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Crossing rule for a PT -symmetric two-level time-periodic system
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For a two-level system in a time-periodic field we show that in the non-Hermitian PT case the level crossing
is of two quasistationary states that have the same dynamical symmetry property. At the field’s parameters where
the two levels which have the same dynamical symmetry cross, the corresponding quasienergy states coalesce
and a self-orthogonal state is obtained. This situation is very different from the Hermitian case where a crossing of
two quasienergy levels happens only when the corresponding two quasistationary states have different dynamical
symmetry properties and, unlike the situation in the non-Hermitian case, the spectrum remains complete also
when the two levels cross.

DOI: 10.1103/PhysRevA.83.052125 PACS number(s): 11.30.Er

I. INTRODUCTION

The question of what conditions two energy levels cross as
the potential parameters are varied was addressed many years
ago by von Neumann [1], Landau and Lifshitz [3], Teller [2],
and Longuet-Higgins [4]. All these studies were carried out for
time-independent systems and within the standard (Hermitian)
formalism of quantum mechanics. Here we address the
dynamics of a driven two-level system, which has been a
subject of interest for many years in different fields of physics
(see, for example, Refs. [5–9]). The motivation to study the
conditions for crossings of two quasistationary solutions in a
driven two-level system is twofold. The first motivation is to
determine the hidden symmetry in the Hermitian two-level
system driven by a time-periodic field which enables two
quasienergy levels to cross as the laser field parameters are
varied. Ivanov, Corkum, and Dietrich derived the condition for
crossings of two quasienergy levels when the laser frequency is
much larger than the transition frequency, which is defined as
the excitation energy, h̄ω21, divided by the Planck constant
h̄ [10]. More recently, Šindelka has shown that when the
two quasi-energy levels cross the assumption that the laser
field can be treated classically when the laser intensity is
large (many photons interact with the quantum two level
system) does not hold and the light-matter interaction should
be studied within the formalism of quantum electrodynamics
although high field intensity is used [11]. We show here that
the “hidden symmetry” in the Hermitian case is the dynamical
symmetry. The two quasienergy levels that cross in the studies
of Ivanov and his co-workers and of Šindelka are two different
(nondegenerate) quasienergy eigenstates of the dynamical
symmetry operator (which is defined below). The second
motivation is to study the crossing of two quasienergy levels
in the non-Hermitian case. The fact that, in a non-Hermitian
time-independent Hamiltonian which consists of a linear
combination of two Hermitian noncommutative operators, one
can always find a complex parameter where two eigenstates
cross was proved a long time ago [12]. Most recently, it was
shown by Lefebvre and his co-workers [13] that two complex
quasienergies which are associated with the photoinduced
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dissociative resonances of H+
2 are crossed. The crossing of

the quasienergy (Floquet) resonances has a dramatic effect on
the ability to control the dynamics of H+

2 in moderate laser
fields [13]. We wish to show here that in the case of the
non-Hermitian time-periodic Hamiltonian the quasienergies
that cross when the laser intensity is increased are two
degenerate eigenstates of the dynamical symmetry operator
which are defined below. This situation is very different from
the situation in a Hermitian time-periodic Hamiltonian where
the two quasienergy levels which cross are two nondegenerate
eigenstates of the dynamical symmetry operator. Without loss
of generality of our study of the dynamics of non-Hermitian
driven two-level systems, here we have chosen to study
the dynamics of a very special non-Hermitian-driven system
where the time-dependent Hamiltonian has a PT symmetry
and therefore the quasienergy levels should be real as long
as the field strength parameter gets a sufficiently small
value. The PT properties of a time-independent Hamilto-
nian are the focus of interest in different fields of physics
[14–19].

II. THE DYNAMICAL SYMMETRY (DS) OPERATOR
FOR DRIVEN TWO-LEVEL SYSTEMS

The time-periodic Hamiltonian of a driven two-level system
in our study is given below (in atomic units where h̄ = 1)
as

H(t) = H0 + E0V(t)

= ω21

2

(
1 0

0 −1

)
+ E0 cos(ωt)

