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Restricted Hartree Fock using complex-valued orbitals (cRHF) is studied. We introduce an orbital
pairing theorem, with which we obtain a concise connection between cRHF and real-valued RHF,
and use it to uncover the close relationship between cRHF, unrestricted Hartree Fock, and generalized
valence bond perfect pairing. This enables an intuition for cRHF, contrasting with the generally
unintuitive nature of complex orbitals. We also describe an efficient computer implementation of
cRHF and its corresponding stability analysis. By applying cRHF to the Be + H2 insertion reaction, a
Woodward-Hoffmann violating reaction, and a symmetry-driven conical intersection, we demonstrate
in genuine molecular systems that cRHF is capable of removing certain potential energy surface
singularities that plague real-valued RHF and related methods. This complements earlier work
that showed this capability in a model system. We also describe how cRHF is the preferred RHF
method for certain radicaloid systems like singlet oxygen and antiaromatic molecules. For singlet
O2, we show that standard methods fail even at the equilibrium geometry. An implication of this
work is that, regardless of their individual efficacies, cRHF solutions to the HF equations are fairly
commonplace. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905120]

I. INTRODUCTION

For decades, the Hartree-Fock (HF) method has served
electronic structure theory well and continues to enjoy
significant usage today. The HF energy is typically 0.9–0.99
times the exact energy, by which it is bounded below. In many
instances, widely used procedures, such as the simpler variants
of perturbation and coupled cluster theories, may be used to
economically obtain most of the remaining energy. In many
other cases, all of the standard methods, except certain ones
that are extremely computationally expensive, are insufficient.
These systems are “strongly correlated (SC),” and very often
HF itself is blamed for these failures.

It is all but invariable that, in the SC setting, HF orbitals
will break spin symmetry if they are allowed to do so. This
gives rise to energy lowering in the form of unrestricted HF
(UHF) or generalized HF solutions. For SC systems, standard
electron-correlation methods tend to fail badly when used
in conjuction with restricted orbitals. Hence, the perhaps
most prevalent approach here is to let the symmetry breaking
(SB) occur and proceed as usual with the standard methods,
including Density Functional Theory (DFT). This incurs,
among other “contaminations,” mixings of exact states of
different total spin. Even if the admixed states are low lying,
this can be a significant problem if studying the ground state
is an important objective.

There have been several efforts towards scalable models
that can treat SC systems without incurring spin SB.1–32 Some
of these are rooted in a sort of back-to-basics approach wherein
the possibility of creating effective single-reference, restricted-
orbital approximations for SC systems is contemplated.33–64

The idea has met with some early successes, including some
favorable results on familiar SC systems once thought to
be confined to the unrestricted-orbital domain. It therefore
makes sense to study restricted orbitals, particularly those of
(real-orbital) restricted HF (RHF), in a wider SC scope.

Optimism here must be cautious due to some fundamental
issues with RHF. Some of these relate to the fairly common
occurrence of artifactual (spatial) SB in RHF calculations. We
are working on some aspects of this, to be described in a forth-
coming paper,65 and there we will provide some references for
the existing significant body of work on RHF SB. In the present
work, we will examine how some of the general RHF problems
can be improved by using complex-valued restricted orbitals.

One of the most accessible examples of cRHF’s usefulness
is the oxygen molecule, which was the inspiration for the
present paper. Here, the primary RHF problem is a SB one.
Qualitatively, O2’s low-lying states are characterized by the
configuration

uc = (1σ+g )2(1σ+u)2(2σ+g )2(2σ+u)2(3σ+g )2(1πu)4 (1)

along with two electrons occupying two π∗ antibonding or-
bitals, which span a Πg irreducible representation of the D∞h
point group. This gives rise to four low-lying states: one triplet,
3Σ−g , and three singlets, a doubly degenerate 1∆g and a 1Σ+g .
The triplet is the overall ground state and the 1∆g state is the
singlet ground state. Being degenerate, there is not a unique
wave function to represent this state. However, near its 1.2 Å
equilibrium bondlength, two orthogonal wave functions may
be selected that are respectively dominated by the following
two configurations:
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Ψ∆1 ∼ uc(π∗xπ∗x−π∗yπ∗y),
Ψ∆2 ∼ uc(π∗xπ∗y+π∗yπ∗x). (2)

In this region, the 1Σ+g state is dominated by

ΨΣ∼ uc(π∗xπ∗x+π∗yπ∗y). (3)

In these equations, we use a “∼” because we have simplified
the terms by omitting antisymmetrization, normalization, and
the spin components.

For the rest of this paper, we use “RHF” and “cRHF” to
denote restricted HF with real and complex orbitals, respec-
tively. In the (real) restricted open-shell HF (ROHF) treatment
of the triplet, each π∗ orbital is singly occupied, and the wave-
function has the proper Σ−g symmetry. But in the singlet case,
RHF will doubly occupy one orbital, leaving the remaining one
unoccupied. If the latter orbital were the one being occupied, a
separate, but essentially equivalent RHF solution would result.
We have

ΨRHF1 ∼Ψ∆1+ΨΣ,

ΨRHF2 ∼−Ψ∆1+ΨΣ. (4)

This details the SB of the RHF wavefunctions.
Conversely, Ψ∆1 is a linear combination of the two RHF

wavefunctions. Thus, a proper approximation for the 1∆g state
using real orbitals takes us into the multireference (MR) realm.
Alternatively, consider a substitution of the π∗x and π∗y orbitals
with

π∗1= π
∗
x+ iπ∗y (5)

and

π∗−1= π
∗
x− iπ∗y, (6)

where i =
√
−1 and normalization has been ignored for sim-

plicity. Another way of understanding these orbitals is that
they are antibonding π orbitals formed from the p1 and p−1
atomic orbitals, i.e., the p orbitals with eigenvalues 1 and −1,
respectively, for the z-component angular momentum operator
Lz. For diatomic molecules, Lz commutes with the Hamilto-
nian operator, so we are simply employing symmetry adapted
orbitals. This substitution does not alter the orthogonality sta-
tus of the overall set of orbitals. We can use these orbitals
to define a cRHF determinant: ΨcRHF ∼ ucπ

∗
1π
∗
1. Noting that

π∗1π
∗
1= (π∗xπ∗x−π∗yπ∗y)+ i(π∗xπ∗y+π∗yπ∗x), we get

ΨcRHF∼Ψ∆1+ iΨ∆2. (7)

We see that cRHF can recover the proper symmetry of the
singlet ground state, and it has turned a MR problem into a
single reference one.

We emphasize that cRHF is not generally able to cure
symmetry issues. For example, it cannot achieve the symmetry
of the 1Σ+g state of O2. In fact, the increased variational freedom
of cRHF may increase the possibilities for SB. Nevertheless, it
is only natural at this point to contemplate the nature and utility
of cRHF in general.

This is not the first time it has been considered. Several
early papers explored complex orbitals in various ways.66–74

Later, cRHF began to be more explicitly investigated.75–82

cRHF forms one of Fukutome’s 8 classes of HF wave func-
tions, where it is called “CCW.”83 In other work, the concept
of projected HF was applied to cRHF, wherein the imaginary
part of the cRHF wavefunction is discarded and the orbitals are
optimized.84–88 As with other projected HF schemes, this tech-
nique captures a significant amount of correlation energy for
small systems, but comes with a loss of size consistency. The
technique is also included in projected quasiparticle theory.9,10

cRHF solutions have been found for several systems, includ-
ing the cyclopropyl cation,89 ethylene torsion,90 ethylenedione
(OCCO),91 B2H2 and BCH,92 SiLi2,93 SiBF,94 and small hy-
drogenic systems,95 while evidence for semi-empirical cRHF
solutions was given for several organometallic complexes.96–98

Despite this earlier research, cRHF has not found main-
stream application. In this paper, we examine cRHF from a
modern perspective and consider several molecular examples
that are intended to extend and complement the existing cRHF
work. Our aim is to demonstrate that cRHF is a useful member
of the set of standard electronic structure theory methods.

II. THEORY

The above O2 example involves degenerate RHF solutions,
and this latter problem is, in fact, quite commonly encoun-
tered in the general case, often without any underlying spatial
symmetries. It is of particular concern when, upon traversing
a reaction coordinate, there are artifactual singularities in the
RHF energy, i.e., the lowest RHF energy over a reaction coor-
dinate involves two or more distinct RHF solutions.

Many years ago, Pople considered this phenomenon in an
idealized model with two real solutions crossing one another.75

He found that, in certain cases, the use of complex orbitals
would allow the energy to smoothen near the crossing point,
somewhat similar to the result one would expect if the real
solutions were used in a two-state configuration-interaction
calculation. This is one of the key demonstrations of the utility
of complex restricted orbitals and merits further investigation
along several lines; we will begin by studying cRHF’s connec-
tion to RHF.

Clearly, complex orbitals are linear combinations of real
valued ones. Without further description, such expansions may
be rather long and general and, as such, would offer little
insight. However, using the invariance of a determinant wave
function with respect to choice of basis for the occupied space,
it turns out that we may obtain a set of occupied orbitals that
may be written very succinctly in terms of real orbitals.

