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Resonance states by the generalized complex variational 
method 

by N I M R O D  M O I S E Y E V  t 

D e p a r t m e n t  of Chemist ry ,  T e c h n i o n - I s r a e l  Ins t i tu te  of Technology,  
Haifa  32000, Israel  

(Received 10 March 1982 ; accepted 27 April 1982) 

The resonance states are presented as the complex stationary solutions of 
generalized secular equations. The study of the analytical behaviour of the 
complex stationary solutions of these equations as a function of a coupling 
parameter ~ in the hamiltonian yields the following. 

(1) Criteria to distinguish between the complex stationary solutions that 
describe the resonances and the complex solutions that may be obtained as a 
result of the restrictions on the basis set. 

(2) Criteria and a computational procedure for judging the stability of 
results obtained within the framework of the complex coordinate method. On 
this basis it is pointed out that the enhanced stability of the resonant eigenvalue 
when a complex basis function is added to the real basis set is due to the fact 
that the expectation value of the second derivative of the hamiltonian with 
respect to the scaling parameter can be negative while for a real basis set it is 
equal to the kinetic energy and therefore gives positive values only. 

1. INTRODUCTION 

Any real a tom and molecule (with more  than one electron) has quas ibound 
states (resonances) that  are impor tan t  for unders tanding  their  dynamics.  T h e  
resonance states are associated with non-normal ized  solutions of the t ime 
independent  Schr6dinger  equat ion and thus appeared to require techniques  
similar to those of quan tum scat ter ing theory.  However ,  the complex co- 
ordinate method as established by  the fundamenta l  work of Aguilar, Balslev, 
Combes  and S imon [1] enables us to isolate the states of finite l ifetime (like the 
autoionization and the predissociat ion resonances)  f rom the other states in the 
cont inuum and enables us to obtain the resonance position and lifetime by the 
widely used procedures  for bound  states. 

In  the complex coordinate me thod  the internal coordinates of the hamil-  
tonian H(r) which describes m a n y  particle systems are t ransformed by 

(1) 
where 

~7 = 17[ exp (-iO). (2) 

The reby  a complex Schr6dinger  equat ion is obtained 

= ( 3 )  

t Yigal Allon Foundation Fellow. 

0026-8976]82]4703 0585 $04.00 �9 1982 Taylor & Francis Ltd 

D
ow

nl
oa

de
d 

by
 [

T
ul

an
e 

U
ni

ve
rs

ity
] 

at
 1

2:
35

 2
8 

Se
pt

em
be

r 
20

14
 



586 N. Moiseyev 

The resonance states are identified with the complex solutions E K that are 
independent of ~/. The complex eigenvalue yields the resonance position E~ 
and width P (the inverse of the lifetime) 

i E~ =E~--~ r .  (4) 

For large enough 0 (see equation (2)) the resonance wavefunction becomes 
square integrable and therefore ~K can be described within a complete set of 
square integrable real and orthogonal functions -(q6i) 

E= ~ CiC, H~j/ ~ CiCj~i, (5) 
] i , j  

where 

H~s = ~ 4dr)/~(r/~7)4s(r) dr. 

The linear parameters are obtained by the requirement of [2] 

hE/8C~ = 0. (6) 

By truncating the basis set, (3) is replaced by an eigenvalue matrix equation 

(H@) - Ea-l)C K = 0. (7) 

Within the finite matrix approximation all the eigenvalues E K of (7) are functions 
of ~1. The resonance states are obtained when the complex scaling parameter ~/ 
is chosen such that 

[OEsr/Or#I , ,  =,, o =0. (8) 

These types of solutions satisfy the complex virial theorem that has been derived 
by Brandas and Froelich [3] and was applied to electron scattering of atoms by 
Moiseyev et al. [2, 4]. 

