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ABSTRACT: With the aid of Löwdin’s partitioning theory, an infinite series for the
eigenvalue of the Schrödinger equation is derived which does not contain energy
differences in denominators. The resulting formulae are compared to those of constant
denominator methods, such as perturbation theory within the Unsøld approximation and
the connected moment expansion (CMX). The Unsøld formulae are easily obtained from
partitioning theory by a suitable choice of the zero order Hamiltonian. Optimizing the
value of the energy denominator using the first order wave function in a size-consistent
way, the third order Unsøld correction vanishes, and the corresponding energy correction
formula of the CMX is recovered at the second order. © 2002 Wiley Periodicals, Inc. Int
J Quantum Chem 90: 20–26, 2002

Key words: multi-reference perturbation theory; constant-denominator
perturbation theory; connected moment expansion; optimized partitioning;
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Introduction

L öwdin’s partitioning technique [1], besides
providing an energy-dependent effective

Hamiltonian, serves as a unifying tool to derive
different variants of perturbation theory (PT), such
as the Brillouin–Wigner [2, 3] or the Rayleigh–
Schrödinger [4, 5] formalisms. These points have
been repeatedly emphasized by Löwdin in his
fundamental series of papers entitled “Studies in
Perturbation Theory” [1, 6 – 11].
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Among standard formulation of perturbation
theories, the Rayleigh–Schrödinger (RS) formalism
is preferred in the many-body problem, due to its
extensive property which is often of utmost im-
portance. This theory, however, is plagued with
the quasi-degeneracy problem, i.e., the diverging
nature of standard nondegenerate PT formulae
in the limit of small energy denominators. Sev-
eral solutions have been proposed [12 – 20] to deal
with quasi-degenerate situations. These usually col-
lect the quasi-degenerate levels into a zero order
subspace and approximate the exact solution by
Löwdin’s partitioning theory or a variant thereof.
Another possibility is to shift the zero order en-
ergy levels and find the level shift parameters by
some physical/intuitive consideration, by an em-
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pirical analysis [21], or by an optimization tech-
nique [22 – 24]. Two substantially simpler (though
less exact) approaches also have to be mentioned:
(i) damping of small energy denominators by imag-
inary level shifts [25, 26], and (ii) using constant
(average) energy denominators. Of the latter, the so
called Unsøld approximation results from standard
RS-PT formulae by setting each denominator equal,
permitting one to perform the sum-over-states in
the PT formulae explicitly. A second approach of
the latter type is the connected moment expansion
(CMX) [27] which offers a convergent energy series
using the (connected) moments of the Hamiltonian.

The CMX method, some time ago [28], was
applied to calculate correlation energies in small
molecules with medium success. Later [29], this ap-
proach was criticized by Wolinski and Pulay, who
remarked that any constant denominator PT or the
CMX formulae were ab ovo inappropriate to com-
pute molecular characteristics like potential curves
or force constants. They argued that, though at large
distances these methods are free from the dissoci-
ation catastrophe, at the same time they lack the
important effect of decreasing energy denominators
upon prolongating covalent bonds at around equi-
librium.

However, in accordance with most numerical ex-
perience we had with CMX, the above criticism is
relevant only if one has a single configurational ref-
erence state. Having computed a qualitatively cor-
rect potential curve in a multiconfigurational frame-
work, one no longer needs the effect of decreasing
denominators, and one may wonder if constant de-
nominator PTs, due to their simplicity, are valuable
tools in accounting for the dynamical part of corre-
lation energy.

Application of constant denominator PTs is
strongly motivated by the fact that, besides be-
ing simpler, permitting one to evaluate easily
fourth [30] or even fifth [31] order corrections, they
are free from the quasi-degeneracy problem. The
price to pay for this is slow convergence and re-
duced accuracy at low orders; therefore such theo-
ries can only be suggested for use if the zero order
wave function is already sufficiently accurate. In
quantum chemistry, multireference states may serve
as such zero orders.

In this article, we first present a simple deriva-
tion of Löwdin’s implicit energy formula. Being
exact, this formula may serve as a starting point
to derive basically any approximate energy cor-
rection schemes. We shall analyze some of them
and show how the simple Unsøld approximation

can be obtained by an appropriate splitting of the
full Hamiltonian. Then, following the philosophy of
our previous papers [22, 23] we shall optimize the
Unsøld denominator and show that the resulting
second order formula is the same as the analogous
expression of CMX theory. A few numbers will il-
lustrate the equations.

