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The line bundles that arise in the holonomy interpretations of the geometric phase
display curious similarities to those encountered in the statement of the Borel—
Weil-Bott theorem of the representation theory. The remarkable relationship be-
tween the mathematical structure of the geometric phase and the classification
theorem for complex line bundles provides the necessary tools for establishing the
relevance of the Borel-Weil—Bott theorem to Berry’s adiabatic phase. This enables
one to define a set of topological charges for arbitrary compact connected semi-
simple dynamical Lie groups. These charges signify the topological content of the
phase. They can be explicitly computed. In this paper, the problem of the determi-
nation of the parameter space of the Hamiltonian is also addressed. It is shown that,
in general, the parameter space is either a flag manifold or one of its submanifolds.
A simple topological argument is presented to indicate the relation between the
Riemannian structure on the parameter space and Berry’s connection. The results
about the fiber bundles and group theory are used to introduce a procedure to
reduce the problem of the nonadiabatgeometri¢ phase to Berry's adiabatic
phase for cranked Hamiltonians. Finally, the possible relevance of the topological
charges of the geometric phase to those of the non-Abelian monopoles is pointed
out. © 1996 American Institute of Physids$S0022-24886)03502-1

I. INTRODUCTION

In the past ten years, since the revival of the geometric phabg, Berry?® the subject has
attracted the attention of many physicists. The main reason for the unusual popularity of this
remarkably simple subject, particularly among the theoretical physicists, has been its rich math-
ematical and physical foundations.

Recently, it was shown that the two holonomy interpretations of Berry’s phase were linked via
the theory of universal bundlés. This remarkable coincidence of the physics of geometric phase
and the mathematics of fiber bundles enables one to set up a convenient framework to analyze the
nonadiabatic phaseln the present paper, the resultS afe briefly reviewed and their generali-
zation to arbitrary finite-dimensional unitary systems are presented.

In Sec. Il, it is shown how the study of the standard example of a spin in a processing
magnetic field directs one to the Borel-Weil-B@WB) theorem of the representation theory of
compact semisimple Lie groups. In Sec. lll, the relation of the BWB theorem to the phenomenon
of a geometric phase is discussed in a general setting. Section IV is devoted to a discussion of the
relation of Berry’s connection and the Riemannian geometry of the parameter space. Section V
includes the discussion of the reduction of the nonadiabatic phase problem to the adiabatic one for
the cranked Hamiltonians. Section VI consists of a short account on the classification of the
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Ali Mostafazadeh: Geometric phase, fiber bundles, and groups 1219

parameter spaces and the topology of non-Abelian monopoles. Section VIl includes the conclu-
sions.

Il. BUNDLE CLASSIFICATION AND THE HOLONOMY INTERPRETATIONS OF THE
GEOMETRIC PHASE

There are two mathematical interpretations of Berifgdiabati¢ phase. These are due to
SimorP and Aharonov and Ananddnl. shall refer to these two approaches by “BS” and “AA,”
which are the abbreviations of “Berry—Simon” and “Aharonov—Anandan,” respectively.

In the BS approach, one constructs a line buhdtever the spac®! of the parameters of the
system. ThenL is endowed with a particular connection that reproduces Berry’s phase as the
holonomy of the closed loop in the parameter space.

Let us consider a quantum mechanical system whose evolution is governed by a parameter-
dependent Hamiltonian:

H=H(x), xeM.

Assume that for alke M the spectrum of(x) is discrete and that there are no level crossings.
Then, locally one can choose a set of orthonormal basic eigenstate Vignteds. As functions of
X, |n,x) are smooth and single valued. By definition, they satisfy

H(x)[n,x)=En(x)[n,x), )

whereE, (x) are the corresponding energy eigenvalues. The Hamiltonian is made explicitly time
dependent by interpreting tinteas the parameter of a curve,

C:[0T]at—x(t)eM, (2
and setting
H(t):=H(x(t)), te[O0,T]. (3

Then, each closed cun@in M defines a periodic Hamiltonian with peridd | shall discuss only
the evolution of nondegenerate cyclic states with pefliod

Under the adiabatic approximation the initial eigenstates undergo cyclic evoldtins.
| (1)) denotes the evolving state vector, i.e., the solution of the ‘Slafger equation:

. d
HOldn(1)=1 51 [#n(D)

| ¥m(0)):=n,x(0)), (4)

then

|‘//n(T)><l/fn(T)|:|¢n(0)><wn(o)| 5

After a cycle is completed, the state vector gains a phase factor that consists of a dynalfijcal (
and a geometricg?) part,

|n(T))=€"“" Y|y (0)), (6)

where

J. Math. Phys., Vol. 37, No. 3, March 1996



1220 Ali Mostafazadeh: Geometric phase, fiber bundles, and groups

T
W =— f E,(x(t))dt,
0

and

e'”:=exp fﬁCA, (7)

d
A:=—(n.x|d[n,x)=—(n,x| — [n,x)dx*. ()

The one-formA is known as Berry’s connection one-form.
In Ref. 6, Simon showed thdt could be interpreted as a connection one-form dspectral
line bundleL over M,

C—L—M, ©)
whose fibers are given by the energy eigenrays in the Hilbert sgéce
Ly:={z|n,x) : zeC}. (10

Thus, in the BS approach, Berry’s phase is identified with the holonomy of thedaojd defined
by the connection one-forrA of Eq. (8).

In the AA approach one considers a complex line burigller alternatively, the associated
U(1)-principal bundle, over the projective Hilbert spaeé)=CPN, N:=dim(7%)—1:

C—E—AZ). (12)
The fibers over the pointg=|7)(7| of ZA.7)=CPN are the corresponding rays:
E,:={zln) : ze(}, (12

in the Hilbert space”. (The topological structure d& is determined by the topological structure
of CPN. In particular, a natural local trivialization is given by adopting the standard homogeneous
local coordinate charts fofPN. The associated transition functions Bfare determined from
those ofCPN similarly. See Sec. IV for an alternative characterization of the topolody.of

The AA connection one-form# (Ref. 7) is then viewed as a connection one-form®Brand
the geometric phase is identified with the corresponding holonomy of loops,

7 [0T]at— n(t) e AH), (13

in 2A.7%). In the adiabatic approximation one approximaigt) by ¢,(t) of Eq. (4).

These two interpretations of Berry’s phase turn out to be linked via the theampieérsal
bundles It is shown in Refs. 4 and 5 th&t (with N—x) is indeed the universal classifying line
bundle3~1% and as a result of the classification theorem for complex line buridiEsevery
complex line bundle can be obtained as a pullback bundle foin particular, there is a smooth
map,

f:M—A ), (14
such that

L=f*(E). (15

J. Math. Phys., Vol. 37, No. 3, March 1996
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The mapf is simply given by
f(x):=|n,x)(n,x|. (16)

Furthermore, the fact that the phase is obtained from eithés of .7 is a consequence of the
theory of universal connection¥® In fact, the AA connection 7 is precisely the universal
connection, which yields all connections on all complex line bundles as pullback connections. In
particular, Berry’s connection oh is given by

A=1*(.72). 17
These results are exploited in Ref. 5 to explore the quantum dynamics of Berry’s original example:
H(x)=bx-J, xeS?CRS, (18

whereb is the Larmor frequency is the direction of the magnetic field, ader(J;), 1=1,2,3, are

the generators of rotationd,e so(3)=su(2). In Ref. 5, it is shown that if one considers the case

of precessing magnetic field, i.e., precessingbout a fixed axis, then one can promote Simon’s
construction to the nonadiabatic case, namely, define a nonadiabatic analog of Berry’s connection
and identify the nonadiabatic phase with its holonomy. This can be done in general unless the
frequency of precessiony, becomes equal tb. In the northern hemisphere the nonadiabatic
connectionA is given by

A=ik(1—cos8)de, (19

wherek labels an eigenvalue @i (x) (alternatively an eigenvalue df), and

~ cosf—v
Cos 0. = , (20
J2—2v cos 6+1
w
V.= E (21)

Here (6,¢) are the spherical coordinat€g<[0,7)), and v is the “slowness parameter® The
adiabatic limit is characterized hy—0. In this limit A approaches to Berry’s connection,

A=ik(1—cos#)do. (22

Note that unlike the adiabatic caée—0), the cyclic states in the more general nonadiabatic
case cannot be approximated by the eigenstates of the initial Hamiltonian. They are given as the
eigenstates of the unitary time evolution operator at timerhis operator does not generally
commute with the initial Hamiltonian, and they do not share simultaneous eigenstates.