A. Complex-orbitals pairing theorem

Complex orbitals are also of interest in UHF and GHF,
and we would like our development to be applicable to these
theories, too. For this purpose, and because the implications
of complex orbitals in UHF and GHF are a little more compli-
cated than in cRHF, it makes sense to keep our discussion quite
general for now. To establish an approach for this, consider
the following practical situation. Suppose we make a unitary
transformation of a set of RHF orbitals among themselves,
such that at least some of the resulting orbitals are complex
valued somewhere on their domain. Due to orbital invariance,
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the determinant formed from the complex-valued orbitals is
still essentially a RHF one. A complex-orbital calculation may
well produce such a set of orbitals, but the conceptual reduction
to RHF would not be evident if we only inspect the orbitals
individually. We see that for any complex-orbital calculation,
it is important to determine whether or not its results are funda-
mentally distinct from what we can obtain in a real-orbital
calculation. If the answer is “yes,” we will refer to the results
as being “fundamentally complex.” To test for this, we must
look at the occupied space as a whole.

We proceed by assuming a given generic occupied space
W , even simply thinking of W as a generic subspace of a
complex inner-product spaceV , which in the orbital context,
would be the finite-basis one-electron space. This way, we can
subsume cRHF, where we can effectively ignore the spin as-
pects, and cUHF and cGHF, where spin must not be neglected,
into one discussion.

An essential part of the overall fundamental-complexity
determination is asking ifW is fundamentally complex. As the
above statements suggest, this latter attribute should be defined
asW not having a real basis. Technically, “real” here means
invariant with respect to complex conjugation. The latter is
quite naturally defined for spatial orbitals, so this idea poses
no problems in cRHF; there, fundamental complexity inW is
all we need to consider.

However, the spin parts make things a little more compli-
cated in GHF: just as there is freedom in defining the spin
functions/vectors, so it is with complex conjugation there.
In this case, the evaluation of W’s fundamental complexity
will depend on the choice of complex conjugation. Without
going into much detail, one viable approach to the overall
fundamental-complexity determination in GHF is to ask if
there exists some spin rotation that transforms the occupied
space into one having a real basis relative to a fixed complex
conjugation. An equivalent, and perhaps more clear, concept is
asking ifW has a real basis relative to some choice of complex
conjugation.

As a matter of completeness, we should give some prac-
tical details about complex conjugation. Complex conjugation
amounts to an operator acting on the pertinent vector space. In
the context of determining fundamental complexity, it is suffi-
cient to identify complex conjugations as the antiunitary, in-
volutory operators. For the generalW picture, we will assume
some such choice and label it ĉ. In the spin-orbital context, this
operator has the form ĉ1⊗ ĉ2, where ĉ1 is the aforementioned
“natural” complex conjugation in the spatial part and ĉ2 is some
complex conjugation acting on the spin part.

There are various ways of determining if W has a real
basis. One is by establishing PB, the matrix representation of
W’s orthogonal projection operator with respect to any real
basis B ofV .W having a real basis is equivalent to PB being
a real matrix. In the orbital context, we can let B be the atomic
orbital basis (in the non-cRHF case, this consists of atomic
spin orbitals whose associated orthonormal one-electron spin
functions α,β are chosen to be invariants of the given ĉ2).
Then PB =CC∗S, where C is the occupied-orbital coefficient
matrix, ∗ denotes the conjugate transpose, and S is the spin-
orbital atomic orbital (AO) overlap matrix, which is simply
the Kronecker product of the 2 × 2 identity matrix and the

spatial AO overlap matrix. S is real and full rank (provided
any effective linear dependence has been removed in the usual
way), so reality of PB is the same as reality of CC∗. In summary,
the constituents of a complex-orbital calculation are funda-
mentally complex (with respect to the choice of spin-space
complex conjugation) if and only if the AO density matrix
is complex. We reiterate that this is sufficient in the cRHF
case and note that it is evident in Fukutome’s work (under the
“CCW” classification).83

To move towards a pairing theorem, suppose we have an
orthonormal basis {φi} forW . Antiunitary operators preserve
orthonormality, so {ĉ(φi)} is also orthonormal. Each φi is a
linear combination of its real and imaginary parts, which them-
selves are linear combinations of φi and ĉ(φi). While this link
to real vectors is technically concise, it is insufficient in that
the real vectors are not necessarily orthonormal. But, this latter
attribute can be obtained if we transform {φi} to a different
orthonormal basis. Roughly, the idea here is to “diagonalize”
ĉ withinW , i.e., look for an orthonormal basis {χi} such that
⟨χ j |ĉ|χi⟩ is a diagonal matrix. Then the real and imaginary parts
of each χi will form a set of strongly orthogonal pairs.

The new basis is written relative to the old as

χi =

j

Uj iφ j, (8)

where U is a unitary matrix. Using the antilinearity of ĉ, we
observe that

⟨χ j |ĉ|χi⟩= (U∗MU) j i, (9)

where an overline indicates (ordinary) complex conjugation
and

Mj i = ⟨φ j |ĉ|φi⟩. (10)

In other words, under this change of basis, the starting matrix
M is transformed to U∗MU. Note that U is also unitary and M
is complex symmetric (but not necessarily Hermitian).

Suppose U is chosen such that U∗M M∗U is diagonal.
Taking the transpose, we have that U

∗
M∗MU is also diagonal.

These two observations suggest that U and U might constitute
the left and right transformations of a Singular Value Decom-
position (SVD) of M , which would be compatible with the
way M transforms, thus giving the desired diagonalization.
This is indeed the case: the Autonne-Takagi factorization,99

a particular SVD specialized to the complex-symmetric case,
states that there exists a (complex) unitary U such that

U∗MU =m, (11)

where m is real nonnegative diagonal. We note that any SVD
computation would give the same m, but considering that
the SVD is unique only up to (matching) unitary transforma-
tions within the left and right subspaces corresponding to the
same singular value, a conventional SVD may not produce
the desired U-U relationship between its left and right unitary
matrices, even if there are no degeneracies among the singular
values.
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If j is such that m j j = 1, then χ j is real. Otherwise (i.e., m j j

< 1), χ j and ĉ(χ j) form a linearly independent set. Let

Re(χ j) = 1
2
�
χ j+ ĉ(χ j)�,

Im(χ j) = i
2
�
ĉ(χ j)−χ j�, (12)

i.e., these are the real and imaginary parts, respectively, of χ j.
We can multiply χ j by a phase factor such that Re(χ j) and
Im(χ j) are orthogonal. We then define

η j = NjRe(χ j),
η ĵ = N ĵIm(χ j), (13)

where ĵ is some unique integer greater than no, the dimension
of the occupied space, i.e., if j , k then ĵ , k̂, and Nj and N ĵ

are real normalization scalars. {η j,η ĵ} is an orthonormal set of
real vectors, and, because χ j is normalized, we may write

χ j = cos(θ j)η j− isin(θ j)η ĵ, (14)

where θ j is a rotation angle.
Because span({η j,η ĵ})= span({χ j,ĉ(χ j)}), the full set of η

orbitals, including the ones with hatted indices, is orthonormal.
We may summarize the above findings as follows:

Any set of occupied complex orbitals can be transformed into a
set of complex orbitals, each of which is a linear combination of
one or two real orbitals, the real orbitals forming an orthonormal
set, with each one being uniquely associated with one of the
complex orbitals.

In summary, this result provides an occupied-space basis
that is concisely related to a (more familiar and facile) ortho-
normal real basis.

B. The MR element of cRHF

We now specialize to the cRHF case. Here, it suffices to
focus on the spatial parts of the orbitals, so we will now assume
that these are denoted by χ j. For each doubly occupied pair, the
corresponding spatial part of the wave function is

χ jχ j =Π j+Ω j, (15)

where

Π j = cos2(θ j)η jη j−sin2(θ j)η ĵη ĵ (16)

and

Ω j =−isin(θ j)cos(θ j)(η jη ĵ+η ĵη j). (17)

The cRHF wavefunction is then simply the (antisymmetrized)
product over all pairs of the terms on the RHS of Eq. (15) (with
an αβ spin part included for each pair).

Let us compare these cRHF components to the constitu-
ents of the generalized valence bond Perfect Pairing (PP)100

wavefunction. The normalized PP wavefunction is a product
of two-electron wave functions, whose spatial parts are written

Π
(PP)
j = cos(θ j)η jη j−sin(θ j)η ĵη ĵ, (18)

where we are using the same labeling for the variables to aid
in the comparison. In other words, PP is also parameterized
by rotation angles and two restricted orbitals per pair. As our

notation suggests, theΠ j constituents in cRHF and PP have the
same basic form. This helps us understand the driving force for
complexification in RHF. The PP wave function incorporates
an important piece of the static correlation and thereby always
produces an energy lower than that of RHF. In short, in PP, the
θ j will always be non-zero.

Things are more complicated in cRHF: complexification
entails energetically beneficial PP-like terms but also the Ω j

parts, which are of the open-shell-singlet flavor and typically
higher in energy. Hence, cRHF, unlike PP, will not always
polarize, i.e., RHF is often stable to complexification. For
O2, essentially only one pair complexifies because therein the
PP and open-shell terms are degenerate. In Pople’s idealized
example, complexification was limited to one pair, whose two
associated real orbitals had different spatial symmetries, and
this brought the energy of the open-shell part sufficiently low
to admit a complex solution.

In the multiple pair case, we may expand out the cRHF
product, obtaining first a PP-like wavefunction, along with
contributions in which various PP-like pairs have been substi-
tuted with the open-shell entities. Again, the energetic rele-
vance of the latter will determine the extent of complexifica-
tion.