The complex coordinate method has been applied to various physical 
phenomena: atomic (see for example [5]) and molecular [6, 7] autoionization 
resonances; shape (see for example [2]) and Feshbach [8] predissociation 
resonances; resonances where the autoionization and the predissociation 
channels are coupled to one another [9] ; resonances of atoms in electric fields 
[10] ; rotational predissociation resonances of van der Waals molecules [11] ; 
and resonances obtained by elastic scattering of positronium-hydrogen [12]. 
However, in spite of the successful application of the complex coordinate 
method to different types of resonance phenomena, several numerical diffi- 
culties were observed in the application of this method. In the complex 
coordinate method the basis sets required to stabilize the variational solutions 
are much larger in the case of resonance states than in the case of bound states. 
In order to make the complex variational solution of a molecular hamiltonian 
more stable for a smaller basis set, it was suggested by Rescigno and McCurdy 
to optimize the positions of the basis functions in the complex plane, in addition 
to the optimization of the scaling factor [7]. Recently it was proposed to use 
the real hamiltonian with a basis set containing only one or two complex basis 
functions ([13, 14] and references therein). When all the non-linear parameters 
are complex optimized to give a stationary solution, then all these procedures 
are identical. The inclusion of complex basis functions yields different results 
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Generalized complex variational method 587 

only because of the restrictions 
resonance states can be defined by 

(H(Y) 
rather than by (7). Here y stands 
meters of the basis functions, that 
only complex optimized parameter 
derived by the complex coordinate 

on the variational space. Therefore, the 
the generalized secular equations 

- E~cI)C2c = 0 (9) 

for the complex optimized non-linear para- 
is ~E/~Ti=O. If the scaling factor is the 
then (9) is identical with (7) that has been 
method within the finite matrix approach. 

The secular equations presented in (9) are general in the sense that there is a 
freedom in selecting the pattern in which the conventional variational solutions 
are analytically continued to the complex plane. Namely, anyone of the 
non-linear parameters of the given basis functions can be taken as the complex 
variational variable. In this paper we study these generalized complex secular 
equations, addressing ourselves to the following questions. 

(1) Under what conditions are complex stationary solutions of (9) obtained ? 

(2) How can we distinguish between the complex variational solutions that 
describe the resonance and the complex solutions that may be obtained 
as a result of the restrictions on the basis set ? 

(3) What are the reasons for the necessity of large basis sets to calculate 
resonance states by the complex coordinate method and why does the 
inclusion of only one complex function in the real basis, without the use 
of rotated coordinates, show enhanced stability of the resonant eigenvalue ? 

2. RESONANCE STATES OBTAINED BY THE GENERALIZED VARIATIONAL METHOD 

Resonances may be obtained for an arbitrary hamiltonian, /-l=/Q0+ }~/~1, 
when the coupling parameter A is larger than some h 0. By varying h a bound 
state of ~ can be shifted to the continuum as was pointed out by Reinhardt [15] 
and Stillinger [16]. If for A= h 0 the energy of a bound state is equal to the 
threshold energy then a resonance may be obtained. Examples are : 

(a) in the case of the helium isoelectronic system h is the inverse of the 
nuclear charge ( i /Z perturbat ion)and atomic autoionization resonances 
are obtained for h > h 0 where h 0 = 0, that is the resonancescan be obtained 
even if Z ~ c ~  [17] ; 

(b) in the case of atoms in electric fields h is the intensity of the field and 
A0=0 [10] ; 

(c) in the case of rotational predissociation A is the rotational quantum 
number J and A 0 # 0 [9]. 

As was discussed in the introduction the resonance states are associated 
with the complex solutions of the SchrOdinger equation. These complex 
solutions of an arbitrary hamiltonian can be obtained by the complex coordinate 
method (3) only for dilatation-analytic hamiltonians. However, in the frame- 
work of the finite matrix approximation the complex coordinate (see (7)) is 
applicable to non-dilatation analytic potentials as well. This is justified by the 
successful applications of the complex coordinate method to non-dilatation- 
analytic problems such as the autoionization of H2- [6], the Stark effect [10] 
and, in the present case, the anharmonic oscillator. 
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588 N. Moiseyev 