The topology of a line bundle 082 is determined by its first Chern number,

27 J?

Cy: Q, (23

where() is the curvature two-form. For line bundles, the curvature two-form is obtained from the
connection one-form by taking its ordinary exterior derivafivé simple calculation shows that
taking A=dA results in

c,=—2k, for v<1. (29

J. Math. Phys., Vol. 37, No. 3, March 1996



1222 Ali Mostafazadeh: Geometric phase, fiber bundles, and groups

This is quite remarkable since the fact thgtis an integer agrees with the fact thatis a
half-integer. The first statement is an algebraic topological result, whereas the second is related to
group theory. One of the best known mathematical results that links these two disciplines is the
celebrated Borel-Weil-BotBWB) theoremt®~1°

Equation(24) may also be viewed as an example of a topological quantization of angular
momentum. In the language of magnetic monopoles, which are relevant to the adiabatic case,
k= —c,/2 corresponds to the product of the electric and magnetic ch&tges.

lll. BOREL-WEIL-BOTT THEOREM AND THE BERRY—-SIMON LINE BUNDLES

The BWB theorem constructs all the finite-dimensional irreducible representéiias) of
semisimple compact Lie groups from the irreps. of their maximal tori. The construction is as
follows.

Let G be a semisimple compact Lie group ahndbe a maximal torus. Let” andY be the Lie
algeggas ofG andT, respectivelyG can be viewed as a principal bundle over the quotient space
G/T:

T—-G—G/T. (25

The homogeneous spaG T can be shown to have a canonical complex structl&inceT is
Abelian, its irreps. are one dimensioRalThus, each irrepA of T defines an associated complex
line bundleL , to (25):

C—L,—G/T. (26)

Now, consider a\ whose corresponding line bundlg is an ample(positive) line bundle. Then
L, has the structure of a holomorphic line bundle. BWB theorem asserts that all the irréps. of
are realized on the spaces of holomorphic sections of arfg@sitive line bundles,L,. In
particular, the space?, of the holomorphic sections &f, provides the irrep. o6 with maximal
weight A, 18:17:19

The simplest nontrivial example of the application of the BWB theorem isGferSU(2). In
this caseT=U(1)=S! andG/T=S?=CP. The bundle25) is the Hopf bundl&?

U(l)=S'-SuU(2)=s*-52 (27)

A takes non-negative half-integers. It is usually denotegl ioyQM. It is common knowledge that
j=0, 3,1,..., yield all the irreps. of S(2) and that thg representation has dimensiof-21. The
dimension of the spacé”, can be given by an index theoréfit® For SU2), it is obtained by the
Riemann—Roch theorem in the context of the theory of Riemann surfaces. The result is

dim(Zy)=c(Ly)=1+cq(L,), (28
wherec andc, denote the total and first Chern numberd.qf. This means that one must have
c(Lry)=2j. (29
Compining(24) and (29), one recovers the line bundle, as Simon’s line bundlé of (9) for
“ Tnj .the rest of this section, | shall try to show that there is a general relationship between the
constructions used in the BWB theorem and those encountered in BS interpretation of Berry’s

phase. To proceed in this direction, let us consider the generalizatigh8pfto an arbitrary
compact semisimple Lie group, namely, consider

J. Math. Phys., Vol. 37, No. 3, March 1996
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d
H(x)=eZl xJi, (x)eRI-{0}. (30)

HereJ; are the generators @ and e is a constant with the dimension of energy. Sitbtg) is
assumed to be Hermitiad, must be represented by Hermitian matrices. In other words, the group
G is in a unitary representation. In this sense, the exampl@-stU(N) plays a universal role.
(This reminds one of the Peter—Weyl theor&t??)

The system described by EEO) is studied in Refs. 23 and 24. In Ref. 23, it is argued that,
in general, there are unitary operatdfét) that diagonalize the instantaneous Hamiltonian:

H(t)=U(HH(HU(D)". (31)
In view of Eq. (3), one has
U(t)=U(x(1)), (32
where
x()=((t)) e £—{0}=R*~{0}, (33

are the points of the loop in the parameter space. In fact, one can show that the parameter space
“is not” RY—{0}, but a submanifold of this space, namely the flag manifaid..

To see this, let me first introduce the root systenvoéssociated with and the correspond-
ing Cartan decomposition:

Go=Y®,%,, (34)

where the subscript meanscomplexificatiorand « stand for the roots. Ldt denote the rank of
%, {Hi}i=1,.., andE, be bases ol and %, respectively>?2'81"Then, one has

[Hiv H]]:01 [Hiv Ea]ani [Eav E,a]OCHaEY,
(35)
[Ea, Eﬁ]ocEa+ﬁ, fOI’ ﬁ#—a

Any group element can be obtained as a product of the exponentials of the generators of the
algebra. In particular,

U(t)=ex+2 Xao(DEq exp[iz Xi(t)Hi} (36)
a I
Since any diagonal element commutes wHt}is, it belongs toY. Hence, one has

Ho()=2 bi(DH;. (37

Substituting Eq(37) in Eq. (36) and using the resulting equation to simplify Eg§1), one obtains