Further insight may be gained by comparing cRHF and
(real-orbital) UHF. UHF orbitals can also be transformed to
become concisely related to restricted orbitals,101 and we will
employ the same notation

ξ−j = cos(θ j)η j−sin(θ j)η ĵ,

ξ+j = cos(θ j)η j+sin(θ j)η ĵ . (19)

The UHF wavefunction is an antisymmetrized product of the
various ξ−j ξ

+
j αβ. In each pair, we may expand out this orbital

product, obtaining Π j, i.e., a PP-like term identical to that
found in cRHF, plus

Ω
(UHF)
j = sin(θ j)cos(θ j)(η jη ĵ−η ĵη j). (20)

Instead of an open-shell singlet term, we have a triplet contri-
bution, i.e., spin-symmetry breaking. The driving force for
unrestriction thus includes that for complexification in cRHF,
i.e., the PP-like contributions. But, the triplet-based compo-
nents are generally—often significantly—lower in energy than
their cRHF singlet counterparts, and hence polarization is
observed much more often in UHF. This underlies UHF’s
historical preponderance, as compared to cRHF.

C. Detailing the cRHF/UHF/PP connection

Continuing our cRHF/UHF comparison, we will now
explicitly analyze the energy expressions. Consider the 1-
electron density matrix (1-PDM) for each of the above methods
in the η j basis. In this basis, the 1-PDMs are block diagonal,
with 2 × 2 blocks corresponding to the electron pairs. The
blocks for cRHF are

P[ j]=


cos2(θ j) −isin(θ j)cos(θ j)
isin(θ j)cos(θ j) sin2(θ j)


, (21)
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where the [ j] notation means the j-th pair. Of course, the blocks
are the same for α and β spin. For UHF, we have

P(UHF;α)
[ j] =



cos2(θ j) −sin(θ j)cos(θ j)
−sin(θ j)cos(θ j) sin2(θ j)


(22)

and

P(UHF;β)
[ j] =



cos2(θ j) sin(θ j)cos(θ j)
sin(θ j)cos(θ j) sin2(θ j)


. (23)

For PP, we get

P(PP)
[ j] =



cos2(θ j) 0
0 sin2(θ j)


. (24)

The kinetic energy, K , is given by the trace over the 1-
PDM times the η j-basis kinetic-energy matrix. The latter is
real and symmetric, so the contributions coming from the
imaginary parts of the cRHF 1-PDM will cancel. Likewise, for
UHF, the contributions coming from the off-diagonal 1-PDM
parts will cancel because the latter change sign going from α
to β. The off-diagonal parts of the PP 1-PDM are already 0,
and thus, cRHF, UHF, and PP have the same form for their
kinetic energies. Treating K as a function of the 1-PDM, we
may summarize this result as

K =K(P)=K(diag(P)). (25)

In what follows, we will abbreviate the term on the far right-
hand-side of this equation to simply “K ,” and will do the same
for analogous quantities defined below.

We also see that the three methods have the same form for
the total electron density, ρ. The latter is a function of the 1-
PDM: it is obtained by summing over each element of the 1-
PDM times the product of the two pertinent orbitals. For this,
all off-diagonal terms will cancel. Analogous to the K situation,
we have

ρ= ρ(P)= ρ(diag(P)) (26)

for all three methods. This may be used to show that the
three methods have the same form for N and C, their nuclear
attraction and Coulomb repulsion energies, respectively, i.e.,

N = N(ρ)= N(ρ(diag(P))) (27)

and

C =C(ρ)=C(ρ(diag(P))). (28)

What remains are the exchange contribution and, in the
PP case, some intra-pair correlation. The former is given by
the following general expression:

X =−1
2


σ∈{α,β}


pqr s

Pσ
prPσ

qs⟨pq|sr⟩. (29)

Given that each 1-PDM element is diagonal or off-diagonal,
we can divide the exchange contributions in Eq. (29), each
of which involves two 1-PDM elements, into four categories.
The diagonal/diagonal terms are equivalent for cRHF, UHF,
and PP. The diagonal/off-diagonal terms are purely imaginary
in cRHF, so they must sum to 0, which is also evident from
observing that each cRHF off-diagonal element is the negative

of its transposed counterpart. The terms also sum to 0 in UHF
because the off-diagonal α elements are the negative of their β
counterparts.

For the rest, we divide X into three terms, X ′, X ′′, and X ′′′,
where

X ′ = −

kl

cos2(θk)cos2(θl)⟨kl |lk⟩+cos2(θk)sin2(θl)⟨kl̂ |l̂ k⟩

+sin2(θk)cos2(θl)⟨k̂l |l k̂⟩+sin2(θk)sin2(θl)⟨k̂ l̂ |l̂ k̂⟩, (30)

X ′′ = −

kl

sin(θk)cos(θk)sin(θl)cos(θl)(⟨kl |l̂ k̂⟩

+⟨k̂ l̂ |lk⟩), (31)

and

X ′′′ = −

kl

sin(θk)cos(θk)sin(θl)cos(θl)(⟨kl̂ |l k̂⟩

+⟨k̂l |l̂ k⟩), (32)

where these summations go over the electron pairs. Then

EcRHF=K +N +C+X ′−X ′′+X ′′′, (33)
EUHF=K +N +C+X ′+X ′′+X ′′′, (34)

and

EPP=K +N +C+X ′+Ec, (35)

where Ec is the intrapair electron correlation, and, for sim-
plicity, we have omitted the nuclear repulsion energy.

We summarize the preceding results as follows. (1) In
cRHF and UHF, the exchange energy may be simplified some-
what, namely, it may be decomposed into PP exchange plus
some relatively straightforward “off-diagonal” terms. (2) In
essence, cRHF and UHF differ only in exchange. (3) cRHF
(and UHF, although it is less relevant to this paper) has a
clear relationship to the PP method. The balance between the
pertinent PP and open-shell-singlet terms determines cRHF’s
relevance. In at least some of the situations in which a gain-
ful compromise is found, problems that are formally MR in
the RHF picture may still be treated with a single-reference
approach, using cRHF. We will further investigate this with
some molecular examples in Sec. III. For these purposes, we
have written an efficient cRHF implementation in the Q-Chem
program,102 which we will now describe.

D. cRHF computational implementation

As discussed above, all cRHF energy components besides
the exchange are functions of the real part of the 1-PDM.
These components can thus be evaluated (in the AO basis)
with existing RHF-type code. The exchange boils down to 4-
center AO integrals, and this fact allows us to evaluate the
energy and Fock matrix for cRHF by feeding the imaginary
component of the 1-PDM into the existing integral genera-
tion and contraction technology of Q-Chem. Therefore, the
overall scaling of cRHF is the same as RHF, albeit with a
slightly larger prefactor (double the number of floating point
operations for the contractions). To facilitate and optimize
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matrix operations with complex numbers, we utilize the Ar-
madillo linear algebra library103 throughout our implementa-
tion. cRHF is one option in a Q-Chem library consisting of
a polymorphic orbital class with derived types: RHF, ROHF,
cRHF, etc., containing the methods which act on the orbitals.
These orbital classes couple to a polymorphic nonlinear opti-
mizer class with derived types: steepest descent, direct inver-
sion of the iterative subspace (DIIS),104,105 Broyden-Fletcher-
Goldfarb-Shanno(BFGS),106 etc., which calls methods over-
ridden in the derived orbital classes and provides a uniform
interface. For cRHF, the methods necessary to use both DIIS
or Geometric Direct Minimization (GDM)107 have been imple-
mented and were used in the examples presented below.

GDM is a form of Quasi-Newton method and thus relies
on differential geometry, but it should be noted here that the
energy of cRHF is not a holomorphic function. This implies
that cRHF does not have a derivative in the analysis sense, but
we must instead use Wirtinger calculus in order to optimize
these orbitals. Wirtinger calculus simply involves treating both
the real and imaginary components of a complex number or
vector as separate real numbers or vectors, mapping the space
of Cn to R2n. This allows us to reuse all the same optimizers
from real-orbital code without modification other than passing
vectors of double the length.

The Q-Chem library above also provides an interface
for computing the stability of self-consistent field solutions
within their own orbital space and outside of that space as per
Seeger.80 All forms of instability are provided within this li-
brary, e.g., RHF to UHF, RHF to cRHF, cRHF to cUHF, etc. To
do this, we compute the lowest eigenvalue and eigenvector of
the orbital Hessian matrix

∂2E
∂χ∂χ

= *
,

A B
B∗ A∗

+
-
, (36)

Aia, jb = (εa−εi)δabi j + ⟨a j ||ib⟩, (37)

Bia, jb = ⟨ab||i j⟩, (38)

where i and j are occupied orbitals and a and b are unoccupied
orbitals. The full Hessian matrix has dimensions 2OV where
O is the size of the occupied space and V the size of the
virtual space, and as such, diagonalization of this matrix scales
as O

�
O3V 3�. Transformation of the 4-center AO integrals to

the molecular orbital basis for computing A and B scales as
O
�
N5� where N is the size of the AO basis. To avoid both

of these potential computational bottlenecks and because we
only need the lowest eigenpair to test stability, we use the
Davidson algorithm,108 which only requires products of the
matrix (for which one wants the eigenvalues) with trial vectors.
Computing the product of the Hessian with a trial vector in
the AO basis scales as O

�
N3�, which is the same as building

the Fock matrix and thus does not limit the systems for which
stability analysis may be performed. When possible, we exploit
the symmetry of the problem, that is, we may spin-adapt the
search or remove spin-flip blocks entirely. When analyzing the
stability of a given solution, if we find a negative eigenvalue (an
instability), we perform a short line search downward along
that direction and restart the SCF calculation starting from this
point. This may be repeated at the user’s request until a stable
solution is found.

