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ABSTRACT: For the treatment of electron correlation, one most often uses the
Ž .Møller]Plesset MP partition which defines the zero-order Hamiltonian through the

spectral resolution of the Fockian. We investigate how the MP partitioning can be
Ž .improved while still using the Hartree]Fock HF reference state; and how the HF wave

function can be substituted by a correlated one preserving the formal simplicity of the
HF-based approach. To improve the MPn result, we introduce a fine tuning of energy
denominators replacing the HF orbital energies with the ionization potentials obtained
from the second-order Dyson equation. As this equation usually tends to close the gaps,
a slight decrease of the denominators is expected, inducing an improvement of low-order
correlation energies. We keep the simplicity of the MP partitioning and handle Dyson
corrections as simple level shifts. Substituting doubly filled HF orbitals by strongly
orthogonal geminals, one introduces a correlated reference state which is variational,
size-consistent, and properly describes single-bond dissociation. This wave function, the

Ž .antisymmetrized product of strongly orthogonal geminals APSG , offers a good starting
point for further corrections. We show that the use of an APSG reference state in the

Ž .equation-of-motion technique leads to Tamm]Dankoff approach TDA equations which
account for correlation effects in electronic excitation energies. Q 1998 John Wiley & Sons,
Inc. Int J Quant Chem 70: 571]581, 1998
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Introduction

erturbation theory, with a variety of its for-P w xmalisms 1 , has been a powerful tool for
taking small interactions into account. In some
cases the splitting of the total Hamiltonian comes
up naturally, being motivated by the physics of

Ž .the problem cf. molecules in external fields , while
in other situations the partitioning is ambiguous
and can only be governed by mathematical and
numerical considerations. An example for this lat-
ter case is represented by many-body perturbation

Ž .theory MBPT as applied to the calculation of
electronic energies in molecules. Here the parti-
tioning of the total electronic Hamiltonian is moti-
vated by selecting a zeroth order which is easily
soluble—a practical rather than unambiguous fac-
tor.

In the most widely used partitioning of this
Ž .type one chooses the the Hartree]Fock HF level

to define the zeroth order. This choice still allows
for various possibilities. The most straightforward
idea is to consider the diagonal elements of the

Ž .configuration interjection CI matrix as zero-order
levels, while the off-diagonals represent the per-

Ž w x.turbation Epstein]Nesbet, EN, partitioning 2, 3 .
Much better numerical results are obtained from

Ž . w xthe Møller]Plesset MP partitioning 4 , where
one chooses the Fockian as zeroth]order operator.

Ž .Though the nth order MPn corrections do not
offer an upper bound to the energy, general expe-
rience tells us that they usually underestimate the
correlation energy for small n.

Standard MPn corrections with a simple
closed-shell reference state are applicable only if
the restricted HF determinant is an acceptable ap-
proximation. Dissociation curves or other quasi-
degenerate situations require a multireference ap-

w x w xproach 5]14 , special damping techniques 15]17 ,
or a repartitioning of the Hamiltonian by a suitable

w xlevel shift 10, 18]20 to remove quasidegeneracies
from the zeroth-order spectrum. A different sort of
repartitioning has been applied by Kapuy et al.
w x21]23 in their MBPT with localized molecular

Ž .orbitals LMOs : They select the diagonal elements
of the Fockian in LMO basis as zero-order energies
and treat the off-diagonals as one-electron pertur-
bations.

In approximating the exact energy, it is not
necessary to start at the HF level. One may quote

w xthe old idea of the PCILO method 24 where
approximate, strictly localized MOs are used at the
zeroth order. Correlation and delocalization effects
are treated by PT on an equal footing, thus the
zeroth-order approximation in PCILO is weaker
than HF. Oppositely, one may use a zeroth order

Žwhich is better than HF cf. the multireference PT
w xapproaches 5]10 or attempts to improve geminal

w x.approximations perturbatively 25]30 .
In this study we shall investigate two kinds of

repartitioning in MBPT. In the following section,
level shifts will be introduced within the frame-
work of closed-shell MP theory, while in the third
section the use of the antisymmetrized product of

Ž .strongly orthogonal geminals APSG reference
state will be discussed. A small number of prelimi-
nary test calculations will be reported in both
cases.

