis) of each of the points of degeneracy depends only on the relative
magnitude of the gap-shift and the coupling element. If the gap-shift
is much larger than the coupling element, the points of degeneracy
are close to the real axis, whereas a gap-shift that is much smaller
than the coupling element leads to points of degeneracy that are
close to the imaginary axis.

For an asymmetric perturbation, we first assume that
−4δ2 + γ2

≠ 0 so the critical points of Eq. (19) become two points
in the real axis

zc± =
β − α + γ
γ ∓ 2δ

, σ = −1,−4δ2 + γ2
≠ 0. (24)

The radius of convergence is given by min(∣zc−∣, ∣zc+∣). Since
|γ − 2δ| > |γ + 2δ| for negative values of γ and |γ − 2δ| < |γ + 2δ|
for positive values of γ, we have

min(∣zc−∣, ∣z
c
+∣) =

β − α + γ
∣2sign(γ)δ + γ∣

. (25)

By writing γ as sign(γ)|γ|, we may rewrite Eq. (25) as

min(∣zc−∣, ∣z
c
+∣) =

β − α + γ
∣ 2sign(γ)δ + sign(γ)∣γ∣ ∣

=
β − α + γ
2δ + ∣γ∣

. (26)

For −4δ2 + γ2 = (γ + 2δ)(γ − 2δ) = 0, the critical point of Eq. (18)
equals either zc− or zc+ of Eq. (24), whereas the other value of zc± in
Eq. (24) becomes infinite. Equation (26) holds therefore for all values
of γ and δ.
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To determine a critical value γc of γ, we identify the values of γ
for which

β − α + γ
2δ + ∣γ∣

< 1 (27)

holds for all values of δ. For positive values of γ, it is noted that
Eq. (27) is not fulfilled for δ = 0, so critical values of γ must be
nonpositive. For nonpositive values of γ, the divergence criterion of
Eq. (27) becomes

γ < −
β − α

2
+ δ, (28)

so the expansion is divergent for all (positive) values of δ if
γ < − β−α

2 . The critical value of γ is therefore also given by Eq. (23)
for asymmetric perturbations.

IV. ONE-TERM APPROXIMATIONS
In general, several terms contribute to e(n) in Eq. (11), but there

are two limiting cases where a single term dominates: |γ|≪ |δ| and
|γ| ≫ |δ|. These two cases give the first archetypes of convergence:
the zigzag and geometric patterns. We will now consider these cases,
starting with γ = 0, which may be considered as a special case of
|γ|≪ |δ|. For the mathematical analysis, we continue the use of gen-
eral values of α, β, γ, and δ, but for the numerical evaluations, we
use the value β − α = 1, which corresponds to the use of the scaled
gap-shift and coupling, γs, δs, defined as

γs =
γ

β − α
,

δs =
δ

β − α
.

(29)

A. γ = 0
For γ = 0, it follows from Eq. (22) for a symmetric perturbation

and from Eq. (28) for an asymmetric perturbation that the expansion
is convergent if

δ <
β − α

2
. (30)

The corrections in Eq. (16) shows that the corrections vanish for
odd values of n and reduce to a single term for even n, which
may be rewritten using the double factorial defined as (2n − 3)!!
= (2n − 3)(2n − 5)⋯1,

E(2n+1)
= 0,

(31)

E(2n) = (−σ)n
δ2n

(β − α)2n−1 f
(2n)
n = (−σ)n

(2n − 2)!
n!(n − 1)!

δ2n

(β − α)2n−1

= (−σ)n
(2n − 3)‼ 2n−1

n!
δ2n

(β − α)2n−1 .

For symmetric perturbations, the even orders have alternating signs
with E(2n) being positive for even values of n and negative for odd
values of n. For an asymmetric perturbation, all even corrections are
positive.

The deviation (error) of the energy calculated through order k
and the eigenvalue E− is defined as

Dk =
k

∑
i=0

E(i) − E−(1). (32)

In Appendix B, it is shown that the remainder for γ = 0 becomes

D2n = D2n+1 =
σ(−σ)n(2n − 1)‼ 2n

(n + 1)!
δ2n+2

(β − α)2n+1

×

¿
Á
ÁÀ1 +

4σδ2

(β − α)2 ξ, ξ ∈ [0, 1]. (33)

We can now compare the signs of the corrections E(2n) of
Eq. (31) with the signs of the deviations D2n in Eq. (33). For a
symmetric perturbation, the corrections and deviations have iden-
tical signs at each order. This pattern is seen in left panels of Fig. 1
which gives the perturbation corrections and deviations for sym-
metric perturbations with δ = 0.4 for three values of γ, including
γ = 0.

For an asymmetric perturbation, it is seen from Eq. (33) that
all deviations are negative, whereas the corrections were found to be
positive. In this case, the converged eigenvalue is approached sys-
tematically from below. This behavior is also observed in the right
panels of Fig. 1 that contains the corrections and deviations for
an asymmetric perturbation with δ = 0.4 and the three values of γ
including zero.

B. The zigzag archetype: |γ| ≪ |δ|
We next consider a nonvanishing gap-shift that is numerically

much smaller than the coupling and restrict us to orders that are
so low that only the term in Eq. (11) of lowest order in γ contributes
noticeably to the energy-corrections. We will later (Sec. VI A) return
to an analysis of the orders for which this approximation holds. It is
thus assumed that the only term that contributes significantly to e(n)

in Eq. (12) is the term e(n)
[ n2 ]

and we obtain for even n,

e(n) ≈ e(n)
[ n2 ]
= (−σ)

n
2
(n − 2)!

n
2 !( n2 − 1)!

∣
δ
γ
∣

n

,

e(n+1)
≈ e(n+1)
[ n2 ]

= (−σ)
n
2
(n − 1)!
( n2 )!(

n−2
2 )!
∣
δ
γ
∣

n

.
(34)

The energy corrections become

E(n) ≈
γn

(β + γ − α)n−1 e
(n)
n
2
= (−σ)

n
2
(n − 2)!

n
2 !( n2 − 1)!

δn

(β + γ − α)n−1 ,

E(n+1)
≈

γn+1

(β + γ − α)n
e(n+1)

n
2

= (−σ)
n
2
(n − 1)!

n
2 !( n2 − 1)!

γδn

(β + γ − α)n
,

(35)

where we have used that γn

∣γ∣n = 1 since n is even. The absolute ratio
between an odd- and the preceding even-order corrections is from
the above equations obtained as

∣
E(n+1)

E(n)
∣ =
(n − 1)∣γ∣
β + γ − α

, (36)
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FIG. 1. Corrections and deviations for vanishing and very small gap-shifts and a coupling constant of 0.4 for a symmetric (left) and asymmetric (right) perturbation.
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where the assumption β + γ − α > 0 has been used. The absolute
ratio between an even- and the preceding odd-order corrections is
similarly obtained as

∣
E(n+2)

E(n+1)
∣ =

4∣γ∣
(n + 2)(β + γ − α)

(
δ
γ
)

2

. (37)

Since ∣ δγ ∣ by assumption is much larger than one, we see from
Eqs. (36) and (37) for low orders that the size of the corrections
change much more when going from an odd to the following even
order correction than when going from an even to the following odd
order. The curve of absolute corrections exhibits thus a zigzag pat-
tern, so the archetype for ∣ δγ ∣ ≫ 1 and lower orders n is denoted the
zigzag archetype.

To obtain the pattern of the sign-corrections for a symmetric
perturbation, it is noted from Eq. (34) that the signs of e(n) and e(n+1)

for n even are equal to (−1)
n
2 and depend therefore on whether the

even number n divided by 2 is even or odd. The signs of e(n) will
therefore exhibit a period of four. For an arbitrary k and i ∈ [0, 3],
we obtain from Eq. (34) that the signs of e(4k+i) are 1, 1, −1, −1 for
i = 0, 1, 2, 3. From Eq. (35), it is seen that the sign of the correction
E(n) equals the sign of γn times the sign of e(n) for arbitrary (even
or odd) values of n. For a negative value of the gap-shift, the signs
of E(4k+i) for i = 0, 1, 2, 3 become therefore (1 × 1, −1 × 1, 1 × −1,
−1 × −1) = (1, −1, −1, 1), whereas the signs of E(4k+i) for a positive
gap-shift are (1, 1, −1, −1). Connecting several of these sign-patterns
of period 4, we see that the sign-pattern becomes (2−, 2+) for both a
negative gap-shift and a positive gap-shift.

For an asymmetric Hamiltonian, it is seen from Eq. (34) that
e(n) is positive for all orders, so the even-ordered corrections are all
positive, whereas the sign of the odd corrections equals the sign of
the gap-shift. A positive gap-shift leads thus to positive corrections,
and a negative gap-shift leads to the (1+, 1−) pattern with the even
corrections being positive.