J. Math. Phys., Vol. 37, No. 3, March 1996
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H(t)=exp(i2 xa(t>Ea)HD(t>eXp( -iY xaa)Ea) (39

= exp( [ 20 [Zo(DEq+ ZZ(t)E—a]> Hp(t)

xexp —i 20 [Z5 () E+Z,(H)E_,]|. (39)

In Egs.(38) and(39), x,€R andz,eC are time-dependent parameters. It is shown in Ref. 23 that,
in general, the geometric phase is given in termg g8, or alternatively in terms ot,’s, and it
does not depend drp(t). It is not difficult to see that indeegl, correspond to the coordinates of
the points of the flag manifol&/T. Alternatively, one can use the complex coordinatesThis

is reminiscent of the fact th&®/T has a canonical complex structdfeThis completes the proof

of the claim that the true parameter space of the system descrii@@)big G/T, or a submanifold

of G/T. | will come back to this point in Sec. VI. The fact th&'T can be viewed as embedded
in ¥ is useful because it allows one to work with the global Cartesian coordinates systems on
©=RY.2* A natural embedding o/T is provided by taking a reguldanondegenerajelementH

of Y and considering the adjoint action & on . The orbit corresponding tbl, is a copy of
G/T. Thus, one might note that in E¢30),

x=(x')e G/TCRY, (40)

The fact that the phase information is encodetl i) of Eq.(31) can be used to simplify the
problem, namely one can restrict to the case wherédHth@) =H(0)=H, is kept constant, i.e.,

HD:Z biHi=:HgpeY, Dbj=const. (41)
I

The Hilbert space7 of the quantum state vectors provides the representation space. It can be
decomposed into irrep. spaces. | shall assume .tator the subspace of” relevant to the
geometric phagecorresponds to an irrep. with maximal weight!® The weights are the simul-
taneous eigenvectors bf.’s.?® They are conveniently denoted by,...\,), or collectively by|)),
where

H||)\>:7\||)\>, Vlzl,,l (42)
Clearly, the weight vectorid) are the eigenstate vectors of the initial Hamiltonian. Here, | have set
U(0)=1 in Eq. (31).%% In general, this can be achieved by appropriately choosing the maximal
torusT. Thus, one has

H(x(0))=Hp=Hq (43

and

|
HDIA>=§l biXilA). (44)

Making the dependence bfy(Hg) on the initial pointxy: =x(0) explicit, one can write Eq44)
in the form

J. Math. Phys., Vol. 37, No. 3, March 1996
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|
Ho(Xo) I\, X0) = Ex(X0) |\, Xo), EA(X0)3:;1 biXi(Xo)- (45)

The weight vectors$\,x,) are precisely the eigenvectdrsx,) of the instantaneous Hamiltonian
Ho(Xg). Sincex, can be chosen arbitrarily, one can simply drop the subscript “0,” i.e., replgce

by x andHg(Xq) by H(X).

The BS line bundle, in this case, is obtained as the pullback bundle from the universal
classifying bundleE,
LBS:=f*(E), (46)
induced by the map
f:M e x— |\, X){\,X| e A7) CCP*.

Recalling some basic facts about the flag manifolds and their relation to projective $panes,
finds that, in factL.2° corresponds to the line bundlg, of the BWB theorem, if the weight vector
I\,Xo) is chosen to be the maximal weightof the representation. First, let us re¢al’ that flag
manifolds are projective varieties, i.e., there exist embeddindd @fto CP*,

i:M—CP”. (47)

Indeed, one can obtaM = G/T as a unique closed orbit of the action®fon ACN*1)=CPN, for
some(N+1)-dimensional irrep(Ref. 18, Sec. 23)3 The line bundleL , is then the restriction
(pullback under the identity mamf E:

Ly=i*(E). (49)

Let [vy be a nonzero vector in the representatibiilbert) space of the\ representation of
G,G be the complexification o6, and consider the map

O:Go—AH),
defined by
®(§):=[U(@]vo)]=U(@)|vo)(volU(@)". (49)

Here U(Q) is the representation o e G and [U(Q)|v,)] denotes the ray passing through
U(Q)|ve). @ is clearly not one to one. Lé? be the closed subgroup & defined by

P:={heG. : U(h)|vg)=clvy), for someceC—{0}}. (50
By construction the ma@ induces a one-to-one map @y./P:
D:G./IP—AH). (51)
Now, let us choose
[vo):=[AXo), (52

and denote byB the Borel subgroupof G generated byH; andE,.,. Then,BCP and conse-
quentlyG./P is a compact submanifol@ubvariety of G./B. However, one has the identity

G‘(:/B:G/T,

J. Math. Phys., Vol. 37, No. 3, March 1996
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where by equality | mean the diffeomorphism of homogeneous spacBsus, in general,
G/PCG/T.