Repartitioning by Level Shifts

REAL SHIFTS

In MP theory, one considers the partitioning

ˆ q ˆ Ž .H s « a a q W , 1Ý i i i
i

ˆwhere H is the total many-body electronic Hamil-
tonian, « ’s are the canonical Hartree]Fock orbitali
energies, while aq and a are creation and annihi-i i
lation operators for molecular spin-orbitals.

Applying a shift l to level i corresponds to thei
repartitioning

ˆ q ˆ X Ž .H s e a a q W , 2Ý i i i
i

where

Ž .e s « q l 3i i i

are the shifted one-particle energies.
Ž .Using Eq. 2 , the second-order correction be-

comes

2w 5 x1 pq rs
w2 x Ž .D E s y 4Ý4 e q e y e y er s p qpq , rs

with usual notations, p, q referring to occupied,
r, s to virtual levels. The third-order correction
undergoes a similar modification and, due to the
diagonal perturbation represented by the level shift
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operators, it is augmented by the term

2w 5 x1 rs pq
Ž .y l q l y l y l .Ý r s p q24 Ž .e q e y e y epq , rs r s p q

Ž .5

Such level shifts have been discussed previ-
w x w xously by several authors 10, 18]20 . Recently 31 ,

we started to investigate the idea of replacing « i
with correlation-corrected ionization potentials or
electron affinities e obtained from the second-i
order inverse Dyson equation:

2w 5 x1 ir pq
e s « q Ýi i 2 e q « y « y «i r p qpqr

2w 5 x1 ip rs
Ž .q . 6Ý2 e q « y « y «i p r sprs

This formula originates from the theory of one-
w xparticle Green’s functions 32]35 by truncating

the self-energy at second order. Although it is not
a good approximation to obtain accurate ionization
potentials and electron affinities, it shifts the Koop-

wmans values in a way to reduce energy gaps e.g.,
highest occupied molecular orbital and lowest

Ž .unoccupied molecular orbital HOMO]LUMO
xdifferences in most cases. This feature of Eq.

Ž .6 is utilized in solid-state theory to compute
w xcorrelation-corrected band structures 36, 37 . The

slightly smaller energy denominators, received by
substituting the Koopmans values « by thei
Dyson-corrected ones e , yield slightly larger MP2i
corrections, thus a larger fraction of the correlation
energy.

Ž .The nonlinear equations 6 for e have to bei
solved iteratively. This is straightforward* if the
root of the equation is far from all singularities
Ž .poles . In the general case, however, one has to
introduce a complex damping of strength h

2w 5 x1 ir pq
e s « q Ýi i 2 e q « y « y « y ihi r p qpqr

2w 5 x1 ip rs
Ž .q , 7Ý2 e q « y « y « q ihi p r sprs

where h tends to zero. Separating the real and
imaginary parts of this equation one may arrive at

* 50% damping is usually sufficient to ensure convergence
of the standard iterative series.

the following damped expression:

2w 5 x Ž .1 ir pq e q « y « y «i r p q
e s « q Ýi i 2 22 Ž .e q « y « y « q hpqr i r p q

2w 5 x Ž .1 ip rs e q « y « y «i p r s Ž .q , 8Ý 2 22 Ž .e q « y « y « q hprs i p r s

which can be successfully used to avoid false roots
and to ensure convergence. An example for the use

Ž .of Eq. 8 is shown in Figure 1.
An even simpler, iteration-free, correction to the

Koopmans values is obtained by standard MP2

FIGURE 1. Solution of the second-order Dyson
( ) ( ) (equation e = f e with dashed line and without solid

)line damping. The straight dashed line is the left-hand
( )side while the curves are plots of f e at the right-hand

( ) UU ( )side. a H molecule 3-21G basis, HOMO; b N2 2
molecule 6-3111GUU basis, MO No.21.
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theory to ionization energies

2w 5 x1 ir pq
MP2e s « q Ýi i 2 « q « y « y «i r p qpqr

2w 5 x1 ip rs
Ž .q . 9Ý2 « q « y « y «i p r sprs

Clearly, this corresponds to the first iteration of
Ž .Eq. 6 . This formula has also been used to correct

w xband structures in periodic systems 38]40 .