The convergence behavior for small gap-shifts and a symmetric
perturbation is illustrated in the left panels of Fig. 1, which contains
the corrections, absolute corrections, deviations, and absolute devia-
tions for δ = 0.4 and γ =±0.02 and 0. The absolute corrections exhibit
the expected zigzag pattern, and their behavior is in agreement with
the above analysis. The right panels of Fig. 1 give the same infor-
mation for an asymmetric perturbation and the above values of δ
and γ. All even corrections are positive, whereas the odd corrections
are negative for the negative gap-shift and positive for the posi-
tive gap-shift. For all the considered choices of γ, the deviations are
negative.

A summary of the convergence patterns for the zigzag
archetype is given in the left column of Table I. A logarithmic plot
is used to allow plotting over a large range of function values. To
ensure information about the signs in the logarithmic plot, we intro-
duce a simple color coding of a given function value: a red circle
corresponds to a negative function value, whereas a blue cross cor-
responds to a positive function value. The absolute size of an even
correction is significantly larger than the size of both the preceding
and the following odd order correction. For a symmetric perturba-
tion, both the corrections and deviations show a (2+, 2−) behavior
for both signs of γ. For asymmetric perturbations and a positive

gap-shift, all corrections in Table I are positive and all deviations are
negative. If the gap-shift is negative, one obtains the pattern (1+, 1−)
for the corrections with the even order corrections being positive,
whereas the deviations are all negative. For an asymmetric perturba-
tion, the converged energy is thus approached monotonically from
below.

C. Geometric expansions: |γ| ≫ |δ|
The second case where a single term dominates the energy cor-

rections occurs when the size of the gap-shift is much larger than the
size of the coupling. For sufficiently small orders, e(n) in Eq. (12) is
then dominated by the term e(n)1 , so we may write

e(n) ≈ e(n)1 = −σ
δ2

γ2 , γ≫ δ. (38)

In this one-term model, the energy corrections and rate of conver-
gence become21

E(n) = −σ
δ2γn−2

(β + γ − α)n−1 ,

r = ∣
E(n+1)

E(n)
∣ =

∣γ∣
β + γ − α

.
(39)

This one-term model has previously been used to analyze and
explain the convergence behavior as well as signs of corrections
occurring in MPPT for very small coupling constants.21 In the one-
term model defined by Eq. (39), the energy corrections follow a sim-
ple geometric progression and we therefore denote this archetype
as the geometric archetype. The sign pattern of the corrections is
given by the signs of −σγn−2. For a symmetric perturbation, the
sign patterns are thus (1−) for a positive gap-shift, where we use the
notation (1−) for the signs of a series that only contains negative cor-
rections. For a negative gap-shift, the sign pattern is (1+, 1−) with
the even orders being negative. For an asymmetric perturbation, the
sign patterns are opposite to that of the symmetric perturbation, so
a positive gap-shift gives the sign pattern (1+) and a negative gap-
shift gives the pattern (1+, 1−) with the even order corrections being
positive.

Examples of corrections for γ≫ δ are given in the upper parts
of the second column of Table I for symmetric perturbations and
for asymmetric perturbations in the lower parts of the column. The
parameters γ = ±0.4, δ = 0.008 are used for both forms of perturba-
tions to illustrate the behavior for positive and negative gap-shifts.
For each set of values of γ and δ, the size of the corrections is iden-
tical for a symmetric and asymmetric, whereas the sign patterns in
agreement with the above analysis are different.

A summary of the convergence patterns for the geometric
archetype is given in the right column of Table I. For both symmet-
ric and asymmetric perturbations, the sizes of the absolute correc-
tions and deviations follow a simple geometric progression. For a
symmetric perturbation, a positive gap-shift leads to negative cor-
rections and positive deviations, whereas a negative gap-shift leads
to alternating signs, i.e., the (1+, 1−) sign pattern, for corrections
and deviations. For an asymmetric perturbation, a positive gap-shift
gives positive corrections and negative deviations, whereas a nega-
tive gap-shift leads to the (1+, 1−) sign pattern for corrections and
deviations.
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TABLE I. The one-term archetypes for symmetric and asymmetric perturbations.

Type Zigzag Geometric
Identification |γ|≪ |δ| |γ|≫ |δ|

Symmetric perturbation, rate of convergence:
√

4δ2+γ2

β+γ−α

Typical form of corrections and deviations

Asymmetric perturbation, rate of convergence: 2δ+∣γ∣
β+γ−α

Typical form of corrections and deviations
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V. A CLOSER EXAMINATION OF THE FUNCTIONS
e(n)(σ, ∣ δγ ∣)

To understand the behavior of the energy corrections beyond
the simple one-term models of Sec. IV C, it is necessary to examine
the functions e(n)(σ, ∣ δγ ∣) of Eq. (13) in closer detail. We start the
analysis of these functions in this section and provide a thorough
analysis in Secs. VI and VII.

A. Introduction to the functions e (n )

The absolute values of e(n)(+, ∣ δγ ∣) and e(n)(−, ∣ δγ ∣) for ∣ δγ ∣
= 0.02, 0.25, 0.4, 0.5, 1, 2, 10, and 50 are given for orders up to 100 in
Figs. 2 and 3, respectively. The observed identity of the lowest orders
of e(n) follows directly from Eqs. (12) and (13),

e(2)(σ, ∣
δ
γ
∣) = e(3)(σ, ∣

δ
γ
∣) = −σ(

δ
γ
)

2

. (40)

In general, the curves for ∣e(n)(+, ∣ δγ ∣)∣ have a periodic structure
with significant variance in the form as well as the length of the peri-
ods. For values of ∣ δγ ∣ smaller than one, the curves have a periodic
structure that we will describe as ripples. The periods of the ripples
increase for decreasing values of ∣ δγ ∣. In each ripple, the sign is con-

stant and the size ∣e(n)(+, ∣ δγ ∣)∣ first increases and then decreases. The

sign changes when going from one period to the next. For ∣ δγ ∣ = 1,
the curve has a dominant period of three. As ∣ δγ ∣ increases beyond

1, e(n)(+, ∣ δγ ∣) becomes a fast rising function of n, where small and

FIG. 2. Plot of ∣e(n)(+, ∣ δγ ∣)∣ and ẽ(n)(+, ∣ δγ ∣) up to order 100 for different values of ∣ δγ ∣.
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FIG. 3. Plot of e(n)(−, ∣ δγ ∣) up to order 100 for different values of ∣ δγ ∣. Negative values are marked by red pluses and positive values by blue crosses.

large corrections follow each other for lower orders, and the (2+, 2−)
sign pattern becomes dominating.

The periodic behavior of e(n)(+, ∣ δγ ∣) outlined above and the
changes of this behavior for increasing ∣ δγ ∣ is important for the
understanding of the patterns and periods of the perturbation cor-
rections E(n) in Eq. (11). We will in Sec. VI analyze this behavior
using expansions of e(n) that contains more than a single term.

We next consider the functions e(n)(−, ∣ δγ ∣) in Fig. 3. For the
limiting cases, |γ| ≪ |δ| and |γ| ≫ |δ|, exemplified in the fig-
ures by ∣ δγ ∣ = 50 and ∣ δγ ∣ = 0.02, the curves for e(n)(−, ∣ δγ ∣) in

Fig. 3 and e(n)(+, ∣ δγ ∣) in Fig. 2 are very similar. For values of ∣ δγ ∣

closer to one, there are pronounced differences between e(n)(−, ∣ δγ ∣)

and e(n)(−, ∣ δγ ∣). In particular, for ∣ δγ ∣ smaller than or equal to 10,

e(n)(−, ∣ δγ ∣) show a smooth and monotonic behavior at higher order
without any recurring patterns.

