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Abstract
Rotational excitation of the water molecule by an electric pulse F(t) of
Gaussian shape is studied in the framework of the adiabatic approach. The
hidden crossings between rotational energy surfaces of H2O in the complex
F-plane are calculated by describing H2O as an asymmetric-top rotor with
electric dipole moment. It is found that the probabilities of the transitions
oscillate uniformly with respect to the length of the pulse due to the interference
between elementary transitions via hidden crossings during increasing and
decreasing stages of the pulse. For a long pulse, the transition probabilities
obtained in the adiabatic approximation are in good agreement with the exact
numerical results: the longer the pulse the better the agreement.

1. Introduction

We consider the H2O molecule because of its extraordinary role in living matter. Recently,
the transition between collective rotational states of the water molecules in the brain cell were
proposed as a possible mechanism for memory imprinting [1]. The hidden-crossing analysis
of the rotational transitions shows that the transitions, induced by nervous signals, transfer the
information rather than the energy, because the transition probability depends on frequency and
does not depend on the amplitude of the signal [1]. Besides, the number of water molecules in
the brain cell can be estimated by the efficiency of the interaction of the cell with the nervous
signal. At the typical frequency of the nervous signal ∼10 Hz, this number is obtained to be
very close to the actual number of water molecules in the brain cell [1].

The first application of the adiabatic approach to the transitions between rotational energy
levels of H2O induced by an electric pulse F(t) was done using the model of the spherical rotor
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having an electric dipole moment [2]. In the adiabatic approach, the branch points Fc of the
adiabatic energy surface EN(F) ∼ √

F − Fc in the complex plane of adiabatic parameter F
are responsible for the inelastic transitions [3]. Generally, there are two types of branch points
connecting the adiabatic states. The first type is the branch points near the real axis which
manifest themselves as narrow avoided crossings at the real value of the adiabatic parameter.
Usually, the narrow avoided crossings appear due to the resonant underbarrier interaction of
the states located in different potential wells. The second type is the branch points that have
a large imaginary part. They are not recognizable on the plot of the adiabatic energy curves
at real value of the adiabatic parameter, and appear when the adiabatic energy level touches
the top of the effective potential. The calculations of rotational energies of a spherical rotor in
an external electric field reveal a full set of the complex branch points Fc connecting pairwise
the energy surfaces related to different energy levels at real F [2]. Since they are not visible
at real values of F they were called hidden crossings, in analogy with atomic collision theory.
For details, one can find the hidden-crossing theory in the review paper [4].

In this paper, we employ a much more realistic approach to the problem based on the
Hamiltonian for the asymmetric-top rotor having an electric dipole moment. This model was
used in the investigation of the energy level statistics for H2O in strong electric fields [5] and
for the calculation of inelastic transitions in collisions of positive ions with the water molecule
[6]. Section 2 contains the numerical algorithm for the calculation of adiabatic energy surface
and its branch points in the complex F-plane. In section 3, the adiabatic theory is described
for the case of the double transitions via the same hidden crossing during increasing and
decreasing stages of the pulse. In section 4, the transition probabilities from the ground state
to the excited states obtained in the adiabatic approximation are compared with the ab initio
numerical calculation of the corresponding non-stationary Schrödinger equation. Concluding
remarks will follow in section 5.

Atomic units are used throughout, unless explicitly indicated otherwise.

2. H2O as asymmetric-top rotor in electric field

The first vibrational excitation of H2O lies 1596.5 cm−1 above the ground state [7]. Below this
energy one can safely neglect the vibrational excitation and describe the molecular dynamics
in the electric field F by the asymmetric-top model Hamiltonian

H = AJ 2
a + BJ 2

b + CJ 2
c − Fd (1)