IMAGINARY LEVEL SHIFTS

Similarly to the damping of Dyson equation, cf.
Ž .Eq. 7 , one can introduce an imaginary level shift

in the energy denominator of the MP2 formula

< < 2W0 kw2x Ž .D E s y . 10Ýcomplex E y E q iGk 0 kk

While in the case of Dyson equation the actual
value of h is immaterial as, after achieving conver-
gence to the correct root, the h ª 0 limit has to be

Ž .considered, in the case of Eq. 10 a suitable choice
Ž .for G has to be made, in order to make Eq. 10

Ž .valid in quasi-degenerate QD situations. Another
question is how to extract a real number from

w2 x Ž . w xD E of Eq. 10 . In Ref. 16 , we took thecomplex
term-by-term absolute value of this expression and
determined G by requiring the resulting formula
to be exact for a fully degenerate two-level system
w x Ž .16 G s W , or by fitting G to the relevant termk 0 k

w x Ž .of the fourth-order expression 41, 42 G s 2W .k 0 k
w xIn a recent study, Forsberg and Malmqvist 43

Ž .took the real component of Eq. 10 , just like Eq.
Ž .8 . This has the advantage that it can also be

Žapplied for excited states negative excitation ener-
.gies , but has the disadvantage that it kills a fully

degenerate term completely, thus it is inadequate,
e.g., for a degenerate two-level system. Forsberg
and Malmqvist do not aim to prescribe the value
of G but check the results for several values.

Taking the absolute value of each term in Eq.
Ž .10 , preserving the overall negative sign and us-
ing G s 2W , we get the formulak 0 k

< < 2W0 kQD2 Ž .D E s y . 11Ý 2 2Ž . < <'k E y E q 4 Wk 0 0 k

This was found to work properly in quasi-degener-
ate situations which can otherwise be handled by
the substantially more complicated quasi-degener-

w xate PT formalism 11 . We note that another type
of straightforward modification of the MP2 for-

w xmula was proposed by Assfeld et al. 44 , who
applied the unexpanded square root which occurs
in the exact formula of the corresponding 2-by-2
problem for each state. As this expression does not
contain energy denominators, it may also be useful
in quasi-degenerate situations.

NUMERICAL EXAMPLES

The efficiency of the above ideas has been tested
calculating a few examples which are to be consid-
ered as forming a preliminary rather than repre-
sentative set. Table I presents correlation energies
for He and Ne atoms, the LiH molecule, and a
cluster of 8 hydrogen atoms arranged in a linear

Ž .chain with an equidistant ‘‘metallic’’ geometry of
˚ Ž .R s 1 A. Second-and third-order MPn energies

Žare evaluated with standard partitioning denoted
.by MPn-Koopmans in Table I , with the imaginary

TABLE I
( ) ( )Second- and third-order correlation energies a.u. in various partitionings as compared to CISD and QCISD T .

UU UU( ) ( ) ( ) ( )Method He TZ2P Ne TZP LiH 6-31G H 6-31G8

MP2-KOOPMANS y0.029972 y0.227947 y0.035922 y0.132450
QD2 y0.029937 y0.227865 y0.035897 y0.132324
MP2-MP2 y0.030496 y0.243533 y0.037183 y0.145077
MP2-DYSON2 y0.030476 y0.242371 y0.037054 y0.142052
MP3-KOOPMANS y0.035344 y0.227353 y0.037054 y0.157396
MP3-MP2 y0.035524 y0.225853 y0.043847 y0.161541
MP3-DYSON2 y0.035518 y0.226016 y0.043813 y0.160911
CISD y0.036487 y0.224202 y0.045674 y0.158255

( )QCISD T y0.231893 y0.168463
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w x w Ž .xlevel shift introduced in Ref. 16 QD2 of Eq. 11 ,
wwith real level shifts obtained both by MP2 Eq.