B. Geometric approximations to e (n ) and E (n )

In this section, we will develop a geometric approximation to
∣e(n)(σ, ∣ δγ ∣)∣ as a function of n. The construction of a geometric

approximation to ∣e(n)(+, ∣ δγ ∣)∣may seem problematic as it was seen
in Fig. 2 that the functions may have a zigzag or ripple pattern. How-
ever, the figures also show that curves for ∣e(n)(+, ∣ δγ ∣)∣ over many
orders have a geometric convergence. For example, the local maxima
of ∣e(n)(+, ∣ δγ ∣)∣ for ∣ δγ ∣ = 0.25 form to good accuracy a geometric pro-
gression. We therefore introduce a rate of convergence that reflects
the convergence behavior of the corrections over many orders
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r = lim
n→∞
(
∣E(k+n)

∣

∣E(n)∣
)

1/n

. (41)

The geometric approximation to ∣e(n)(σ, ∣ δγ ∣)∣ is defined as

ẽ(n)(σ, ∣
δ
γ
∣) = c0(σ, ∣

δ
γ
∣)p(σ, ∣

δ
γ
∣)
n. (42)

Since the constant c0(σ, ∣ δγ ∣) does not effect the rate of convergence,
we focus on the determination of the geometric factor p(σ, ∣ δγ ∣). This
factor will be determined by requiring that geometric approximation
to the absolute energy corrections,

Ẽ(n) =
∣γn∣

(β + γ − α)n−1 ẽ(n)(σ, ∣
δ
γ
∣), (43)

has a convergence rate equal to one when the radius of convergence
of the energy-corrections E(n) of Eq. (21) is one. We thus introduce
the convergence rate for Ẽ(n),

r̃ = ∣
Ẽ(n+1)

Ẽ(n)
∣ =

∣γ∣
β + γ − α

p(σ, ∣
δ
γ
∣), (44)

and require that r̃ = 1 when the convergence radius for E(n) equals 1,

r̃ = 1 for min(∣zc+∣, ∣z
c
−∣) = 1. (45)

To proceed, one needs to separately consider symmetric and
asymmetric perturbations. In Appendix C, we determine the con-
stants p(σ, ∣ δγ ∣) as

p(+, ∣
δ
γ
∣) =

√

4(
δ
γ
)2 + 1,

p(−, ∣
δ
γ
∣) = 2∣

δ
γ
∣ + 1,

(46)

and the convergence rates

r̃ =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

√
4δ2+γ2

β+γ−α for σ = 1,
2δ+∣γ∣
β+γ−α for σ = −1.

(47)

Since
√

4δ2 + γ2 ≤ 2δ + ∣γ∣ for positive δ, the convergence rate
for a symmetric perturbation is less or equal to that for an asymmet-
ric perturbation with the same ∣ δγ ∣. In the two cases corresponding to
the one-term models, the convergence rates become independent of
whether the perturbation is symmetric or asymmetric,

r̃ =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣γ∣
β+γ−α for ∣γ∣≫ δ,

2δ
β+γ−α for ∣γ∣≪ δ,

(48)

where the convergence rate for |γ| ≫ δ already has been obtained
[Eq. (39)].

Comparing Eq. (47) and the expression for the norms of the
critical points given in Eqs. (21) and (26), it is noted that there is a

simple relation between the smallest norm of the critical points and
the rates of convergence,

r̃ =
1

min(∣zc−∣, ∣zc+∣)
. (49)

To test how accurately ẽ(n)(+, ∣ δγ ∣) reproduces the large-order

behavior of ∣e(n)(+, ∣ δγ ∣)∣, we have in Fig. 2 included the former func-
tion for ∣ δγ ∣ = 0.25 and 2. The simple geometric progression of

ẽ(n)(+) does obviously not reproduce the short-range patterns. For
the behavior over many orders, ẽ(n)(+, 2) provides a good match
for |e(n)(+, 2)| but is less accurate for the slower increasing func-
tion |e(n)(+, 0.25)|. However, the deviations between ẽ(n)(+, 0.25)
and the maxima of |e(n)(+, 0.25)| do not reflect a fundamental flaw
of Eq. (47) but rather that the asymptotic region in this case requires
higher orders. Similar results are obtained for the expansions for
asymmetric perturbations. We will therefore use the identifications
in Eq. (47) also for the convergence rate r of Eq. (41) and use these
in Sec. VIII to extract information about γ and δ from observed rates
of convergence.

VI. ADDITIONAL ARCHETYPES FOR SYMMETRICAL
PERTURBATIONS
A. The interspersed zigzag archetype: |γ| < |δ|

1. The function e(n)(+, ∣ δγ ∣) for ∣
δ
γ ∣ > 1

We will first consider the archetype that occurs when the
gap-shift is smaller than the coupling term but not so much
smaller that the zigzag curve of the one-term model shows up
for all considered orders. To examine the behavior of the correc-
tions for this archetype, we consider the plots of ∣e(n)(+, ∣ δγ ∣)∣ in

Fig. 2 for the highest plotted values of ∣ δγ ∣. For ∣ δγ ∣ = 50, each

even order gives rise to a larger increase in ∣e(n)(+, ∣ δγ ∣)∣ than its
neighbor odd orders so the curve has a zigzag form. The dif-
ference between an even order and the surrounding odd orders
becomes less pronounced as the order increases and the curve
approaches a geometric sequence. For ∣ δγ ∣ = 10, the graphs exhibit
the zigzag behavior for the lower orders, a nearly geometric behav-
ior from order 10 to about order 25, and from order 25, the
zigzag behavior reoccurs. This archetype is therefore called the
interspersed zigzag archetype. All the considered curves have a
dominating (2+, 2−) sign-pattern with a few occurrences of three
corrections of the same sign in the intervals where the function
fluctuates.

To understand the observed features of e(n)(+, ∣ δγ ∣), we recall

from Sec. IV B that e(n)(+, ∣ δγ ∣) for ∣ δγ ∣ > 1 and lower orders are

dominated by the terms e(n)i (+, ∣ δγ ∣) with largest i. We will there-

fore introduce a model that approximates e(n) by the sum of the two
numerically largest terms in Eq. (12), e(n) ≈ e(n)

[ n2 ]
+ e(n)
[ n2 ]−1. Consider-

ing the even and odd orders separately, one obtains from Eqs. (13)
and (14)
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e(n)(σ, ∣
δ
γ
∣) ≈ (−σ)

n
2
(n − 2)!δn

γn

×(
1

( n2 )!(
n
2 − 1)!

−
σ

2( n2 − 1)!( n2 − 2)!
(
γ
δ
)

2
)

= (−σ)
n
2
(n − 2)!δn

( n2 )!(
n
2 − 1)!γn

(1 −
σn(n − 2)

8
(
γ
δ
)

2
), n even,

(50)

e(n)(σ, ∣
δ
γ
∣) ≈ (−σ)

n−1
2
(n − 2)!δn−1

( n−1
2 )!(

n−3
2 )!γn−1

×(1 −
σ(n − 1)(n − 3)

24
(
γ
δ
)

2
), n odd. (51)

By comparing Eqs. (50) and (51), it is noticed that the relative
contributions from the second term is about a factor three times
larger for a given even order than for the neighboring odd orders.
Deviations from the one-term model will therefore first show up for
even orders.

An expression for the largest order, n1, for which the one-term
expression holds may be obtained from Eqs. (50) and (51). We define
that the one-term expression holds until the contributions of the
second term changes the total term by 50%. As it is the even cor-
rections that have the largest relative contributions from the second
term, we use Eq. (50) to identify n1 for symmetric and asymmetric
perturbations as

1
2
=
n1(n1 − 2)

8
γ2

δ2 . (52)

Using the approximation n1(n1−2) ≈ (n1−1)2 holding for large n1,
we obtain the identification

n1 = 1 + 2∣
δ
γ
∣ ≈ 2∣

δ
γ
∣. (53)

We next consider the relative changes of |e(n)| when going
between even and odd orders. For n even, one obtains from Eqs. (50)
and (51)

∣
e(n+1)

e(n)
∣ = (n − 1)

∣1 − σ(n−1)2

24 (
γ
δ )

2
∣

∣1 − σ(n−1)2

8 (
γ
δ )

2
∣
≈ n, (54)

∣
e(n+2)

e(n+1)
∣ =

4( δγ)
2

n + 2

∣1 − σ(n+1)2

8 (
γ
δ )

2
∣

∣1 − σ(n−1)2

24 (
γ
δ )

2
∣
≈

4
n
(
δ
γ
)

2

, (55)

where the approximate forms are obtained by only retaining the
terms that are dominating for lower orders, thereby recovering the
zigzag archetype of Sec. IV B.

It is seen from Eqs. (54) and (55) that ∣ e
(n+1)

e(n) ∣ is the small-
est of the two ratios for low orders but increases for increasing
orders. In contrast, ∣ e

(n+2)

e(n+1) ∣ is largest at low orders but decreases
for an increasing order. These trends have already been noticed at
the one-term level but are enhanced by the inclusion of the sec-
ond term. These developments of the relative sizes of even and odd

corrections explain the observed changes from pronounced zigzag
to geometric or nearly geometric progression in the plots in Fig. (2)
for ∣ δγ ∣ > 1. The observed dominating e(2+, 2−) sign-patterns for the

lowest orders follow directly from the form of e(n)i in these intervals;
see Eq. (34).

