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Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and
otherwise, are related to the singularity structure of the Rayleigh-Schrodinger perturbation series. A numerical
procedure is presented that in principle computes the complete set of singularities, including the dominant
singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues
of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation
of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series.
The method can be useful for studying perturbation series of typical systems of moderate size, for fundamental
development of resummation schemes, and for understanding the structure of singularities for typical systems.
Some illustrative model problems are studied, including a helium-like model with §-function interactions for

which Mgller-Plesset perturbation theory is considered and the radius of convergence found.
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I. INTRODUCTION

Many-body perturbation theory (MBPT) has been one
of the most popular approaches for ab initio many-body
structure calculations in atomic, nuclear, and chemical physics.
Low-order Mgller-Plesset partial sums (MPn) were for many
years considered highly accurate and the method of choice
for calculations of ground-state energies. However, in recent
years, it has become clear that the convergence properties are
not that simple and that plain MBPT more often than not is
divergent [1-6].

Divergent series in this context can still be very useful.
The series should be considered not as a final answer but—as
a Taylor series of a particular function with a particular
singularity structure—rather should be analyzed to obtain
new ways of summing the series. Indeed the now extremely
popular coupled cluster method, which has to a large extent
supplanted low-order MBPT as the most effective method
for ab initio structure calculations, can be described in terms
of summations of selected classes of diagrams (i.e., selected
terms in the series) to infinite order [7]. Numerous other ways
of resumming the series give improvements of the convergence
such as Padé or algebraic approximants [6,8—11]. Especially in
nuclear physics, summations of classes of diagrams to infinite
order, such as the random-phase approximation [12], have
widespread use.

The performance of MBPT and the various resummation
techniques is determined by the singularity structure of the
energy eigenvalue maps E,()), where A is the perturbation
parameter. The determination of these singularities, which are
of branch-point type, is therefore crucial but also very involved.
Current approaches use the terms in the series to estimate
the location of the singularities, perhaps in combination with
approximants [9-11,13-15]. However, due to a theorem by
Darboux [11,14], the asymptotic form of the series only gives
information about the dominant singularity, that is, the one
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closest to the origin, and such methods may also be sensitive to
round-off errors [11]. It is also possible to do (very expensive)
parameter sweeps of A to locate avoided crossings [16—18],
thereby discovering empirically some singularities, but only
those with small imaginary parts.

We remark that even though the convergence properties
of MPn are given in terms of only the smallest singularities
of Ey(A), other variants of perturbation theory require more
knowledge. Being able to compute the singularities is therefore
useful for studying the perturbation expansion of the effective
interaction in nuclear physics or multireference perturbation
theory for open-shell systems [19,20], to name examples.

In this article, we present a general and reliable numerical
procedure for computing in principle the complete set of
singularities of the eigenvalue maps E, (1) and a procedure
for determining the dominant singularity in standard Rayleigh-
Schrodinger (RS) perturbation theory from the results, thereby
finding the radius of convergence (ROC) of the series. The
method relies solely on being able to compute the action of
the Hamiltonian on a vector, which is compatible with the
common approach of using the full configuration-interaction
(FCI) methodology for computing the series terms [1,2,21,22].
We apply the numerical procedure to several examples and
discuss the results.

We stress that the computation is completely independent
from the computation of a perturbation series such as MPn,
and information is not extracted from such a calculation.
Relying on the matrix-vector product also means that too large
systems cannot be considered. The method must therefore not
be considered as a candidate for actually determining, say,
the ROC of a given state-of-the-art MPn series (which are
very costly calculations themselves), but as a useful tool for
studying singularity structures in general.

The method is constructed in such a way that the singulari-
ties of smallest magnitude are computed first. The method can
then be terminated when a desired number of singularities is
found.

We have chosen the examples for their instructive nature
and the fact that we can compare with an explicit analysis.
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We analyze a simple harmonic oscillator with a §-function
potential added [23], a three-electron quantum wire model
in one spatial dimension [24], and an MP treatment of a
helium-like model with §-function interactions, which was also
considered recently in detail by Herman and Hagedorn [18]
using parameter sweeps. In this article, we make conclusions
about the ROC of this model. We use only very simple basis
sets based on standard discretization techniques. The two first
examples illustrate the properties of our numerical procedure,
while the final example illustrates an application of moderate
complexity.

