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Topological unification of time-reversal and
particle-hole symmetries in non-Hermitian physics
Kohei Kawabata1, Sho Higashikawa1, Zongping Gong1, Yuto Ashida1 & Masahito Ueda1,2

Topological phases are enriched in non-equilibrium open systems effectively described by

non-Hermitian Hamiltonians. While several properties unique to non-Hermitian topological

systems were uncovered, the fundamental role of symmetry in non-Hermitian physics has yet

to be fully understood, and it has remained unclear how symmetry protects non-Hermitian

topological phases. Here we show that two fundamental anti-unitary symmetries, time-

reversal and particle-hole symmetries, are topologically equivalent in the complex energy

plane and hence unified in non-Hermitian physics. A striking consequence of this symmetry

unification is the emergence of unique non-equilibrium topological phases that have no

counterparts in Hermitian systems. We illustrate this by presenting a non-Hermitian coun-

terpart of the Majorana chain in an insulator with time-reversal symmetry and that of the

quantum spin Hall insulator in a superconductor with particle-hole symmetry. Our work

establishes a fundamental symmetry principle in non-Hermitian physics and paves the way

towards a unified framework for non-equilibrium topological phases.
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It was Wigner who showed that all symmetries are either
unitary or anti-unitary and identified the fundamental role of
time-reversal symmetry in anti-unitary operations1. Time-

reversal symmetry is complemented by particle-hole and chiral
symmetries, culminating in the Altland–Zirnbauer (AZ) ten-fold
classification2. The AZ classification plays a key role in char-
acterizing the topological phases3–5 of condensed matter such as
insulators6–12 and superconductors13–16, as well as photonic
systems17 and ultracold atoms18, all of which are classified into
the periodic table19–22. Whereas the topological phase in the
quantum Hall insulator is free from any symmetry constraint and
breaks down in the presence of time-reversal symmetry6,7, certain
topological phases are protected by symmetry; for example, the
quantum spin Hall insulator is protected by time-reversal sym-
metry8–11 and the Majorana chain is protected by particle-hole
symmetry14.

Despite its enormous success, the existing framework for
topological phases mainly concerns equilibrium closed systems.
Meanwhile, there has been growing interest in non-equilibrium
open topological systems, especially non-Hermitian topological
systems23–42. In general, non-Hermiticity arises from the pre-
sence of energy or particle exchanges with an environment43,44,
and a number of phenomena and functionalities unique to non-
conservative systems have been theoretically predicted45–56 and
experimentally observed57–67. Here symmetry again plays a key
role; for example, spectra of non-Hermitian Hamiltonians can be
entirely real in the presence of parity-time symmetry46. Recently,
a topological band theory for non-Hermitian Hamiltonians was
developed, and the topological phase in the quantum Hall insu-
lator was shown to persist even in the presence of non-
Hermiticity31. Moreover, topological lasers were proposed and
realized on the basis of the interplay between non-Hermiticity
and topology39,41,42. However, it is yet to be understood how
symmetry constrains non-Hermitian systems in general and how
symmetry protects non-Hermitian topological phases.

Here we point out that two fundamental anti-unitary sym-
metries, time-reversal symmetry and particle-hole symmetry, are
the two sides of the same symmetry in non-Hermitian physics. In
fact, once we lift the Hermiticity constraint on the Hamiltonian
H, the Wigner theorem dictates that an anti-unitary operator A is
only required to satisfy

AHA�1 ¼ eiφH 0 � φ< 2πð Þ: ð1Þ

This suggests that time-reversal symmetry (φ= 0) and particle-
hole symmetry (φ= π) can be continuously transformed into
each other in the complex energy plane. This topological uni-
fication leads to striking predictions about topological phenom-
ena. In particular, properties intrinsic to topological insulators
can appear also in the corresponding topological

superconductors, and vice versa: a counterpart of the Majorana
chain in a non-Hermitian insulator with time-reversal symmetry
and that of the quantum spin Hall insulator in a non-Hermitian
superconductor with particle-hole symmetry. We emphasize that
such topological phases are absent in Hermitian systems; non-
Hermiticity alters the topological classification in a fundamental
manner, and non-equilibrium topological phases unique to non-
Hermitian systems emerge as a result of the topological unifica-
tion of time-reversal and particle-hole symmetries.