III. CALCULATIONS

A. Preliminary comments

Unless otherwise noted, we used the cc-pVDZ109 basis for
all results in this section. For the upcoming examples, we
report HF, Moller Plesset Second Order Perturbation The-
ory (MP2), DFT (BLYP110,111 and B3LYP112,113 functionals),
and Coupled Cluster Singles Doubles114 with Perturbative
Triples115 (CCSD(T)) results, all computed with Q-Chem.102

These calculations were benchmarked with various “high-
accuracy” methods, depending on the example system: Full
Configuration Interaction (FCI), multireference MP2116,117

(MRMP2), and MR Configuration Interaction Singles Dou-
bles118–120 with the Davidson Correction121 (MRCISD+Q),
with the latter two being based on Complete Active Space
Self Consistent Field (CASSCF).122–129 All of the benchmark
computations were done with GAMESS.130 We will use (m,n)
to denote m electrons in n orbitals active space (AS). We used
Gnuplot131 for all data plots.

We note that for each of the upcoming examples, results
for some of the above methods (except cRHF) exist in the
literature. It is important that cRHF be assessed alongside the
results of standard methods, and so we have included the latter
in each case below. In the interest of coherence, we used our
own computations, except for some of the data used in Fig. 3
as stated below.

We will now generalize the above O2 discourse to obtain
a qualitative template for the forthcoming examples. We now
assume φ1 and φ2 are real frontier orbitals and, as before, that
uc, the “core” wave function, is a product of doubly occupied
real orbitals. The (2,2) AS associated with the frontier orbitals
is spanned by the following configurations:

ΨS0 ∼ uc(c1φ1φ1−c2φ2φ2),
ΨS1 ∼ uc(φ1φ2+φ2φ1),
ΨS2 ∼ uc(c2φ1φ1+c1φ2φ2),
ΨT ∼ uc(φ1φ2−φ2φ1), (39)

where S0, S1, and S2 are singlets, labelled as per convention
according to their typical energy ordering, T is a triplet, and c1
and c2 are positive scalars. If φ1 and φ2 are of different symme-
try in an Abelian point group, a situation typifying the below
examples, then for a suitable choice of c1 (and hence c2), the
above configurations diagonalize the (2,2) AS Hamiltonian. In
each example below, each of these configurations dominates
the expansion for a different exact state. We will use the same
labels (S0, S1, S2, T) for these exact states, even if their energy
ordering fluctuates (e.g., S1 drops below S0).

In each of the upcoming chemical examples, the system
develops MR character in some relevant part of the potential
energy surface (PES). This “MR region” contains at least one
geometry where c1 = c2, i.e., a point of maximum MR char-
acter. Somewhere in the vicinity of this point we observe the
following:

(a) RHF: two degenerate solutions, whose energies cross
in the polyatomic case. This is because c1 = c2 implies
degeneracy in the configurations ucφ1φ1 and ucφ2φ2, and
likewise for the corresponding RHF solutions. Moving
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through the crossing, the HOMO switches from φ1 to
φ2. At the crossing point, both ucφ1φ1 and ucφ2φ2 are
equal-weighted combinations of ΨS0 and ΨS2 (cf. Eq. (4)).
Accordingly, for the RHF-based data, we will primarily
be interested in the S0 and S2 high-accuracy benchmarks.
The same goes for the restricted DFT (RDFT) data.

(b) cRHF: maximum complexification in the frontier-orbital
pair, i.e., the HOMO becomes φ1− iφ2. The wavefunction
is then an equal-weighted combination of ΨS0 and ΨS1
(cf. Eq. (7)). Accordingly, for the cRHF-based data, we
will primarily be interested in the S0 and S1 high-accuracy
benchmarks although S2 is still relevant for geometries
with partial complexification.

(c) UHF: spin polarization largely confined to the frontier-
orbital pair, but maximal within that pair. We distinguish
two ways that this can occur. For the first way, which we
will call “U0,” the α and β orbitals become µα = φ1−φ2
and µβ = φ1+φ2, respectively. Then ucµαµβ is an equal-
weighted combination of ΨS0 and ΨT. For the second way,
which we will call “U1,” the α and β orbitals become µα
= φ1 and µβ = φ2, respectively. Then ucµαµβ is an equal-
weighted combination of ΨS1 and ΨT. In either scenario,
the unrestricted wave function has a ⟨S2⟩ value of 1, where
S is the total-spin operator. For each example below, one of
U0 or U1 ensues: if S0 (S1) is the ground state singlet, then
U0 (U1) is observed. Accordingly, for the UHF-based data,
we will primarily be interested in the S0, S1, and T high-
accuracy benchmarks. The same goes for unrestricted DFT
(UDFT).

B. Singlet O2

We would now like to complete our above O2 example
with some realistic calculations. As for the above template,
φ1 and φ2 are here of Πg symmetry. If we select π∗x and π∗y
for these two orbitals, then they have symmetry B2g and B3g,
respectively, for the D2h point group oriented along those axes.
Every geometry of this molecule is a point of maximum MR
character in the frontier-orbital pair.

RHF and cRHF results are given in Fig. 1. Around the
equilibrium geometry, the cRHF orbitals and wavefunction are
D∞h symmetric, in line with our comments in the Introduction.
In this region, RHF exhibits a subtle kind of SB, in contrast to
our qualitative discussion above. This is because double occu-
pation of, e.g., π∗x, which results in the SB shown in Eq. (4),
causes a polarization in the Eq. (1) “core” upon optimization.
This leads to small δ contaminations in the σ orbitals, and
the πx and πy orbitals no longer being degenerate nor exactly
related by a rotation. D2h symmetry is preserved, however.
These effects are analogous to unrestricted-calculations phe-
nomena where small spin polarizations in low-energy orbitals
result from larger spin polarizations in the frontier orbitals.

It is interesting that cRHF does not give a bound curve
(i.e., relative to O atoms), as may be seen in Fig. 1. As the
bond is stretched, D2h-symmetry violating solutions break
away from the symmetric ones in both RHF and cRHF. These
“new” solutions break inversion symmetry and exhibit local-
ized orbitals. This is similar to what is observed in RHF
for N2.65,132,133 We will note in passing that N2 also has a

FIG. 1. O2 dissociation: RHF and cRHF; cc-pVDZ basis. The symmetric and
SB solutions are shown with dashed and solid lines, respectively.

cRHF solution for stretched bond lengths, but will not further
discuss it here. The O2 SB cRHF wavefunction has significant
complexification in two pairs, while for the symmetric solution
this occurs in just one pair.

In Fig. 2, we show real and complex-orbital MP2 (RMP2
and cRMP2, respectively) results. Included are MRCISD+Q
results based on (16,10) CASSCF. cRMP2 is significantly
closer to the MR results than is RMP2. The energies based on
the symmetric HF solutions “turn over,” as usual for MP2 in
bond breaking, while the SB results show a singularity at the
onset of SB and quickly rising energies. This is also observed
in N2 and it is due to the orbital localization, which causes the
SB HF wavefunctions to have a low overlap with the ground
state. In other words, the SB MP2 results are predominantly
approximating excited states in the bond breaking region. This

FIG. 2. O2 dissociation: correlated methods; cc-pVDZ basis. The symmet-
ric and SB solutions are shown with dashed and solid lines, respectively.
RCCSD(T) is based on symmetric RHF solution. MRCI is based on (16,10)
CASSCF. The SB solutions are not relevant to the ground state.
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FIG. 3. O2 dissociation: effects of SB in correlated methods. RB3LYP used
aug-cc-pVQZ, other methods used CBS limit. RCCSD(T) used frozen core
approximation. MR data taken from Ref. 134. Energies are relative to 2 times
the O atom triplet energy. RCCSD(T) and RB3LYP are consistent with S0/S2
admixture.

makes it clear that cRHF cannot generally skirt the RHF SB
problem.

Also in Fig. 2, we show RCCSD(T) numbers. In absolute
energy, these are rather close to those of cRMP2 near the equi-
librium geometry. This is an intriguing outcome. On one hand,
the MR character of the 1∆g state is, in a sense, confined to the
π∗ space, which contains only two electrons for this system.
CCSD is exact for two-electron systems and would be exact
if the correlation treatment were confined to the associated
(2,2) AS, and we might therefore be inclined to think that
RCCSD(T) would be chemically accurate here. On the other
hand, the reference determinant is contaminated by excited
states approximately as given in Eq. (4). In cases like these, it
is important to appreciate that the quality of the CCSD method
is determined not only by its cluster wavefunction, but also
by the reference determinant and the substituted determinants
derived from it, which underlie the projection equations and
thereby the energy. If the substituted determinants also break
symmetry, as is the case here, their projection equations may
force the RCCSD wave function to do likewise.

To further probe this point, we have done additional
RCCSD(T) calculations with larger bases, and, in Fig. 3, we
compare the results to highly accurate full-valence MRCISD
+Q data for the 1∆g and 1Σ+g states. We also include RB3LYP
results to show that standard DFT methods, as represented by
this, the likely most popular functional, are essentially in the
same boat as CC for this example. UCCSD(T) and UB3LYP
were used for the (triplet) O atom to compute relative energies.