The extreme case is wheP=B, i.e., M=G/P=G/T. However, in generalB may be a
proper subgroup oP, in which case the parameter manifold can be restricted to the submanifold
G /P of G/T. This depends on the representation, i.e.Aon

Let us consider the general case, i+ G/P. The basic vectorp\,x) are parametrized by
the points ofG./PCG/T and the magd of (16) becomes

f:Ge/P 3 X—| N, XY\, X| e AH). (53

In view of the fact thaGG/PC G/T, one may work with the representative)of [g] € G/T rather
thanx=[g] € G/P for the parameterx. The next logical step is to compare the mhmwf (51)
with f. Letxe MCG/T; then every eigenstate vectarx) can be obtained by the action Gfon
a nonzero vector. In particular, there igae G such that

INX)=U(,0|N Xo)- (54)
Combining Eqs(52), (53), (54), and specializing ta=A, one finds

f(x)=U(gx)[v0){volU(9x) =[U(g0[vo)]. (59

Recalling the procedure according to whichs assigned to represent the paramé#®) of the
system(30), one can identify §,] e G/PCG/T with x, i.e.,

U(g=U(x),
and consequently,
00 =[U()[vo)] = D(x). (56)

For the special case é=B, the mapCiJ becomes the maipof (47). Thus, according to Eq$498)
and(56), the following identity is established:

Ly=f*(E). (57)

Equation(57) is valid generally, i.e., even whelR#B. In this caseM =G /P is a proper sub-
manifold of G/T, and the role of the embeddingof Eq. (47) is played by

i""M—=G/T—CP”.

Comparing Eq(57) with Eq. (46), one arrives at the desired result, namely that the bulnglef

the BWB theorem is identical to the BS bundI&S. In particular, the dimension of the irrep., i.e.,
the Hilbert space’ is given by the number of the linearly independent holomorphic sections of
LBS. The latter is a topological invariant affS.

It is well known that the topology of a complex line bundle is uniquely determined by its first
Chern clasg;.2%° ¢, is represented by a closed differential two-formMn It can be character-
ized by a set of p:=dim H,(M,Z)] integers by integrating it ovep compact two-dimensional
submanifolds oM, which are called the 2-cells . For example, ilG=SU(2), M=S? and the
spaceS? is the only 2-cell. Therefore;, is determined by a single integey via Eq. (23).

In general, the following modification of E¢23) provides the necessary integers,

. i
ci‘=c1(oa):=ﬂf Q, (59

J. Math. Phys., Vol. 37, No. 3, March 1996
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wherea, is theath 2-cell(a=1,... p), ¢} is the first Chern number associated with, and(} is
the curvature two-form of the line bundle.

For the case of the BWB-BS line bundig; determine the irreps. On the other hand, the
irreps. are given by the maximal weight of the representation. The latter can be written as a
linear combination of the so-callddndamental weightéRef. 18, Sec. 14)1 with non-negative
integer coefficients. Let us denote theseMyy, b=1,...]. Then,

|
A= kpAp, kpeZtU{O}. (59)
b=1

This means that to determine tkg's and hence the irrep. one needs precidelindependent”
first Chern numbers. These are obtained by integra®®y over the 2-cells ofc/T. The 2-cells
arel copies ofS? that correspond to the canonical @Jsubgroups ofs. These are generated by
the triplets of the generator&(, ,E_,,H,), wherea’s are the simple roots ofs, andE_, andH,,
are as in Eq.35). Denoting theseéSU(2) subgroups and their maximal tori b, and T,,
respectively, the 2-cells are given by

0,:=G,/T,=SU(2)/U(1)=5% (60)

The restriction of the curvature two-forfd on o, yields Berry’s curvature two-form Integrating

these two-forms oru, gives rise tol identities of the form(24). Incidentally, in view of the
relevance of the system of E¢L8) to magnetic monopolés(30) corresponds to a generalized
magnetic monopole whose charge has a vectorial character with integer components. | shall return
to the discussion of monopoles in Sec. VI.

IV. BERRY'S CONNECTION AND THE RIEMANNIAN GEOMETRY OF THE PARAMETER
MANIFOLD

One of the rather interesting facts about the geometric phase is that the AA connettfon
related to the Fubini—Study metric on the projective spae®.?” In the language of fiber bundles,
the Riemannian geometry of a manifol means the geometry of its tangent bundiX. In
particular, the Riemannian metrithe Levi—Civita connectionis a metric(resp., a connectigron
TX. The statement that the AA connection is related to the Riemannian geometi"bfs
equivalent to say that the univerd@lA) bundle,

E:C—E—CPN,
is related to the tangent bundle,
TCPN: CN—TCPN—CPN.