Löwdin’s Implicit Energy Formula

Using standard notations of partitioning tech-
nique, we define two orthogonal projectors,

Ô2 = Ô P̂2 = P̂ ÔP̂ = 0, (1)

that span the full space under consideration:

Ô + P̂ = 1. (2)

The Schrödinger equation Ĥ� = E� is then parti-
tioned as (

ÔĤÔ + ÔĤP̂
)
� = EÔ�(

P̂ĤÔ + P̂ĤP̂
)
� = EP̂� , (3)

leading to the standard energy formula [1]

E = 〈
�

∣∣Ĥ∣∣�〉 + 〈
�

∣∣Ĥ(
E − P̂Ĥ

)−1P̂Ĥ
∣∣�〉

(4)

where

� = Ô�

is the O-component of the exact wave function. In
practical methods one often chooses an appropriate
reference function � and defines the Ô projector as

Ô = |�〉〈�|. (5)

The energy expression (4) is most useful to derive
several practical approximative formulae. It can be,
however, brought to a somewhat simpler form by
the identical transformation〈

�
∣∣Ĥ(

E − P̂Ĥ
)−1P̂Ĥ

∣∣�〉
= 〈

�
∣∣Ĥ(

E − P̂Ĥ
)−1(P̂Ĥ − E

)∣∣�〉
+ E

〈
�

∣∣Ĥ(
E − P̂Ĥ

)−1∣∣�〉
= −〈

�
∣∣Ĥ∣∣�〉 + E

〈
�

∣∣Ĥ(
E − P̂Ĥ

)−1∣∣�〉
(6)

where an auxiliary term was added and subtracted
to get rid of the inverse in the first term. Substitut-
ing this into the general energy expression (4) and
dividing by E we get the compact result

1 = 〈
�

∣∣Ĥ(
E − P̂Ĥ

)−1∣∣�〉
. (7)

This equation is an exact implicit formula for the
energy which, as was discussed by Löwdin [32],
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can also be obtained using resolvent techniques and
may serve as a starting point to derive diverse the-
oretical and computational methods of quantum
mechanics, including perturbation theory.

It is worth comparing Eq. (7) to the so-called We-
instein function, which is the expectation value of
the resolvent of the Hamiltonian taken with the ref-
erence function �:〈

�
∣∣(z − Ĥ

)−1∣∣�〉
. (8)

The main difference is that expression (8) is singular
at any exact energies z = E, while Eq. (7) is a fully
regular formula.

Expansion of the Implicit
Energy Formula

An interesting result is obtained by expanding
the inverse in Eq. (7) by the repeated use of the fun-
damental operator identity,(

Â − B̂
)−1 = Â−1 + Â−1B̂

(
Â − B̂

)−1 (9)

which, with the choice Â = E and B̂ = P̂Ĥ, leads to
the following infinite series:

1 =
〈
�

∣∣∣∣ Ĥ
E

+ ĤP̂Ĥ
E2 + ĤP̂ĤP̂Ĥ

E3 + · · ·
∣∣∣∣�

〉
. (10)

This expansion is challenging to discuss. We see,
first, that if the reference function � happens to be
an eigenvector of Ĥ, then all terms but the first van-
ish at the right-hand side due to the orthogonality
of the P and O spaces (i.e., for P̂� being zero), and
one is left with

1 =
〈
�

∣∣∣∣ Ĥ
E

∣∣∣∣�
〉

(11)

which is an immediate consequence of the Schrö-
dinger equation. If, however, � is just a trial func-
tion, the terms in (10) containing projector P̂ survive;
consequently Eq. (11) does not hold. Nevertheless,
Eq. (10) may still be useful provided that the series
is convergent. Assuming that sufficiently good ap-
proximation can be reached after m terms, one can
rearrange Eq. (10) to have

Em = 〈
�

∣∣Ĥ∣∣�〉
Em−1 + 〈

�
∣∣ĤP̂Ĥ�

〉
Em−2 + · · ·

+ 〈
�

∣∣(ĤP̂
)m−1Ĥ

∣∣�〉
(12)

which is an algebraic equation of order m for the
energy. In particular, for m = 2, one may write

E2 = 〈
�

∣∣ĤE + ĤP̂Ĥ
∣∣�〉

, (13)

having the solutions

E[2] = 〈�|Ĥ|�〉 ±
√

〈�|Ĥ|�〉2 + 4〈�|ĤP̂Ĥ|�〉
2

(14)

where, for bound states, the negative sign corre-
sponds to the ground state. Here the quantity 〈ĤP̂Ĥ〉
(we dropped the reference function from this short-
hand) can be transformed as〈