The MR numbers were taken from the supporting infor-
mation of Ref. 134. In that work, the data were obtained by
extrapolating to the complete basis set (CBS) limit. Likewise,
we performed a CBS extrapolation following the protocol sug-
gested in Refs. 135 and 136. For this, we computed RCCSD(T)
energies with the frozen-core approximation and with the aug-
cc-pVTZ and aug-cc-pVQZ bases,137 and then fit the functions

EHF,X = EHF,lim+ Be−1.63X and ECE,X = ECE,lim+ BX−3 to the
RHF and correlation energies (CE), respectively, where X = 3
or X = 4 for aug-cc-pVTZ and aug-cc-pVQZ, respectively.

We found that the RB3LYP binding energy changed by
less than a tenth of a kcal/mol when going from aug-cc-pVQZ
to aug-cc-pV5Z, and as such we concluded there was no need
for a CBS extrapolation for this method, i.e., the RB3LYP data
in Fig. 3 are those computed with aug-cc-pVQZ.

The main observation in Fig. 3 is that, near equilibrium,
RCCSD(T) is quite close to halfway in between the 1∆g and
1Σ+g energies. This is very consistent with Eq. (4) and implies
that RCCSD(T) is not able to improve the SB situation of RHF.
The RB3LYP energy appears to be biased towards that of the
1Σ+g state although we note that the RB3LYP relative energy
is fairly close to that of RCCSD(T) if the former is computed
using the restricted open-shell B3LYP energy of the O atom. In
any case, RB3LYP is far from chemically accurate for either
of the pertinent exact states. Although we have not included
RBLYP data in this plot, we will refer to it in Sec. III C.

As spoken of in the Introduction, one may be inclined to
turn to unrestricted methods at this point. Since the underlying
states of interest are singlet spin, this entails doing UHF (or
UDFT) with an equal number of α and β electrons. We have
reported such calculations in an earlier paper,2 and there, we
compared the results with the same high-accuracy MR data.

Around equilibrium, the UHF and UDFT orbitals adhere
to the above template. In this case, the S0-S1 degeneracy means
that U0 and U1 are energetically equivalent. The UCCSD(T)
and UB3LYP energies are thus complicit: they lie in between
the MR 1∆g and 3Σ−g energies. Thus, in this case, unrestricted
methods fare no better than their restricted counterparts.

Finally, we note that the cRMP2 binding energy, as
computed with ROHF/MP2 for the O atom, is about 10 kcal/
mol lower than that of MRCISD+Q at both the cc-pVDZ and
aug-cc-pVQZ levels. This does not appear to be a fundamental
problem because cRMP2/cc-pVDZ is still noticeably above
MRCISD+Q in absolute energy. This issue evidently relates
to a poor MP2 energy for the O atom. We expect an accurate
binding energy at the cRCCSD(T) level; the above discussion
implies that RCCSD(T)’s ∆g and Σ+g components are likely to
be individually accurate, and cRHF will effect the removal of
the latter contaminant.

C. A Pople-type example: BeH2

Pople’s paper,75 although highly insightful, did not present
a genuine molecular system. For our initial exploration in this
setting, we would like to use a very simple instance of such
a system whose properties are similar to the hypothesis of
Pople’s abstract model. For this, we chose BeH2, a common
example in the MR literature.138–149 A typical PES is defined
by the following cartesian coordinates:

Be : (0,0,0),
H : (x,1.344−0.46x,0),
H : (x,−1.344+0.46x,0), (40)

where the units here are Å. At x = 0, we have linear BeH2, and
as x is increased, the hydrogen atoms are pulled laterally away
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from the beryllium atom, and closer to one another, reaching
Be+H2 at around x = 2.1 (see Fig. 1 in Ref. 141). For all x > 0,
the geometries have C2v symmetry.

This PES is of MR interest because the dominant electron
configuration of the ground state at x = 0 is (1a1)2(2a1)2(1b2)2,
but it is (1a1)2(2a1)2(3a1)2 at x = 2.1. Applying our above
template, φ1 and φ2 have B2 and A1 symmetries, respectively,
and S0, S1, S2, and T have A1, B2, A1, and B2 symmetries,
respectively. We expect an RHF solution crossing, leaving a
singularity in the RHF energy.

In Fig. 4, we plot RHF and cRHF energies as a func-
tion of x. The results are essentially as expected, with cRHF
“smoothing” over RHF. Naturally, this is a desirable outcome,
but further inspection is in order because, in contrast to the
O2 case, the PP-like and open-shell pieces of cRHF in BeH2
are of different symmetries. To address this, in Fig. 5, we plot
RMP2 and cRMP2 along with accurate S0, S1, and S2 curves
as per the template. Each energy in this plot is shown relative
to the pertinent method’s energy for S0 at x = 0. We chose this
geometry/state combination as a reference because all methods
considered are well behaved there, i.e., it is not SC.

Notably, S1 becomes the singlet ground state for interme-
diate x values. In addition, RMP2 and cRMP2 are qualitatively
consistent with the “contaminated” nature of their reference
determinants as laid out in the template. The RMP2 crossing-
point energy is shifted up from that of S0, towards S2 as
expected. It is actually closer to S2 than S0 at this point. This
may be due to RMP2’s poor quality in the Be+H2 region,
which itself is due to RMP2’s poor treatment of certain ss
→ pp correlations in the Beryllium atom. If this were somehow
improved such that the RMP2 curve for the right RHF solution
is simply shifted downward, the crossing-point energy would
end up being close to midway between S0 and S2.

We include RBLYP, RB3LYP, and RCCSD(T) data in the
supplementary material.201 The RBLYP and RB3LYP results
are very similar to those of RMP2, with crossing-point energies
slightly shifted down and to the right, but with the same inac-
curacy in the Be+H2 region. For most x values, RCCSD(T) is
chemically accurate. The left and right RCCSD(T) curves each

FIG. 4. Be + H2 insertion: RHF and cRHF; cc-pVDZ basis.

FIG. 5. Be+H2 insertion: restricted MP2 and relevant FCI curves; cc-pVDZ
basis. Energies are relative to linear H-Be-H (ground-state) energy. In the MR
region, cRMP2 is consistent with S0/S1 admixture and RMP2 is consistent
with S0/S2 admixture.

“turn over” and head downward at a very fast rate when moving
to the right and left of the RHF crossing point, respectively.
Nevertheless, if we select the best of the two energies at each
x value, it never varies from the accurate S0 curve by more
than 2 kcal/mol. A similar result was found several years ago
using RCCSD.138 This likely represents a situation where the
system is small enough (4 valence electrons) that CCSD(T)
can significantly overcome the effects of a poor reference
determinant.

The cRMP2 energy is qualitatively consistent with an S0-
S1 mixture, again as per the template. To the right of x = 1.5,
at which point the S0 curve maximizes, cRMP2 continues to
rise temporarily, concomitant with S1’s continuing rise. This
makes cRMP2 less symmetric looking compared to S0 in this
region and shifts the cRMP2 maximum to the right of that of
RMP2. That the cRMP2 relative energy does not lie in between
those of S0 and S1 may again be related to RMP2’s poor quality
for Be atom, i.e., moving to the right cRMP2 has to join with
an “upshifted” RMP2 energy.

We turn to unrestricted methods. First, ab initio results
are plotted in Fig. 6, along with accurate S0, S1, and T curves
as per the template. We first observe that in the intermediate
region, T is the overall ground state. The underlying UHF
data, plotted in the supplementary material,201 consist of three
solutions. The first one predominates between x = 0 and around
x = 1.2, at which point the second solution crosses the first
and predominates until around x = 1.65, whereupon it crosses
with the third solution, which predominates thereafter. The
second crossing persists in the UMP2 and UCCSD(T) data,
while the first UHF crossing becomes a bona fide discontinuity.
This somewhat unusual behavior is due to S1 and T dropping
below S0 in the intermediate region. The second UHF solution
corresponds to a U1 situation as described above, whereas the
first and third solutions correspond to a U0 situation (if they
are allowed to “continue” into the intermediate region). Here,
the UMP2 energy is very close to lying midway between those
of S1 and T, while UCCSD(T) is somewhat closer to T.
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FIG. 6. Be + H2 insertion: unrestricted ab initio and relevant FCI curves;
cc-pVDZ basis. Energies are relative to linear H-Be-H (ground-state) energy.
The underlying UHF data exhibit three solutions (see supplementary mate-
rial201). In the MR region, UMP2 and UCCSD(T) are consistent with S1/T
admixture.

UDFT results are plotted in Fig. 7. First, we see that
UBLYP and UB3LYP each produce only one curve with no
crossings, something we have carefully checked by performing
calculations at numerous x values in the two relevant regions.
Instead of crossings, there exist bifurcations at the two relevant
geometries, and on the lower curve each functional is gradually
transitioning from S0/T-like constituents to S1/T-like constitu-
ents. This result, although perhaps seemingly advantageous, is
actually unphysical because the underlying exact states cross.

UB3LYP resembles UCCSD(T) in the intermediate re-
gion, while UBLYP is rather close to the accurate T curve.
The latter result is quite interesting, given the SB in its under-
lying determinant. To exclude possible basis set effects here,

FIG. 7. Be + H2 insertion: UDFT and relevant FCI curves; cc-pVDZ basis.
Energies are relative to linear H-Be-H (ground-state) energy. Compared to
UHF, UDFT “smoothes” the solutions into one curve. Each UDFT curve is
overbound around 1.2 Å, which supports there being an S1/T admixture in
the MR region.

which are generally relevant for DFT calculations with small
basis sets, we computed UBLYP/cc-pVQZ109 energies at x = 0
and x = 1.4, and benchmarked these data with full-valence
MRMP2/cc-pVQZ calculations for S0, S1, and T. The results
corroborated the cc-pVDZ data. If this outcome is a legitimate
one, it certainly would be counted as a success for BLYP. But,
there is a reasonable amount of doubt for this, as shown with
the following counterpoint.