This is easy to show topologically. The precise relation is demonstrated in the form of the follow-
ing identity:

Def{ TCPN]=E*®E*, (61)

where Det means the determinant bundle:
Det[ TCPY]:=TCPN/\--- ATCPY,
R g

N times

J. Math. Phys., Vol. 37, No. 3, March 1996



1228 Ali Mostafazadeh: Geometric phase, fiber bundles, and groups

/\ stands for the wedge product of the vector bundigsjs the dual line bundle t&, and® is
the tensor produét.To see the validity of Eq(61), it is sufficient to examine the first Chern
classes of both sides. In fact, sinE®N has a single 2-cell, namel§fP*=S?, one can simply
compare the first Chern numbers. It is well kndthat

c,(E)=—1. (62
Furthermore, for any vector bundig
¢, [DetV]=¢,[V]. (63)
Also, it is not difficult to show that
C1(TCPN)=cy(TCPY) = x(S?) =2, (64)

where y stands for the Euler—Poincacharacteristic. Equation$3) and (64) imply that
¢, Det TCPN]=2.

The last equality, together with the fact that
¢1(E*)=—c4(E)

and Eq.(62), are sufficient to establish the validity of E@1).

The existence of this relationship between the AA connection and the Riemannian metric on
CPN has triggered the investigation of a similar pattern in the BS appréathRef. 28, the
authors discuss the case of a general Hamiltonian with a dynamical @oapd a parameter
spaceG/H, whereH is a closed subgroup of symmetries of the Hamiltonian. The analysis pre-
sented above seems to include all these cases. In the following section, | will show that the system
of Eqg. (30) has a universal character. In other words, all the cases discussed in Ref. 28 can be
reduced to the one given B80). In all these cases the parameter sp&#], is a submanifold of
FU(M):=U(m)/T™, T™=[U(1)]™, which is itself embedded int6P*. Hence, the results of
Ref. 28 are expected becausethe BS bundlgconnection is the pullback(restriction of the
universal bundleE; and(ii) E is related toTCPN, via Eq. (61).

V. REDUCTION OF THE NONADIABATIC PHASE TO THE ADIABATIC PHASE FOR THE
CRANKED HAMILTONIANS

Let us consider an arbitrampx m HamiltonianH acting on.77=C". H can be viewed as an
element of thereal) vector space of all complexx m-dimensional Hermitian matrices. It is very
easy to compute the real dimension of this space and find out that it is equdl Tdhus,H can
be written as a linear combination wf linearly independent Hermitian matrices. Incidentally, the
generators); of U(m) form a set ofm? such matrices. This simply indicates that one can always
expresdH in the form of Eq.(30). This may be seen as a realization of the Peter—Weyl thebtem.
The particular representation df given by Eq.(30) with G=U(m) for somemeZ" might not be
a practical choice. For example, the quadratic Hamiltonian,

3
H:ijE::L Q”'O'i®0'j,

with o; being Pauli matrice®?°is more manageable in this form than in the form of E2f),
with J; chosen to be the generatorslé€4). However, in principle, one can always use the linear
representation, Eq30).
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Actually, one can use the generatorsSafi(m) rather tharlJ(m). This is emphasized in Ref.

23. It can be directly justified by recalling that th@?>—1) generators oS8U(m) are also linearly
independent, and these together with the<(m) identity matrix| provide a basis for the space of
(mXxm) Hermitian matrices. The Hamiltoniad can then be written as a linear combination in
this basis. Clearly, the term proportional lt@loes not contribute to the geometric phase. This is
often used as an indication of the geometric nature of Berry’s pitase.

An advantage of the linear representation is that it allows one to use the knowledge about the
universal bundles and BWB theorem directly. In particular, in some cases, it is possible to obtain
the nonadiabatic analog of the BS line bundle and the conneAtidrhe first example of this is
presented in Ref. 5. In this section, | will show that since the above argument does not refer to the
adiabaticity of the system, one can always reduce the Hamiltonian to the linear form. Moreover, if
the time dependence of the corresponding linear Hamiltonian is realized by cranking of the initial
Hamiltonian along a fixed directioff, then one can obtain a nonadiabatic anafo@f Berry’s
connectionA as a pullback connection one-form. The geometric phase is then identified with the
associated holonomy of the loops in the space of parameters. This is remarkable because it means
that, as far as the geometric phase is concerned, one does not need the full solution of the
Schralinger equation. The essential ingredient is the funcfiothat inducesA as a pullback
one-form from the adiabatic connection one-fofm

Wang* has presented a procedure that essentially computiigvertheless, he does not even
label this function, nor does he implement the idea of universal bundles. Let us see how the
conditions introduced in Ref. 5 are realized in for cranked Hamiltonians. These conditions are the
following. .