In the finite matrix representation of the hamiltonian the critical value I o 
for which a bound state becomes a resonance is associated with the appearance 
of complex solutions of (9). Since it is most likely that the complex solutions 
of (9) will be obtained when two real solutions of the conventional secular 
equations coalesce, 10 can be considered as a branch point. This statement is 
a simple result of the fact that the secular equations for homogeneous potential 
functions can be written as a power series of the scaling factor n. The complex 
roots of an analytical power series appear when at least two real solutions of a 
polynomial coalesce. Therefore, we can use the basic assumption that in 
general the complex solutions appear when two real solutions of the conven- 
tional secular equations coalesce. This occurs by varying the coupling para- 
meter in the hamiltonian. Support for this assumption is given by the numerical 
study and analysis of the harmonic oscillator model hamiltonian presented here 
as an example. 

Because of the limitations on the variational space, 1t01 which is obtained 
by truncating the basis set, is greater than the exact absolute value I10(exaet)l 
that is obtained for the complete basis s e t . . I n  the range of 

IA01 > lal > IAo(exact)l (10) 

bound states rather than resonances are obtained (for a more detailed discussion 
on a bound state in the continuum see [18]). As an example we solved the 
secular equations (7) for the anharmonic oscillator I~ = - �89 2) + (x2/2) + Ax a, 
with the basis set truncated to N harmonic wavefunctions (19). The bound 
state energies were obtained by satisfying the virial theorem, that is, ~E/3 n --O. 
The results for the optimized n as a function of A are given in figure 1 (a). 
The bound state solutions are associated with the optimized positive scaling 
parameters. When - t o <  h< A 0 and n > 0  two stationary solutions were 
obtained. One of the stationary solutions is associated with a local minimum 
of the energy (the thick line in figure 1 (a)) and the second solution is associated 
with a local maximum of the energy (the fine line in figure 1 (a)). At A= h 0 
the two extremal solutions coalesce, (3E/3~)~=~o=0 , and two complex con- 
gated solutions are obtained (schematic representation of the complex stationary 
solutions is given by the dashed lines in figure 1 (a)). Figure 1 (b) shows that 
improvement of the variational space (by taking a large basis set) reduces the 
deviation of 1 o (obtained by a limited basis set) from the exact value. The two 
solutions coalesce at a certain value of A 0 if and only if one of the solutions 
corresponds to a minimum point in the variational space, (32 E/3~ ~) > 0, whereas 
the other one corresponds to a maximum point and (32 E / ~  2) < 0. These two 
extremal solutions for the anharmonic oscillator are presented in figure 2. By 
decreasing the value of A the two solutions presented by the dark dots in figure 2 
approach one another, A coalescence of the two solutions yields two complex 
conjugated eigenvalues, where the resonance state is associated with the complex 
stationary solution for which Im E=E~ < O. The resonances are obtained for 
A< A o by optimizing the complex scaling factor, n = IT[ exp (iO) such that, 
(OEr/30)Oopt=(bE~/31nl)l~optl=O. The resonance solution is therefore repre- 
sented by the cusps [20] in figures 3 (a) and (b). 

Following the above analysis t 0 can be obtained by satisfying the condition 

=oo and =0, (11) 
dn vo vo 
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(b) 

Figure  l .  (a) Locat ion  of the  ext remal  values of 7. N denotes  the n u m b e r  of basis 
funct ions .  T h e  dashed  line represen ts  the  complex solut ions tha t  are ob ta ined  as 
a resul t  of the  coalescense of the  two ex t remal  values of 7- T h e  thick lines represen t  
the  values of ~? for each a local m i n i m u m  of the energy  is ob ta ined  whereas  the  fine 
lines r ep resen t  ~ wh ich  yield a m a x i m u m  solut ion.  (b) T h e  critical anha rmon ic i t y  
pa ramete r  at wh ich  the  ext remal  solut ions coalesce versus the size of the  basis set. 