(
0 1

1 0

)
, (1)

where ω21 is the transition frequency in the two-level system
and E0 is the maximum field amplitude multiplied by the dipole
transition matrix element. In the Hermitian case, E0 gets real
values only. In the non-Hermitian case, E0 gets complex values
(i.e., the dipole matrix element is a complex number). As we
show below, a non-Hermitian PT symmetry time-periodic
Hamiltonian is obtained when E0 gets imaginary values only,
i.e., ReE0 = 0 whereas ImE0 �= 0. The time-independent PT -
symmetric two-level Hamiltonian, which can be obtained from
Eq. (1) by letting the frequency go to zero, is proportional
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to the two-level Hamiltonian studied in Ref. [20] where the
proportional factor is i. Therefore, instead of solving

H(t)a(t) = i
∂a(t)

∂t
(2)

using our model Hamiltonian, we should multiply the above
time-dependent Schrödinger equation by the imaginary num-
ber i such that iH(t) = HRef. [20](t) and solve the diffusion like
equation

HRef. [20](t)a(t) = −∂a(t)

∂t
. (3)

The quasistationary solutions of the Hermitian and of
the non-Hermitian time-dependent Schrödinger equations are
given by

HF ai(t) = εiai(t), i = 1,2,
(4)

HF ≡ −i
d

dt
I + H(t),

where

ai(t) = ai

(
t + 2π

ω

)
. (5)

The terminology of quasienergy comes from the fact that if 0 �
εi � ω is an eigenvalue of the Floquet operator HF then εi +
ωN ; N = 0,±1,±2, . . . ± ∞ is an eigenvalue of HF which is
associated with the eigenvector ai(t)eiωNt .

Therefore, the complete quasienergy spectrum of the
Floquet operator HF is given by

HF bi,N (t) = (εi + ωN )bi,N (t)

{i = 1,2; N = ±1,±2, . . . ,±∞}, (6)

where bi,N (t) = ai(t)eiωNt . The spectrum of the Floquet op-
erator, εi + ωN (i = 1,2 in our case), splits between different
Brillouin zones where |N | = 0,1,2, . . . stands for the |N |th
Brillouin zone. For example, N = 0 is the first Brillouin
zone with quasienergies embedded within the energy interval
of [0,±ω] (here h̄ = 1) where the second Brillouin zone is
defined for the quasienergies within the energy interval
[±ω,±2ω], and so on.

The DS has profound spectroscopic implications in Hermi-
tian quantum mechanics, as shown by Alon and his co-workers
[21]. In our case the second-order DS operator is defined as

P̂2 =
{

H̃0; t → t + π

ω

}
, (7)

where

H̃0 = 2

ω21
H0 =

(
1 0

0 −1

)
, (8)

such that

P̂2HF (t)P̂2 = H̃0HF

(
t + π

ω

)
H̃0 = HF (t) (9)

and therefore

[P̂2HF ,HF P̂2] = 0 (10)

at any given time t .
From Eq. (10) we obtain that the eigenstates of the Floquet

operator (regardless if it is a Hermitian operator or not), bi,N (t),

are eigenstates of the dynamical symmetry operator P̂2. We
can divide bi,N (t) [and therefore ai(t)] into two groups of
degenerate eigenstates of the dynamical symmetry operator,

P̂2a(+)
i (t) = +a(+)

i (t), i = 1,2,
(11)

a(+)
i (t) =

( ∑+∞
m=−∞ c

(+)
m,ie

i2mωt

∑+∞
m=−∞ d

(+)
m,i e

i(2m+1)ωt

)
,

where a(+)
i (t) are associated with the eigenvalues −h̄ω � εi �

0 of the Floquet operator (here h̄ = 1) and

P̂2a(−)
i (t) = −a(−)

i (t), i = 1,2,
(12)

a(−)
i (t) =

(∑+∞
m=−∞ c

(−)
m,ie

i(2m+1)ωt

∑+∞
m=−∞ d

(−)
m,i e

i2mωt

)
,

where the corresponding eigenvalues of a(−)
i (t) are 0 � εi �

h̄ω (here h̄ = 1). The Floquet eigenstates are orthonormal
and, therefore,

∑
m[c(±)

m,i]
2 + ∑

m[d (±)
m,i ]

2 = 1. Note that in the
normalization condition given in the preceding equation we
take the squares of the linear coefficients and not the absolute
values because the coefficients might get complex values only
when the Hamiltonian is non-Hermitian. For the definition
of the “inner product” in non-Hermitian time-dependent and
time-independent cases, see Ref. [22].

