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Abstract

Finite-order perturbation corrections are ambiguous since they depend on the partitioning of the Hamiltonian to a
zero-order part and perturbation, and any chosen partitioning can be freely modified, e.g. by level shift projectors. To
optimize low-order corrections, an approximate variational procedure is proposed to determine level shift parameters from
the first-order Ansatz for the wavefunction. The resulting new partitioning scheme provides significantly better second-order
results than those obtained by standard partitions like Epstein–Nesbet or Møller–Plesset. We treat the anharmonic oscillator
and the atomic electron correlation energy in He, Be and Ne as numerical test cases. q 1999 Published by Elsevier Science
B.V. All rights reserved.

1. Introduction

A crucial starting point in any perturbational cal-
ˆculation is the partitioning of the Hamiltonian H

ˆ 0 ˆinto a zero-order part H and a remainder W, the
perturbation:

ˆ ˆ 0 ˆHsH qW . 1Ž .
In some cases, a natural partitioning is suggested

Žby the physics of the problem e.g. an atom in a
.weak external field , while in other cases it is com-

Žpletely arbitrary e.g., Fockian q correlation opera-
.tor in a many-electron system . In any case, selecting

ˆ 0H by some physical or intuitive argument, one can
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freely consider a repartitioning by any level shift
parameters l :k

ˆ ˆ 0 ˆ< : ² < < : ² <Hs H q l k k q Wy l k k ,Ý Ýk kž / ž /
k k

2Ž .

ˆ 0< :with k being the eigenfunctions of H . This kind
of repartitioning neither affects zero-order states,
energy correction up to first order, nor off-diagonal

ˆmatrix elements of W and thus is easy to implement.
In many-body theory, such level shifts can be ap-

w xplied to connect the Møller–Plesset 1 and
w xEpstein–Nesbet 2,3 partitionings, commonly used

to evaluate the correlation energy perturbationally.
Level shifts have also been applied by several au-
thors to remove quasidegeneracies from the zero-

w xorder spectrum 4–9 .
w xPreviously, Feenberg and Goldhammer 10,11

have investigated the effect of introducing a single
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variational parameter in front of the first-order wave-
function, which is equivalent to the repartitioning

1 my1
0 0ˆ ˆ ˆ ˆHs H q Wq H 3Ž .ž /m m

w xdiscussed also by Amos 12 . Feenberg has also
considered separate scaling factors at each order of
the wavefunction. The requirement for a specific
order of the energy to vanish, as an alternative to the
variationally optimal choice for m, was also dis-
cussed.

In the framework of many-body perturbation the-
Ž . w xory PT , Dietz et al. 13,14 have also studied a

‘one-l’ approximation in the previous sense, for the
repartitioning of the Hamiltonian. They have checked
the convergence properties of the PT series and the
damping effect of their repartitioning parameter as
well.

2. Theory

In this Letter, we suggest keeping all the relevant
Ž .shift parameters l in Eq. 2 and optimizing themk

using the first-order Ansatz of the wavefunction. As
a result, a new partitioning scheme emerges, the
performance of which will be demonstrated on se-

Žlected examples the case of anharmonic oscillator
and some ab initio calculations of the electron corre-

.lation energy in atomic systems .
As we wish to optimize low-order results, we

consider the wavefunction of state i up to first order:

Wk i
< : < : < :c s i y k , 4Ž .Ýi Ž0. Ž0.E ql yEk k iŽ .k /i

where EŽ0. are the zero-order energies before apply-
ing level shift, W are the matrix elements of thek i

perturbation. We have set l s0 for the sole state ii
Ž .normally being the ground state to fix the energy
origin. The Rayleigh quotient of this first-order
Ansatz,

ˆ² < < :c H ci i² :E s 5Ž .² < :c ci i

can, in principle, be made stationary with respect to
the variation of parameters l . This would be equiv-k

alent to exact diagonalization of the full Hamiltonian

Ž .if i the zero-order states formed a complete set and
Ž .ii neither of the W matrix elements vanished. Ifi k

Žonly some of these matrix elements are non-zero as
.is usually the case , then the variational optimization

of l is equivalent to diagonalizing the Hamiltoniank

in a subspace. Instead of the exact diagonalization,
we propose determining l approximately in thek

spirit of perturbation theory. Carrying out the varia-
Ž . Ž .tion of Eq. 5 , and neglecting all OO 3 terms, we get

a system of equations for the level shift parameters:

EŽ0.yEŽ0.yWk i ii
D sW k/ i , 6Ž . Ž .k i k W Wk j ji

W y Ýi k
D jj/i

where D sEŽ0.yEŽ0.ql are assumed to be non-k k i k
Ž .zero that is, we do not shift levels for which W s0 .i k

This is the working formula of the present Letter.
Ž .Expressions of Eq. 6 may be transformed to

inhomogeneous equations linear in 1rD j

1
A s1 k/ i 7Ž . Ž .Ý k j

D jj/i

where

W Wk j jiŽ0. Ž0.A sd E yE yW q . 8Ž .Ž .k j k j j i i i Wik

Therefore, provided that the D that are equal to zeroj

can be excluded, and assuming that the determinant
of matrix A is non-vanishing, the solutions are
uniquely determined. In practice, one is not forced to

Ž .compute the inverse of A, as Eq. 6 may be solved
by a fast-converging direct iteration procedure.

It may be possible to introduce one further ap-
proximation neglecting all j/k terms in the denom-

Ž .inators of Eq. 6 . Then the solutions become

D sEŽ0.qW yEŽ0.yW k/ i 9Ž . Ž .k k k k i i i

leading to

l sW yW k/ i . 10Ž . Ž .k k k i i

This means that no diagonal elements of the pertur-
bation survive for k/ i, which is essentially the

w xpartitioning of Epstein and Nesbet 2,3 .
It is not difficult to see that the repartitioning of

Ž .the Hamiltonian indicated by Eq. 2 using shifts of
Ž .Eq. 6 is equivalent to a specific resummation tech-
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nique. For example, assuming that W is zero, thei i

second-order energy obtained with denominators of
Ž .the first iteration of Eq. 6 contains the third-order

correction in the original partitioning, while the
third-order correction in the new partition always
vanishes. Further iteration brings in higher-order cor-
rections. A detailed account of this partial resumma-
tion would grow out of the limits of this Letter, and
will be given in a forthcoming publication.

3. Examples

3.1. Anharmonic oscillator

Consider a one-dimensional harmonic oscillator
perturbed by a quartic term

1 2 2 4 Ž0. Ž0.ˆ ˆ ˆ ˆ ˆHs p qq qg q sH qg VsH qWˆ ˆ ˆŽ .2

11Ž .

in arbitrary units, g measuring the strength of anhar-
monicity. Starting from the well-known solution of

1Ž0.the harmonic oscillator, E snq , we wish ton 2

find the ground state eigenvalue of the anharmonic
system perturbatively.

The most straightforward way is to consider the
anharmonic term as perturbation, indicated in Eq.

Ž .11 , and obtain the eigenvalue corrections order by
Ž .order with the Rayleigh–Schrodinger RS formulae¨

2
W0 kŽ1. Ž2.E sW E sy . 12Ž .Ý00 Ž0. Ž0.E yEkk/0

In the basis of the zero-order eigenfunctions, the W0 k

matrix elements become

g 22W s 2q5kq4k q kq1 dŽ .Ž .0 k 0 k4
g 2(q k ky1 kq1 dŽ . Ž . 2 k2
g (q k ky1 ky2 ky3 d 13Ž . Ž . Ž . Ž .4 k4

leading to

2 2
W W02 043Ž1. Ž2.E s g E sy y4 Ž0. Ž0. Ž0. Ž0.E yE E yE2 4

21 2sy g . 14Ž .8

Ž .Because of the sparseness of matrix W, Eq. 6 may
now be solved for D and D explicitly.2 4

Second-order results and Rayleigh quotients of
Ž .Eq. 5 are plotted in Fig. 1 as a function of the

strength of anharmonicity. The full anharmonic

Ž .Fig. 1. Ground state eigenvalue of a one-dimensional oscillator as a function of the anharmonicity of the potential g as obtained from
Ž .exact diagonalization and by second-order RS perturbation theory in different partitionings. STND, standard see text ; EN, Epstein–Nesbet;

² :REP, the present repartitioning. Rayleigh quotients with first-order wavefunctions are indicated by . . . . Energy and g are measured in
arbitrary units.
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w xHamiltonian was diagonalized exactly 15,16 to
check the accuracy of perturbative results. Of the