where Ja, Jb and Jc are the components of the angular momentum along the principal axes
in the body fixed frame (BF), and d = (da, db, dc) is a constant electric dipole moment.
The rotational transitions in the spherical rotor model (A = B = C = 8.78 × 10−5) were
previously studied in [2]. In this work, we use realistic parameters for the H2O molecule:
A = 1.27 × 10−4, B = 4.23 × 10−5, C = 6.62 × 10−5 and d = (0, 0, 0.763) [8]. We
assume that the external field is oriented along the z-direction in the space-fixed frame of
reference (SF). In this case, the last term in the Hamiltonian is dcF cos β, where β is the Euler
angle between the z-axes in BF and SF frames of reference. The Hamiltonian can now be
represented by the corresponding finite-dimensional matrix within the basis of the normalized
D-functions |J,K,M〉 [9]. Note that our notation differs from the usual order of the rotational
constants A > B > C. We prefer to have the dipole moment oriented along the body-fixed
z-axis which simplifies the calculations of the matrix elements. The free rotor part of the
Hamiltonian is diagonal with respect to the total angular momentum J and its projection M
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Figure 1. (a) The adiabatic energy curves ENM(F) for even K along the real axis of electric field
F. (b) The real part of the energy curves ENM(F) for even K along the imaginary axis of electric
field F.

onto the SF z-axis. For different K and K ′ values, the nonzero matrix elements are

〈K|J 2
a |K〉 = 〈K|J 2

b |K〉 = 1
2 [J (J + 1) − K2], 〈K|J 2

c |K〉 = K2, (2)

〈K|J 2
a |K + 2〉 = 〈K + 2|J 2

a |K〉 = −〈K|J 2
b |K + 2〉 = −〈K + 2|J 2

b |K〉
= 1

4

√
(J − K)(J − K − 1)(J + K + 1)(J + K + 2). (3)

The matrix of the dipole interaction cos β = |1, 0, 0〉 is diagonal with respect to K,M , and it
can be calculated from the D-function multiplication theorem as

〈J | cos β|J 〉 = KM

J(J + 1)
, (4)

〈J | cos β|J + 1〉 =
√

(J + K + 1)(J − K + 1)(J + M + 1)(J − M + 1)

(J + 1)
√

(2J + 1)(2J + 3)
. (5)

As follows from equations (2)–(5) the Hamiltonian has two exact quantum numbers: M
and the parity of K. The latter corresponds to (A,Bz) (even K ) and (Bx, By) (odd K )
subspaces in the terminology of [5]. In the case M = 0, the matrix of dipole interaction
(4), (5) does not depend on the sign of K, and the additional (±) symmetry exists due to
the disappearance of the interaction between the states {|J,K,M〉 + |J,−K,M〉}/√2 and
{|J,K,M〉 − |J,−K,M〉}/√2 [6].

The ro-vibrational spectrum of the water molecule has been well studied both
experimentally and theoretically (see [10] and references there). At F = 0 our rotational
spectrum reproduces the experimental data [11] and accurate variational calculations
[12, 13] within 0.3% level of accuracy. Figure 1 shows three noninteracting (A, Bz)
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Table 1. Branch points FNN ′ between rotational states N and N ′ of H2O within the manifolds
M = 0,M = 1 and M = 2 having even value of K. FR = Re FNN ′ 104 au and FI = Im FNN ′
104 au.

M = 0 M = 1 M = 2

(N, N ′) FR FI (N, N ′) FR FI (N, N ′) FR FI

(1, 2) 0.00 2.15 (1, 2) 0.00 4.90 (1, 2) 0.00 1.50
[2] 0.00 2.18 (1, 2) 0.00 6.21 (1, 2) 0.00 11.5
(2, 3) 2.81 3.07 (2, 3) 0.00 3.71 (2, 3) 1.97 3.12
(3, 5) 0.00 8.18 (3, 4) 3.97 6.14 (3, 4) 2.22 0.66
(3, 6) 5.63 6.15 (3, 4) 0.00 6.06 (3, 4) 0.00 5.60
(5, 6) 0.00 7.45 (4, 5) 0.00 2.90 (4, 5) 1.16 9.21
(4, 7) 0.00 12.0 (4, 5) 0.00 5.11 (4, 5) 9.13 3.75
(6, 8) 4.11 12.0 (4, 5) 5.36 7.85 (5, 6) 8.10 2.80
(6, 8) 12.9 7.45 (5, 6) 6.69 10.1 (6, 7) 0.00 9.99
(6, 8) 0.32 16.7 (6, 7) 6.07 8.16 (6, 7) 8.05 8.00

families (M = 0, 1, 2) of the adiabatic energy curves ENM(F) as a function of the
adiabatic parameter F, where N = 1, 2, 3, . . . numbers the states in order of the energy
increasing at F = 0 in each M-family (see figure 1(a)). The sequence N = 1 −
M, 2 − M, 3 − M, 4 − M, 5 − M, 6 − M, 7 − M, 8 − M (positive values of N have a
physical meaning) corresponds to the sequence of the standard set of the quantum numbers
JKaKc