III. THE CROSSINGS OF DEGENERATE
AND NONDEGENERATE EIGENSTATES

OF THE DYNAMICAL SYMMETRY OPERATOR

Following the “noncrossing rule” as described by Teller
within the Hermitian formalism of quantum mechanics, it is
unlikely for two degenerate states of the dynamical symmetry
operator to cross as a potential parameter E0 is varied. Two
cases are studied here. The first case is when E0 = ReE0 and
the time-periodic Hamiltonian is Hermitian. The second case
is when E0 = iImE0 and the time-periodic Hamiltonian is non-
Hermitian. This non-Hermitian time-periodic Hamiltonian has
the PT symmetry which is defined here as

ˆPT = {H0; i → −i; t → −t}, (13)

such that

ˆPT HF (t) ˆPT = H0[HF (t)]∗H0 = HF (t). (14)

Using perturbation theory for the Floquet operator where
V(t) is the perturbation and i|E0| is the perturbation strength
parameter similar to the proof presented in Ref. [19], one can
prove that the quasienergies of the PT non-Hermitian Floquet
operator get real values only as long as |E0| < |E0|BP where
two quasienergy levels with the same dynamical symmetry
cross, and where BP stands for a branch point. This branch
point is commonly referred to as an exceptional point (EP) in
the spectrum of the Hamiltonian. In our case it is an EP in the
quasienergy spectrum of the non-Hermitian PT Hamiltonian
of a two-level system in time-periodic field. The proof that at
some parameter region the spectrum of the PT non-Hermitian
Floquet operator is real is based on the use of the (2n + 1) rule
stated by Wigner [23], which in our case implies that the
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(2n + 1) order of corrections to the eigenvalues of the Floquet
operator are given by

ε
(2n+1)
i = ω

2π

∫ 2π/ω

0
a(n)

i (t)V(t)a(n)
i (t) dt. (15)

The zero-order Floquet operator is −i∂t + H0 and the per-
turbation strength parameter is E0. The eigenvectors of the
zero-order Floquet operator are given by

a(0)
1 (t ; m) = eiωmt

(
0

1

)
,

(16)

a(0)
2 (t ; m) = eiωmt

(
1

0

)
,

where m = 0,±1,±2, . . .. Without loss of generality, we chose
as the zero-order eigenvector a(0)

i (t ; m = 0), where i = 1 (or
another possibility is to choose i = 2). Since

V(t)a(0)
1 (t ; m = 0) = cos(ωt)a(0)

2 (t ; m = 0),
(17)

V(t)a(0)
2 (t ; m = 0) = cos(ωt)a(0)

1 (t ; m = 0),

where a(0)
1 (t ; m = 0) × a(0)

2 (t ; m = 0) = 0, then the first-order
correction to the quasienergy eigenvalue vanishes; i.e., ε(1)

i = 0
for i = 1 and i = 2. Using Eqs. (15)–(17), the first-order
corrections to the exact eigenvectors obtained

a(1)
1 (t) = cos(ωt)

ε
(0)
1 − ε

(0)
2

a(0)
2 (t ; m = 0),

(18)

a(1)
2 (t) = cos(ωt)

ε
(0)
2 − ε

(0)
1

a(0)
1 (t ; m = 0),

and therefore, using Eq. (15), we get that ε
(3)
i = 0 for i = 1

and i = 2 while {ε(2)
i }i=1,2 �= 0. Note that {ε(2)

i }i=1,2 are real
numbers, and so are all correction terms in general, {ε(2)

i }i=1,2.
Using the standard expressions of nondegenerate pertur-

bation theory for the nth corrections to the eigenvectors, one
gets that all the odd-order corrections to the eigenvalues of the
Floquet operator vanish and

ε
(2n+1)
i = 0 (19)

where i = 1,2 and consequently

εi =
∞∑

n=0

E2n
0 ε

(2n)
i , (20)

provided the perturbational series expansion is converged.
The perturbational series expansion is converged when |E0|
is smaller than the radius of convergence, which by definition
is equal to the absolute value of the branch point, |EBP|, which
is closest to the origin at E0 = 0. Since in the non-Hermitian
PT -symmetry case

E0 = i|E0| (21)

and E2n
0 = (−1)n|E0|2n, then from Eq. (20) one can see that

within the radius of convergence ε1 and ε2 get real values
and the spectrum of the non-Hermitian PT -symmetry time-
periodic Floquet operator is real (at some parameter region
defined above). Here our proof has been completed.