For O2 at bond length 1.21 Å, the RBLYP/aug-cc-pVQZ
binding energy is 99.4 kcal/mol, in good agreement with the
MR data for 1∆g in Fig. 3. This might make it seem like
RBLYP is overcoming the SB of its auxiliary determinant,
which has been qualitatively described in the above template.
Indeed, this situation is very similar to what we are observing
just above for BeH2. However, for the triplet, UBLYP/aug-
cc-pVQZ gives a binding energy of 135.8 kcal/mol, which is
about 15 kcal/mol too high.134 The above-mentioned agree-
ment regarding the RBLYP energy for O2 is therefore spurious.
This result is not unfamiliar; there are known examples of
appreciable BLYP overbinding,150–153 a notable one being the
chromium dimer.154,155 A further indication that this may also
be occurring for BeH2 is that the UBLYP relative energy is
significantly below those of S0 and T where the latter curves
cross near x = 1.2. In other words, if UBLYP is demonstrably
overbound there, could not this also be the case around x = 1.4?
One might obtain some further clues for this by exploring the
more general BeH2 PES (i.e., geometries not found along the
selected C2v cut), but we will not attempt that here.

D. A Woodward-Hoffmann violating reaction

The BeH2 model, although providing a good conceptual
testing ground, largely functions as a prototype. We have
endeavored to determine which general and chemically rele-
vant molecular classes would benefit from cRHF.

One promising area is found in the various organic reac-
tions to which the Woodward-Hoffmann (WH) rules have been
famously applied.156 In our perspective, the WH rules appear to
be closely related to the general idea that reactions are allowed
if and only if the associated (RHF) occupied space transitions
smoothly between reactant and product. In other words, the
latter property is thought to correlate well with low energy
barriers. As such, reactive processes entailing RHF frontier-
orbital interchanges and/or associated with multiple RHF solu-
tions and the associated energetic singularities would generally
be (thermally) forbidden. Naively, this seems detrimental to
cRHF’s relevance in this context.

There are (at least) two significant contradictions to this
assumption: First, these thermally forbidden reactions often
still proceed photochemically, via excited states that even-
tually reconnect with the ground state PES, and thereby to
the products, via conical intersections (CI). In a prototyp-
ical situation, the excited state is dominated by an open-shell
configuration obtained as a single HOMO-LUMO excitation
from the ground-state determinant. cRHF is thus of interest
for such cases. Unsurprisingly, the situation in practice is more
complicated (see, e.g., the literature cited below for butadiene),
but we still expect open-shell terms being sufficiently low to
admit a distinct cRHF solution in the general vicinity of the
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CI. As to the second contradiction, for some reactions that
are technically forbidden by the WH rules, the barriers of
the ground state PES’s are low enough to grant a measure
of chemical relevance. These are the WH violating (WHV)
reactions.157–166

Initially, we were inclined to look for cRHF solutions in
the 1,3-butadiene ring closure to form cyclobutene, an arche-
type reaction of WH theory. The thermal reaction proceeds
through a conrotatory mechanism, in which the hydrogen
atoms on the two terminal carbon atoms rotate in the same
direction as the carbon atoms come closer to each other.
Throughout this PES, RHF is well behaved. Conversely, a
(ground-state) disrotatory process, wherein the pertinent
hydrogen atoms rotate in opposite directions, must involve
a frontier-orbital interchange and therefore would be WH
forbidden. Even if its barrier were high, it might still be of aca-
demic cRHF interest. But even this turns out to be extraneous:
studies employing MR wave functions have found no legiti-
mate (ground-state) transition state (TS), i.e., first-order saddle
point, consistent with a concerted disrotatory PES.167–169 Thus,
practical investigations of disrotatory processes for this system
are effectively confined to the excited state/CI realm. The
associated photochemical reaction is well known and tractable.
It involves multiple CI’s and is generally intricate.170–176 But,
for reasons discussed in Subsection III E, we have chosen not to
pursue the CI/cRHF connection in WH reactions in this paper.

Things are different for a modified version of this reaction.
Consider the ring opening (just the reverse of closure) of cis-
bicyclo[2.1.0]pent-2-ene (1) to form cis,cis-cyclopenta-1,3-
diene (2). These structures are analogs of cyclobutene and 1,3-
butadiene, respectively (see Fig. 8). Theoretical ground-state
studies177,178 have shown that the added carbon atom, which
starts off in a cyclopropyl group, serves to force the molecule
into a ring-opening disrotatory motion that entails a TS.

To test cRHF on this system, we need to obtain the geom-
etries of its PES. We aim for the simplest level of theory that
is qualitatively correct. The σ-bond framework stays roughly
intact throughout the reaction, while the π framework clearly
gets rearranged. Before performing calculations, it is difficult
to predict with high confidence whether the essence of this
reaction is limited to the expected HOMO/LUMO interchange,
which could be effectively modeled with a (2,2) AS, or if it
will require a full 4-electron π space treatment. Accordingly,
we proceeded with state-specific (SS) CASSCF(4,4).

As a guess geometry, we used the TS geometry computed
in Ref. 178. This guess geometry has Cs symmetry, and we note
that the reactant and product have a common (i.e., conserved)
Cs axis, which, for example, bisects the cyclobutene group
of the reactant, passing through the cyclopropyl carbon atom.

FIG. 8. WHV reaction: reactant and product structures.

Thus, this symmetry constraint was used when computing the
various reaction-path geometries. Using this guess geometry,
we did a TS calculation at the CAS(4,4) level. With a vibra-
tional analysis, we verified that the obtained geometry is a
true TS and have included its coordinates in the supplementary
material.201

Starting from the TS geometry, we performed SS CAS(4,4)
Intrinsic Reaction Coordinate (IRC) calculations,179–181 which
gradually perturb the starting geometry into two energy minima
that are connected via the TS. We verified that the two ob-
tained minima correspond to the desired reactant and product.
The reaction path is quantified by a variable, Stotal, which
measures the distance traveled from the TS and has units√

amu ∗Bohr radius.182 The details of Stotal are not essential
for our present purposes; we only need to know that the TS
corresponds to Stotal = 0, while the leftmost and rightmost
values in the forthcoming plots correspond to reactant and
product, respectively. We used the IRC geometries for all
subsequently discussed calculations on this system.

Deciding on a level of theory to use for benchmarking
the pertinent approximations is slightly complicated. MRMP2
based on CASSCF is, in principle, adequate here. However,
since we expect complexification in at least one pair, we expect
(at least) 3 singlet states to be relevant to RHF and cRHF in
the MR region of the PES, while the associated triplet should
be additionally relevant to UHF. As per our above template,
we need to include such excited states in the benchmarking.
The use of SS ground-state CAS orbitals for excited states
is not advisable. Also somewhat dubious are separate orbital
optimizations for each excited state; for example, we were
unable to converge the 2nd excited singlet this way. State
averaging (SA) is the more reliable approach here, but even this
is a little tricky for the (4,4) AS. This is because the required
4 states mentioned just above are not always the lowest four
states to be found at any given geometry along the PES, making
them difficult to track.

To get around this issue, we looked at natural-orbital occu-
pation numbers at the geometry exhibiting the highest degree
of MR character, which, at the SS CAS(4,4) level, occurs
around Stotal= 0.7. At this geometry, the occupation numbers
are 1.89, 1.04, 0.96, 0.11, which is close to 2, 1, 1, 0, meaning
that qualitatively, this reaction can be correctly modeled by a
(2,2) AS after all. Additionally, at Stotal= 0.1, the highest occu-
pied and lowest unoccupied natural orbitals have symmetry A′

and A′′, respectively, while the ordering is reversed at Stotal
= 1.0. This frontier-orbital interchange suggests an RHF solu-
tion crossing and bodes well for a distinct cRHF solution. Thus,
applying our template, φ1 and φ2 have these two symmetries,
and S0, S1, S2, and T have A′, A′′, A′, and A′′ symmetries,
respectively.

The (2,2) AS’s dimension is only 4, and it contains the 4
states of greatest interest, so here, SA is straightforward. There-
fore, along the reaction path, we optimized orbitals by aver-
aging over the lone triplet and 3 singlet energies in CAS(2,2)
and used these orbitals to perform MRMP2 calculations. This
approach is further supported by qualitative similarity between
its PES for the ground state and that obtained using MRMP2
based on SS CAS(4,4), which is shown in the supplemen-
tary material.201 The two curves have very similar reactant-TS
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barriers, but the product-TS barrier for (4,4) is larger. The (2,2)-
based numbers will thus serve as our benchmark. We note that
the CAS(2,2) singlet energies do not cross at any point along
the PES, i.e., they are always in accord with the S0-S1-S2
labelling. This is not the case for MRMP2, as we will see.

We computed RHF and cRHF along the IRC. Sure enough,
as Fig. 9 shows, an RHF singularity occurs, which is smoothed
over by cRHF. The associated MP2 energies are also shown
in Fig. 9. For these and all forthcoming plots for this system,
each energy is shown relative to that of the respective method’s
approximation for the ground state at the reactant geometry.