Our method is based on the characterization of the singulari-
ties as branch points in the complex plane [16,19,25]. Those are
equivalently the points A, where eigenvalues coalesce. It has
been shown [26] that these points can be approximated to high
precision by solving a particular two-parameter eigenvalue
problem. More precisely, we find A(¢) such that a pair of
eigenvalues has a small relative distance ¢, that is, E, (1) and
E,(x) =(1+¢)E, (1) are both eigenvalues. We adapt this
result, exploit the structure of the Hamiltonian matrix, and
combine this with modern solvers for eigenvalue problems.

The dominant singularity for RS perturbation theory for the
ground state is the branch point A, o closest to the origin where
Eymeets E,, n # 0[19,25]. The second part of the numerical
method is a procedure that tracks the eigenvalue branches
from the branch points A, to the origin, thereby determining
if it is the dominant branch point A, . We have chosen to
focus on locating the dominant branch point since the ROC is
a fundamental property of the perturbation series. The tracking
procedure can equally well be applied to study other branch
points.

After discussing the numerical method in Sec. II, we apply
it to the model problems in Sec. III. Finally, we present our
conclusions in Sec. IV.

II. METHOD

A. Properties of RS perturbation series

Consider a Hamiltonian matrix H of dimension N of the
form

H}) = Ho+ AV,

where V is treated as a perturbation and where A is a complex
parameter introduced for convenience. For the actual physical
system, we have A = Appys € R. Both Hy and V are Hermitian
matrices. The eigenvalues E, (1) of H(A) are the N roots of
the characteristic polynomial det[ H(X) — EI], where [ is the
identity matrix. The eigenvalues E,(A) are the branches of
an N-valued algebraic function, whose only singular points
(denoted A,) are in fact of branch-point type [16,19,25].

For Hermitian matrices, the branch points come in complex
conjugate pairs. There are no real branch points, and all branch
points are of square root type. For sufficiently small A — X, the
eigenvalues can be expanded in a Puiseux series around each
branch point [19]. This is contained in Katz’s theorem [27],
which describes the generic situation (“‘generic” is the typical
situation in the sense described in Sec. I D).

Theorem 1. Suppose H(A) = Hy + AV is Hermitian for all
real A. Then, generically, we have that for any pair of branches
E, and E,,, there exists a branch point A, at which E, (A,) =

PHYSICAL REVIEW A 83, 032505 (2011)

E,,(Ay) = byy,,. Moreover, for sufficiently small A — A,, there
exists a constant c,,, such that

E (X)) = by + coum(X — A*)l/z + O — Ay)
Em()\) = bnm - cnm()L - )‘«*)1/2 + 0()L - )\*)7

where it is to be understood that the same branch of the square
root function is to be used in both equations.

Katz’s theorem may be viewed as a generalization of the
well-known Wigner—von Neumann noncrossing rule [19]. It
is interesting that all eigenvalue pairs are involved at some
branch point, which implies that the function Ey(}) actually
can be analytically continued to any excited state E,(}).

If the Hamiltonian is not generic, such as the full Hamilto-
nian in an angular momentum-conserving system, one may
consider angular momentum blocks separately to recover
generic matrices. Moreover, infinitesimal angular momentum-
breaking perturbations will make H generic. We say that the
theorem is applicable to Hy + AV “with probability 1.” For a
further discussion on the generic situation, see Sec. I D.

Finite-dimensional Hamiltonians usually arise due to some
discretization in form of a finite basis set, for example, using
the FCI methodology. The singularity structure of the full
problem is richer than in the finite-dimensional case, but we
postpone a brief discussion to Sec. IIT A.

In RS perturbation theory for the ground state, one
computes a truncated Taylor series for Ey(A), namely,

K
Eo(0) =) Eoudt + 005,
k=0

which is an asymptotic series approximating Ep(A) as A —
0. The coefficients Ep; can be generated recursively by
insertion into the eigenvalue problem for H(A), which gives a
series usually represented in the form of Feynman diagrams.
The actual computation of the terms becomes increasingly
complicated for higher order terms for many-body systems
(in practice, one rarely computes more than sixth-order series
using diagrammatic techniques [28]), but if H(}) is available
as a matrix or as a procedure that computes matrix-vector
products, the high-order terms are straightforward to compute
[6,21].

One of the important questions we consider in this article
is whether the truncated series is convergent as K — oo for
A = Aphys, that is to say, whether the ROC is greater than Appys.
As a Taylor series, the ROC is given by |A, o|, where A, o is the
smallest branch point, called the dominant branch point, where
the branch belonging to Ey(0) meets a different branch E,,,
n # 0. We say that the Ey and E,, branch at A, o [19,25,29,30].

Thus, to compute the dominant singularity, we are looking
for the points A, € C not on the real line such that E,(A,) =
Eo(1y) for n £ 0. The ROC is then R = min{|1.|} = |A 0]
Instrumental to this, we consider the values of A such that
the matrix H(A) = Hy + AV has a double eigenvalue. In what
follows, we call such a value of A a critical value.