Ž .x w Ž .x9 and by second-order Dyson correction Eq. 6
Žto the one-particle energies MPn-MP2 and MPn-

.Dyson, respectively . Variational configuration in-
Ž .teraction with singles and doubles CISD values

are given for comparison, and for Ne and H the8
Ž . Ž .QCISD T T stands for triples estimates are also

indicated. We see that the small imaginary level
shifts do not affect correlation energies apprecia-

Ž .bly, systems in Table I not being quasi degener-
ate. The applied real shifts are much larger. Values
presented for He, Ne, and LiH give one a feeling
that a pretty good improvement may be achieved
by this repartitioning, although at the second-order
standard MP-Koopmans values appear to be more
balanced. This can be seen from the example of Ne
where the MP2-Dyson and especially the MP2-MP2
repartitionings apparently exhibit an overcorrec-
tion. At third order, however, the improvement
toward the variational values is remarkable in
each case. The performance of the correction is
especially advantageous for the H chain for which
the gap-closing effect of the Dyson equation is well
established.

It may be of interest to check not only absolute
values but also chemical energy differences. In
Table II we report the inversion barrier for ammo-
nia where the effect of repartitioning is very small
but mostly steps in the good direction. The im-
provement of the second- and third-order total
energies is substantial. The second-order barrier in

Ž .the Epstein]Nesbet EN2 partitioning is also in-
cluded in the table, and it seems to be the best
among second-order results. This is not the case in
general, however, upon checking the cis and trans
barrier of peroxide, Dyson-corrected values proved
to be rather bad and EN2 results were simply

TABLE II
Second- and third-order total energies and inversion

UU( )barrier a.u. of the NH molecule in 6-311G3
basis set.

Pyramidal Planar Barrier

SCF y56.210397 y56.200814 0.009583
MP2 y56.427497 y56.417689 0.009808
QD2 y56.427428 y56.417598 0.009830
EN2 y56.480479 y56.470515 0.009964
DY2 y56.443469 y56.433693 0.009776
MP3 y56.439803 y56.429630 0.010173
DY3 y56.440335 y56.430095 0.010240

( )QCISD T y56.447435 y56.437057 0.010378

FIGURE 2. Potential curve of H molecule in 6-311GUU
2

( )basis set, obtained with imaginary QD and real level
( )shift DY2, DY3 technique. Closed-shell HF SCF and MP

curves are shown for comparison.

pathological. The occasionally catastrophic behav-
ior of the EN2 partitioning was also reported by

w xother authors 45 , though in other cases it was
used successfully with multiconfigurational refer-

w xence states 45]47 .
Potential curves of H , F , and N are presented2 2 2

in Figures 2]4 including large interatomic dis-
tances for which the single-reference MPn correc-
tions fail. We computed the curves also by

w xsecond-order imaginary level shift technique 16
Ž .denoted by QD2 which is designed for quasi-de-
generate problems using G s 2W as the damp-k 0 k

wing constant. As reported in previous studies 16,
x17, 42 , the dissociation is described in a qualita-

tively correct manner by the QD2 approach in each
case. It was interesting to us to realize that the
Dyson-corrected level shifts may also result in

FIGURE 3. The same as Fig. 2, for the F molecule.2
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FIGURE 4. Potential curve of N molecule in 6-311GUU
2

basis set, using RHF-based perturbation theory with
different partitionings; DY2 and DY3 indicates real
denominator shift.

potential curves with a roughly acceptable dissoci-
Ž .ation behavior DY2 and DY3 in Figs. 2]4 within

the investigated range. The reason for this is that
for large interatomic distances the second-order

w Ž .xDyson equation Eq. 6 does not tend to close the
HOMO]LUMO gaps as it usually does at around
equilibrium geometries, but conversely, it tends to
remove quasi-degeneracies. This is equally seen
for each case studied including N with multiple-2
bond dissociation. We do not claim, however, that
this latter level shift technique can be used as a
general and automatic tool for dissociation studies.