w h e r e  

a n d  

d 2 E 
d'q 2 : CT[~  2 H / ~ 7 2 ] C  - )a I (12)  

D+(H- EI)D ~C 
- D =--. (13) 

l a l  D + D  , ~ 
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590 N. Moiseyev 
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Figure 2. The local minima and maximum of the energy ,for a negative anharmonicity 
parameter, obtained for a minimal basis set of one gaussian. The arrows indicate 
the direction of motion of the two extrema solutions with increasing the number of 
the basis functions. 
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O.0227 (o.83~# (0.87) 

(o.84)~:~ (0.86) 
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0"022504450 0.4455 04460 ~ 0,4465 

Er 

(b) 

Figure 3. (a) I~l trajectory for fixed 0=0.23,  ten basis functions and A= -0 .05 .  The 
solution at the cusp satisfies the complex virial theorem. (b) 0-trajectory for fixed 
]7]=0.85,  ten basis functions and ~=0.05.  The arrows indicate the direction of 
motion of the eigenvalues with increasing 0. 

The conditions presented by (11) are obtained from the relation E ~  (~7-V0) 3/~ 
when ~70 is the stationary point in which two eigenvalues of the hamiltonian 
matrix coalesce ([21] and references therein). The  proof of (12) is as follows. 
By taking the product of the first derivative of (9) with respect to a non-linear 
parameter y with D = d C / d  7 one can get 

- D W ( d H / d 7  - d E / d ~ , I ) C  = DT[H(~,) - EI] D. (14) 

T h e  product  of the  s e c o n d  derivat ive  of the  matr ix  S c h r 6 d i n g e r  equat ion  with  
C results  in 

- 2 C X ( d H / d ~  - d E / d T I ) O  = C~(d 2 H/dy2)] C - d 2 E / d 7  ~. (15) 
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Generalized complex variational method 591 

Consequently 

where 

d2____E= C T ( d  2 H~ C - ] a l  (16) 
dy 2 \ dr  2 J 

[a I = 2 D * ( H -  E I ) D  > 0.  ( 1 7 )  

Note that if 7 stands for any real parameter occurring in the hamiltonian then 
(12) is an extention of the proof for the upper bound relation (~2 E/~y2)< 
(~bl~2 H/~y21~b) to the variational solutions. (For the upper bound relation, 
see [21] and references therein.) Note that (11) and (12) are valid for any 
non-linear parameter y and not only for the special cases where Y is identified 
with the scaling factor ~/. The knowledge of the value of A 0 helps to distinguish 
between the complex stationary solutions which describe the resonance states, 
and those that may be obtained because of the restrictions on the variational 
space. The resonance statet are associated with the complex stationary solutions 
that are lying on a branch that becomes a bound state at A = A o as h is decreased. 
In the case of the anharmonic oscillator for example (see figure 1 (a)) complex 
stationary points are obtained also for positive A. However, these complex 
solutions do not lie on a complex branch that is obtained as a result of the 
coalescence of one of the vibrational energy level (obtained for A> 0) with 
another stationary solution (maximum of the energy with respect to the non- 
linear variational parameter) and therefore are not interpreted as resonance 
states. From the value of the branch point one can estimate the radius of 
convergence of the perturbational series [22], when the perturbation is taken 
to be the operator that couples discrete energy levels with the continuum and A 
is the strength parameter of the perturbation. Consequently, we conclude 
that the smallest value of ]hi for which resonances can be obtained determines the 
radius of convergence of the perturbation expansion. 