B. Computing the m smallest critical values

We saw above that it is possible to characterize the
singularities of a perturbation series by computing A such
that H(A) has a double eigenvalue. The problem of finding
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all A such that a matrix depending linearly on A has a double
eigenvalue has been considered elsewhere [26]. The derivation
of the method presented here is based on a result in Ref. [26]
stating that all solutions can be approximated by the solutions
of a generalized eigenvalue problem, which we now show.

Suppose that for a fixed A,, H + 1.V has a double
eigenvalue E,. The eigenvalues are continuous with respect
to A, and according to Katz’s theorem, E, splits into two
complex analytic branches E (1) and Ey(X) as A, is perturbed.
Hence there exists a sufficiently small ¢ such that the two
eigenvalues split with a relative distance ¢, meaning that there
is an eigenvalue E; = E such that E; = (1 +¢)E is also
an eigenvalue. This occurs at a perturbed parameter value
A(e) &~ A,. In other words, there are two vectors v; and v,
such that

(Ho +AV)v = Evy, (1)
(Ho+AV)v, = (1 +¢)Ev,. 2)
Equation (1) implies that

1T+ Hy QI +AV @D Quy=(1+¢e)Evy ®vy, (3)

and similarly for the second equation, namely,

UQHy+AM Q@ VI Q@uy=(14+¢e)Ev @ v,. “4)

Here ® denotes the Kronecker product. Subtracting (4)
from (3), we obtain the generalized eigenvalue problem

AAp(e)v = Aq(e)v, (®))

where v = v| ® v,, and where the matrices A;(¢) of dimension
N? x N? are defined by

A(e)=—-TQV+(U+e)VRI,
AE)=T® Hy— (1 +e)Hy® 1.

Note that the approximate double eigenvalue E is eliminated
from the problem, leaving the approximate critical value A.

Note that the relaxation ¢ # 0 is essential since A;(0) is
singular. A suitable choice of ¢ as well as other implementation
aspects have been studied in detail [26]. This includes the
complete treatment of possible spurious solutions, that is,
solutions of Eq. (5) that are not approximations to critical
points or that do not correspond to branch points. [The latter
case is only possible if H(}) is not generic.] It is also shown
that the error in A behaves like O(&?).

Although the above method allows us to compute all critical
values of A, it may be computationally prohibitive for large
problems, as the computational complexity is determined by
the solution of the generalized eigenvalue problem (5), which
requires O(N®) operations if all eigenvalues are computed
with a general purpose method. To overcome this problem, we
use an iterative method known as the Arnoldi method [31] to
compute the m smallest eigenvalues of (5), where m is a given
integer.

The Arnoldi method generalizes the familiar Lanczos
iterations employed in FCI calculations to non-Hermitian
matrices and only requires an efficient computation of the
matrix-vector product associated with the eigenvalue problem.
The matrix-vector product associated with (5) is

y = A1(e) ' Agle)x. (6)
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Let X,Y € CV*¥ be such that x = vec(X) and y = vec(Y),
where vec : CV*N — CN* denotes the vectorization opera-
tion, that is, stacking the columns of the matrix on top of each
other. A key to the success of our method is that we can express
the matrix-vector product (6) in terms of the matrices X and
Y. By straightforward manipulations using the rules of the
Kronecker product, we obtain that Eq. (6) is equivalent to

HyY —(1+&)YH =-VX+(1+e)XV. (7)

This matrix equation, where Y is the unknown, is a matrix
equation known as a Sylvester equation. The right-hand side
can be evaluated in O(N?) operations. The Sylvester equation
canbe solved in O(N?) operations by using the Bartels-Stewart
algorithm [32], which is a standard method for Sylvester
equations. Hence, by exploiting the structure in this way, the
matrix-vector products of (5) can be efficiently computed in
O(N?) operations. If Hj is diagonal, this can be improved to
O(N?) operations, which is seen as follows.

LetY =: (y1,...,yn) and (cy, ... ,cn) be the columns of
the right-hand side of (7). Suppose the diagonal entries of
Hyare Hy;;,i =1,...,N. It is straightforward to show that
column i of (7) can be written as the solution of a linear system
with a diagonal matrix:

y; = diag(dy, . ..,dy)ci, ®)

where

1
d;

- J=1,....N.
© Hyjj—(+e)Hy;,;

Now note that we can compute a column vector of Y
using (8) with only O(N) operations. Hence the Sylvester
equation corresponding to diagonal Hy can be solved in O(N?)
operations. In the simulations in Sec. IIIC we will use this
approach, whereas using the Bartels-Stewart algorithm [32]
turned out to be more robust in Sec. III D.