To assess the MP2 results, consider the MRMP2 bench-
mark data for the 3 singlets shown in Fig. 10. The cRMP2
curve is not included in this plot because on this scale, it
appears scantly different from that of RMP2. The MP2 energies
are visibly consistent with our template, with the benchmark
S0 and S2 curves resembling “adiabatic” counterparts to the
“diabatic” RMP2 curves. Curiously, S2 drops below S1 in this
region, in opposition to the CAS result. This MRMP2 observa-
tion is consistent with the cRMP2 curve, which veers upwards
from the RMP2 curve in the complexification region, while the
CAS energy ordering is consistent with cRHF dropping below
RHF there. This is to be compared with the BeH2 case, where
the cRMP2 barrier height is more accurate due to that system’s
S0 and S1 states being much closer in energy in the MR region.

These observations also explain why the RMP2 cross-
ing point lies to the right of the S0 barrier. The two RMP2
energies do not become degenerate until the maximal MR
point. Although the exact location of this point varies slightly
between the various methods, it invariably occurs to the right
of Stotal= 0, hence the right-shifted “barrier.”

The RBLYP and RB3LYP curves are similar to those for
RMP2, so we include them in the supplementary material.201

Wehave includedRCCSD(T) results inFig.10.TheRCCSD(T)
barrier height is a significant improvement over that of RMP2.
In contrast to the O2 results, here RCCSD(T) is found below the

FIG. 9. WHV reaction: zoom-in of RHF, cRHF, RMP2, and cRMP2; cc-
pVDZ basis. Energies are relative to reactant (ground-state) energy. Note that
the complexification region lies to the right of the TS. Relative to RMP2,
cRMP2 is shifted slightly upward, consistent with an S0/S1 admixture (see
Fig. 10).

FIG. 10. WHV reaction, full PES: restricted ab initio and relevant SA (2,2)
MRMP2 curves; cc-pVDZ basis. Energies are relative to reactant (ground-
state) energy. RCCSD(T) used frozen core approximation. In the MR region,
RMP2 is consistent with an S0/S2 admixture.

midpoint between the ground state and pertinent excited state.
However, the singularity remains although each RCCSD(T)
curve does appear to exhibit a maximum, i.e., a barrier.

We show unrestricted results in Fig. 11. The UHF wave
function breaks spin symmetry at all points shown, with ⟨S2⟩
values ranging from 0.19 to 1.26 to 0.40 at the reactant, MR,
and product geometries, respectively. Spin polarization occurs
in UBLYP in the Stotal interval [−1.2,1.6], and in UB3LYP
in the interval [−1.7,1.9]. These functionals give maximal
determinantal ⟨S2⟩ values of 1.02 and 1.04, respectively, each
of these numbers occurring essentially at the maximal MR
point. These considerations, along with those discussed above
for the restricted results, indicate that the unrestricted results
fit the U0 designation.

FIG. 11. WHV reaction, full PES: unrestricted ab initio, UDFT, and relevant
SA (2,2) MRMP2 curves; cc-pVDZ basis. Energies are relative to reactant
(ground-state) energy. UCCSD(T) used frozen core approximation. Underly-
ing UHF breaks spin symmetry at all points. In the MR region, unrestricted
curves are consistent with an S0/T admixture.
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Near the maximal MR point, the UCCSD(T) energy is in
between those of S0 and T. This is not the case for the UDFT
energies, but it would be if we had used the product geometry
to define the relative energies. The product is non-SC and
closed-shell, so it would also be a valid reference point; indeed,
switching to it would not alter our UCCSD(T) observation.
There is another reason that the closeness of the UDFT and
S0 energies at the maximal MR point might still be consistent
with admixture: the SS (4,4) MRMP2 T energy, shown in the
supplementary material,201 is very close to that of S0 at that
geometry.

Compared to MRMP2 S0, each unrestricted method ex-
hibits a left-shifted and raised barrier. Both of these attributes
are consistent with triplet-energy admixture: to the right of
Stotal = 0, both the S0 and T benchmark energies are going
down, as are all of the unrestricted energies, and to the left
of Stotal = 0, the T energy rises more quickly than the S0 en-
ergy falls, while correspondingly, the unrestricted energies rise
temporarily to a maximum. Thus, the unrestricted data are
generally consistent with the template.

The reduced range of spin polarization in the DFT results
is consistent with the behavior of MRMP2 T, which is low
lying only in the general MR region; the DFT functionals have
enough correlation to “see” that there is no point to mixing in
a triplet contribution to the energy outside this region. Accord-
ingly, UHF is short sighted in its SB extent, a problem clearly
unmasked in the UMP2 results.

E. Symmetry-driven conical intersection

As stated above, the combination of PP-like and open-shell
terms inherent in cRHF (cf. Eq. (15)) recommends its usage
for CI’s whose two (or more) associated states are dominated
by such terms. We were interested in the CI’s found in the
ring opening of cyclobutene, and we particularly wanted to
study DNA bases and related molecules, which exhibit CI’s
that appear to fit this description, especially those between
the ground state and π-to-π∗ excited states.183–189 Some of
these cited papers report CI geometries as computed with MR
methods with relatively large AS’s. On a handful of these
geometries, we ran some exploratory calculations, but each one
showed that RHF was stable to complexification. Upon further
contemplation, this is not very surprising: it is quite possible
that here, as in the above examples, complexification is limited
to a small geometric window, which would be unlikely to
contain the literature geometries as these were computed at
a rather different level of theory. The best we can hope for
here is a qualitative similarity. For these systems, the CI’s do
not occur at “intuitive” geometries, so their locations must be
computed. A search for “cRHF geometries” must likewise be
computational. Our cRHF codes are not presently equipped for
this.

As a result of these difficulties, we shifted our focus to
CIs whose geometries are intuitive, i.e., those driven by spatial
symmetry. For this paper, we have chosen C5H+5 , the cyclopen-
tadienyl cation. This system has a CI in its singlet ground
state at the pentagonal (D5h) geometry, making it a Jahn-Teller
system: the molecule distorts to energetically preferable C2v
structures.190–197 The latter comprise two unique geometry

stationary points: one dienylic and one allylic structure, as
depicted in Fig. 12. As a model for these processes, we have
selected a one-parameter C2v cut of the PES. Each geometry
along this cut is planar, and each is obtained by placing a
carbon atom at position (0,1.208) (in Å) and a hydrogen atom
at (0,2.288), and successively rotating these positions by the
angles given in Fig. 13 to obtain the positions of the remaining
atoms. With these starting positions, the C–H bond lengths are
always 1.08 Å, while C–C bond lengths are 1.42 Å at the D5h
geometry. The latter occurs at Θ= 0, while negative and posi-
tive Θ values correspond to perturbations in the dienylic and
allylic directions, respectively. The exact geometry stationary
points are not found along this cut. Computing a C2v path that
does contain these structures is somewhat complicated due
to lack of a proper corresponding transition state (see below
comments on pseudorotation) and because of some SS/SA
issues to be discussed shortly. Rather, our chosen cut serves
as a qualitative approximation for the distortions, with the
advantage that it is simply defined.

Comparing the dienylic and allylic structures in Fig. 12,
they differ by a restructuring of the π bonds, but the σ bonds
stay relatively intact. This implies that the π space should
contain the essential correlations. At Θ = −2, the RHF π or-
bitals have symmetries B1, A2, B1, B1, and A2, in order of
increasing energy. AtΘ= 2, this switches to B1, B1, A2, A2, and
B1. The 2nd and 3rd orbitals in each of these sequences are the
HOMO and LUMO, so, yet again, we have a PES underlied
by a frontier orbital interchange. In this case, T and S1 are B2
symmetry, while S0 and S2 are A1.

As shown in Fig. 14, RHF calculations produce the ex-
pected result: two solutions that cross at the D5h geometry. At
that point, the π orbitals have symmetries A′′2 , E′′1 , and E′′2 , in or-
der of increasing energy. Of course, this is only approximately
true in RHF because half occupation of the degenerate E′′1 level
leads to polarization and some orbital SB, as observed earlier
in O2.

At D5h, the four low lying states of interest have energy
orderings and symmetries

T : A′2,
S0 : E′2,
S1 : E′2,
S2 : A′1. (41)

Because T is the ground state for our selected PES region, and
because it is essentially single reference, all energies reported
in this subsection were computed relative to the D5h T energy.
To do this properly, for each of the various methods used to
approximate the excited states here, we must use a concomitant

FIG. 12. C5H+5 distortion: principle structures.
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FIG. 13. C5H+5 distortion: parameterization of C2v cut.

method to compute the D5h T energy. For RHF, we used ROHF
for T, while for cRMP2, we used ROMP2 for T, etc.

S0 and S1 are degenerate at D5h, and here, the cRHF wave
function has the correct E′2 symmetry. D5h C5H+5 is therefore a
polyatomic analogue of O2. More generally, cRHF smoothes
the RHF singularity, as may be seen in Fig. 14.

To benchmark these results, we turn to CASSCF. The
energetic closeness of the four states indicates that, once again,
we ought to use some SA. This is confirmed by a SS CAS(4,5)
calculation on S0 at the D5h geometry; using these orbitals, the
S1 energy, as computed in the same AS, is 29.6 kcal/mol higher
than that of S0. Furthermore, there is a singularity in the SS-
CAS S0 energy at the D5h geometry, as shown in Fig. 14. This
is a consequence of two solutions crossing, similar to what we
have generally been observing for RHF. It demonstrates the

FIG. 14. C5H+5 distortion: RHF, cRHF, and relevant (4,5) CASSCF curves;
cc-pVDZ basis. Energies are relative to D5h triplet energy. SS CAS has an
energetic singularity due to SB.

underappreciated fact that CASSCF, like HF, is susceptible to
SB problems.