Ž . Žthree partitionings shown, that of Eq. 11 standard,
.labelled by STND gives a reliable estimation only at

very weak perturbation. Higher-order terms do not
improve this result in the moderate perturbation

Ž .range. We also tested the Epstein–Nesbet EN parti-
tioning up to the second order. It results in reason-
able values at relatively broad perturbation range, the
second-order value approaching closer to the exact
curve than the expectation value with the first-order
wavefunction. Significantly better results are ob-

Ž .tained using the partitioning defined by Eq. 6 . The
second-order correction gives a curve which starts to
deviate from the exact one only above g;0.3 in our
scale, while the first-order expectation value remains
close to the exact result within the full range investi-
gated, including g values of relatively strong anhar-
monicity.

3.2. Atomic electron correlation energies

To investigate the power of the proposed parti-
tioning, calculations have been performed for the
correlation energies of atoms He, Be and Ne in a few

Ž .basis sets Tables 1 and 3 . Results of second-order
Ž .perturbation theory PT are compared to those of

standard quantum chemical methods. Of these, CCD

Ž . Ž .CCSD are values from the coupled-cluster CC
Ž .method with double and single substitutions, while

Ž .CID CISD refers to the configuration interaction
Ž .CI technique. Whenever it was possible, exact

Ž .diagonalization denoted by FULL-CI was per-
formed in the actual basis set. Notations RS and BW
stand for the Rayleigh–Schrodinger and Brillouin–¨

w xWigner variants of PT 17,18 . Different partition-
Ž . Žings are indicated by MP Møller–Plesset , EN Ep-

.stein–Nesbet on the spin-adapted CI matrix, and
REP, the latter referring to the repartitioning pro-
posed here. The BW-REP2 results presented here are
BW corrections in the partitioning optimized within
the RS scheme. The CC calculations were done with

w xthe GAUSSIAN 94 program system 19 , others were
performed with special routines added to the

w xMUNGAUSS program 20 , which was also inter-
faced to the FULL-CI code by Knowles and Handy
w x21 .

We are of course aware of the fact that the BW
variant of PT does not meet the size-consistency
requirement. Since the presented preliminary calcula-
tions were done on single atoms, the BW results are
still informative. We strongly emphasize that within
the RS scheme the proposed repartitioning does not
destroy the size-consistent feature. This was checked
by numerical calculations but can also be shown

ˆ ˆŽ .explicitly by inspecting Eq. 8 . Assume WsW qA

Table 1
Results of PT calculations in different partitionings for He atom

Ž . w xBasis set 5s r 3s 2p1d 10s2p1d

method E Percentage of E Percentage oftot tot
Ž . Ž .au E covered au E coveredcorr corr

Hartree–Fock y2.859895 0.0 y2.861669 0.0
RS-MP2 y2.891578 84.1 y2.893907 84.1
RS-MP3 y2.896550 97.3 y2.898939 97.2

RS-EN2 y2.898574 102.7 y2.899759 99.4

RS-REP2 y2.897846 100.7 y2.900292 100.8
BW-MP2 y2.886941 71.8 y2.889212 71.9
BW-EN2 y2.898256 101.8 y2.899472 98.6

BW-REP2 y2.897542 99.9 y2.899978 99.9
CID y2.897542 99.9 y2.899979 99.9
CCD y2.897542 99.9 y2.899979 99.9
FULL-CI y2.897564 100.0 y2.900001 100.0

w xTotal electronic energies and electron correlation energy fractions are shown in two different Huzinaga type basis sets 17 . See text for the
meaning of acronyms.
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Table 2
Results of PT calculations in different partitionings for Be atom

Ž . w x Ž . w xBasis set 9s r 5s 2p 9s5p r 5s2p 1d

method E Percentage of E Percentage oftot tot
Ž . Ž .au E covered au E coveredcorr corr

Hartree–Fock y14.571951 0.0 y14.571951 0.0
RS-MP2 y14.609264 64.7 y14.610932 65.3
RS-MP3 y14.621400 85.7 y14.622507 84.7

RS-EN2 y14.638488 115.3 y14.633372 102.9

RS-REP2 y14.632764 105.4 y14.636236 107.7
BW-MP2 y14.587492 26.9 y14.587755 26.5
BW-EN2 y14.631939 104.0 y14.628401 94.6

BW-REP2 y14.627801 96.8 y14.629739 96.8
CID y14.627811 96.8 y14.629793 96.9
CISD y14.628462 97.9 y14.630258 97.7
CCD y14.628814 98.6 y14.630980 98.9
CCSD y14.629512 99.8 y14.631475 99.7
FULL-CI y14.629652 100.0 y14.631639 100.0

w xTotal electronic energies and electron correlation energy fractions are shown in two different Huzinaga-type basis sets 17 . See text for the
meaning of acronyms.