We shall study explicitly this statement by the analysis of the example of the 
anharmonic oscillator 

The complex rotated hamiltonian is 

d ~ co 2 x ~ h 
H- -  ~-~x~ + - - ~  + ~ x4. (18) 

The resonance state is approximated by a trial function ~n and the resonance 
position and width are estimated from the complex energy 

E,~ = 5 r dx ~b,~ = dx, (19) 
- - 0 0  ~ 0 0  

where B is chosen to satisfy the condition [2, 4] 

dE,, = 0. (20) 
& 

By making use of the Hellman-Feynman theorem [23], (18)-(20) can be sum- 
marized by the following cubic equation 

~a _ b~ - c = 0, (21) 
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592 N. Moiseyev 

where 

and 

b = - f  -~o Cnx2 r dx r -1-d-fix 2 Cn dx-- 7 (x2)/<T) (22) 
- - 0 0  

c=2A(x4)/(T).  (23) 

As was pointed out in the analysis presented above, a complex stationary solution 
(a resonance) is obtained when two solutions of (21) (one corresponding to a 
minimum energy and the other one corresponding to a maximum energy) 
coalesce at 

= ~0. (24) 

In the case of the anharmonic oscillator from (21) to (23) one can get that 

[ ( ~ / 2 ) ( x b ]  ~ 
Ao 2 27(x4)2(T).  (25) 

Since A0 is a point in which two roots of (19) coalesce, it is expected that [22] 

Z n < ( A -  ~o) 1/2. (26) 

However, from (25) we can see that h=  - A  o is also a branch point. Conse- 
quently, in the neighbourhood of the critical value of h where resonance states 
appear 

En or [(~ - A0)(h + ~o)] 1/8. (27) 

If r is taken in a zeroth order approximation as the nth harmonic oscillator 
wavefunction, then 

~o2 <x2> 
A0- 6V/3 (x4) (28) 

and for large n 
o) 3 

A0oc - - .  (29) 
n 

Equation (29) shows that the infinite sequence of branch points has a limit 
point at A=0. At that limit the Hermite polynomials are the exact solutions 
of the Schr6dinger equation and therefore it is expected that (29) yields the 
exact behaviour for large n. This conclusion and (27), (29), that were obtained 
here by the analysis of the complex coordinate method, are in complete agree- 
ment with the results that were obtained recently by Katriel ([24] and references 
therein) who has studied the radius of convergence of the perturbation expansion 
of the anharmonic oscillator using the generalized Bose operators. 

3. T H E  COMPLEX COORDINATE METHOD AND THE STABILIZATION METHOD OF 

JUNKER [13] 

In the stabilization method of Junker complex square-integrable functions, 
which do not impose explicitly any boundary condition, are added to the basis 
set. In the introduction we pointed out that if all the non-linear parameters 
are complex optimized to give a stationary solution, then the procedure of 
Junker is equivalent to the complex coordinate method. However, the non- 
linear parameters are usually not optimized and therefore different results are 
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Generalized complex variational method 593 

obtained by the two methods fo r  any given finite basis set. Within the finite 
matrix approximation, the complex coordinate method can be applied without 
rotating the internal coordinates of the hamiltonian to the complex plane (as it 
is in the stabilization method of Junker) if the basis functions are complex 
scaled. In this section we shall study the reasons for the enhanced stability of 
the resonant eigenvalue when a complex basis function is added to the real basis 
set, while the hamiltonian is unrotated. 

As was indicated in the previous section, the resonances are associated with 
the complex solutions of the secular equations. The complex solutions are 
obtained as a result of the coalescence of two real eigenvalues of (9) as any 
parameter ;~ in the hamiltonian is varied. One of the two real stationary solu- 
tions has to correspond to a maximum in the variational space, whereas the 
other one should correspond to a minimum. 

From (11) we get that 

CT[~ ~ H/~ys]c < 0 (30) 

is a sufficient (though not necessary) condition to yield a maximal stationary 
solution of the energy with respect to y. As ;~ is varied, a complex stationary 
solution is obtained whenever a maximum stationary solution of the energy 
(obtained by varying the non-linear variational parameter) coalesces with a 
local minimum stationary solution. Therefore, (30) is a sufficient condition 
to get a complex stationary solution in the variational calculations. 