Results
Symmetries and complex spectra. To go beyond the Hermitian
paradigm, it is necessary to revisit some fundamental concepts
relevant to topology. We start by defining a gapped complex
band. Let us consider a complex-band structure fEnðkÞ 2 Cg,
where k is a crystal wavevector in the Brillouin zone and n is a
band index. Since a band gap should refer to an energy range in
which no states exist, it is reasonable to define a band n to be
gapped such that Em (k) ≠ En (k) for all the band indices m ≠ n
and wavevectors k (Fig. 1)31, which is a natural generalization of
the gapped band structure in the Hermitian band theory and
explains the experimentally observed topological edge states in
non-Hermitian systems36–39,41,42. Notably, the presence of a
complex gap has a significant influence on the non-equilibrium
wave dynamics (see Supplementary Note 1 for details). This
definition of a complex gap is distinct from that adopted in ref. 68

and hence the corresponding topological classification is different.
We next consider the constraints on complex spectra imposed

by anti-unitary symmetry (Table 1). A Hamiltonian H has time-
reversal and particle-hole symmetries if and only if there exist
anti-unitary operators T and C such that

T HT �1 ¼ H; CHC�1 ¼ �H; ð2Þ

and T z T �1 ¼ z�, C z C�1 ¼ z� for all z 2 C. For Hermitian
Hamiltonians with entirely real spectra, time-reversal symmetry
places no constraints on the real spectra and particle-hole
symmetry renders the real spectra symmetric about zero energy.
By contrast, for non-Hermitian Hamiltonians, of which spectra
are not restricted to be real, time-reversal symmetry renders the
spectra symmetric about the real axis46, while particle-hole
symmetry makes the spectra symmetric about the imaginary
axis26,33,52; they are topologically equivalent in the complex
energy plane (see Supplementary Note 2 for details). This crucial
observation leads to the expectation that non-Hermiticity
topologically unifies symmetry classes (Fig. 2), as shown below.
We note that the role of chiral symmetry is unchanged in non-
Hermitian physics, since it is defined to be unitary and does not
involve complex conjugation.
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Fig. 1 Gapped band structure for a non-Hermitian Hamiltonian. Energy dispersion for two bands (blue and orange curves) in one dimension: a (k, Re E, Im E)
with wavenumber k and complex energy E and b its projection on the complex energy plane (Re E, Im E). The two bands neither touch nor intersect for any
k, and therefore they are gapped. This definition does not distinguish between real and imaginary parts of energy
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Topological unification. Motivated by the topological equiva-
lence of time-reversal and particle-hole symmetries in the com-
plex energy plane, we consider a general anti-unitary symmetry
A defined by Eq. (1). Here A reduces to the operator that cor-
responds to time-reversal (particle-hole) symmetry for φ= 0
(φ= π). Remarkably, only time-reversal and particle-hole sym-
metries are allowed when H is Hermitian. To see this, we
take Hermitian conjugation of Eq. (1) and use Hermiticity of H
Hy ¼ H
� �

and the definition of anti-unitary symmetry
Ay ¼ A�1� �

. We then obtain AHA�1 ¼ e�iφH, which leads to φ
= 0, π. For non-Hermitian H, on the other hand, there are no
such constraints.

We study the continuous deformations between a system with
time-reversal symmetry and a system with particle-hole symme-
try in the presence of a complex-energy gap and an anti-unitary
symmetry A. Such deformations cannot be performed for
Hermitian Hamiltonians since only the discrete values φ= 0, π
are allowed due to Hermiticity; a topological phase with time-
reversal symmetry and that with particle-hole symmetry are
distinguished in Hermitian physics. Surprisingly, an arbitrary
non-Hermitian Hamiltonian H0 with time-reversal symmetry can
be continuously deformed into a Hamiltonian with particle-hole

symmetry because Hφ:= e−iφ/2H0 preserves both complex gap
and anti-unitary symmetry A for all φ, and Hπ has particle-hole
symmetry. Therefore, a topological phase with time-reversal
symmetry and that with particle-hole symmetry are unified into
the same topological class in non-Hermitian physics. The
topological unification of anti-unitary symmetries presents a
general symmetry principle in non-Hermitian physics that holds
regardless of the definition of a complex gap68.