Two additional properties of the Arnoldi method makes it
particularly suitable for our purposes:

(1) As we shall illustrate in Sec. III, the overall algorithm
for computing the dominant branch point, outlined in Sec. I C,
typically requires only a small number of critical values m «
N.

(2) If the chosen value of m is deemed insufficient, we wish
to continue the iteration. The Arnoldi method can be easily
resumed if more eigenvalues are needed.

The procedure above describes a method which can be used
for quite large systems since the complexity of the matrix-
vector product is only O(N?). To compute a few critical values,
a number k = k(m) (small compared to N?) matrix-vector
products are needed. The Arnoldi approach then scales as
O(kN?). At least theoretically, all the critical points can be
computed in O(N*) operations for diagonal Hy, using k =
N? iterations. On the other hand, computing the complete
spectrum of H (Aphys) is an O(N 3) calculation if a general-
purpose algorithm is used. Computing a few eigenvalues using
the Lanczos algorithm is an O(YN %) calculation, where £ is
the number of iterations needed, usually much smaller than N.

We may conclude that whenever only a few branch points
are needed, the complexity of the method is asymptotically
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similar to that of finding a few eigenvalues of the Hamiltonian
alone.

In the case when only the dominant branch point of MP
series is needed, the number k of iterations is usually very
small. This is because the Arnoldi method rapidly converges
to the smallest eigenvalues, in this case, the eigenvalues A ~ A,
of Eq. (5), and since the dominant branch point is usually close
to zero. So although our method can compute all branch points,
it has the advantage that the smallest are computed first.

The matrices V and H, stem from discretizations, and we
wish to be able to solve as large systems as possible. We
will now use that for large problems (fine discretization, large
basis set), a somewhat accurate guess is available by solving a
corresponding smaller problem (coarser discretization, small
basis set).

Inverse iteration [31] is a method to compute one eigenpair
where a reasonable approximation of the eigenvalue is already
available. Inverse iteration is, similar to the Arnoldi method,
also only based on matrix-vector products. It does not,
however, involve any orthogonalization step. Since it is only
based on matrix-vector products, we can use (7) directly with
inverse iteration.

By using the Arnoldi method for a coarse discretization,
and inverse iteration for a finer discretization, we can solve
very large problems in a reliable way in a multilevel fashion.

C. Computing the dominant branch point

The value X, o € C is the first branch point of Ey(A). Since
H (A.0) has a double eigenvalue, we can compute candidates
for A, o, that is, the critical values, with the procedure described
in Sec. II B. It now remains to determine which one of the
candidate solutions computed with the method in Sec. IIB
corresponds to A, o.

We will use a computational approach based on following
paths from the candidate solution A to the origin. It is justified
by the following technical result.

Proposition 1. Consider a critical value A such that
|A| < |Asol. Let p:[0,1] = C be a parametrization of a
curve from p(0) = X to p(1) = 0 such that |p(#)| < |A| for
0 € [0,1]. Assume that p does not pass directly through
another critical value. Then two continuous eigenvalue func-
tions [0, 1] 2 0 — E,(0) and [0, 1] 3 0 — E,(0) satisfying
E,0),E,(0) € 6[Hy+ p@)V] for 6 € [0, 1] and E,(0) =
E,,(0) are uniquely defined. Moreover, we have

E,(1) # Eo(0) and E, (1) # Eo(0).

Proof. The first statement follows from Rouché’s theorem
[33]. The second statement can be proven by contradiction;
more precisely, the statement E,(1) = Ez(0) or E, (1) =
E(0) contradicts with the assumption |A| < |Ao]. [ ]

From Proposition 1 it follows that A, is the smallest
branch point for which one of the corresponding curves, E,, or
E,,, terminates at Ey(0). Only the branch points with positive
(or negative) imaginary parts are relevant, and some may be
spurious. Denoting all relevant numerical branch points by
{)»k},ivzll, where

Al < Aol << HAw,

brings us to the following algorithm.
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Algorithm 1. (Computation of the ROC)

(a) Compute E((0), seti = 1.

(b) Consider X; and continue the two corresponding
branches E, and E,, for 6 € [0, 1], that is, from A = X; to
A=0.

(c) If one of the branches terminates at E((0), then stop else
i=i41,gotostepb.