0 1 2 3 4 5
ε

0

-0.15

-0.1

-0.05

0

0.05

0.1

E
Q

E

(-)

(+)

FIG. 1. (Color online) The quasienergy levels (a.u.) in two
Brillouin zones as obtained from numerical calculations for the
Hermitian-driven two-level system (E0 gets real values only) using
101 Floquet channels (i.e., n = 0,±1, . . . ,±50 in Eqs. (11) and
(12)]; ω21 = 0.1 and ω = 1. The two quasienergy levels that cross
are associated with two nondegenerate eigenstates of the dynamical
symmetry operator P̂2 (red curves are the quasienergies of the
degenerate states of P̂2 associated with the eigenvalue −1 (denoted
by (−) in the plot), whereas the black curves are associated with the
+1 eigenvalue (denoted by (+) in the plot). The crossings of the
quasienergies are obtained at the transition from the first Brillouin
zone to the second one, when the different zero-order Bessel function
J0( 2E0

ω
) = 0 exactly as derived in Ref. [10].

The results presented in Fig. 1 clearly show that indeed
in the Hermitian case, crossing takes place only between
two quasienergies which have different dynamical symmetry
(and localized at different Brillouin zones), whereas the
results presented in Fig. 2 show that in the non-Hermitian
case the two quasienergy levels which cross have the same
dynamical symmetry (and localized at the same Brillouin
zone). Since in the Hermitian case the crossing takes place
between quasienergy levels from different Brillouin zones, the
quasienergy at the crossing points should be at the edges of the
Brillouin zones, εHermitian

crossing = ωN ; N = 0,±1,±2, . . . ,±∞.
Since in the non-Hermitian case the crossings take place
between quasienergy levels which are localized in the same
Brillouin zone and since the trace of the Floquet operator
is vanished at any given time, the level crossing for the PT
Floquet operator should be at the middle of the Brillouin zones,
εPT -non-Hermitian

crossing=BP = ω( 1
2 + N ); N = 0,±1,±2, . . . ,±∞.

The results presented in Fig. 3 show that, as the two PT
quasienergy levels which are degenerate eigenstates of the
dynamical symmetry operator P̂2 are sufficiently far from the
crossing point, then

ε1 � ω21

2
J0

(
2i|E0|

ω

)
,

(22)

ε2 � −ω21

2
J0

(
2i|E0|

ω

)
+ ω,

where J0 are the zero-order Bessel functions. The failure of
the analytical expressions for the two PT quasienergy levels
as a function of E0 to describe the behavior of the quasienergy
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FIG. 2. (Color online) The complex quasienergy levels (a.u.) as
a function of the ImE0 as obtained from numerical calculations for
the non-Hermitian PT -driven two-level system (E0 gets imaginary
values only) using 101 Floquet channels [i.e., n = 0,±1, . . . ,±50 in
Eqs. (11) and (12)]. The two quasienergy levels that cross are
associated with two degenerate eigenstates of the dynamical sym-
metry operator P̂2. [The red curves are the real quasienergies of the
degenerate states of P̂2 associated with the eigenvalue −1 (denoted
by (−) in the plot), whereas the black curves are associated with the
+1 eigenvalue (denoted by (+) in the plot).] The (blue) curves are the
imaginary parts of the quasienergy eigenvalues, showing that up to
the crossing point the quasienergies are real although the Hamiltonian
is non-Hermitian.

levels close to the crossing point results from the fact that,
sufficiently close to the crossing point,

ε1,2 = εBP ± α
√

|E0| − E0|BP, (23)

where the two normalized corresponding quasienergy eigen-
states [ψ1 ≡ a(±)

1 (t) and ψ2 ≡ a(±)
2 (t)] collapse into the

0 0.5 1 1.5 2
Im[ε

0
]

0

0.2

0.4

0.6

0.8

1

R
e(

E
Q

E
)

FIG. 3. (Color online) The real part of the complex quasienergy
levels (a.u.) in the first Brillouin zone as shown in Fig. 2 for the
non-Hermitian PT -driven two-level system which has the same
dynamical symmetry. Up to the crossing point, the two quasienergies
are real. Beyond the crossing point, they get complex values. [See the
imaginary parts of the quasienergy eigenvalues in Fig. 2 (blue line).]
The dashed lines are ω21

2 J0( 2|E0|i
ω

) and − ω21
2 J0( 2|E0|i

ω
) + ω.