We therefore proceeded to average over the 4 lowest states
in CAS (4,5). In contrast to our previous example, usage of this
AS entails no state reordering across the PES. We therefore
include the corresponding SA CASSCF energies in Fig. 14.
The SA numbers respect the S0/S1 degeneracy at D5h, while
providing smooth energy profiles across the distortion.

We show MP2 results in Fig. 15. The cRMP2 curve is
somewhat odd. In particular, around D5h, it has a curvature
opposite to that of the singlet ground state. This does not
seem to have a straightforward explanation. It could be that
cRMP2 is producing an entirely spurious result, as it does for
the symmetric solution as O2 dissociates. Such behavior is not
uncommon for HF wavefunctions that have large overlaps with
multiple exact states, which is the case here, with a large over-
lap with S1. Alternatively, it could be that cRMP2 is exhibiting
a more legitimate admixture of ground and excited state ener-
gies. If so, it would somehow be modifying the predominantly
ground-state character of the cRHF energy to a predominantly
excited-state “concave up” curve, perhaps even implicating S2.
This evokes the shortsightedness of HF, as mentioned earlier,
where the relevance of uncorrelated (excited-type) states gets
overestimated. In such circumstances, it might be of interest
to reoptimize the orbitals with correlation included.198–200 For
this, it may be reasonable to expect the most significant en-
ergy lowerings to occur at medium values of Θ, where SB
and excited-state admixture are most problematic, while also
expecting smaller changes atΘ= 0 and for large (perhaps here
unplotted) Θ values, where the ground state is more single-
reference in character (in the cRHF sense). In other words,
would orbital optimization reverse the curvature of cRMP2,
and without much vertical shifting? In any case, cRMP2’s
ambiguous behavior for this system stands in contrast to what
we have observed in the previous examples.

RB3LYP, RBLYP, and RCCSD(T) all produce curves
essentially parallel to those of RMP2 but shifted down by
1.3, 3.8, and 6.1 kcal/mol, respectively. A plot for these data

FIG. 15. C5H+5 distortion: restricted MP2 and relevant (4,5) MRMP2 curves;
cc-pVDZ basis. Energies are relative to D5h triplet energy.
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is included in the supplementary material.201 RCCSD(T) is
more in agreement with MRMP2 than is RMP2: RCCSD(T)’s
relative energy atΘ= 0 of 20.6 kcal/mol is fairly close to lying
midway between the corresponding numbers for MRMP2 S0
(11.9) and MRMP2 S2 (25.5), in line with the RHF wave func-
tion having comparable overlaps with the exact S0 and S2 wave
functions at this point. The parallelity between the RCCSD(T)
and RMP2 curves implies that the vertical displacement be-
tween them is due to inconsistencies in how the triplet ener-
gies are computed. It may be that the RMP2/ROMP2 pairing
is less compatible than is the RCCSD(T)/ROCCSD(T) one,
something like what we saw earlier for O2.

We turn to unrestricted methods. For cyclic polyenes with
an even number of carbon atoms, unrestricted methods typi-
cally spin polarize such that nearest-neighbor carbon atoms
have opposite spin (e.g., in the Mulliken sense). In the present
odd-numbered case, the spin polarization cannot be arranged
symmetrically, as there would be 3 α and 2 β spins. To identify
one potential outcome of this fundamental problem, we must
note that at the D5h geometry, there are actually 5 possible C2v
point groups; for example, each group’s rotation axis bisects
a different carbon atom. Therefore, there are 5 equivalent di-
enylic structures, and likewise for the allylic structures.

The preferred transition between dienylic and allylic struc-
tures does not go through the C2v path we have been studying
but rather follows a pseudorotation in which the position of
one double bond is preserved in the transition (as opposed to
our C2v path, where the allylic double bond is in a position
different from those of the dienylic).191 In other words, upon
pseudorotation, the C2v group is switched. The above spin
polarization is not conducive to this preferred transition, and
we expect singularities in the UHF energy there. However, the
barriers and energy gaps are very low for this process, and
we therefore thought it worthy of mention but not of further
examination in this paper.

Returning to our C2v path, we show unrestricted results in
Fig. 16. Given that S0 is the singlet ground state at all points
shown, we have a U0 situation, and we thus expect unrestriction
to entail a mixture between S0 and T. The UBLYP, UB3LYP,
and UCCSD(T) energies are consistent with this: they are
concave up and they each lie in between and are generally
flatter than the S0 and T energies. The UMP2 energy is also
concave up, but its position is quite high (16.5 kcal/mol at D5h).
To not obscure the other curves, we did not include UMP2 in
the plot.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have studied the largely forgotten method,
restricted Hartree Fock with complex orbitals. We introduced
a pairing theorem that reveals a concise connection between
cRHF and RHF, wherein complexity is introduced to a doubly
occupied RHF pair via an individualized virtual RHF orbital.
This result was used to show that cRHF, UHF, and PP are actu-
ally quite closely related, and it is also helpful for understand-
ing cRHF’s utility and in predicting when complexification
will occur. A main theme here is that the presence of a relatively
low-lying open-shell singlet state is closely connected to the
occurrence of a distinct cRHF solution.

FIG. 16. C5H+5 distortion: UCCSD(T), UDFT, and relevant SA (4,5) MRMP2
curves; cc-pVDZ basis. Energies are relative to D5h triplet energy. UCCSD(T)
used frozen core approximation. Unrestricted curves are consistent with S0/T
admixture.

We have implemented an efficient cRHF code within
QChem at the same scaling as RHF. We have also included
the capability to test if the solutions found are minima or
saddle points via a stability analysis. This analysis has the same
scaling as the SCF procedure and thus it is feasible for usage
on any system for which one has cRHF solutions.

We applied cRHF to four examples. Each displayed com-
plexification essentially within just one pair (except for O2
upon dissociation), this pair corresponding to the frontier
orbitals. We showed that the standard ground-state methods
are ineffective for singlet O2. The latter three examples were
all characterized by a frontier orbital interchange, where the
LUMO drops below the HOMO and RHF solutions cross.
Despite all these similarities, each of the latter 3 examples
presented a fairly different context. At the points of maximum
complexification, we observed (1) for BeH2, SB in cRHF and a
small, in fact negative, S0-S1 gap (in the “exact” energies), (2)
for the WHV reaction, SB in cRHF and a big S0-S1 gap, and
(3) for C5H+5 , no SB in cRHF and an S0-S1 degeneracy. These
variations made for rather different outcomes at the cRMP2
level, a subject we will return to shortly.

We would like to point out that D5h C5H+5 is a cyclic
molecule with a half-filled, doubly degenerate HOMO, so it
is antiaromatic. Considering these attributes, we immediately
surmise that cRHF is a useful, if not the preferred, method for
antiaromatic systems. We should note that many antiaromatics,
such as cyclobutadiene, differ from C5H+5 in that they do not
have degenerate singlet ground states. Nevertheless, we have
confirmed that C4H4 indeed has a distinct cRHF solution with
properties similar to what we have seen in this work.

Although the unrestricted DFT results shown in this paper
were generally better than their (real) restricted counterparts,
they did exhibit a particular limitation. For the most part,
spin polarization in DFT is considered to be much less of a
problem than it is in ab initio theory. In part, this is due to the
observation that DFT functionals tend to be more resistant to
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spin polarization than are ab initio methods, which is generally
advantageous. But, it has also been suggested that even when
the level of spin polarization is significant, it is still much less
of a problem in DFT. At least three of the examples considered
in this work contradict this claim, each one showing evidence
of triplet contamination for all unrestricted methods used, both
DFT and ab initio.

Accordingly, it may be worth it to incorporate complex
orbitals into restricted DFT. For one, we generally expect com-
plexification in RDFT to correspond well with that in cRHF
for the kinds of systems studied above. In addition, consider a
point made in the Theory section: in the pairing representation,
the off diagonal elements of the density matrix, which are
imaginary, cancel out when the density is formed. In the latter
3 examples of this paper, these elements were the source of
SB in cRHF, which itself was implicated in the cRMP2 inac-
curacies. Thus, this observation may have significant cRDFT
implications, especially for pure functionals. Nevertheless, we
have to be cautious here. Upon running stability analyses on
RBLYP for some geometries of the WHV reaction, we found
real-to-complex instabilities only in between Stotal = 0.3 and
0.6, meaning cRBLYP will differ from RBLYP only within
this gap. But the inaccuracy of RBLYP extends beyond this
small range, so cRBLYP may still fall short for this system.
The energetic position of the open-shell singlet excited state
thus appears to be operative here. Again, this idea underlies all
the complex-restricted approximations discussed in this paper.
We might expect a more favorable outcome for BeH2, with its
low lying S1. In any case, experimentation with cRDFT is in
order.

It seems reasonable to assert the efficacy of cRMP2 and
cRCCSD(T) (and possibly cRDFT) for systems like O2 (near
equilibrium) and D5h C5H+5 . For the other situations consid-
ered here, cRMP2’s behavior is erratic, and cRCCSD(T)’s
ability to adequately correct this is uncertain. Accordingly,
perhaps the pivotal distinction of cRHF is that it can, in at
least certain important cases, resolve singularities in the RHF
energy. This may entail some SB, but for single-reference
methods based on restricted HF, a reference determinant with
this “smoothing” property may prove to be vital. It will be of
significant interest to see how the new SC-inspired, hitherto
RHF-based, single-reference approximations noted in the In-
troduction would perform in this context.
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