(1) The cyclic states are the eigenstates of a Hermitian opériatbat depends parametrically
on the points of the parameter manifdldl, i.e., the cyclic states are eigenstatedHgk,) with
Xp=X(t=0).

(2) H is related to the Hamiltonian according to

HOO=H(F(x))=(HoF)(x), (65)
where F:M—M is some smooth function, such that in the adiabatic lifitapproaches the
identity map.

Let us first see how the first condition is fulfilled for any periodic Hamiltonian. According to

a result of Floquet theorl}, the time evolution operator for any periodic Hamiltonian is of the
form

M)=2(t)et, (66)

whereH is a time-independent Hermitian operator ahds a periodic unitary operator with the
same period as the Hamiltonian, i.e.,

Z(t+T)=2(t), Z(0)=1. (67)
Clearly, one has
2A(T)=eH, (689)
which justifies the first condition. The second condition can be seen to hold for the cranked
Hamiltonians, either by referring to the work of Waf@r following the argument used in the
discussion of the transformation of the Hamiltonian into the linear form. The latter is quite

straightforward. One simply starts by realizing that siktés Hermitian, it can also be written in
the linear form:
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d
H(Xo) =i§1 Xodi (69)

Where>~<0:=(>~(i0) e M must depend on the HamiltonidB0), and consequently o8 C M. How-
ever, for the cranked Hamiltonians the time dependence of the Hamiltonian is governed by the
action of a one-parameter subgroup®fi.e., the operatod (t) of Eq. (32) is given by

U(t):=exdiwtn,E,], with n,=const,

wherew and(n,) are called the cranking rate and direction, respectively. It is clear that for such
systemsX, can only depend on the initial Hamiltonian and thusxgnThe functionF is defined

by
;(0: : F(Xo) . (70)

The only problem is that in some cases, depending on the value of the slowness pat@m)eter

F may be discontinuous or even multivalued. This happens in the case @t&dor v=w/b=1.

But in the generic casE is smooth and the second condition holds as well. The nonadiabatic
analog of the BS line bundle is then given by

L:=F*(L). (72)

It is endowed with the nonadiabatic connection one-form,

A:=F*(A). (72

For completeness, let me briefly review the arguments of Ref. 5, which lead t¢/Epand(72).
The basic idea is that the existence Hfthat satisfies Eq(69) allows one to imitate Berry's
treatment of the adiabatic systems. The energy eigenstate vitorsre replaced by the eigen-
state vectorsn,x) of H(x). In view of Eq.(65), these are given by

[A,x)=n.X)=[n,F(x)). (73

The nonadiabatic line bundle is obtained from the universal line bundtevia the nonadiabatic
analog of the mayg of Eq. (14). Denoting the latter by:M —2.7%), one has

F(x): =|R,x)(f,x| = |n,F(x)}{n,F(x)| = (foF)(x).
Then, using the functorial property of the pullback operation, one shows that
L=f*(E)=(foF)*(E)=(F*of*)(E)=F*(L), (74)

where in the last equality E415) is used. This proves E¢71). The proof of Eq(72) is identical.
An important observation is that unlika,x,), the initial state vectorgh,x,) undergo exact cyclic
evolutions.

VI. MORE ON PARAMETER SPACES AND MONOPOLES

In the discussion of the the relation between the BS connection and the Riemannian structure
on the parameter space, the parameter space is takenNb=®@/H, for some arbitrary closed
subgroupH of G.2 It can be shown that all these cases are included in the analysis of the linear
system Eq(30).

In Sec. lll, | argued that depending on ttreaximal weightA of the) irrep. of G,M is of the
form G/PCG/T, whereP is defined by Eq(50). Let us consider the Weyl chambgt” of Y*
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with respect to which the positive and the negative roots are distingut§iied. happens to lie on
at least one of the walls o¥/", thenB is a proper subgroup d?, otherwiseP=B. The universal
character of the linear Hamiltonian is also realized, in that all the homogeneous sp&zeanf
be obtained a& /P by choosing\ appropriately. In fact, this is the basic idea of the classification
of the compact homogeneous spaces of semisimple Lie groups. Therefore, in principle, one should
be able to reproduce the result$afising the relation of Berry’s phase to the theory of universal
bundles.

