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We discuss fluctuations near the second-order phase transition where the free energy has an additional
non-Hermitian term. The spectrum of the fluctuations changes when the odd-parity potential amplitude
exceeds the critical value corresponding to the PT -symmetry breakdown in the topological structure of
the Hilbert space of the effective non-Hermitian Hamiltonian. We calculate the fluctuation contribution to
the differential resistance of a superconducting weak link and find the manifestation of the P7 -symmetry
breaking in its temperature evolution. We successfully validate our theory by carrying out measurements
of far from equilibrium transport in mesoscale-patterned superconducting wires.
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A Hermitian character of the Hamiltonian expressed by
the condition HT = H is a cornerstone of quantum me-
chanics as it ensures that the energies of its stationary states
are real. Yet it was discovered not long ago [1] that the
weaker requirement H * = H, where % represents com-
bined parity reflection and time reversal (P7), introduces
new classes of complex Hamiltonians [2] whose spectra
are still real and positive [1,3-5]. This generalization of
Hermiticity opened a new field of research in quantum
mechanics and beyond that has been ever since enjoying
rapid growth.

We focus here on the superconducting fluctuations
above the superconductor-normal-metal transition in
quasi-1D superconducting wire of the finite length L driven
far from equilibrium by an electric field &£, see Fig. 1. We
show that either the presence or absence of P77 symmetry
in the Cooperon (fluctuation) propagator, which depends
on the magnitude of &, strongly affects the structure of
fluctuations.

The P7T -symmetrical state corresponds to small drive,
|E] < &, where &, is of the order of the Thouless energy,
Er, = hD/L?, the characteristic energy scale of the dirty
quasi-one-dimensional conductor, see Fig. 1, where D is
the electron diffusion coefficient in the wire and L is its
length. This state is a nonequilibrium state but stationary
where fluctuating Cooper pairs survive in the presence of
the electric field. Breaking the P77 symmetry at |£] = &,
is the dynamic phase transition from the stationary to the
nonstationary dynamic state where the electric field
quickly destroys the Cooper pairs. In this state the
Cooper pair wave function is qualitatively represented as
a linear superposition of the Ivlev-Kopnin “kinks” located
at the wire ends [6], having the phases that rotate with the
opposite rate. We calculate the fluctuation correction to
conductivity and show that for |£] > &£, this correction is
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strongly suppressed by an electric field. It implies that
PT symmetry effectively protects Cooper pairs from the
detrimental effect of the electric field and stabilizes
superconductivity.

The dynamics of the superconducting fluctuations is
described by the retarded fluctuation propagator
L, 3 x, x') [7,8]:

Lit=0,+ Hy (1)

where we use the units kg = e = i = 1. The effective
Hamiltonian, HH .[£], describes the linearized Ginsburg-
Landau (GL) field theory [9,10]. In general, iR can be
expanded through the eigenfunctions ¢, and the eigenval-
ues &, of H
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FIG. 1 (color online). Evolution of the two lowest energy
levels, gy and &, upon applying bias V = EL. At £ = &, the
levels merge and form the complex conjugate pair at £ > £,.. The
inset shows the change of the eigenfunction | (x)|, normalized
to unity, upon variation of &: ¥y(x) is symmetrical for £ = &,
and is asymmetric at £ > £,.. The asymmetry of i¢(x) is the
signature of the P7T -invariance breakdown.
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We show below using the technique developed in
Refs. [1,5,6] that PT symmetry of L holds at low drives.
At large £ exceeding the certain critical value, &, the PT
invariance breaks down and the two lowest energy states &
and &; of H; merge. At £ > &, they form the complex
conjugate pair (Fig. 1). From the general viewpoint of the
catastrophe theory [11] bifurcations of H.x[£] belong to
the so-called fold catastrophe topological class. This class
of the bifurcations is (topologically) protected with respect
to small local perturbation of HH . preserving the symme-
try of the system. Therefore, in order to establish the
existence of the bifurcation and to find its type it would
suffice to investigate the effective Hamiltonian, FH . =
—DV2 — 771 — 2ip. Here ¢ is the potential of the electric
field responsible for the non-Hermeticity of H .. In ap-
plication to our problem, neglecting in JH .-field super-
conducting order parameter from the reservoirs into the
wire does not violate the catastrophe theory classification of
bifurcation symmetries. For the same reason one may choose
the boundary conditions in a form: ¢(x = =L/2 ¥ 0) =
(x — *o00) = 0. Here 7 is the GL time and D>0 is the
material constant (e.g., electron diffusion coefficient in the
dirty superconductor). We further discuss the case where
¢(x) = Ex and x is the coordinate along the wire.