An important feature of the plots of e(n) in Fig. (2) for ∣ δγ ∣ = 2, 4
and 10 is the recurrence of the zigzag patterns. In the first recurrence
of the zigzag pattern, the even-ordered terms become much smaller
than the surrounding odd-order terms. This occurs when the order
is so large that the two terms in Eq. (50) cancel each other. A similar
cancellation for the odd order terms is observed at higher orders for
∣ δγ ∣ = 2 and 4. The orders n∗e ,n∗o where the two terms cancel for even
and odd orders, respectively, are obtained using the approximations
n(n − 2) ≈ (n − 1)2 in Eq. (50) and (n − 1)(n − 3) ≈ (n − 2)2 in
Eq. (51)

n∗e = 1 +
√

8∣
δ
γ
∣ (n∗ even), (56)

n∗o = 2 + 2
√

6∣
δ
γ
∣ (n∗ odd). (57)

It is noted that the order at which the sum of the two odd terms
vanishes is roughly twice the order at which the sum of the two even
orders vanishes.

Consider ∣ δγ ∣ = 2 as an example of this behavior. In Fig. 4, we

plot e(n)(+, 2) on a logarithmic scale. The upper panel contains the
standard curve where consecutive orders are connected, whereas the
lower panel contains separate curves for even and odd orders. The
cancellations of the two dominating terms for even and odd terms
are predicted from Eqs. (56) and (57) to be at orders 6 and 11, respec-
tively. This is in good agreement with the plot, where the first zigzag
pattern of even corrections occurs at the order 6 and 8, whereas the
first zigzag pattern of the odd corrections occurs at orders 13 and 15.
Between the regions with the zigzag pattern, the functions change in
a nearly geometric fashion. This pattern of geometric behavior inter-
changing with regions with zigzag behavior recurs for the higher
orders. It is seen from the lower panel that the curves of the even
and odd corrections are much smoother than the curve connecting
even and odd corrections. As the e-function, in general, is a fast ris-
ing function, the curves on the lower panel do not exhibit minima
but rather regions, where the increase is significantly lower than the
overall geometric increase.

Concerning the signs, the geometric parts of the curves will
have the (2+, 2−) sign pattern of e(n)i for fixed i. Around the occur-
rence of the first zigzag pattern, the factor 1− n(n−2)

8 (
γ
δ )

2 in Eq. (50)
changes sign from positive to negative, and this leads to an addi-
tional sign change and thereby to three consecutive orders with the
same sign. As the order increases further, the (2+, 2−) pattern recurs
until the next zigzag region, where an additional sign changes aris-
ing from a new term in e(n)(+, ∣ δγ ∣) becoming dominating. In the

example in Fig. 4, we thus observe that e(n)(+, 2) have constant
signs in at the three orders 6, 7, and 8 and again at orders 13, 14,
and 15.
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FIG. 4. The function e(n )(+, 2). The lower
panel gives separate curves for even and
odd values of n.

2. Energy corrections
We next consider the full energy corrections of Eq. (11). The

ratio between two consecutive energy-corrections equals the ratio
between two consecutive e-term times a constant

E(n+1)

E(n)
=

γ
β + γ − α

e(n+1)

e(n)
. (58)

For orders, where e(n) is a geometric progression, ∣E(n)∣ is there-

fore also a geometric progression, and for orders, where ∣e(n)∣ has

the zigzag form, ∣E(n)∣ will also have the zigzag form. However, the

prefactor may change the appearance of the minima for the zigzag
part of the pattern. With respect to the sign-patterns, a positive gap-
shift will lead to the same pattern as e(n)(+)—a dominating (2+, 2−)
pattern alternating with three corrections of the same sign in the
zigzag regions. For a negative phase-shift, the pattern of the cor-
rections is obtained by multiplying the pattern of e(n)(+) and the
(1+, 1−) pattern of the prefactor, leading to the (2+, 2−) pattern in
the geometric and parts of the zigzag regions plus a single occurrence
of a sign in the zigzag regions.

As an example of the behavior of the full energy-corrections
for ∣ δγ ∣ > 1, we consider in Fig. 5 the corrections up to order 50

J. Chem. Phys. 151, 084108 (2019); doi: 10.1063/1.5110554 151, 084108-14

© Author(s) 2019

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Corrections for a symmetric per-
turbation with δ = 0.4, γ = 0.1 in the upper
panel and γ = −0.1 in the lower panel.

for the coupling constant 0.4 and two choices of gap-shifts, 0.1 and
−0.1. The rate of convergence is obtained from Eq. (47) as 0.73 and
0.90 for the gap-shifts 0.1 and −0.1, respectively. Thus, although
the corresponding function e(n)(+, 4) in Fig. 2 is rapidly increas-
ing for increasing n, the prefactors approach zero so fast that the
energy corrections will converge toward zero. The forms of E(n) for
γ = 0.1 in the upper panel of 4 and E(n) for γ = −0.1 in the lower
panel match as expected that of e(n)(+, 4) seen in Fig. 2. It is also
noted that the rapid reduction in the prefactor leads to zigzag pat-
terns of the energy corrections with much larger fluctuations than
e(n) (+, 4). This archetype where intervals with dominating even or

odd corrections are interspersed with intervals with nearly geometric
convergence is denoted as the interspersed zigzag archetype.

The signs of the corrections in the figure also follow our analy-
sis. In the geometric and parts of the zigzag regions, one observes the
(2+, 2−) pattern, which is intercepted in the zigzag region by three
corrections of the same sign for positive gap-shifts and the single
occurrence of a sign for negative gap-shifts.

To further illustrate the convergence behavior for zigzag and
interspersed zigzag archetypes and the transition between these
archetypes, Fig. 6 gives the corrections up to order 50 for the cou-
pling constant of 0.4 and the gap-shifts 0.001, 0.005, 0.02, 0.05,
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FIG. 6. Absolute corrections for a symmetric perturbation and δ = 0.4 and γ < δ.

0.1, and 0.2. The corresponding geometric series of Eq. (43) are
also included. For the smallest choices of the gap-shift, 0.001 and
0.005, Eq. (53) shows that the energy corrections to the consid-
ered 50 orders behaves as the zigzag archetype and this is appar-
ent in the figure. For the gap-shift 0.02, the zigzag behavior of the

corrections is followed around order 25 by a part where the even
and odd terms nearly follow a single geometric progression until the
even order terms after order 35 becomes smaller than the neigh-
boring odd orders. For the larger gap-shifts, 0.05, 0.1, and 0.2, we
observe the complete interspersed zigzag pattern.
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A summary of the interspersed zigzag archetype is given
in the first column of Table II. This archetype is observed for
|δ| > |γ| when the considered orders are significantly larger than
n1 of Eq. (53). Intervals of orders where corrections and deviations
have a zigzag form interchange with intervals where the corrections
follow a nearly geometric sequence. The (2+, 2−) sign pattern is
dominating for the corrections and deviations, but in the interval
around the local minima, both corrections and deviations show a
single occurrence of one or three orders with the same sign for neg-
ative or positive values of the gap-shifts, respectively. Furthermore,
by comparing the curves for the corrections and the deviations, it
is seen that the minima of the absolute deviations typically occur
in regions where the absolute corrections show a simple monotonic
convergence.

B. The triadic archetype: |γ| ≈ |δ|
We next consider the case where the gap-shift and coupling

constant have identical or nearly identical size. For such choices of γ
and δ, the expansion of e(n) in Eq. (12) must include all terms.

1. The function e(n)(+, 1)
For |γ| = |δ|, the expression for the energy corrections in

Eq. (11) becomes

E(n) =
γn

(β + γ − α)n−1 e
(n)
(+, 1), ∣γ∣ = ∣δ∣. (59)

To understand the convergence pattern for this type, we consider
the function e(n) (+, 1) as plotted in Fig. 2. Although the function
e(n) (+, 1) has an irregular behavior, it shows a pattern with a period
of three. The terms in each period have a given sign, so the curve is
dominated by the sign pattern (3+, 3−). Another reoccurring feature
of a single period is that e(n)(+, 1) typically increases significantly
in the first two orders of the period, whereas the third order exhibits
either a limited increase or a decrease. In addition to the pattern with
a period of three, the curve also has a secondary pattern spanning
17 orders. Thus, the pattern between order 10 and 26 is repeated
between order 27 and 44.

2. Energy corrections
To examine how the structure of e(n)(+, 1) in Fig. 2 is folded

with the prefactor to give the overall convergence patterns, we
give in Fig. 7 the absolute corrections for several positive values
of γ = δ. The vertical line-segments from third to fifth order are
caused by the vanishing fourth order corrections. It is seen that
the minima that, in general, occur at every third order of e(n)

(+, 1) leads to similar minima of E(n). As the absolute correc-
tions exhibit a typical period of three, we will denote this pat-
tern as the triadic archetype. For prefactors that decrease fast for
increasing orders, this fast convergence may mask the minima of
the triadic behavior as seen in Fig. 7 for several of the periods for
γ = δ = 0.2.