APSG Reference State

GROUND STATE

The use of Dyson- or MP2-corrected one-
electron energies involves that, in some way, cor-
relation effects are included already at the zeroth
order. This can be done, however in a more sys-
tematic manner. Various attempts to use multiref-

Ž . w xerence MR PT 5]10 or MR coupled]cluster
w x12]14 approaches reflect the importance of this
issue. Here we discuss the idea of using strongly
orthogonal geminals to construct the zeroth order
and evaluating perturbation corrections to this ref-
erence state. Such an approach has been initiated a

w xlong time ago 25, 26 and has been discussed
w xrecently for approximate geminals 27]30 .

We define the ground-state wave function for a
Ž .system of N even electrons as

APSG q q q < : Ž .C s c c . . . c vac . 120 1 2 Nr2

The strongly orthogonal geminals cq are ex-i
panded as

Ž .i N
q i q q Ž .c s C a a , i s 1, 2, . . . , 13Ýi mn m n 2m-n

Ž .where the superscript i on the summation indi-
cates that only those indices m and n are consid-
ered which belong to the subspace assigned to

Ž . qŽ .geminal i. In Eq. 13 operators a m g i createm

electrons on orbitals spanning the ith subspace.
The subspaces i can be built up by mutually
exclusive sets of orthogonal one-electron functions

w xwhich maintain strong orthogonality 48]50 . The
expansion coefficients C i can be optimized varia-mn

tionally by solving a set of coupled local 2-electron
w xSchrodinger equations 27, 30, 51 for each sub-¨

space. Optimization of the subspaces themselves
w xleads to the so-called APSG wave function 48]50

which represents the variational minimum within
Ž .the wave function class specified by Eq. 12 . The

APSG method is size-consistent and, being triv-
ially exact for a two-electron system, it describes
properly the single-bond dissociation. It does not
give, however, a sufficiently large fraction of corre-
lation energy which motivated the development of

w xextended geminal schemes 52]56 . Here we dis-
cuss the possibility of using the APSG wave func-
tion as a reference state in MBPT.

Dealing with geminals in a many-body theory is
easier if we study their algebraic properties. The
commutators between creationrannihilation oper-
ators for the composite quasi-particles can be writ-
ten as

w q qx w y yx Ž .c , c s c , c s 0, 14i k i k

y q ˆw x Ž .c , c s d Q , 15i k i , k i

where the quasiparticle commutator has the form
w x27, 30, 51, 57, 58

Ž .i
i qˆ Ž .Q s 1 y P a a 16Ýi nm m n

mn

with P i being the first-order density matrix for
geminal i, for which, using the convention C i sml

i w xyC for m ) l, we get 30, 51, 57, 59 :lm

Ž .i
i q i i² < < : Ž .P s c a a c s C C . 17Ýnm i m n i ml nl

l
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Ž .Relation 15 , which is a consequence of the strong
w xorthogonality of the geminals 57 , is extremely

important as it tells us that the quasi-particle cre-
ation and annihilation operators commute for dif-
ferent geminals. This permits us to use an analo-
gous algebra in the evaluation of matrix elements
as if we had a single-reference function.