The problem

H oy = ¢, 3)
can be solved using the ansatz [6]

¥ (x) = aAi(Z) + BBi(2), 4

Z(x) =
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where Ai and Bi are the Airy functions, and «, 8 are fixed
by the boundary conditions. We absorbed 77! into the
definition of . Then the equation determining the eigen-
values acquires the form:

F(e, &) = Im[AI(Z(L/2)) Bi(Z(=L/2))]=10. (6)

The critical field £, is the field of emergence of the first
bifurcation [11,12] of Eq. (6) corresponding to the merging
of lowest levels and is given by the conditions

F(e, &) =0 I.F(e., E) =0, )

where ¢, is the value of the energy at the levels merging
point. We find &£, = 49.25Ey,/L, where e, = gy = g =
28.43E1y,. The same conditions give the next bifurcations
where higher pairs of levels merge pairwise, D =~ 4&.,

E(cz) =~ 10&,, etc. As we have mentioned above, the bifur-
cations described here belong to the universality class of

the ““fold catastrophe” (A, in ADE classification). Then
&, is the tipping point of the catastrophe.
Expanding Eq. (6) near the bifurcation one finds

(e — €02 + (€ — )0 IF (8, E)leme_g—e. = 0, 50,
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The results of the numerical solution of the eigenvalue
problem are shown in Fig. 1 [13]. In the limiting case of
the semi-infinite wire, o, for £ > £, change with coor-
dinates similarly to the solution for the order parameter
found in Ref. [6].

Now we proceed with the analysis of the dynamics of the
fluctuations in the wire using the following equation:

(L* 'y =0 ()]

E%haz:F(Sc, 5¢)

As long as the field does not exceed the critical value,
& < &,, the stationary solution of Eq. (1) remains stable
and is given by

P (x) = o(x), (10)
where we have taken 77! = g,. This solution is P7T
invariant, i.e., |ifo(x)| = [¢o(—x)|, see Fig. 1. The extre-

mum of |f(x)| is thus located at x = 0, at the center of
the weak link. The effective field-dependent critical tem-
perature for the superfluid correlations-induced superflu-
idity within the weak link is to be found from the relation
7! = g and is given by TED(E) = T, — 7ey(£)/8. The
T£°ff>(5) dependence becomes singular near the critical
field &,, dTgeff)/dEIg:gc = oo; this singularity results in
the anomalous behavior of the nonlinear fluctuation cor-
rections to the conductivity. As the field goes above the
threshold, £ > £, the stationary solution of Eq. (1) ceases
to exist. The eigenvalues become a complex conjugate,
Regy = —Ree; = 77! (see inset in Fig. 1), and

52
Im 80((‘:) = —Imsl(E) =~ ETh ’T][g - 1] (11)

The eigenfunctions at £> &, are not P7T invariant
anymore, |¢;(x)| # |¢;(=x)|, i = 1, 2. Thus

P~ e M=o 2 g () @M —e)2 g (). (12)

This implies that the order parameter becomes a two-
component parameter with the relative phase between the
two components rotating with the Josephson frequency
Im(gy — &,). Since | o(x)| = |4, (—x)|, the time averaged
order parameter (|4 (x)|*)gme ~ |#/0(X)1* + [o(—x)|* and
develops a dip at x = 0, increasing in amplitude with grow-
ing £. This spot of the relatively suppressed superconduc-
tivity finally serves as a heating nucleus in the weak link.
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Having calculated the eigenvalues ¢, and the eigenfunc-
tions, ¢,, n=0,1,..., of H . we proceed with the
analysis of the superfluidity in the wire under the external
drive. We will focus on the effect of superconducting
fluctuations on the conductivity of the weak link. The
most singular fluctuation contributions to the conductivity
come from the Maki-Thompson and Aslamazov-Larkin
mechanisms [7,8,14], and the corresponding currents read

JMD = 2DT2ETH(LR) (CR) CALAYD g (8),
AL = DT2Tr{(LR)"(CR)"™VCRLA + H.c.}én,

(13)

where T is the temperature, € = € + w, n = np(é€ + @) —
np(& — @), CRW = 4[DV2 + 2ie + y]! is the retarded
(advanced) Cooperon propagator, vy is the inelastic relaxa-
tion rate, and trace “Tr”” means the integration over coor-
dinates & and w (the latter two with the weights 1/277).
Writing Eq. (13) in terms of LR# and CR@ eigenfunctions
and eigenvalues yields the fluctuation correction to the
resistance as (hereafter we restore the physical units and
dimensions of the weak link)

E2.d 1
kgTL J[77T — Reeg(©)/hF + L&) + vF
(14)

-1 _

where d is the weak link thickness, I' = Img, and 7
8(T. — T)/7 while T, is the critical temperature in the
bulk. The resistance displays a pronounced voltage depen-
dence in the range of parameters where either /7 ~ g¢(€)
or £€~&,. So, SR(V) behavior can be controlled via
changing 7 by cooling or heating the system.