We next consider the signs of the corrections. For positive val-
ues of the gap-shift, it is seen from Eq. (59) that the sign of the
corrections equals that of e(n)(+, 1), so the corrections also have the

(3+, 3−) pattern. For negative values of the gap-shift, the same equa-
tions show that the signs of the corrections are obtained by multi-
plying the (1+, 1−) pattern of the prefactor with the (3+, 3−) pattern
of e(n)(+, 1), which is readily seen to give a (2+, 1−) or a (1+, 2−)
pattern. These sign-patterns are easily recognized in the plots of
Fig. 7.

The asymptotic rates of convergence for the three cases con-
sidered in Fig. 7 are from Eq. (47) obtained as r = 0.37, 0.74, and
1.18 for γ = δ = 0.2, γ = δ = 0.5, and γ = δ = 1.0, respectively. Lines
with the stated slopes can be aligned with the maxima of the correc-
tions of Fig. 7. This is illustrated in Fig. 7 where the function Ẽ(n) for
δ = γ = 0.5 is plotted with the multiplicative constant chosen, so Ẽ(n)

matches the maxima at the highest orders. The lower orders exhibit
again a convergence that is faster than predicted by the asymptotic
convergence rate.

A summary of the convergence patterns for the triadic
archetype is given in the middle column of Table II. If the expan-
sions are slowly convergent or divergent, each instance of the pattern
contains two corrections of similar size and a third correction that
is much smaller. For a positive gap-shift, the signs of the correc-
tions are constant in a period and changes from one period to the
next, leading to a dominating (3+, 3−) sign pattern. If the gap-shift
is negative, a (2+, 1−) or a (1−, 2+) sign pattern is observed for most
periods.

C. The ripple archetype: |γ| > |δ|

1. The function e(n)(+, ∣ δγ ∣) for ∣
δ
γ ∣ < 1

In our discussion of Fig. 2, it was noticed that plots of
e(n)(+, ∣ δγ ∣) with ∣ δγ ∣ < 1 for sufficient large orders exhibit ripples,
rather than the straight lines predicted by the one-term geomet-
ric model of IVC. We therefore denote this archetype as the ripple
archetype.

In order to understand the occurrence of the ripples, we extent
the one-term analysis of Sec. IV C to include the two terms that for
lower orders dominates e(n)(+, ∣ δγ ∣) for ∣ δγ ∣ < 1,

e(n) ≈ e(n)1 + e(n)2 = (−σ +
(n − 2)(n − 3)

2
δ2

γ2 )
δ2

γ2 . (60)

The relative contribution from the second term increases quadrati-
cally when the order is increased.

We first determine for which orders the geometric one-term
model is accurate. We define that the one-term model is accurate up
to an order n1, where the two-term expansion of Eq. (60) deviates at
most 50% from the one-term model and obtain the identification

1
2
=
(n1 − 2)(n1 − 3)

2
δ2

γ2 , (61)

which holds both for symmetric and asymmetric perturbations.
Using the approximation (n1 − 2)(n1 − 3) ≈ (n1 −

5
2)

2 which holds
for n1 ≫ 1, we obtain the identification

n1 = 2.5 + ∣
γ
δ
∣ ≈ ∣

γ
δ
∣. (62)
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FIG. 7. Absolute corrections for a sym-
metric perturbation for various choices of
|γ| = |δ|.

As the transition from the geometric to the ripple archetypes is not
very precisely defined, we will use the last expression of Eq. (62) for
n1 in the following.

For symmetric perturbations, the second term in Eq. (60)
increases in importance when the order increases beyond n1. For an
order n∗, the sum of the two terms vanishes and a local minimum
of ∣e(n)(+, ∣ δγ ∣)∣ occurs, and this marks the end of the first ripple.
From Eq. (60), the value of n∗ may be obtained using (n− 2)(n− 3)
≈ (n − 5

2)
2 as

n∗ = 2.5 +
√

2∣
γ
δ
∣. (63)

When n increases beyond n∗, the positive e(n)2 term dominates and
the absolute value of e(n) starts to increase. When the order is fur-
ther increased, the negative third term, e(n)3 , becomes significant and
reduces |e(n)| leading to a second minimum, and this pattern con-
tinues. A formula for this second minimum may be obtained, but
we will only consider the more qualitative aspects for which Eq. (63)
gives a good estimate of the periodicity of all the ripples.

The accuracy of using Eq. (63) to determine the period of the
ripples may be examined using the plots of Fig. 2 for the relevant
values of ∣ δγ ∣. The periods of the ripples are from Eq. (63) predicted

∣ δγ ∣ = 0.02, 0.25, 0.4, and 0.5 to be 73, 8, 6, and 5, whereas Fig. 2
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shows that the actual periods are 95, 7, 5, and 4. The predicted and
observed periods are thus in fair agreement.

With respect to the signs of e(n), it is seen from the above dis-
cussion that the signs are constant within a ripple and changes when
going from one ripple to the next. The sign pattern of e(n) is thus
(n∗+, n∗−) with e(n) being negative in the first ripple.

2. Energy corrections

The full corrections are obtained from e(n)(+, ∣ δγ ∣) by multiply-

ing with the geometric prefactor γn

(β+γ−α)n−1 , so the ripple structure of

e(n)(+, ∣ δγ ∣) will also show up for the full energy corrections. With
respect to the sign patterns, the prefactor is positive for a positive
gap-shift and the energy corrections will have the same (n∗+, n∗−)
pattern as e(n)(+, ∣ δγ ∣). For a negative gap-shift, the geometric pref-
actor is an alternating function of n, so the sign pattern will be
(1+, 1−) within a given period and there will be two consecutive
energy corrections with the same sign when going from one ripple
to the next.

To illustrate the corrections for the ripple archetype, we con-
sider in Fig. 8 expansions with (γ, δ) = (−0.48, 0.12) and (γ, δ)
= (4, 1), corresponding to the fixed ratio ∣ δγ ∣ = 0.25. From Fig. 2,

FIG. 8. Corrections for a symmetric per-
turbation and γ = −0.48, δ = 0.12 (top)
and γ = 4, δ = 1 (bottom).
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it is seen that e(n)(+, 0.25) has a dominating period of 7. The curves
for the absolute corrections in Fig. 8 show for both parameter sets
the expected ripples with the period of 7 and the above developed
sign patterns.

A summary of the convergence patterns for the ripple archetype
is given in the right column of Table II. The ripples occur with a
period that is inverse proportional to ∣ δγ ∣, and a good estimate of
the period is given by Eq. (63). For a positive gap-shift, the sign
patterns for both the corrections and deviations are (n∗+, n∗−) start-
ing with negative corrections and positive deviations. For a negative
gap-shift, the corrections and deviations are negative at the second
order and have a (1+, 1−) sign pattern within a ripple. When going
from one ripple to the next, there are usually two corrections and
deviations of the same sign.

VII. ADDITIONAL ARCHETYPES FOR THE
ASYMMETRIC PERTURBATIONS

We will now consider the archetypes that may arise for
an asymmetric perturbation beyond the zigzag and geometric
archetypes discussed in Sec. IV. We start by a discussion of the

function e(n)(−, ∣ δγ ∣) and then introduce two additional archetypes,
the convex-geometric and zigzag-geometric archetypes.

A. The function e(n)(−, ∣ δγ ∣)

The functions e(n)(−, ∣ δγ ∣) in Fig. 3 do not show any recurring
ripples or zigzag patterns. This is easily understood from Eqs. (12)
and (13) which shows that e(n)(−, ∣ δγ ∣) is a sum of positive num-
bers. The recurring cancellations of positive and negative terms that
give the zigzag and ripple structures for e(n)(+, ∣ δγ ∣) therefore do not

occur for e(n)(−, ∣ δγ ∣) and e(n)(−, ∣ δγ ∣) become instead a geometric
expansion for sufficient large order.

At lower orders, the form of e(n)(−, ∣ δγ ∣) depends on the value

of ∣ δγ ∣. Three forms of e(n)(−, ∣ δγ ∣) are observed: a form for very

small values of ∣ δγ ∣, where the function is a geometric progression

from the start; a form for values of ∣ δγ ∣ around one, where the func-
tion is convex for lower orders and geometric for higher orders; and

TABLE III. The zigzag-geometric and convex-geometric archetypes for asymmetric perturbations.

Type Zigzag-geometric Convex-geometric

Identification |γ|< |δ| |γ|≥ |δ|

Rate of
convergence r = 2δ+∣γ∣

β+γ−α

Typical form of corrections and deviations
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finally a form with larger values of ∣ δγ ∣, where the functions have
a zigzag form for lower orders and a geometric form for higher
orders.