Let us consider the groug = SU(3) in its defining(standard representation. S@3) is of rank
I=2. So any irrep. is given by two integers. The standard representation is itself a fundamental
representation, namelk,;=1, k,=0).!® The maximal weight is on a wall 0% and the Borel
subgroup of upper triangular matrices $1.(3,C)=SU(3).. is a proper subgroup d?. The sub-
group P of SL(3,C) consists of the elements of the form

where * are complex number§. The parameter space i1 =SL(3,0)/P=SU®3)/U(2)
=CP%?=A 7). It is interesting to see that in this case the parameter spa@nd projective
Hilbert space (%) are identical. In fact, this is true for all SN@H1) groups. The defining
representation corresponds ték;=1, k,=---=ky=0) and the parameter space is
M=SU(N+ 1)/U(N)=CPN=247). Therefore, the inducing map mapsCPN to itself for all
N>1.

The situation is different for the octet representation of 3Un this case one hdg =k,=1.

A lies in the interior of77", P=B, and the parameter space is the full flag manifidle- SU(3)/
U(1)xU(1). The mapf mapsM into 2A.7%)=CP’. [Note that this representation is eight dimen-
sional, i.e., the representation space $ax3,C) is C& Hence, 7#=(8]

For G=SU(2), it is well known that the system of Eq18) is related to the magnetic
monopoles?! The relation of monopoles to the gauge theories and their generalization to arbitrary
compact semisimple gauge groups have been studied in the late?9*@se generalized mono-
poles are callechon-Abelianor multimonopolesfor general groups andolor monopolesfor
SU(3).22 They are topologically classified by an associated sétinfegers, wheré is the rank.
These are called thpological charge®f the monopole and they are defined as elements of the
second homotopy group,(G/H), whereH is the group of the symmetries of a ground state of the
Higgs fields(a minimum of Higgs potentiaf® For G=SU(3), there are two possibilities. Either

() H=U(2) or () H=T=U(1)xU(1).

These cases have been studied in almost every article written on this subject, e.g. see Refs. 33, 20
and references therein.
If G is simply connected, then a result of algebraic topology indicates that

Applying this result toG=SU(3), one finds
(1) m(SUR)IU(2)= 71 (U(2))=Z,

(1) 7,(SURIUD)XU(L)= 7y (U)X U(L) = Z& 7.
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Thus, for(l) and(Il) one has, respectively, one and two topological charges. This is precisely the
case with the topological charges of the geometric phase defined earlier. The same correspondence
holds for arbitrary compact, connected semisimple Lie groups.

The possible relevance of the topological charges of monopoles to the representations of the
group have been conjectured by Goddatal.>* Although the analysis of the present paper does
not prove their conjecture, it provides a formula for the topological charges as integrals of the first
Chern class, defined by Berry’s connection, over the 2-cel]l®of Sec. Ill. There is a simple
topological explanation for the correspondence of the topological charges of the monopoles and
those of the geometric phase. This can be summarized in the identity

m(G/H)=H,(G/H,Z),

whereH,(-,Z) denotes the second homology group. This identity is a consequertdarefvicz
theoreny® where one uses the fact that(G/H)=H,(G/H)=0. The 2-cellso, are indeed the
generators oH,(G/T,7). ForH#T, some of them may be smashed to a point, as is the case for
G=SU(3) andH=U(2).

VIl. CONCLUSION

The relationship between the phenomenon of Berry’s phase and the Borel-Weil-Bott theorem
is a direct consequence of the application of the universal bundles in the Aharonov—Anandan
definition of the geometric phase. This relationship is appealing, not only because it links quantum
mechanics to yet another central mathematical result, but also because it offers a better under-
standing of the theoretical foundations of geometric phases. The implications of the fact that the
A—Abundles are indeed the universal bundles of mathematics for the study of nonadiabatic phases
is a typical indication of the importance of this observation.

The identification of the mathematical structures used in the holonomy interpretations of the
geometric phase with those employed in the Borel-Weil—Bott theorem sheds light on a number of
unresolved issues. Among these are the determination of the appropriate parameter space and the
relation between the geometry of the parameter space and the geometric structure of the phase.
The BWB theorem leads to the introduction of a set of topological charges, which determine the
topology of the BS line bundles and thus encompass all the topological content of the phase. These
charges seem to be related to, if not identical with, the topological charges of non-Abelian mono-
poles. The integral nature of these charges is a consequence of the topological properties of the
first Chern class. The latter is essentially the reason for the quantization of the charges of the
monopoles.
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