The regime || < £, when the system is P77 symmetric
favors fluctuational Cooper pairs. When £ > £, the spec-
trum of the fluctuation propagator becomes complex. This
means that the electric field breaks up Cooper pairs, with
the rate of the Cooper pair dissociation, I'(€) growing with
the increasing electric field £. It follows from Eqs. (13) and
(14) that then the correction to the resistance from the
fluctuating Cooper pairs quickly switches off. The same
conclusion follows from the investigation of the super-
conducting wire where the 7 symmetry is broken due to
geometrical imperfection, see Fig. 2.

What we have investigated above was the behavior of
the superconducting fluctuations within the framework of
the quadratic Keldysh action describing the fluctuations
of the order parameter, see Ref. [8]. The natural question
that arises is whether the revealed bifurcation picture holds
in case of large fluctuations where one has to go beyond the
Gaussian approximation. We expect an affirmative answer
since the predicted instability follows from the symmetry
considerations analogous to those in the general theory of
the second phase transitions which, as one can prove [8],
do not change upon appearance of the higher order terms.
To cast the above reasoning into a mathematical form we
note that on the heuristic level the large fluctuations would
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FIG. 2 (color online). Evolution of the two lowest energy
levels, gy and &; upon applying bias V = EL when the wire is
not P symmetric [so P7T symmetry is also broken] due to the
spatial variation of the wire thickness d with 5% relative ampli-
tude: (a) d fluctuates according to the Gaussian law, correspond-
ingly, €y and &, are represented by waved lines; (b) the wire
width d changes monotonically, &, and &; are shown by solid
and dashed lines, respectively. In both cases the bifurcation is
smoothed and the energies become complex below &,.. SoI" >0
and as the result we get the suppression of the fluctuational
Cooper pair contributions to the conductivity compared to the
case of the P-symmetric wire, see Fig. 1.

result in modifying (3) into the nonlinear, but having the
same symmetry, Schrodinger equation. The corresponding
generalization of Eq. (3) has the form:

0" + 2i(E + x&) sind = 0. (15)

We take the boundary conditions at x = *L/2 in a more
general form, #(0) = 6, and 6(L) = 6,, where 6, , are
parameterized as follows: 6 ,(E) = % (m + ilnifgi% ,
where A is constant. [For £ = 0 Eq. (15) formally coin-
cides with the Usadel equation [15] for the # angle pa-
rameterizing the quasiclassical retarded Greens function in
the superconducting weak link with the order parameter A
in the reservoirs.]. Expanding sinhé and identifying 2iE
with € — 77! and @ with ¢ one recovers Eq. (3). We solved
Eq. (15) numerically and found that the first fold bifurca-
tion appears at £, = 5Er,/L rather than = 49Er, /L found
in Eq. (3). We thus have demonstrated that even in case of
large fluctuations, where the extension beyond the linear
approximation is required, the bifurcation of the fluctua-
tion spectrum maintains, while the value of the critical field
&, where it occurs may change.

We have focused here on the superconducting wire of
relatively small length that generated for us the character-
istic energy scale Er,. Our solution for the PT -symmetry
breaking bifurcation and the fluctuations heavily relied on
the discrete nature of the H.; spectrum. In the infinite
geometry, L — oo, Ey — 0, and the spectrum of H.y is
continuous. Then there is no P7T -symmetry breaking
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bifurcation. Taking the integral in Eq. (13) over the
continuous spectrum of H.; we would get fluctuation
corrections to the resistance with the form different from
Eq. (14). Then the effective pair breaking electric field
E.~1/&7 [14] as follows from the uncertainty relation
between 7 and I ~ £E,., where & = JDr.