B. The convex-geometric and the zigzag-geometric
archetypes

The two additional forms of e(n)(−, ∣ δγ ∣) give rise to two new
archetypes for the energy-corrections: the zigzag-geometric and the
convex-geometric archetypes. The structure and sign-patterns for
these archetypes are summarized in Table III.

The zigzag-geometric archetype is observed when ∣ δγ ∣ is larger
than one and when orders larger than or comparable to n1 of Eq. (53)
are considered. For orders smaller than n1, the corrections exhibit
zigzag forms, and when the order approaches n1, the corrections
approach a geometric series.

The convex-geometric archetype is observed when ∣ δγ ∣ is equal
or not much smaller than 1 and shows a convex curve of corrections
for lower orders and a geometric curve for larger orders.

For both of the new archetypes, the sign patterns of the cor-
rections are identical and equal to the sign patterns of the prefac-
tor since e(n)(−, ∣ δγ ∣) is positive. The corrections have therefore the
(1+, 1−) sign pattern for negative gap-shifts and the (1+) pattern for
positive gap-shifts.

Table III also contains plots of the deviations for the two addi-
tional archetypes. For the zigzag-geometric archetype, the deviations
in the zigzag part of the curve exhibit the sign patterns of the zigzag
archetype, whereas the geometric part has the sign pattern of the
geometric archetype. For a negative shift, there is thus a noticeable
difference in the sign patterns of the corrections and deviations. The
corrections have the (1+, 1−) sign pattern for all orders with the
even-ordered corrections being positive, whereas the signs of the
deviations shift from a (1−) to a (1+, 1−) pattern when the conver-
gence changes from the zigzag to the geometric form for increasing
orders. Positive gap-shifts lead to deviations that are negative in
both parts of the curves. The deviations for the convex-geometric
archetype have the same sign patterns as the standard geometric
archetype: the deviations have the same sign as the corrections for
a negative gap-shift, and the deviations are negative for a positive
gap-shift.

FIG. 9. The MPPT series (in a.u.) for
HF using the aug-cc-pVDZ basis set. An
example of the geometric archetype with
a negative gap-shift.
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VIII. EXAMPLES OF ARCHETYPICAL FORMS
OF CONVERGENCE IN MPPT AND COUPLED
CLUSTER PERTURBATION THEORY

We will now consider examples of perturbation expansions of
ground state and excitation energies and show how the archetypes
developed for the two-state problem show up in the higher orders
of these expansions. In addition to standard MPPT calculations, we
consider CCPT14 and CP expansions.16,18 We have not encountered
expansions, where the size of the coupling is so much larger than the
gap shift that the zigzag archetype is encountered. For the remain-
ing archetypes for symmetric perturbations and for the zigzag-
geometric archetype for asymmetric perturbations, we have encoun-
tered several examples and discuss in the following representative
cases.

A. A perturbation calculation of the geometric
archetype

Both MPPT and CPPT expansions use the Fock-operator as
the zeroth-order Hamiltonian and have therefore large differences
between the full and the zeroth-order energies, which imply that
the gap-shifts are large. We therefore expect that MPPT and CPPT

expansions typically have either the geometric or ripple archetypes.
In many of these expansions, the coupling is rather small, so the peri-
ods of the ripples will be larger than the calculated orders and the
archetypes will then appear as geometric progressions.

Consider as an example the MPPT series for the HF molecule
at using the aug-cc-pVDZ basis and the bond distance 0.916 Å. The
corrections for this expansion are plotted in Fig. 9. It is seen that the
corrections reduce in size until order 13 from where the expansion
diverges. From order 25, the corrections exhibit the geometric pro-
gression and the archetype of the expansion is therefore geometric.
Since the corrections have alternating signs, the gap-shift is negative
and the intruder state is a back door intruder. From the geometric
interpolation given in the figure, a rate of convergence of about 1.2
is estimated. Inserting this rate of convergence into the second equa-
tion of Eq. (39), one obtains γs = 0.55. In Ref. 21, the explicit form of
the two-state Hamiltonian was determined and the obtained param-
eters are β − α = 12.32, γ = −7.07, and δ = −0.000 34. The scaled gap
shift is thus γs = −7.07/12.32 = 0.57, which is in good agreement
with the value obtained from the plot. Inserting the above values
into Eq. (63), the period of the ripples is obtained as about 22.000,
which is beyond the largest order carried out in MPPT benchmark
calculations.

FIG. 10. The CPSD(T) series (in a.u.) for
the excitation energy to the first excited
1A1 state for CH2. An example of the
interspersed zigzag archetype with a
positive gap-shift.
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B. A perturbation calculation of the interspersed
zigzag archetype

We next consider in Fig. 10 the CP calculation for the excita-
tion energy to the lowest excited singlet state of symmetry A1 of
CH2 in the cc-pVDZ basis with the coupled-cluster single double
(CCSD) state as the parent state and the coupled-cluster single dou-
ble triple (CCSDT) state as the target state.17 The overall structure
of the curve is similar to the curve in the upper panel of Fig. 5:
intervals with nearly geometric progression alternate with intervals
where there are marked differences between the magnitude of the
even and odd corrections, so the convergence archetype is the inter-
spersed zigzag archetype. The signed corrections have three consec-
utive corrections with the same sign in the regions with local minima
of the absolute corrections, so the gap-shift is positive according to
Table II.

The minima of the absolute corrections occur at orders 14 and
27, corresponding to a period of about 13 orders. Using this value
for the period, we estimate from Eq. (56) that δs

γs
≈ 4. A convergence

rate of 1.23 is obtained from the line in Fig. 10 connecting two points
in the regions of geometric progression. Combining this value of the
convergence rate with the estimate of δs

γs
, we obtain from Eq. (C6)

that γs is about 0.17 and thereby δs ≈ 0.7.

In this case, the divergence is caused by the large coupling.
A closer examination of the various corrections to the excitation
operator shows that the dominating part of these are in the CCSD
space, so the divergence is caused by the interactions between
two states in the parent space. The gap-shift is rather small as
the energies of both states are described accurately in the parent
space.

C. A perturbation calculation of the triadic
archetype

As an example of a perturbation expansion of the triadic
archetype, we give in Fig. 11 the corrections for the CPSD(T-n) cal-
culation on the excitation energy to the second excited 3B2 state of
CH2 using the cc-pVDZ basis.17 From the sixth order, the signs are
dominated by the (3+, 3−) pattern, with a few period of length 2
and 4. According to the examples given in Table II, the sign of γ
is therefore positive. The curve has another telltale of the triadic
archetype: the minimum or small increase in the size of the cor-
rections that shows at every third order starting at order 15. Obvi-
ously, it is not likely that the underlying perturbation has exact
identical values of γs and δs, but the similarity to the behavior for
the triadic archetype indicates that the two parameters are nearly

FIG. 11. The CPSD(T) series (in a.u.) for
the second excited 3B2 state. An exam-
ple of the triadic archetype with a positive
gap-shift.
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identical. The figure contains also a geometric approximation to the
corrections and shows that the large scale behavior of the corrections
are well approximated with a simple geometric expansion. The rate
of convergence is obtained as about two. Taking this value of the rate
constant and assuming that γ = δ, one obtains from Eq. (47) that γs
= δs ≈ 8, so the values of the parameters are much larger than the
value of about 0.8 that according to Eq. (47) gives the convergence
rate of 1 and thereby the largest value for which the triadic expansion
converges.

D. A perturbation calculation of the ripples
archetype

The C2 molecule has a low-lying excited state arising from
the double excitation 2σ2

u → 3σ2
g , and the presence of this

excited state gives a large coupling in the asymptotic two-state
problem and thereby to an MPPT series that deviates from geo-
metric convergence at lower orders. Previous MPPT calculations
on this molecule showed that the corrections have multiple rip-
ples.10,12 The MPPT corrections for this molecule at the internu-
clear distance of 2.348 bohrs using the cc-pVDZ basis are given in
Fig. 12.

It is observed from Fig. 12 that the corrections exhibit the ripple
archetype for orders larger than 10 and that the curve of corrections
from this order is similar to the curve of corrections for the two-
state model in Fig. 8 with γ = −0.48, δ = 0.12. Inside the ripples,
the corrections have alternating signs, so the gap-shift is negative
according to the examples of Table II. From Fig. 12, it is seen that
ripples have a period of 9. Using this value for the period, Eq. (63)
gives a ratio ∣ γsδs ∣ of 4.6. From a linear fit to the three maxima for the
highest orders, one obtains the rate of convergence of 0.93 for the
geometric interpolation also given in the figure. Using this value for
the rate of convergence, one obtains from Eq. (C6) that γs = −0.46
and thereby δs = 0.1. The value of the scaled gap-shift is therefore
close to the critical value of −0.5 [see Eq. (23)]. The determined rate
of convergence of 0.93 is so low that even if the asymptotic conver-
gence rate is approached from below, we predict that the expansion
is convergent. This is in agreement with the calculations in Ref. 12,
where the corrections were calculated to order 150 and showed a
convergent trend. From the identifications of γs and δs, it is con-
cluded that it is the underestimate of the energy difference in zeroth
order between the ground and the doubly excited state that leads
to the slow convergence rather than the large coupling between the
states.