The above equations are valid only if one con-
siders a single geminal within each subspace. This
is normally the ground-state solution of each two-
electron problem. For the treatment of excited
states and PT corrections one needs locally excited
geminals as well:

Ž .i
q i a q q Ž .c s C a a , 18Ýi a mn m n

m-n

where a labels the excited state of the ith geminal.
The algebraic properties are defined by the follow-
ing quasi-particle commutator:

y q ˆiw x Ž .c , c s d Q , 19ja i b i j ab

Ž .i
i i ab qˆ Ž .Q s d y P a a . 20Ýab ab a b a b

ab

Ž i ab .For the transition density matrix P , see below.
While the optimization of the expansion coeffi-

cients is a trivial and fast algorithm, finding the
proper one-electron functions which span the sub-
spaces is difficult and can be quite demanding
computationally. This can be done by successive
orbital rotations governed by the appropriate gra-
dients g used also for optimizing multiconfigu-mn

Ž . w xration self-consistent field MCSCF orbitals 60 :

Ž . Ž .g s 2 F y F 21mn mn nm

for the rotation of the geminal pair m, n , where F is
the generalized Fock matrix which, for geminals
reads:

Ž . Ž .i i
i iw < xF s h P q sl km GÝ Ýmn ml ln knsl

l skl

Ž .Ž . jk
jiw < x Ž .q sl km G 22Ý Ý Ý knsl

ksl Ž .j /i

Ž .m g k, n g i, k / i in terms of spatial orbitals;
G i is the element of the second-order densityknsl

matrix where k , n , s , and l belong to the ith
geminal. It takes the particularly simple form

i i i Ž .G s 2C C . 23knsl kn sl

If k belongs to the jth subspace and n to the ith,
we get the following expression for the second-
order density matrix:

1
ji j i j i Ž .G s P P y P P . 24knsl sk ln lk sn2

Ž .Note that the intrageminal contribution 23 fac-
torizes to the product of geminal coefficients, while

Ž .the intergeminal contribution 24 has the structure
of the second-order density matrix of HF theory,
thus using matrix G requires neither extra compu-
tations nor extra storage. The k / i restriction in

Ž .Eq. 22 reflects that intrageminal orbital pairs need
not be rotated during optimization as the two-
electron problems are exactly solved within each
subspace.

The convergence of such an optimization proce-
dure may nevertheless be slow, so the selection of
initial orbitals is of extreme importance. An exam-
ple is provided by Table III where the total energy
of the LiH molecule is shown at different levels.

Ž .Although the basis is very small minimal STO-6G ,
the subspace optimization is not trivial as shown
by the second row of Table III. The corresponding

w xenergy was thought to be optimized if Ref. 61 ,
but using Boys LMOs as initial guess one gets a
better energy without any optimization. Varying
the Boys orbitals one still gets an energy lowering

Žof 0.05 mH. The acronym SLG in Table III and
below means strictly localized geminals, express-
ing that the geminals are not fully optimized but
are expanded in arbitrarily selected orthogonal

.subspaces.
The fact that Boys LMOs represent an appropri-

ate initial guess can also be inferred from Figure 5.
We plot there the variation of the total energy of
some molecules as a function of a single selected
orbital rotation parameter. The scale is chosen so
that the Boys LMOs correspond to 08. It is apparent
that in two of the cases the variational minimum is

TABLE III
Test calculations for LiH in STO-6G basis for
comparison to another optimized APSG

( )method a.u. .

Method Energy

HF y7.96663
[ ]Optimized in Ref. 61 y7.97981

SLG-Boys y7.98085
Opt.-APSG y7.98090
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FIGURE 5. Variation of total energies as function of
orbital rotation parameters near to SLG-Boys wave

( ) ( )function 3-21G basis . a H , mixing the occupied4
( )bonding LMOs of the H molecules; b H O, mixing the2 2

( )lowest occupied bonding LMO of the O—H bonds; c
HF, mixing the lowest occupied bonding LMO of the
H—F bond and the lowest nonbonding LMO of F.

almost at 08, while for the hydrogen fluoride it is
at around 208, but it is still closer to the Boys limit
than, say, to the canonical MOs.