In the case that t he  complex coordinate method is applied to atomic auto- 
ionization resonances, 9' stands for the scaling factor ~. Then 

= (~dr)[//(r/~/) I ~bj(r)). (31 ) 

In view of the quadratic dependence of the atomic hamiltonian on ~7, H i j=  
~2 Tij+~Vij 

02Hij/O~2=2Tij and CTTC>0. (32) 

Consequently, (30) is not satisfied and the maximum stationary solution of the 
energy obtained as the non-linear parameter is varied, is due to the dependence 
of the linear parameters C on ~ (D in (13)) and a large number of basis functions 
are required to get a stable solution. (Note that for a small basis set both 
maxima and minima may be obtained. However, these extrema would be 
strongly affected by ~7 since this is true for the linear parameters C.) Following 
the above analysis it is clear why poor estimates o f  the atomic autoionization 
resonances have been obtained for small basis sets even though they may yield 
very accurate results for the resonance position [25]. However, this is not the 
case when a complex basis function is added to the real basis set [13]. In his 
work Junker complex optimized the non-linear parameters of only one or two 
basis functions. Since not all of the basis functions are complex optimized [24], 
the equality presented in (31) is not valid and 

02 Hij/OY 2 = [ii(Y) va T~j.. (33) 

Note that (33) is valid even if all basis functions are complex optimized so long 
as there are at least two different complex scale factors. For certain values of 
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594 N. Moiseyev 

7, CTfC < 0 and the sufficient condition, presented by (30), to obtain a complex 
stationary solution in the variational space is satisfied. Therefore  in the pro- 
cedure of Junker  (30) is satisfied and a maximum of the energy can be obtained 
even when the linear parameters are held fixed or for a minimal basis set of two 
functions r and X. Here  r is a real funct ion which yields a good estimate for 
the resonance position and X is the function of which the non-linear parameter 
7 is complex optimized. 

Table 1. The resonance position Er and width -2 E t  of the anharmonic oscillator, t =  
-0.05, obtained by the complex coordinate method. The real basis set is con- 
structed of N Hermite polynomials and was complex scaled by ~/opt = I~?l exp ( -  iO) 
to yield a complex stationary solution, that is (OEr/aO)= (OEr 

N E~ -E~ I~[ 0 

~0 .45387 min 0 0.786 0 
1 

|0.49590 max 0 0.339 0 
2 0.43745 0.01905 O. 800 O. 306 
5 0.44454 0.02373 0.868 0.259 

10 0.44548 0.02255 0.847 0.234 
15 0.44550 0.02275 0.854 0.233 
20 0.44548 0.02278 0.855 0.234 
25 0.44548 0.02279 0.856 0.234 

In the case of the anharmonic oscillator, some of the hamiltonian matrix 
elements are homogeneous  functions of the third order  and therefore (32) is 
not valid also when the complex coordinate method  is used. Therefore ,  a 
maximum of the energy for A> A 0 or a complex stationary solution for A< Ao 
can be obtained even for one basis function. At A = - 0 . 0 5 ,  for example, a 
basis set of two functions is large enough to describe the lowest resonance state. 
In table 1 the estimates of the resonance position and width of the anharmonic 
oscillator, which were obtained for different large basis sets, are presented. 
T h e  weak dependence of the results on the number  of t h e  basis functions 
supports  our  proof that, if C T @ 2 H / ~ @ ) C < 0  for ;~< ;~0, a complex stationary 
solution can be obtained even when the linear variational parameters  are inde- 
pendent  or weakly dependent  on ~/. Therefore ,  in such a case the resonance 
position and width can be estimated for A < A0 f rom a relatively small basis set. 