FIG. 12. The MPPT series (in a.u.) for
C2. An example of the ripples archetype
with a negative gap-shift.
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FIG. 13. The CPSD(T) series (in a.u.) for
the third 3Σ state of HF at Re. An exam-
ple of the zigzag geometric archetype
with a negative gap-shift.

E. A perturbation calculation of the zigzag-geometric
archetype

As an example of the convergence behavior corresponding
to an asymmetric perturbation, we consider the CPSD(T-n) hier-
archy for the third 3Σ state for HF at the equilibrium geometry
using the aug-cc-pVDZ basis set.17 The corrections for this cal-
culation are given in Fig. 13. Comparing with the archetypes of
Table III, it is seen that this calculation corresponds to a two-
state problem of the zigzag-geometric archetype with a negative
gap-shift. The first 10 corrections exhibit the zigzag form, which
then progress to a nearly geometric convergence from around
order 15. If the division between the zigzag and the geometric
form is set to order 15, we have from Eq. (53) that ∣ δγ ∣ is of
about 15. The geometric interpolation curve based on the higher
order corrections is also given in the figure and gives an asymp-
totic rate of convergence of 0.74. Using this convergence rate
together with the obtained value of 15 for ∣ δγ ∣, Eq. (47) gives
γs ≈−0.02 and δs ≈ 0.3. As expected for a zigzag-geometric archetype,
the convergence of the expansion is defined by a large coupling
constant.

IX. DISCUSSION AND CONCLUSION
We have extended our previous analysis of perturbation expan-

sions of the two-state problem and its use to rationalize and describe
nondegenerate perturbation expansions for electron correlation. To
allow for an analysis of coupled cluster perturbation expansions
and other perturbation methods with a non-Hermitian perturba-
tion, the analysis has been extended to a general, not necessarily
Hermitian, real two-dimensional model perturbation matrix. It is
shown that a two-dimensional perturbation matrix where the two
off-diagonal elements have the same sign may be re-expressed as
a standard symmetric perturbation expansion containing the geo-
metrically averaged off-diagonal element. Similarly a perturbation
matrix containing two off-diagonal elements with opposite signs
leads to the same corrections as obtained for a asymmetric pertur-
bation expansion containing off-diagonal elements of the same size,
but opposite signs. It is therefore only when the two off-diagonal
elements have opposite signs that the deviations from a Hermitian
perturbation leads to new forms of perturbation expansions.

A general two-dimensional general perturbation may there-
fore be defined in terms of three parameters: the coupling term,
which is the size of the off-diagonal element; the symmetry factor,
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which describes whether the two off-diagonal elements have iden-
tical or opposite signs; and the gap-shift, which describes the per-
turbation correction to the difference between the two zeroth-order
energies.

For a symmetric perturbation, we find that the convergence
patterns may be grouped in five archetypes: zigzag, interspersed
zigzag, triadic, ripples, and geometric. These five archetypes are tra-
versed when the coupling changes from a size that is much larger
than the gap-shift to a size that is much smaller than the gap-shift.
For each of the five archetypes, the interplay between the various
terms in the perturbation leads to a characteristic pattern. A previ-
ous analysis21 for the special case of the geometric convergence has
thereby been extended to all possible archetypes that may be encoun-
tered for the symmetric two-state perturbation expansion. For an
asymmetric perturbation, there are two additional archetypes: the
zigzag-geometric and the convex-geometric. The properties and typ-
ical convergence patterns of the seven archetypes are summarized in
Tables I–III.

A number of studies have examined MPPT expansions through
high order for different molecules and basis sets; see Refs. 8, 10, 12,
and 21. The most typical archetype for MPPT expansions is the geo-
metric type, but the ripples archetype occurs for a few cases. We
have here shown that the MPPT expansion for C2 that in Ref. 12 was
referred to as “a fascinating pattern of protracted decayed ringing” is
an example of the ripple archetype. The remaining three archetypes
for symmetric perturbations, zigzag, interspersed zigzag, and tri-
adic have not been observed in MPPT calculations. The absence of
these patterns from MPPT expansions may be traced to use of the
Fock-operator as the zeroth-order Hamiltonian. Thus, the large dif-
ferences between diagonal matrix elements of the Fock-operator and
of the full Hamiltonian imply that gap-shifts for MPPT are large and
much larger than the coupling, which leads to the typically observed
geometric archetype.

In recent years, perturbation methods that use coupled cluster
states rather than HF reference states as the parent state and where
the target state is an coupled cluster state with a larger excitation level
have been developed. The recently introduced CP group of pertur-
bation methods16 is an example of such expansions and is distinct
from other methods by the use of a zeroth-order Jacobian that con-
tains the full Jacobian in the parent subspace. In the CP method,
relative energies are therefore accurately described already at zero
order for states belonging to the parent space. For expansions, where
the high-order convergence is dominated by corrections in the par-
ent space, the coupling is therefore often larger than the gap-shift,
and the archetype becomes the interspersed zigzag type. Further-
more, as the CP perturbation matrix is not symmetric, the gener-
alization of the two-state model to contain asymmetric off-diagonal
elements is needed to describe these perturbation methods. For the
CP expansions for excitation energies, we have thus encountered
examples of the interspersed zigzag, triadic, ripple, geometric, and
zigzag-geometric archetypes.

We find thus that the total of seven archetypes of conver-
gence behavior do not only define the possible forms of conver-
gence for the two-state problem, but they also contain the pos-
sible high-order convergence patterns for actual perturbation cal-
culations, even when these contain expansions over millions of
states. This implies that the primary critical point of the perturba-
tion expansion defines the high-order convergence, irrespectively

of whether this point is inside or outside the complex unit-circle.
This is in line with the previous observations8,21 that the high-order
corrections to the wave function approaches a one-dimensional
space. Under the assumption that the various contributions to
the corrections may be considered as independent, this finding
is explained by Eq. (49) as these then shows that it is the state
corresponding to the primary critical point that has the slowest
convergence.

It is natural to question which archetypes will be observed for
the convergence of multireference perturbation methods. Since the
most commonly used zeroth-order Hamiltonians for these expan-
sions24,25 includes the Fock-operator, we expect that these expan-
sions will belong to the geometric or ripple archetypes. This is in line
with the results of previous high-order multireference perturbation
expansions.5,26

Although the developed formulas and concepts have been able
to describe all the perturbation expansions that we hitherto have
encountered, there are some limitations in our treatment that should
be mentioned. The first of these is that we have focused on the
convergence of the root that has the lowest zero-order state as the
reference state. However, the second order and higher order cor-
rections for the higher root are easily obtained by changing the
sign of the corrections for the investigated lower root.19 This sim-
ple sign-change is most easily shown by observing that the sum
of the two eigenvalues in Eq. (6) contains terms in z that are at
most linear. We did also assume that the diagonal of the full two-
dimensional Hamiltonian had the same numerical order as the
zeroth-order Hamiltonian. This retainment of order holds for typ-
ical perturbation expansions but is obviously not universal. The
number of archetypes and their overall appearance do not depend
on this assumption, but the detailed form of the convergence rates
and radii of convergence do depend on this assumption. The form
of these for situations where the numerical ordering of the diag-
onals changes when going from the zero-order to the full Hamil-
tonian is currently being studied. Another possible extension is to
consider a two-dimensional perturbation problem where both the
matrix elements are allowed to be general complex numbers. This
adds, however, significant complexity to the problem. A somewhat
more fundamental line of investigation would be a more detailed
mathematical analysis of the recurrence of the various patterns of the
archetypes. Although our treatment does explain the recurrences, we
strongly suspect that a more detailed mathematical analysis will be
able to explain the nearly constant length of the periods over many
recurrences.

In addition to improved understanding of the two-state model
per se, it is also important to obtain an improved understanding of
why the high-orders of perturbation expansions in a finite dimen-
sional space seems to be well described by a two-dimensional space.
For many iterative methods, such as the power method for deter-
mining extreme eigenvalues, it is simple to show that the asymp-
totic behavior is determined by two eigenvectors. However, per-
turbation expansions are not simple repetitions of the same pro-
cedure, and a mathematical sound proof for the conditions under
which the asymptotic convergence is described by a space contain-
ing two vectors is absent. Along the same line, exactly what are the
characteristics of the two vectors? In many calculations on exci-
tation energies using the cluster perturbation methods, the two-
dimensional space is spanned by two states that each are solutions
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to the full problem,19 but it is far from certain that this holds, in
general.