In order to test our theory we designed the experiments
on mesoscale-patterned ultrathin PtSi wires having small
constriction, as shown in Fig. 3. The details of the system
preparation and parameters of the films are given in
Ref. [16] and the Supplemental Material [17]. The con-
striction plays the role of a weak link where fluctuation
effects are expected to be very strong. The dimensions
and the material characteristics were chosen to create
the most favorable conditions for manifestation of the
PT -symmetry breaking effect in the system response to
applied voltage bias. Namely, since the characteristic en-
ergy scale, Epy, is inversely proportional to L2, the length
of the constriction should not be too large in order to
diminish the disguising effect of the thermal broadening.
Another restriction on L is dictated by the condition
that the characteristic drive £.L remained less than a super-
conducting gap. At the same time, in order to suppress
Josephson coupling which could prevail over the fluctuation

contribution, one has to take L > £y, where &y =
VhD/2mkpT is the decay length for the pair amplitude in

1 PtSi film
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FIG. 3 (color online). The differential resistance of the super-
conducting weak link. The left inset presents the scanning
electron microscope image of the experimentally studied system,
the constriction made by the electron beam lithography out
of the PtSi film of the thickness d =6 nm and having
T. = 560 mk. The details of the system preparation are given
in Ref. [16]. The right inset displays the full set of the differential
resistance vs V dependences at different temperatures given in
mK in the legend. The central panel shows a comparison of
two exemplary experimental curves (symbols), normalized to
Ry = 536 Q, with the dV/dI calculated from Egs. (8) and (14)
(solid lines). We took L = 0.4 um and D =6 cm?/s [16],
which gave Ep, = 2.5 ueV, and chose hl'/Eq, = 0.176.

diffusive normal conductor. Taking into account that, accord-
ing to our calculations, the characteristic energy scale where
fluctuations are important is about 10Ey,, the above con-
ditions imply that L should not be much larger than 10 &y.

Figure 3 shows the differential resistance, dV/dI, of the
superconducting weak link as a function of the applied
voltage bias, V. Upon cooling the system down from the
critical temperature, the shape of the measured dV/dI-V
dependencies near V = 0, transforms from the convex one,
with the shallow minimum, into the W-shaped curve with a
peak at V = 0. With further decreasing temperature, the
central knob inverts, and dV /dI(V) acquires a pronounced
progressively deepening V shape developing on top of the
shallow minimum. Importantly, the width of the V shape
remains equal to that of the maximum (see the curves
corresponding to 7 =450 mK in the right inset to
Fig. 3). The solid lines in the main panel represent the
dV/dl vs V dependences calculated according to Egs. (8)
and (14), with I" being the only fitting parameter. The fit
perfectly traces the temperature evolution of dV/dI(V),
and, most strikingly, the W shape at 7' = 475 K in all its
details, including maxima in dV/dI at |eV| = 10Eq, and
the central knob 5Ey;, wide.

The similar behavior of differential resistivity, the evo-
lution from the shallow minimum to maximum and then to
the dip again with the decreasing temperature, was observed
in Ref. [18], where the quest for the theoretical explanation
of this effect was formulated. Using the parameters given in
Ref. [18] (see Fig. 2 there) we estimate £y = 0.14 pum at
T =1 K, the bridge length being 2.8 um. Furthermore, the
corresponding Et, = 1.4 'V, and one sees that the charac-
teristic voltage of ‘“‘saddled” shaped structure around zero
bias in Ref. [18] is about 40ET, in accord with our notion
that the dV/dI features develop on the voltage scale well
exceeding Thouless energy.

As a final remark, we stress that the temperature evolu-
tion of the dV /dI shape results from the confluence of the
voltage-dependent fluctuation conductivity, stemming
from the Maki-Thompson and Aslamazov-Larkin mecha-
nisms, and the low-voltage quadratic dispersion [g4(V) =
£0(0) + aV?, see Fig. 1] of the ground state energy. Im-
portantly, the width of the central knob or peak is = 5Er, in
contrast to the more narrow dip in the tunnelling conduc-
tivity [19] (the knob in dV /dI corresponds to the groove in
dl/dV), having the width of |eV| = Ey, reflecting the
suppression of the electronic density of states by the prox-
imity effect. The observed effect also differs from the zero-
bias conductance peak in NS and SNS junctions at low
temperatures [20] originating from the phase-coherent
Andreev reflection. Our findings demonstrate that studies
of the fluctuations of the critical current in weak links are a
powerful method to access energy scales of a wide class of
barriers [21].

In conclusion, we have demonstrated that the PT
symmetry favors fluctuating Cooper pairs in the
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superconducting weak link. We have found that the applied
electric field exceeding the critical value, &, breaks down
the P77 symmetry and destroys the superconducting fluc-
tuations in the weak link and have derived the analytical
expression for £.. Combining effects of superconducting
fluctuations and the low-voltage dispersion of the ground
state energy of the effective non-Hermitian Hamiltonian of
the fluctuating Cooper pairs, we have quantitatively de-
scribed the experimentally observed differential resistance
of the weak link in the vicinity of the critical temperature.
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