= 000, 111, 202, 211, 220, 313, 322, 331, where Ka and Kc are the projections of the total
angular momentum J onto principal axes A and C at the conventional option A > B > C

[13]. At real F (figure 1(a)), the main feature is the absence of any avoided crossings which
usually serve as a trace of the branch points in the complex plane (one can only see exact
crossings for M = 0 which are due to the (±) symmetry mentioned above). However, the
branch points related to the hidden crossings do exist and they can be revealed by direct
numerical calculation in the complex F-plane. In figure 1(b), we depict the behaviour of the
real part of the adiabatic energy Re ENM(F) as a function of Im F along the imaginary axis
Re F = 0. Table 1 gives the distribution of the branch points in the complex F-plane. The first
hidden crossing for the spherical rotor [2] in each series M = 0, 1, 2 is also presented. In the
cases M = 0 and M = 1 we have reasonable agreement with the present data, but for M = 2
the spherical rotor does not reproduce the actual behaviour of the energy surface shown in
figure 1(b). From the table one can see that many hidden crossings have real parts equal to
zero and, in particular, the branch point between the ground state and the first excited state.
This is a very important physical property: for such hidden crossings the inelastic transitions
take place for arbitrarily small amplitude of the electric pulse and the transitions, induced
by the periodic signal, transfer the information rather than the energy, because the transition
probability depends on frequency and does not depend on the amplitude of the signal (see [1]).

3. Adiabatic approximation

The adiabatic approximation is an asymptotic solution of the non-stationary Schrödinger
equation

H(F(vt))ψ(r, t) = i
∂ψ(r, t)

∂t
(6)
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with respect to the small parameter v. In the zero-order approximation, the transitions between
adiabatic states ϕN(r, F ), defined by

H(F)ϕN(r, F ) = EN(F)ϕN(r, F ), (7)

are absent. The asymptotic analysis [4] shows that the probability of the inelastic transition
between two adiabatic states |N〉 and |N ′〉 is exponentially small when v → 0 and results
from the analytic continuation of the zero-order solution

ψ(r, t) = exp

[
i
∫ t

EN(F (vt ′)) dt ′
]

ϕN(r, F (vt)) (8)

along a contour L in the complex t-plane that enclosed the complex branch point tc = T (Fc)/v,
where T (F ) is the inverse function to F(T ) and T = vt . After encompassing the branch
point tc and returning back to the real t-axis, the system finds itself in the state |N ′〉. Since
the adiabatic wavefunction attains a singular normalization factor ϕN(r, F ) ∼ (F − Fc)

−1/4,
after returning back to the real t-axis (or F-axis), ϕN(r, F ) goes over into the wavefunction
ϕN ′(r, F ) with a phase factor γ = ±π/2 (the sign depends on direction of encircling).
The phase γ was called the ‘topological’ phase [14] because it is related to the topological
properties of the Riemann energy surface.

The system passes the hidden-crossing region twice: during the increasing and decreasing
stages of the pulse. Therefore, there are two topologically independent contours, L1 and L2,
leading to the same final state |N ′〉. The direction of encircling Fc along L1 and L2 are
opposite to each other and the resulting topological phases have opposite signs. Taking this
into account, as well as the superposition principle and unitarity condition, the probability of
transition after two passages of the hidden crossing reads [3, 14]

PNN ′ = 4 e−2τξNN ′ (1 − e−2τξNN ′ ) sin2(τχNN ′) (9)

where

ξNN ′ =
∣∣∣∣Im

∫
L1

EN(F(T )) dT

∣∣∣∣ =
∣∣∣∣Im

∫
L2

EN(F(T )) dT

∣∣∣∣ (10)

χNN ′ = 1

2
Re

[∫
L1

EN(F(T )) dT −
∫

L2

EN(F(T )) dT

]
. (11)

The expression (9) gives the equidistant oscillations with respect to the duration of the pulse
τ = 1/v which is due to the interference between populations of the final state |N ′〉 along two
independent contours L1 and L2.