Finally, it is interesting to use the identification of the parts of
the perturbation that lead to the slow convergence to modify the
splitting of the Hamiltonian into a zeroth-order and perturbation
part during the iterative procedure to obtain faster convergence. For
example, the geometric and the ripples archetypes indicate that the
diagonal gap-shift is much larger than the coupling, so convergence
can probably be improved by moving a part of the gap-shift from the
perturbation to the zeroth-order Hamiltonian. For the zigzag and
the interspersed zigzag archetypes, the course of the slow conver-
gence is the coupling between the two zero-order states, so in this
case, a modified perturbation expansion should be obtained by rotat-
ing the two zero-order states to obtain a perturbation with a smaller
coupling. Research along these directions is currently being pursued,
but the practical use is expected to be limited as one, in general, only
calculates the lowest orders.

Even with the above limitations, we expect that the present
analysis of the various convergence types of perturbation expansions
and of their relation to the dominating parts of the perturbation will
improve our understanding of existing perturbation methods and
provide useful insights that can contribute to future developments.
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APPENDIX A: DEFECTIVE MATRICES
OF DIMENSION TWO

In this appendix, we consider a general two-dimensional
matrix,

A = (
A11 A12

A21 A22
), (A1)

and show that it is defective, i.e., the space of eigenvectors is one-
dimensional, only if it is has a single eigenvalue and at most one of
the off-diagonal elements are nonvanishing. The eigenvalues of A
are readily obtained as

E± =
A11 + A22

2
±

√
(A11 − A22)2 − 4A12A21

2
. (A2)

Consider first the case where the discriminant (A11−A22)
2
−4A12A21

is nonvanishing, so A has two different eigenvalues. As there always
is at least one eigenvector for each eigenvalue, the matrix has two
eigenvectors and is not defective. Consider next the case where
(A11 − A22)

2
− 4A12A21 = 0 is corresponding to a single eigen-

value, A11+A22
2 . The discriminant may be vanishing if 4A12A21 ≠ 0 and

A21 =
−(A11−A22)

2

4A12
or if 4A12A21 = 0 and A11 = A22. Using an unnor-

malized form of the eigenvector, (1
x), the eigenvector equation for

the first case reads

⎛

⎝

A11 A12

−(A11−A22)
2

4A12
A22

⎞

⎠
(

1

x
) =

A11 + A22

2
(

1

x
), (A3)

which identifies

x =
A22 − A11

2A12
, (A4)

so there is only a one-dimensional eigenvector space, and the matrix
is defective. In case A11 = A22 and only one of the off-diagonal
elements, for example, A21 is vanishing, the eigenvector equation
reads

(
A11 A12

0 A11
)(

1
x
) = A11(

1
x
), (A5)

which identifies

x = 0. (A6)

It is readily shown that there are no eigenvectors of the form (x1),

and the space of eigenvectors for this case is again one-dimensional.
The only remaining case is the trivial degenerate and diagonal case,

where A11 = A22 and A12 = A21 = 0. In this case, both (1
0) and (0

1)

are eigenvectors, so the eigenvector-space is two-dimensional.

APPENDIX B: DEVIATION FOR γ = 0
To determine the deviation as defined in Eq. (32), we use the

Lagrange form of the remainder,23 which states that the remainder
of a Taylor-expansion, f n(x), obtained by expanding a function f (x)
through order n around x0 may be written as

f (x) − f n(x) =
∣x − x0∣

(n + 1)!
f (n+1)

(ξ), (B1)

where ξ is in the interval between x and x0. In the current context, it
is noted from Eq. (6) that E−(z) for γ = 0 may be written as a function
of z2,

E−(z2
) =

α + β
2
−
β − α

2

¿
Á
ÁÀ1 +

4σδ2

(β − α)2 z2. (B2)

The sum∑2n
i=0 E

(i) for γ = 0 is therefore equal to the Taylor expansion
of E−(z2) at z2 = 1 expanded through order n in z2 around z2 = 0.
The n-th derivative of the function f (x) =

√
(1 + x) for n ≥ 2 equals

(−1)n−1 (2n−3)!!
2n , so the deviation in Eq. (32) may be obtained as

D2n =
−1

(n + 1)!
∂n+1E−(z2

)

∂(z2)n+1 ∣
z2=ξ

=
σ(−σ)n(2n − 1)‼ 2n

(n + 1)!
δ2n+2

(β − α)2n+1

¿
Á
ÁÀ1 +

4σδ2

(β − α)2 ξ, ξ ∈ [0, 1].

(B3)

Since the odd corrections are vanishing for γ = 0, we furthermore
have

D2n+1 = D2n. (B4)
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APPENDIX C: EXPRESSIONS FOR THE RATE
OF CONVERGENCE FOR ẽ(n) AND Ẽ(n)

To determine p(+, ∣ δγ ∣) from Eqs. (44) and (45), we introduce
the scaled parameters of Eq. (29) and use Eq. (44) to write Eq. (45)

∣γs∣
1 + γs

p(+, ∣
δs
γs
∣) = 1 for

1 + γs
√

4δ2
s + γ2

s
= 1. (C1)

For a given ratio

x = ∣
δ
γ
∣ = ∣

δs
γs
∣, (C2)

there are two choices of γs that fulfills the condition on the right-
hand side of Eq. (C1)

γs =
1

√
4x2 + 1 − 1

,
−1

√
4x2 + 1 + 1

. (C3)

Inserting either of these values into Eq. (C1) identifies

p(+, x) =
√

4x2 + 1, (C4)

which inserted into Eqs. (42) and (43) gives the geometric energy-
series as

ẽ(n)(+, ∣
δ
γ
∣) = c0(+, ∣

δ
γ
∣)
⎛
⎜
⎝

¿
Á
ÁÀ4(

δ
γ
)

2

+ 1
⎞
⎟
⎠

n

. (C5)

Finally, by introducing Eq. (C4) in the expression for the conver-
gence rate in Eq. (44), we obtain

r̃ =
∣γ∣

β − α + γ

¿
Á
ÁÀ4(

δ
γ
)

2

+ 1 =

√
4δ2 + γ2

β + γ − α
. (C6)

In the above development, we tacitly assumed that γ is nonvanishing.
For γ = 0, the asymptotic convergence rate is given by Eq. (39), which
is equal to the convergence rate obtained from Eq. (C6) by setting γ
= 0. We can therefore use the convergence rate of Eq. (C6) for all
choices of γ.

For an asymmetric perturbation, the two critical points zc−, zc+ of
Eq. (24) are real and min(∣zc−∣, ∣zc+∣) is given by Eq. (26). For a fixed
value of the ratio x, we first obtain expressions for the values of the
scaled gap-shift, γs, for which min(∣zc−∣, ∣zc+∣) = 1. In terms of γs and
x, the smallest norm of the critical points in Eq. (26) become

min(∣zc−∣, ∣z
c
+∣) =

1 + γs
(1 + 2x)∣γs∣

, (C7)

so the condition that the lowest norm of the critical points equals 1
is

1 + γs = (1 + 2x)∣γs∣⇒ min(∣zc−∣, ∣z
c
+∣) = 1. (C8)

By separately considering negative and positive values of γs, one
obtains from Eq. (C8) two possible values of γs,

γs =
⎧⎪⎪
⎨
⎪⎪⎩

−1
2+2x if γs < 0,

1
2x if γs > 0.

(C9)

We next require that the convergence rate of the geometric
approximation to the energy-corrections, Eq. (43),

r̃ = ∣
Ẽ(n+1)

Ẽ(n)
∣ =

∣γ∣
β + γ − α

p(−, x), (C10)

has the value 1 for the values of γs of Eq. (C9). For both positive and
negative values of γs, one obtains

p(−, x) = 2x + 1, (C11)

so the geometric approximations to e(n) for asymmetric perturba-
tions become

ẽ(n)(−, ∣
δ
γ
∣) = c(0)(+, ∣

δ
γ
∣)(2∣

δ
γ
∣ + 1)

n

. (C12)

The rate of convergence of the energy corrections Ẽ(n) for
an asymmetric perturbation may be obtained from Eqs. (C10) and
(C11). Remembering that δ is positive, one obtains

r̃ =
∣γ∣

β + γ − α
(2∣

δ
γ
∣ + 1) =

2δ + ∣γ∣
β + γ − α

. (C13)

In the above equation, it was again tacitly assumed that γ ≠ 0. For γ
= 0, we have from Eq. (16) that the absolute corrections are the same
for a symmetric and an asymmetric perturbation, so the convergence
rate is again given by Eq. (39). The convergence rate of Eq. (C13)
reduces to this expression for γ = 0 and may therefore be used for all
values of γ.
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