(d) R =1l

We conclude this section with some implementation as-
pects. For step b, critical values of the parameter A are needed in
increasing magnitude. These can be computed by the Arnoldi
algorithm, as described in Sec. II B. The value of m is fixed
before the iteration starts. If it turns out to be insufficient,
the Arnoldi process can still be resumed, as also outlined in
Sec. I B.

For the continuation process in step ¢, we assume that curve
p is linear, that is, that the curve corresponding to A; satisfies

p0) =1 —0)A;.

As the critical values are isolated points, this line does not
contain other critical values, with probability 1. For the
continuation of the eigenvalues we follow the eigenvalues by
sampling the line between 6 € [0,1] with sufficiently many
points. In our applications, 21 sampling points were sufficient
to follow the eigenvalues accurately and not dominate the
computation time.

Although we have chosen to to so in our implementation,
it is not necessary to compute the whole set of eigenvalues
along p(0). Standard continuation techniques may instead be
used, where continuity of the eigenvalues with respect to 6 is
exploited (see, e.g., [34]).

D. A comment on the generic situation

In Theorem 1, the statements concerning the nature and
location of the branch points A, of the eigenvalue maps are
generic: a statement true for typical Hermitian matrices H
and V.

A generic statement about a matrix A in a subset A of
all matrices is true almost surely. This means that if A is
considered as chosen at random from A, the statement holds
with probability 1. Equivalently, an infinitesimal perturbation
of A will make it generic, and the volume in A of the matrices
for which the statement is false is zero. For example, a matrix
is generically nonsingular since A is singular if and only if
det(A) = 0. If A is chosen at random from the set M(N,N)
of all square matrices, its determinant det(A), which becomes
a random variable in R, is nonzero with unit probability:

P[det(A) # 0] = 1.

On the other hand, Hamiltonians are rarely generic in
the set of Hermitian matrices: Symmetries such as angular
momentum conservation or parity invariance lead to a natural
block structure in H(XA) so that the eigenvalue problem
decouples into smaller, unrelated problems. It is easy to see
that the noncrossing rule may be violated in this case, and
consequently, that not all critical points of H()\) are branch
points if not all symmetries are removed from the system.
The numerical procedure may yield spurious real or complex
solutions corresponding to violations of the noncrossing rule
or the square root branch point classification, respectively.
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III. NUMERICAL RESULTS

A. Branch points in complete basis limit

In this section we apply the numerical procedure to
three model problems: a simple one-dimensional harmonic
oscillator with a é-function spike, which is exactly solvable
[23] and equivalent to a center-of-mass frame formulation
of a parabolic two-electron quantum wire with §-function
interactions; a three-electron parabolic quantum wire with
smoothed Coulomb interactions [24]; and a helium-like model
with §-function nuclear and interelectron interactions [18]. In
the latter example, we consider Mgller-Plesset perturbation
theory, while in the other examples, we let the perturbation V
be the bare interparticle interactions.

The Hamiltonian matrix is like in most MBPT approaches
an approximation of a partial differential operator H obtained
by a finite basis expansion with discretization parameter /;
that is, as &4 — 0, the dimension N — oo and the discrete
spectrum approaches the exact limit under mild conditions.
(Special care has to be taken for the continuum spectrum of
‘H, if it exists.)

One may characterize the singularities of the eigenvalue
map of H as o or B singularities [10]. The « singularities
are complex-conjugate pairs of branch points with nonzero
imaginary parts. These are also called intruder states [16]. A
finite-dimensional Hamiltonian only has « type branch points.
The B singularities are real branch points corresponding to a
coalescence of an eigenvalue with the continuous spectrum.
Baker argued that this is a generic feature of unconfined
fermion systems [18,29,30]. The approximate Hamiltonian
will, as long as it contains sufficiently good approximations
to continuum states, have a cluster of branch points near a 8
singularity. As & — 0, assuming that the basis set is in fact
complete, the continuous spectrum is filled out with discrete
points, and hence there will be many close crossings clustering
around (but never equal to) a real value.

To interpret and classify the numerically found X, we must
consider the nontrivial limit # — 0. In general, three cases can
be expected:

(1) The branch point approaches a finite, complex value and
represents an « singularity.

(2) The branch point approaches infinity, in case of which a
singularity of the perturbation series disappears for the exact
Hamiltonian.

(3) The branch point approaches a finite real value. This
can happen in two separate ways. (i) Since the branch points
come in complex conjugate pairs, this means that the limit
actually becomes an analytic point as & — 0, that is, a
violation of the noncrossing rule (which does not hold in the
infinite-dimensional case). (ii) The real limit corresponds to a
B singularity. In that case, infinitely many branch points must
approach the same real value as 7 — 0 (N — o0).