When  the linear parameters are held fixed only three stationary solutions 
can be obtained (21) if the complex coordinate method  is applied to the an- 
harmonic oscillator. However,  when a complex basis funct ion is included in 
the basis [13] more stationary solutions may be obtained by solving the following 
equation 

~E ~ ~x(~,x) 
0-7 = _ ~ 97 /-/(x)[r + 2CX(yx)] dx = 0, (34) 

where the variational funct ion is defined by ~b = r  Cx(Tx ). I t  has already 
been observed [26] that as more complex stationary solutions which are des- 
cribing the same resonance state are obtained for a given basis set, then the 
corresponding complex eigenvalues are more stable and less affected by the 
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Generalized complex variational method 595 

variational non-linear parameters.  Therefore ,  one can expect that the results 
obtained by the stabilization method of Junker  would be more stable and less 
sensitive to the number  of basis functions and to the value of the complex non- 
linear p a r a m e t e r y  than the resonance solutions obtained by the complex co- 
ordinate method (that is complex scaling of all the internal coordinates of the 
hamiltonian by ~). This  conclusion supports  the idea that, in the case of a 
shape resonance which corresponds to an electronic configuration with one 
electron outside a closed shell, a smaller basis set can be used to determine the 
resonances. This  can be performed if the open-shell  basis functions are complex 
scaled while the inner-shell  orbitals are kept  unscaled, rather than scaling all 
basis functions by the same factor. The  numerical results we have obtained 
for the anharmonic oscillator is in agreement with the above analysis. 

At A=0-035 for two basis functions no complex stationary solution that 
describes the lowest resonance state can be obtained by the complex coordinate 
method. However,  a good estimate for the resonance position and width was 
obtained for two basis functions when the method of Junker  was used, that is, 
Er =0-4577 and E i = -0 -0044 .  This  result is in harmony with the estimate of 
the resonance position and width, Er = 0-4602 and E~ = 0.0058, that was obtained 
by the complex coordinate method when ten harmonic wavefunctions were 
taken as a basis set. T h e  two basis functions which were used when the pro- 
cedure of Junker was applied to the anharmonic oscillator were 

and 

,o  

9~ = Y, Ci{~ exp (35) 
i=1 

X = e x p ( - y x  ~); y = f l - i h .  (36) 

The  fixed linear parameters C (~ and %=0 .8 2 3 7  were obtained by optimizing 
the ten harmonic oscillator functions to yield a real stationary solution, at 
E r = 0.4580, f rom which the resonance position is estimated. Th e  weak depen- 
dence of the complex energy on fi is presented i n  table 2. These  results were 
obtained by the addition of one complex basis funct ion X to a real basis set 
consisting of five harmonic oscillator functions (note that in this case also the 
linear parameters of the real basis functions C (~ in (30) were freely optimized).  

Table 2. The resonance position E~. and width -2E~ of the anharmonic oscillator, A= 
-0 .05,  obtained by the stabilization method of Junker. The basis set was con- 
structed of five real Hermite polynomials (scaled by ~0=0-868) and a primitive 
gaussian complex scaled by y = ( f l - 0 . 9 i ) .  The non-linear parameters So and y 
were optimized to give stationary solution of the complex energy. 

E~ - E i  5 

0.4357 0.0159 0.02 

0.4354 0.0173 0.10 

0.4383 0.0205 0.20 

0.4390 0-0261 0.30 

D
ow

nl
oa

de
d 

by
 [

T
ul

an
e 

U
ni

ve
rs

ity
] 

at
 1

2:
35

 2
8 

Se
pt

em
be

r 
20

14
 



596 N. Moiseyev 

4. DISCUSSION 

T h e  resonance position E r and width - 2 E  i are presented as the complex 
eigenvalues of the conventional secular equations that are generalized by letting 
one (or more)  of the exponential  parameters 7 of the basis functions to be a 
complex number .  Since we require that 

OEr/O]),] = 0  = OEi]O]), ] (37) 

then the resonances can be considered as the complex solutions that are obtained 
as results of the analytical continuation of the conventional variational solutions 
to the complex plane. T h e  complex stationary solutions are obtained while 
one of the parameters  in the hamiltonian A is varied to give a branch point in 
which two (or more)  eigenvalues of the real hamil tonian matrix coalesce. This  
exploration of the conditions in which complex stationary solutions are obtained 
leads us to the following suggestion, that helps one to distinguish between the 
resonant complex eigenvalues and the other  complex non-physical  eigenvalues 
that  are obtained as well. 