Having obtained the reference state, it may be
useful for a subsequent perturbation treatment.
The relevant second-order formulas have already

w xbeen published in Refs. 27]29 . Among these,
delocalization-type corrections due to single-elec-
tron transfers vanish if the orbitals are fully opti-
mized, while one still can evaluate the second-
order intergeminal dispersion energy:

Ž .D E disp
2Ž . 1M s0S w < x w < xj l j l y j l l j0 0 a b 0 0 b a2s y Ý Ý b a 0 0E q E y E y El j l jj-l ab

2w < x1 j l j lX 0 0 a b Ž .y , 25Ý Ý b a 0 04 E q E y E y El j l jj-l ab

where the prime means the restriction M a, b sS
"1, M a q M b s 0, j is the ath excited state of theS S a
jth geminal, and the transformed integrals over
geminal labels can be expanded as

Ž .j Ž .l
jo a l obw < x w < x Ž .j l j l s ml sn P P . 26ÝÝ0 0 a b mn ls

mn ls

The first-order transition density matrix element
between the ground and ath state of the jth gemi-
nal reads as:

jo a jo ja jo ja Ž .P s C C q C C . 27Ž .Ýmn ml nl lm ln
l

Though the APSG wave function represents a
highly correlated multiconfiguration reference
state, derivation of this result is straightforward
due to the simple algebraic rules of the composite-

w Ž . Ž .xparticle geminal operators Eqs. 14 ] 15 . To
Ž .arrive at Eq. 25 , one defines the zero-order

Hamiltonian in terms of ground- and excited-state
geminals as

Ž .i
a q yˆ Ž .H s E c c , 28ÝÝ0 i i a i a

ai

which has the property that the ground-state APSG
Ž .wave function of Eq. 12 as well as similar wave

functions in which one or more geminal is excited,
ˆare eigenfunctions of H . The pairwise interaction0

Ž .of two such local excitations results in Eq. 25 by
standard second-order Rayleigh-Schrodinger PT.¨
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TABLE IV
( )Energies of model systems a.u. .

Basis Method H H O HF4 2

STO-3G HF y1.652457 y74.964107 y98.572412
SLG-Boys y1.695297 y75.003767 y98.593229
Opt.-APSG y1.695760 y75.010899 y98.597985
Opt.-APSG + disp2 y1.698419 y75.015881 y98.597985
MP2 y1.686618 y75.004157 y98.590632
CISD y1.715532 y75.019737 y98.599827

3-21G HF y1.827905 y75.582739 y99.460219
SLG-Boys y1.873473 y75.613209 y99.488554
Opt.-APSG y1.875250 y75.648392 y99.515423
Opt.-APSG + disp2 y1.879222 y75.688531 y99.572902
MP2 y1.869325 y75.707172 y99.581585
CISD y1.889984 y75.710692 y99.582181

In Tables IV and V, a few numbers are given
illustrating the effect of orbital optimization in

Žvery small basis sets. We do not have yet num-
.bers for larger molecules andror larger bases. The

bond length of HF was optimized at the HFr3-21G
Ž .level, while for the water molecule we used r OH

˚ Ž .s 1.01 A and a HOH s 1048. The H cluster was4
constructed in a distorted arrangement: r s r12 34

˚ ˚ Ž . Ž .s 0.74 A, r s 1.0 A, a 123 s 808, a 234 s 708,23
Ž .and the 1234 dihedral angle was 208.

One can observe that in minimal basis the Boys
localized orbitals represent a rather good initial
guess to fully optimized ones, while in split-shell
basis the optimization is more essential. It is also
important that, with the exception of the H4 sys-
tem, the dispersion energies, collected separately
in Table V, are quite sensitive to the optimization.

To judge the amount of correlation energy which
can be described by the APSG q PT approach, one
will need to see calculations in larger basis sets, at

Ž .least of double z polarized DZP quality. The
small basis results of Table IV already indicate that
the dispersive correction alone is not sufficient to
reach the MP2 or CISD quality. At the APSG q

disp level, all local excitations have been ac-
counted for, as well as the intrageminal single
electron transfers which vanish upon optimization.
However, delocalization of the geminals involving
two electron transfers are missing from this ap-
proximation and may become important in larger
systems andror larger basis sets.