The population of the second excited state takes place in two steps: first, the transition
from the ground state to the first excited state via the hidden crossing at negative time t

(−)
12 and

second, double transition via hidden crossing at t
(±)
23 lying between the branch points t

(±)
12 . As

a result, we obtain the following expression:

P13 = 4 exp(−2τ(ξ12 + ξ23))(1 − exp(−2τξ23)) sin2(τχ23). (12)

The adiabatic approximation is valid for pulse duration longer than the typical period of
rotation of H2O which is Trot ∼ 104 au.

4. Transitions between rotational states

For the Gaussian pulse

F (t) = F0 exp(−t2/τ 2), (13)
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Figure 2. Parameters ξNN ′ and χNN ′ for the coupling between the ground and first excited states
(ξ12, χ12) and between the first and second excited states (ξ23, χ23) as a function of F0.

the functions ξNN ′(F0) and χNN ′(F0) take the form

ξNN ′(F0) =
∣∣∣∣Im

∫ FNN ′

F0

[ENM(F) − EN ′M(F)] dF

2F
√

ln F0 − ln F

∣∣∣∣ , (14)

χNN ′(F0) =
∣∣∣∣Re

∫ FNN ′

F0

[ENM(F) − EN ′M(F)] dF

2F
√

ln F0 − ln F

∣∣∣∣ , (15)

where F0 is the amplitude and τ = 1/v is the duration of the pulse, and FNN ′ is the position
of the complex branch point. These quantities completely determine the transition probability
between N and N ′ states (see equations (9), and (12)). Figure 2 shows the F0 dependence of
ξNN ′(F0) and χNN ′(F0) for transitions from the ground state to the first excited state and from
the first to the second excited state. As one can see from figure 2, ξNN ′(F0) logarithmically
diverges when F0 → 0 as |
ENN ′ Im

√
ln(F0/FNN ′)|, where 
Enm is the energy splitting at

F = 0. This provides a zero transition probability when the pulse amplitude goes to zero.
In figure 3, the comparison between the adiabatic result (dashed lines) and the ab initio

numerical calculation (solid lines) of the non-stationary Schrödinger equation[
AJ 2

a + BJ 2
b + CJ 2

c − F0 exp

(
− t2

τ 2

)
d

]
ψ(r, t) = i

∂ψ(r, t)

∂t
(16)

is given. The ab initio calculation was performed in the basis of normalized D-functions
|JKM〉. The numerical accuracy of these results is better than six significant digits in the
probabilities. In fact, due to the small transition probabilities the convergence is achieved even
for rather small (Jmax = 4) size of the basis in equation (16). Figure 3 demonstrates good
agreement between the adiabatic and exact calculations, especially for longer pulses. First of
all, the ab initio calculation reproduces the regular equidistant (with respect to τ ) oscillations
which are impossible to explain from the conventional diagram of adiabatic energy curve in
figure 1(a). These oscillations can be explained within the hidden-crossing theory only. For
instance, the period of the oscillation in the population of the second excited state is three
times longer than the period in the population of the first excited state due to the three times
smaller phase factor χnm (see figure 2). Note that the arguments of the exponent and sine
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Figure 3. Probability of transitions from the ground state to the excited states PNN ′ at the different
amplitudes of the pulse F0.

functions in equation (12) are linear functions of the pulse duration τ . The fourth state is not
populated because it belongs to another (specific for M = 0) symmetry with (−) parity [6].

5. Concluding remarks

Let us estimate the possibility to observe the predicted interference oscillation structure
experimentally. The first excited vibrational energy level lies 1596.5 cm−1 above the ground
state [12], i.e. below the temperature 2300 K (1 cm−1 = 1.44 K) the vibrational states are not
excited and our calculations are almost exact. Since the atomic unit of time is 2.42 × 10−17 s
and the atomic unit of electric field is equal to 5.14×109 V cm−1, the pulse parameters needed
to observe the adiabatic oscillations are quite attainable and reliable: the duration of the pulse
should be about 1 ps and the electric field should be about 106 V cm−1.

The adiabatic approximation used here is not intended to produce specific data only, but,
what is more important, to demonstrate that it is a powerful tool to understand the origin of
certain physical effects (in our case it is the oscillation in the inelastic probability) and to make
some general predictions.
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