B. Harmonic oscillator with § function

We consider the toy model Hamiltonian [23]

HO) = Lo +1 2 4+ a8(x)
T T2 T2t T
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FIG. 1. Eigenvalues of the harmonic oscillator with a § function.
Only eigenvalues of even eigenfunctions are shown. Notice the
crossing with the real axis around A ~ —0.6758, which will give
rise to a spurious solution in the numerical method.

Any fixed A = Apnys may be taken as the actual, physical value
for the toy model.

The eigenvalue problem (H — E)y(x) = 0 may be solved
to arbitrary precision and represents a particularly instructive
test case for our numerical procedure. Parity symmetry allows
us to focus on even eigenfunctions, which includes the
ground state. [The odd eigenfunctions are in fact trivial since
8(x)¥(x) = 0 in this case.] Figure 1 shows the eigenvalues of
the even eigenfunctions as A is varied.

Introducing the even-numbered harmonic oscillator basis
functions u,,(x) = ¢, (x), we obtain (Hy),, = 2n + 1/2)8,m
and V,,,, = ¢2,(0)¢2,,(0), the latter being a rank 1 matrix. Here

Pu(x) = @"n!/7) P Hy(x)e 72, )

with H,(x) being the standard Hermite polynomials. It has
been shown [26] that the numerical procedure will give
spurious solutions of large magnitude since V has rank 1;
in this case, |A.| ~ 10'2. Also, one false real value arises for
A such that H(X) has a zero eigenvalue (see Fig. 1). Note that
all spurious solutions are easily detected.

Figure 2 shows the smallest computed branch points for
various N with the dominating A, ¢ inset. The results for the
various N indicate that the qualitative distribution of branch
points does not change much with the basis size. For N — oo
we then estimate that RS perturbation theory will converge for
all x| < 2.

We remark that it is not easy to find the branch points
by doing a parameter sweep. Figure 1 does not reveal clear
avoided crossings involving any pairs of eigenvalues, which is
explained by the large imaginary parts of the various A.,.

We conclude this section by plotting the paths the eigenval-
ues trace out when A is gradually decreased from A, to zero;
that is, we consider A(0) = (1 — 6)A, and plot eigenvalues as
a function of 6. Figure 3 shows the result for A, o and one
other branch point. This illustrates the continuation process
described in Sec. IIC.
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FIG. 2. The smallest branch points for the harmonic oscillator
with a & function, computed for various matrix sizes N. The
dominating branch point A, ¢ is shown inset.

C. Three-electron quantum wire

The next numerical calculation is a one-dimensional model
of a three-electron parabolic quantum wire, called so due to
the quasi-one-dimensional confinement [24]. The electrons
interact via a regularized Coulomb potential of the form

1
VI — 0 +a?

where in our calculations we have set a = 0.1. The Hamilto-
nian is then of the form

3
H(A)—Z —la—2+lx2 —H»lZu(xx-)
- 29x2 277 2 D

u(xy,x2)

i=1 i]
1.5
1
=
S| 0.5
E
0
—0.5
0 1 2 3 4 5
1.5 000 o
©,
. 1
=
| 0.5
E
0
—-0.5
0 1 2 3 4 5

Re £(1)

FIG. 3. Eigenvalue branch paths as A is gradually decreased from
A, to zero for two branch points of the harmonic oscillator with &
potential. Three eigenvalues are shown. The upper panel shows the
paths for the dominant branch point A, o, while the lower panel shows
the paths for the first nondominant branch point.
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where we have introduced the parameter A, which, in the
chosen units, measures the relative strengths of the interactions
compared to the semiconductor bulk and the size of the trap.
Again, any fixed A = Appys can be taken to be the actual value.

Due to the harmonic confinement, the spectrum of H(A)
is discrete for all A. It can be shown using a theorem due to
Kato [25] that for all complex A, all the eigenvalues depend
analytically on A, that is, there are no singularities at all. This
is basically due to the boundedness of u(x;,x;). Thus the
ROC is infinite in the exact problem, and any perturbation
approach should converge. A discretization will, however,
necessarily produce branch point singularities, which will
approach infinity or real values as the discretization is made
finer.

We use a standard discretization based on Slater determi-
nants constructed from spin orbitals of the form ¢,(x)x,(s),
where ¢,(x) are the harmonic oscillator functions [Eq. (9)]
and x4, are the spinor basis functions. For a given M we
use all possible determinants created from spin orbitals with
Zi3=1 n; < M. Thus we include all unperturbed three-body
harmonic oscillator states of energy less than M + 3/2. We
restrict our attention to the lowest possible total spin projection
S, =1/2.