0 0.5 1 1.5 2
ε0

0

0.005

0.01
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<
ψ

1-i
ψ

2|ψ
1-i

ψ
2>

FIG. 4. The overlapping integral (using the standard Hermitian
scalar product) of a linear combination of the two quasienergy
eigenstates of the PT -driven two-level model Hamiltonian which
have the same dynamical symmetry property as a function of the
imaginary part of E0 (a.u.). This plot shows that as the two quasienergy
eigenvalues coalesce the corresponding quasienergy eigenstates also
coalesce. (The phase factor eiπ/2 = i results from the different
normalizations of the two quasienergy states [22].)

self-orthogonal eigenstate ψBP as |E0| → |E0|BP for which
(ψBP|ψBP) = 0:

ψ1,2 = N1,2[ψBP ± χ
√

|E0| − |E0|BP], (24)

where the normalization factors are related one to another by
a phase factor such that N2 = iN1 (see Ref. [22]). The results
presented in Fig. 4 clearly show that, as the two quasienergy
eigenvalues coalesce, the corresponding quasienergy eigen-
states also coalesce. The fact that the quasienergy eigen-
states with the same dynamical symmetry coalesce implies
a loss of one linearly independent eigenstate and thereby
it gives birth to a self-orthogonal state at the crossing
point.

IV. CONCLUDING REMARKS

The crossings between two quasienergy levels in the case
that the driven two-level system is Hermitian results from the
fact that those states are not degenerate states of the dynamical
symmetry operator as defined in Eq. (5). At the crossing points
which are located at the edges of the different Brillouin zones,
the corresponding quasienergy eigenvectors are two different
degenerate states. In the case where the laser frequency is
larger than the frequency transition, our numerical results are
in remarkable agreement with the analytical expressions for
the quasienergies which where derived in Ref. [10].

In the non-Hermitian case (even for a non-PT -symmetry-
driven two-level system), crossings between degenerate states
of the dynamical symmetry operator are obtained. Unlike the
situation in the Hermitian case, there is only one crossing
point of two quasienergy levels in each of the Brillouin
zones. At the crossing point of the two quasienergy levels,
the corresponding quasienergy eigenvectors coalesce as well
and a self-orthogonal vector is obtained (see Fig. 4, where the
norm of a linear combination of the two quasienergy vectors is
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vanished as the two corresponding quasienergy levels cross).
For the PT non-Hermitian time-periodic Hamiltonian, it is a
point of interest that the analytical expressions derived for the
quasienergy levels in the Hermitian case [10] also hold for the
non-Hermitian case when the laser frequency is larger than
the transition frequency between the two quasienergy levels as
long as they get real values.

Last but not least, the non-Hermitian model Hamiltonian of
driven two-level systems (not necessarily with PT symmetry)
describes physical situations where a bound state (or a
resonance-metastable state) interacts with another resonance
state as a laser field is turned on. An example is an atom in a
combined dc and ac field. The dc field (or alternatively a low-
frequency laser) turns the ground and the first excited bound
states into resonances. The resonances are complex square inte-
grable functions and are embedded in the generalized Hilbert
space when one of the similarity transformations occurs as
described in Ref. [22]. For non-Hermitian Hamiltonians rather
than the usual scalar product one should use the so-called
complex(c)-product [24], and complex expectation values
(including dipole transition amplitudes) are obtained. For the
physical interpretation of complex expectation values, see

Refs. [22,25]. In such a case the transition frequency ω21 and
the dipole transition d21 ≡ ε0/E0 in our model Hamiltonian
get complex values. The imaginary part of the transition
frequency, −2Imω21, is the difference in the ionization rates
of decay between the two resonance states. The duration of
the laser pulse (introducing an ac field), which couples the two
resonances, should be sufficiently long to justify the use of
Floquet theory. Another example involves a laser field coupled
between a ground bound state and an autoionization or Auger
(resonance) states. Note, however, that one should look for
specific atoms (or molecules) for which the non-Hermitian
Hamiltonian has PT symmetry. Another possibility is to
associate our model Hamiltonian with optical wave guides. For
example, our studies can be associated with the PT -symmetry
optical lattices suggested in Ref. [26] when a periodic index
of refraction along the light propagation axis is introduced.
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