EXCITED STATES

The APSG wave function may be a useful refer-
ence state for the calculation of electronically ex-

w xcited states, too 62 . In the Tamm]Dankoff ap-
Ž . w xproach TDA 63 , essentially equivalent to the

Ž . w xequation-of-motion EOM technique 60 , one de-
ˆqfines the excitation operator O for the nth ex-

< :cited state n

ˆq< : < : Ž .O 0 s n 29n

and expands it as

ˆq n q̂ Ž .O s X A . 30Ýn K K
K

TABLE V
( )Dispersion contributions to the energy of model systems a.u. .

Basis Method H H O HF4 2

STO-3G SLG-Boys y0.002661 y0.005452 y0.000000
Opt.-APSG y0.002659 y0.004982 y0.000000

3-21G SLG-Boys y0.003917 y0.008690 y0.020686
Opt.-APSG y0.003972 y0.040139 y0.057479
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For the expansion coefficients X n the general TDAK
equations are written as

n n Ž .AA X s v SS X , 31Ý ÝL K K n L K K
K K

where v s E y E are the excitation energiesn n 0
and the TDA matrices are defined as

y qˆ ˆ ˆ² < < :AA s 0 A , H , A 0L K L K

ŷ ˆ q̂² < < : Ž .s 0 A H y E A 0 32Ž .L 0 K

and

y qˆ ˆ² < < : Ž .SS s 0 A , A 0 . 33L K L K

Ž .We recall that the general TDA equations 31
< :are exact as far as the state 0 is the true ground

Ž .state and the operator expansion of Eq. 30 is
< :complete. Substituting 0 with the Hartree]Fock

state and limiting the expansion to single excita-
Ž .tions, one arrives at the CI with singles CIS

scheme, a simple, popular but not very accurate
approximation to the general TDA equations.

An important consistency requirement of the
TDA equations is expressed by

ˆy< : Ž .O 0 s 0 34n

Ž .the ground state cannot be deexcited . The CIS
equations satisfy this requirement, but their im-
provement within TDA is not trivial as better
reference states or larger operator manifolds may

Ž .easily violate Eq. 34 .
It may be interesting to investigate whether an

APSG reference state could be useful for this goal.
Ž .Formally, the answer is positive. Taking Eq. 12 as

the approximation for the ground state, and defin-
ing the excitation operator manifold as

q̂ q y Ž .A s c c , 35K p a i0

where cy annihilates a ground-state geminal andi0
q Ž .c creates one in the ath excited state, Eq. 34p a

remains valid and the APSG-TDA matrices be-
come

APSG q y ˆ q y APSG² < < :AA s C c c Hc c C y E SSL K 0 j0 qa pb i0 0 0 L K

Ž .36

and

² APSG < q y q y < APSG: Ž .SS s C c c c c C . 37L K 0 j0 qa pb i0 0

It is to be mentioned that geminal-type wave
functions may be useful not only in connection
with TDA but also with the random-phase approx-

¨Ž .imation RPA . In particular, Ohrn and Linderberg
have shown that the so-called antisymmetrized

Ž .geminal power APG wave function, where each
geminal is identical, serves as an appropriate refer-

w xence state for RPA calculations 64, 65 .
Ž .Evaluation of matrix elements in Eqs. 36 and

Ž .37 is lengthy but straightforward by the algebraic
rules given earlier. For example, matrix SS is ob-
tained as

ˆqŽ .² :SS s d d d d q 1 y d Q ,ž /L K i j p q i q ab i q ab

� 4 � 4 Ž .a, b / 0, L s jqa , K s ipb . 38

Ž .The excitation space represented by Eq. 35 de-
scribes several types of single and double excita-

Ž .tions in terms of electrons ; thus it may be more
adequate to describe electronic excitations than the
CIS scheme. However, intergeminal charge-trans-
fer-type single-electron excitations are missing

Ž .from Eq. 35 —they should be accounted for by a
suitable perturbation of the TDA equations. We do
not have yet any numerical results for excitation
energies obtained by this scheme; work in both
lines is now in progress.
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