ĤP̂Ĥ
〉 = 〈

Ĥ
(
1 − Ô

)
Ĥ

〉 = 〈
Ĥ2〉 − 〈

Ĥ
〉2 (15)

which is the distribution of the Hamiltonian, also
called the second connected moment [33]. Using the
abbreviation 〈

Ĥ2〉
c = 〈

Ĥ2〉 − 〈
Ĥ

〉2,

Eq. (14) becomes

E[2] = 〈Ĥ〉
2

±
√

〈Ĥ〉2

4
+ 〈

Ĥ2
〉
c (16)

which, assuming 〈Ĥ2〉c 
 〈Ĥ〉2, can be approxi-
mated by the Taylor expansion of the square root as

E[2] = 〈
Ĥ

〉 + 〈Ĥ2〉c

〈Ĥ〉 + · · · (17)

which is a simple (nonperturbative) energy cor-
rection formula. Since it does not contain energy
differences in denominators, it is free from the
quasi-degeneracy problem of PT; thus it may be of
potential use in some cases.

The applicability of the previous equations relies
upon the fast convergence of the series expansion
in (10). Unfortunately, this series is not at all con-
vergent in general. The condition of its convergence
is that the norm of operator P̂Ĥ/E should be less
than 1, but this condition is not satisfied in many
cases. We have checked for example the hydrogen
molecule using the Hartree–Fock (HF) wave func-
tion as the reference state and the exact (full-CI)
value for E. In minimal basis set we have ‖P̂Ĥ/E‖ =
0.4793 which means that the series is nicely conver-
gent, but in a DZ, TZ, and TZP bases we obtained
for ‖P̂Ĥ/E‖ the values 1.3784, 4.2943, and 4.3716,
respectively. Similar results were found for the he-
lium atom and the water molecule. Although one
may apply Padé approximants or other techniques
to sum up a divergent series, the low-order estima-
tions like Eq. (17) remain useless. The second order
truncation typically provides a negligible improve-
ment if the norm is around 1, while it is unphysi-
cally large if ‖P̂Ĥ/E‖ � 1. To treat these cases one
must search better approximations, e.g., in the field

22 VOL. 90, NO. 1



CONSTANT DENOMINATOR PERTURBATIVE SCHEMES AND THE PARTITIONING TECHNIQUE

of perturbation theory, where splitting the Hamil-
tonian for a “larger” and a “smaller” part one has a
better hope that higher powers of the “smaller” one
can be neglected.

Constant Denominator PT

It is well known [1] that PT can be derived from
the partitioning technique, and in particular, the
perturbative series of the energy can be derived
from the implicit energy formula (7). Here we aim
to extract the PT formulae in the so called Unsøld
approximation that uses averaged energy denomi-
nators. To this end, we split the total Hamiltonian
into a zero order part Ĥ0 and a perturbation V̂, so
that

Ĥ = Ĥ0 + V̂, (18)

where

Ĥ0 = E0Ô + νP̂. (19)

In this expression ν stands for an “averaged” value
of excited energy levels; thus ν − E0 is an Unsøld
type excitation energy.

To derive the second order energy correction for-
mula, one substitutes the partition (18) and the
special form of the zero order Hamiltonian (19) into
the implicit energy formula (7),

1 = 1
E

〈
�

∣∣∣∣Ĥ
(

1 − ν

E
P̂ − P̂V̂

E

)−1∣∣∣∣�
〉

where

Ĥ0P̂ = νP̂

is utilized, which is a simple consequence of (19)
and (1). One now expands the inverse opera-
tor using the fundamental identity (9) with Â =
(1 − (ν/E)P̂) and B̂ = P̂V̂/E to get

1 = 〈
�

∣∣Ĥ(
E − νP̂

)−1∣∣�〉 + 〈
�

∣∣Ĥ(
E − νP̂

)−1

× P̂V̂
(
E − νP̂

)−1∣∣�〉 + O(3).