T h e  c o m p l e x  eigenvalues should be calculated as functions of A. Th e  
resonances are associated with the complex eigenvalues that are lying on the 
branches that are linked to the real eigenvalues (the optimized A gets a real 
value in spite of the fact that the variational space is complex) that describe the 
bound  states of the given hamiltonian (see figure 1 for example).  On the basis 
of the above analysis it was pointed out that  the enhanced stability of the resonant 
eigenvalue when a complex basis funct ion is added to the real basis set is due 
to the fact that the expectation value of the second derivative of the hamiltonian 

Table 3. Iterative virial-scaling procedure for the lowest anharmonic oscillator resonance 
= -0.05, ~illustrating the speed of convergence when (a) the basis set is constructed 

of five Hermite polynomials, (b) the basis set is constructed of twenty five Hermite 
polynomials. 

Iteration Er -- E~ 

1 0.45066 0.02585 0.9727 -0.2319 i 
5 0.44483 0.02501 0.8836 -0.2548 i 

10 0 - 4 ~ 5  0-02381 0.8336 -0.2077 i 
15 0.44453 0.02373 0.8394-0.2264 i 
20 0-44454 0-02373 0.8402 -0-2203 i 

(a) 

Iteration Er - E~ ~/ 

1 0.45087 0.02607 0.9727 -0-2319 i 
5 0-44201 0.01907 0.7813 -0.3017 i 

10 0.44548 0.02278 0.8324-0.1978 i 
15 0-44548 0-02278 0.8317- 0.1981 i 
20 0.44548 0,02278 0.8317 -0-1981 i 

(b) 
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Generalized complex variational method 597 

Table 4. The complex eigenvalues obtained by the application of the stabilization method 
of Junker to the anharmonic oscillator, A=0.05, illustrating the sensitivity of the 
resonant eigenvalue to the scaling of the ten real basis functions by s 0 while the 
complex variational parameter y = fi-0.6i (defined by (36) in the text) has a weak 
effect on the results. 

fl Er(a0 = 1.0) - Ei(a0 = 1.0) Er(~0 = 0"8) - Ei(a0 = 0-8) 

0.02 0.45034 0.00290 0.43681 0-02761 
0.04 0.45038 0.00291 0.43974 0.02645 
0.06 0.45043 0.00292 0.44171 0.02506 
0.08 0.45048 0.00293 0.44308 0.02384 
0.10 0-45052 0.00295 0.44413 0.02286 

with respect to 7 is negative. However ,  in this context we should mention the 
computational  advantages of the complex coordinate method.  For  homo-  
geneous potential functions the complex coordinate method  gives an algebraic 
equation for the optimized complex scaling factor ~? that can be solved by any of 
the conventional numerical procedures and thereby simultaneously the optimized 
values of the real and the imaginary parts of ~ are obtained. In the case of the 
anharmonic oscillator these computat ional  advantages were found to be very 
helpful in finding the complex stationary solutions (convergence of Er, E~ and 
the optimized ~ were achieved in several iterations, (see table (3)), whereas 
when the stabilization method of Junker  was used the resonant eigenvalues were 
very sensitive to the values of the exponential  parameter  of the real basis set, 
% in (30), which had to be obtained variationally (see table 4). 

T h e  anharmonic oscillator was studied as a numerical example. It  is 
interesting that resonance eigenvalues were obtained by the complex coordinate 
method within the finite matrix approach in spite of the fact that the anharmonic  
hamiltonian contains a x 4 potential  te rm and therefore does not have a spectrum. 
The  successful application of the complex coordinate method  to the anharmonic  
oscillator supports  the assumption resulting f rom previous applications to the 
Stark effect in atoms [10] and to a singular potential [27] that the resonant 
eigenvalues are invariant under  a complex coordinate scaling even in cases 
where the potentials do not give a physically scattering theory.  

Thanks  are due to Professor J. Katriel,  Dr. G. Kventsel  and Dr.  B. R. 
Junker, for helpful comments  and discussions. 
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