This yields matrices Hy and V of dimension N = O(M 2
when we separate out the center-of-mass motion which is a
dynamical symmetry—the center of mass moves like a free
particle in a harmonic oscillator. We only consider even-parity
wave functions, which includes the ground state. These are
the only symmetries of the Hamiltonian operator, resulting in
matrices for which the generic statements hold.

Having obtained these matrices, we compute the branch
points A, for & = 10~* and also deduce the ROC using our
numerical procedure. It is worthwhile to mention that in
this case, the tracking procedure reveals that the dominant
singularity is a critical value far from being the smallest.

It is instructive to study the behavior of the ROC as function
of M, as shown in Fig. 4. As expected, it seems to approach
infinity linearly with M as the discretization becomes finer.

If one tries to characterize A, as an intruder state, it is
revealed in Fig. 5 that ReX, ¢ changes sign as M is increased.

4.5

Radius

3.5

4 6 8 10 12
M

FIG. 4. The radius of convergence as a function of the number
of oscillator shells M for the quantum wire model. A clear linear
tendency toward R = oo is shown.
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Re
(e}

M

FIG. 5. The real part of the dominant singularity Rel,, as a
function of M for the quantum wire model. It changes sign around
M =7 so that X, changes from a back-door to a front-door
singularity.

This means that the characterization as front-door or back-door
intruders [16] is dependent on the basis used.

To illustrate the continuation procedure for determining
which eigenvalues branch a given A,, we have shown a number
of the branch points involving the ground state Ey(A) and
some other E,(}) in Fig. 6. We construct a path A(8) = (1 —
0)A, (also shown) and compute the eigenvalues of H(A(6))
that branch at A,. As these are continued to A(1) = 0, they
will be equal to unperturbed energies, and the branches are
easy to determine. In Fig. 7 the eigenvalue paths Ey(A(6)) and
E,(A(9)) are shown. It is clearly seen that the ground state
and some excited state meet at A,.. This also shows how the
continuation procedure may be used to find the nondominant
singularities involving the ground state, which can be taken as
input for approximant construction.

D. A helium-like model

The final example is a helium-like model in one spatial
dimension, also considered by Herman and Hagedorn [18]. It

—A(0)

Re A

FIG. 6. The smallest branch points at M = 10 for the quantum
wire model (circles) and paths (1 — 0)A, used for determining which
branches E, (1) meet at A,. See also Fig. 7.
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20
—E(4)
o Ei(+)
10 o E(0)

ImE
=

—10

-20

0 5 10
Re £

FIG. 7. The eigenvalue E((A,) (squares) corresponding to the
branch points A, in Fig. 6. Also shown are the paths E,[(1 — 0)X,]
for the branching eigenvalues, determining which branches E, (1)
actually meet at A,.

shares many of the qualitative features with the true helium
atom in three spatial dimensions, and our goal is to determine
the ROC for a Mgller-Plesset calculation of the ground-state
energy. The model has the Hamiltonian

2

1 9?
H = Z <_EW — Z(S()C,')) + 5()(?1 — XQ)
i=1 i

=Ho+V,

where V = 8(x; — x3) is the interelectron interaction. The two
electrons also interact with the nucleus of charge Z via §-
function potentials. We set Z = 1.38 for the calculations.

For Mgller-Plesset perturbation theory we rewrite the
physical Hamiltonian as

H = Ho + U™ + v —uU"r), (10

where the Hartree-Fock operator UMF is defined in the
usual way [16]. Since we are going to treat V — U™ as a
perturbation, we introduce a parameter A, namely,

HIF L) = Ho + UTE + AV — U,

for which HHF(1) = H. We now wish to determine whether
the MP series converge; that is, the radius of convergence must
be greater than R = 1.

For this, we need to determine the Hartree-Fock basis and
energies. We do this using a linear finite element basis over the
interval [—L,L] using n subintervals of length Ax =2L/n
to obtain the usual Roothan-Hall equations which are solved
iteratively [16]. In our calculations we have L = 15 and n =
1000, giving Ax = 0.03. The exact solution to the Hartree-
Fock ground state can be obtained in this case [18], which
provides a good check on the accuracy of the implementation.

The discretization parameters are Ax, L and the number of
single-particle functions M we use in the MP series. However,
we will consider the spatial discretization parameters to be
fixed and sufficient for an exact treatment of the one-body
Hamiltonians and instead only focus on M.
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FIG. 8. (Color online) Plot of the eigenvalues E,(A) for the
helium-like model, using M =42 single-particle functions.
Note the crossing around A &~ —1.1 with a small imaginary part.
‘We therefore expect interesting crossings with £ and some other E,
to have significant imaginary parts since no other avoided crossings
involving the ground state are visible.