This result is substantially simplified noting that

(
E − νP̂

)−1|�〉 = 1
E

|�〉,
by which, upon multiplying with E, one obtains the
Brillouin–Wigner variant of Unsøld PT:

E = 〈
�

∣∣Ĥ∣∣�〉+ 〈
�

∣∣Ĥ(
E−νP̂

)−1P̂V̂
∣∣�〉+O(3). (20)

The Rayleigh–Schrödinger–Unsøld formula emerg-
es from this by expanding the energy E in the

inverse and recollecting the terms of various orders,

E = 〈
�

∣∣Ĥ∣∣�〉 + 〈
�

∣∣Ĥ(
E0 − νP̂

)−1P̂V̂
∣∣�〉 + O(3)

= 〈
�

∣∣Ĥ∣∣�〉 + 〈�|V̂P̂V̂|�〉
E0 − ν

+ O(3), (21)

where we used the identity

(
E0 − νP̂

)−1 = Ô
E0 + P̂

E0 − ν

and the fact that

〈�|Ĥ0P̂ = 0.

The energy expression Eq. (21) is a standard RS-PT
expansion, apart from the restriction of using a uni-
fied excitation energy ν−E0. It can be obtained from
the usual second order RS-PT formula by setting all
energy levels equal and performing the sum-over-
states in a trivial manner.

Optimized Denominators and
the CMX Correction

Appearance of the averaged excited levels ν

in the energy expression of the previous section,
Eq. (21), gives rise to the problem of establishing
this parameter. Among numerous possible ways to
determine ν, here we choose the one that introduces
the concept of optimized partitioning in PT [22, 23].
We may consider ν as a level shift parameter, as can
be seen if regrouping the terms of the Hamiltonian
as

Ĥ = Ĥ0 + (
Ĥ − E0Ô − νP̂

)
where both the zero order operator, Eq. (19), and
the perturbation (the three terms in parentheses) are
ν-dependent. Changing the level shift parameter ν

affects the partitioning of the Hamiltonian, which
can now be optimized by finding a proper value
for ν.

In the spirit of constant denominator theory, pa-
rameter ν is now state independent, which rep-
resents a substantial simplification to the general
theory of optimized partitioning [23]. The optimiza-
tion [22, 23] is based on the wavefunction correct up
to first order in PT,

∣∣� (1)〉= |�〉 + P̂V̂
E0 − ν

|�〉,
and requires that the Rayleigh quotient taken with
� (1) and written up to O(3) has an extremum at the
desired ν:

∂

∂ν

〈� (1)H|� (1)〉
〈� (1)|� (1)〉 = 0. (22)
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Neglecting O(4) terms of the left-hand side and car-
rying out the derivation one arrives at

ν = E0 + 〈Ĥ3〉c

〈Ĥ2〉c
(23)

where 〈Ĥ3〉c is the third connected moment of the
Hamiltonian [33].

This optimized averaged energy is now to be sub-
stituted into the PT correction formulae, which in
the Unsøld approximation read as

E(2) = −〈V̂2〉c

ω
= −〈Ĥ2〉c

ω

E(3) = 〈V̂3〉c

ω2 = −〈Ĥ2〉c

ω
+ 〈Ĥ3〉c

ω2

(24)

where ω = ν − E0 is the averaged excitation energy.
Substituting expression (23) for ν we arrive at

E(2)
opt = −〈Ĥ2〉2

c

〈Ĥ3〉c
(25)

E(3)
opt = 0. (26)

That is, the third order energy correction in the op-
timized partitioning is zero, in agreement with the
general result [23].

Determination of parameter ν in constant denom-
inator PT by means of a variational optimization
procedure with the first order Ansatz was suggested
some time ago by Cullen and Zerner [30]. The dif-
ference between their results and those presented
above is that they did not neglect O(4) terms in the
Rayleigh quotient. This has the consequence that
their second order result is not size extensive but
gives an upper bound to the energy. Their third
order formula is thus not zero but represents an ap-
proximate correction for extensivity in Davidson’s
philosophy.

The second and third order Unsøld formulae
(25) and (26) have to be compared to those result-
ing from the CMX [27]. The CMX expansion is a
nonperturbative, convergent technique to approach
the exact energy, which can, e.g., be obtained by
utilizing the properties of the Horn–Weinstein func-
tional [33]. The lowest order corrections read [27]

E(CMX1) = 〈
Ĥ

〉
E(CMX2) = −〈Ĥ2〉2

c

〈Ĥ3〉c
(27)

E(CMX3) = − 1

〈Ĥ3〉c

(〈Ĥ4〉c〈Ĥ2〉c − 〈Ĥ3〉2
c)2

〈Ĥ5〉c〈Ĥ3〉c − 〈Ĥ4〉2
c

where 〈Ĥn〉c’s are the higher connected moments of
the Hamiltonian [33] defined recursively as

〈
Ĥn+1〉

c = 〈
Ĥn+1〉 − n−1∑

p = 0

(
n
p

) 〈
Ĥp+1〉

c

〈
Ĥn−p〉.