Ŵ , A and B representing two non-interacting sub-B

systems, and suppose that excited state k describes
Žan excitation localized either on A or B. Mixed

type excitations do not contribute in the non-inter-

. Ž .acting case. Clearly, matrix A in Eq. 8 has a
block-diagonal form in the basis of local excitations.
Consequently, the presence of subsytem B will not
affect the energy denominators D of subsytem Ak

Table 3
Results of PT calculations in different partitionings for Ne atom

Ž . w x Ž . w xBasis set 9s5p r 3s2p 9s5p r 3s2p 1d

method E Percentage of Etot tot
Ž . Ž .au E covered aucorr

Hartree–Fock y128.522354 0.0 y128.522354
RS-MP2 y128.622712 97.7 y128.671277
RS-MP3 y128.620756 95.8 y128.671872

RS-EN2 y128.643544 118.0 y128.701569

RS-REP2 y128.621929 97.0 y128.673259
BW-MP2 y128.530709 8.1 y128.536350
BW-EN2 y128.639945 114.5 y128.694690

BW-REP2 y128.619896 95.0 y128.669126
CID y128.619897 95.0 y128.669127
CISD y128.621178 96.3 y128.670869
CCD y128.622502 97.5 y128.672798
CCSD y128.623366 98.4 y128.673994
FULL-CI y128.625027 100.0

w xTotal electronic energies and electron correlation energy fractions are shown in two different Huzinaga type basis sets 17 . See text for the
meaning of acronyms.
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Ž .resulting from Eq. 7 . This is exactly the require-
ment of size-consistency in RS-PT.

The results can be summarized as follows.
Ž .In the case of the He atom Table 1 , all the

perturbative methods presented above give relatively
high percent of the correlation energy, as expected
for a two-electron system. Still one can see that the
good approximation presented by RS-MP can be
improved turning to RS-EN. It is interesting to note
that the performance of EN has the strongest basis
set dependence among the methods studied. This is a
quite general feature which can be inferred from the
other examples too. Another notable observation is
that combination of MP partitioning with BW2 is
necessarily inappropriate for the estimation of corre-
lation energy since energy denominators, already too
large in RS-MP, are further increased during BW
iteration. The accuracy of REP2 is much better than
that of MP3 in both PT expansions, in fact it pro-
vides the best PT estimates, the error being less than

Ž . Ž .q0.8% RS and y0.1% BW .
Ž .For the Be atom Table 2 , the estimation given

by RS-MP is unusually poor, and again considerable
improvement may be achieved by EN partitioning.

Ž .With the repartitioning defined by Eq. 6 one gets
significantly better approximations in both RS and
BW schemes for this system as well.

Ž .Considering the Ne atom Table 3 , the RS-MP2
estimations are astonishingly good. In the larger
basis, we were not able to get the FULL-CI solution,
thus we can judge the accuracy of the REP2 results
by comparison with CCSD. One may observe that, in
both basis sets, the RS-REP2 results are again better
than RS-MP3. The RS-REP2 energy is not lowered
below the exact value, and the BW iteration pulls it
back to the variational CID level.

The examples studied above give rise to the fol-
lowing qualitative conclusions. The proposed reparti-
tioning of the Hamiltonian significantly improves
RS-MP results. Values gained by RS-REP2 are bet-
ter than RS-MP3 though the former may present a
slight overestimation of the exact correlation energy.
This property of the RS-REP2 scheme is compen-
sated by turning to BW-REP2 as the latter applies
increased energy denominators. Since the determina-
tion of shift parameters and is not concerned with
those levels which directly interact with the ground
state, we did not compute higher-order results. It is

in accordance with the central idea of the present
proposition, which was to increase the accuracy of
low-order corrections. Although figures presented for
total and correlation energies are quite promising, we
do not claim that the conclusions drawn on the
simple examples studied in this Letter are fully
general. Other examples and the question of chemi-
cal energy differences are still to be investigated.
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