The ground state is a singlet state, for which the spatial
wave function is symmetric with respect to interchange of x,
and x,, and has positive parity, that is,

Y(x1,x2) = Y(x2,x1) = Y(—x1, — x2).

There are otherwise no dynamical symmetries in this problem.

Figure 8 shows a parameter sweep of the eigenvalues of
HHF(L). In this case, it is clear that there is a back-door
intruder around ReA, ~ —1.1, so R < 1.1 is obvious. It is
highly likely that it corresponds to a B-type singularity in
the exact problem, as there are clearly several close crossings
(verified in our computations) with continuum states (with
positive energy at A = 0) near A,. This is also supported by
Herman and Hagedorn [18].

However, it is not clear whether there are other branch
points with, say, a small real part and imaginary part
ImA, = 0.7, which would imply R < 1 and hence an ultimate
divergence of the MP series.

The position or existence of 8 singularities in the discrete
problem is highly dependent on the basis chosen [2,17], so

1.3
1.25 x
x
2
2 x
3 12 :
&~ x
xx
1.15 ey,
R
1.1
0 10 20 30 40 50

M

FIG. 9. Convergence radius of the helium-like model as function
of the number of single-particle functions M. A rapid convergence
toward R > 1.13 is seen.
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FIG. 10. Estimated error in the ROC for the helium-like model as
function of the number of single-particle functions M. An exponential
error is observed, i.e., |R(M) — R(c0)| ~ exp(—BM).

our conclusions must be taken relative to our discretization,
which does include diffuse basis functions approximating the
continuous spectrum.

We compute, like in the preceding numerical examples,
the dominant branch point A, ¢ for various M and study its
behavior. For M < 13 we used the Arnoldi method, while for
M > 13 we used the inverse iteration method. It turns out that
in fact, R > 1; the avoided crossing does indeed come from
the dominant branch point. In Fig. 9 the ROC as a function of
M is shown. Clearly it stabilizes around some value R > 1.12.
In Fig. 10 an error estimate is plotted, based on the largest
M = 42, and clearly the error behaves like exp(—S M), where
B > 0is a constant.

InFig. 11 the paths Ey(A(0)) and E|(1(8)) are shown, where
A(0) = (1 — B)A, 0. This corresponds to Fig. 7 for the quantum
wire model. The path is surprisingly complicated, showing that
the eigenvalues may take complicated deviations from their
initial unperturbed values as A varies in a straight line.

x 1072
0.5
54
g 0
—0.5
—1
—0.8 —0.6 —-0.4 —0.2 0
Re E

FIG. 11. Eigenvalue path for M = 42 for the dominant branch
point A, o. As A takes values along the path (1 — 8)A,, the branching
eigenvalues start at E,(A,) = E,/(A,) and move to E,(0) and E,/(0)
so that which branches meet can be determined. Here n = 0 and
n =1.
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IV. CONCLUSION

We have described a numerical procedure to determine the
singularities of the eigenvalues E, (L) of Hy + AV. Using a
continuation technique that tracks eigenvalues as function of A,
the dominant singularity can be found. A simple generalization
of this will enable the classification of other singularities with
respect to which eigenvalues branch at ). By continuing steps
b and c in Algorithm II C after A, o has been found, one can
find the secondary dominating branch point, and so on.

The method has been successfully applied to instructive ex-
amples, and in particular, the convergence of a Mgller-Plesset
perturbation series for a helium-like model was established.

The most important virtue of the method is that it searches
the whole complex plane for singularities, and also, in
principle, it can find all these. This allows a much more detailed
mapping of the singularity structure than the standard methods
based on the asymptotic form of the terms in the series. Also,
the the Arnoldi method can be resumed: After finding the
smallest m critical points, the next points can be computed
simply by continuing the algorithm.

Computing all the singularities of £, (1) is much harder than
computing only the E, (Apnys). One cannot hope to be able to

PHYSICAL REVIEW A 83, 032505 (2011)

compute the whole set of singularities for a very large many-
body system or even to determine the exact ROC for a state-
of-the-art MPrn calculation. However, obtaining insight into
the distribution of singularities for typical quantum systems,
such as the examples considered in this article and others [17],
makes the construction and analysis of general resummation
schemes much easier [10,27]. Also, it is clear that the study
of multireference perturbation theory can benefit from such
knowledge. Considering that popular approaches to the many-
body problem, such as coupled cluster methods, can be viewed
in terms of perturbation series only serves to emphasize the
importance of calculations of singularity structures.
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