It is apparent that the second order optimized Un-
søld approximation coincides with the CMX2 en-
ergy; the latter can therefore be considered as a
constant denominator PT result with optimized par-
titioning. The third order CMX correction, however,
is not zero, and we shall see that it often represents
a considerable improvement.

Numerical Examples

As mentioned briefly in the Introduction, the sim-
ple denominator-free energy correction formula can
only be useful if one uses a multiconfigurational
reference state. In this case static correlation effects
are already described by the reference function, and
the role of the perturbative formulae is just to de-
scribe dynamical correlation effects. However, small
energy denominators may still prevent one from
applying standard PT formulae, and the constant
denominator approximation can be useful in such
a case.

In Figure 1 we have presented a situation like
that: the potential curve of symmetrical stretching
of water in a split valence basis set. The reference
function we use is the energy-optimized antisym-
metrized product of strongly orthogonal geminals
(APSG) [34 – 36] with four spatial orbitals for each
two-center bond and two for each lone pair. The
1s core is left uncorrelated. This is a highly corre-
lated size-consistent reference function which qual-
itatively describes the dissociation, but, as inferred
from Figure 1, it is still not sufficiently accurate. In-
accuracy of APSG is known to be a consequence of
neglecting intergeminal correlation effects, which,
being small, can be taken into account by means of
perturbation theory. For the symmetrical stretching
of two bonds, however, PT is not trivial to apply,
since both dissociating bonds generate vanishing
energy differences in PT denominators. Thus the
standard formulae diverge.

The constant denominator (CMX) corrections do
a good job in this case. Already CMX2 offers a
significant improvement, and the CMX3 curve ap-
proaches quite well the full-CI line at around equi-
librium geometry. The APSG energies are consid-
erably improved also at large bond distances. The
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FIGURE 1. Potential curves of the symmetric dissociation of water in 6-31G basis set. The � (HOH) angle was kept
at 104.0◦. For notations, see text.

CMX2 correction can also be performed with the HF
reference function, but, despite eliminating diver-
gent denominators, the HF–CMX2 curve remains
quite pathological, reflecting the improper features
of the HF wave function.

TABLE I
Perturbative corrections [a.u.] to the energy of the
Be atom in two different basis sets, the zero order
approximations being Hartree–Fock or
antisymmetrized products of strongly orthogonal
geminals (APSG). Acronym MP2 stands for the
Møller–Plesset second order correction; CMX2 and
CMX3 label the connected moment expansion
second and third order, respectively. Full
configuration interaction (FCI) energies are given
for comparison.

3-21G 6-311G∗∗

HF −14.48682 −14.57187
MP2 −14.51026 −14.59847
HF + CMX2 −14.49996 −14.58179
HF + CMX3 −14.51520 −14.58789
APSG −14.53083 −14.61734
APSG + CMX2 −14.53136 −14.63210
APSG + CMX3 −14.53144 −14.63323
FCI −14.53144 −14.63338

To inspect some numbers, too, we present Tables I
and II reporting data for the Be atom and the water
molecule. For beryllium, the APSG wave function
is very accurate; actually it is equivalent to a frozen-
core full CI. Accordingly, the APSG–CMX2 energy is
already very accurate, and the APSG–CMX3 result
coincides with full CI to four to six digits depend-
ing on the basis set. The results for water also

TABLE II
Total energies [a.u.] for the H2O molecule in 3-21G
basis, with the geometry dOH = 1.01 Å and
α(HOH) = 104.0◦. To both zero order approximations
HF and APSG, the connected moment expansion
(CMX) is given up to third order; Møller–Plesset (MP)
PT corrections are also indicated for the HF reference
state. The FCI energy is shown for comparison.

Reference state

Order and type of PT HF APSG

0 −83.679551 −83.726373
MP2 −83.719698
MP3 −83.730842
CMX2 −83.718400 −83.730758
CMX3 −83.731190 −83.734895
FCI −83.73624257
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exhibit significant improvements upon performing
the CMX corrections.

The few numerical results presented above are
clearly insufficient to draw final conclusions about
applicability of constant-denominator PT correc-
tions to multireference states. More experience is
needed for many molecules and especially in larger
basis sets; work in this line is in progress.
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