Topological insulator induced by non-Hermiticity. As a con-
sequence of the topological unification of time-reversal and
particle-hole symmetries, unique non-Hermitian topological
phases emerge that are absent in Hermitian systems. In particular,
in accordance with the topological phase in the Majorana chain
(1D class D)14, non-Hermiticity induces topological phases in
one-dimensional insulators that respect time-reversal symmetry
with T 2 ¼ þ1 (1D class AI). Examples include a one-
dimensional lattice with two sites per unit cell (Fig. 3a):

ĤNHTI ¼
P
j

it âyj�1âj � b̂yj�1b̂j þ âyj âj�1 � b̂yj b̂j�1

� �n

þ iδ b̂yj�1âj � b̂yjþ1âj
� �

þ iδ� âyj b̂j�1 � âyj b̂jþ1

� �h i

þiγ âyj âj � b̂yj b̂j
� �o

;

ð3Þ

where âj âyj
� �

and b̂j b̂yj
� �

denote the annihilation (creation)

operators on each sublattice site j, t > 0 and δ 2 C are the
asymmetric-hopping amplitudes, and γ 2 R is the balanced gain
and loss. Such gain and loss have been experimentally imple-
mented in various systems36–42,57–66 and the asymmetric hop-
ping in optical systems67. The system respects time-reversal

symmetry T̂ ĤNHTIT̂ �1 ¼ Ĥ
� �

, where the time-reversal opera-

tion is defined by T̂ âjT̂ �1 ¼ b̂j, T̂ b̂j T̂ �1 ¼ âj, and T̂ z T̂ �1 ¼ z�

for all z 2 C. The eigenstates form two bands in momentum
space, for which the Hamiltonian is determined as ~h kð Þ �~σ with
hx=−2i Im[δ]sin k, hy== 2i Re [δ] sin k, hz= i (γ+ 2t cos k),
and Pauli matrices ~σ :¼ ðσx; σy; σzÞ. The energy dispersion

is obtained as E± kð Þ ¼ ± i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γþ 2t cos kð Þ2þ4 δj j2sin2k

q
, and

hence the complex bands are separated from each other by the
energy gap with magnitude min {2|γ+ 2t|, 2|γ - 2t|} (Fig. 3b).

In parallel with the Majorana chain14, the topological invariant
νAI is defined by

�1ð ÞνAI :¼ sgn ihz 0ð Þ � ihz πð Þ½ � ¼ �sgn½γ2 � 4t2�: ð4Þ

As a hallmark of the non-Hermitian topological phase, a pair
of edge states with zero imaginary energy appears when the bulk
has non-trivial topology (νAI= 1; Fig. 3c). Whereas the bulk
states that belong to the band E+ (E−) are amplified (attenuated)
with time, the mid-gap edge states are topologically protected
from such amplification and attenuation. In the case of t= δ, for
instance, the topologically protected edge states are obtained as

Ψ̂ðleftÞ
edge / i

PL

j¼1
� γ

2t

� �j�1ðâj � b̂jÞ;

Ψ̂ðrightÞ
edge /

PL

j¼1
� γ

2t

� �j�1
âL�jþ1 þ b̂L�jþ1

� �
;

ð5Þ

which satisfy ½ĤNHTI; Ψ̂edge�
���

��� ¼ Oðe�L=ξÞ with the localization

length ξ :¼ �ðlog jγ=2tjÞ�1. These edge states are immune to
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Fig. 2 Altland–Zirnbauer symmetry classes that involve the anti-unitary
symmetry (real class). The classes are specified by the values of T 2 ¼ ± 1
and C2 ¼ ± 1, and the absence of symmetry is indicated by 0. The class
symbol follows Cartan’s notation. While there are eight symmetry classes
in Hermitian physics, the classes connected by dotted lines are
topologically equivalent and thus the symmetry classes reduce to five in
non-Hermitian physics. For instance, a non-Hermitian Hamiltonian having
time-reversal symmetry with T 2 ¼ þ1 alone (class AI) and that having
particle-hole symmetry with C2 ¼ þ1 alone (class D) are equivalent and
hence unified

Table 1 Constraints on the complex spectra imposed by the
Altland–Zirnbauer (AZ) symmetry

AZ symmetry Hermitian Non-Hermitian

Time-reversal No constraints E 2 R or (E, E*)
Particle-hole E= 0 or (E, −E) E 2 iR or (E, −E*)
Chiral E= 0 or (E, −E) E= 0 or (E, −E)

In Hermitian systems, time-reversal symmetry places no constraints on the real spectra, while
particle-hole symmetry gives zero energy E= 0 or opposite-sign pairs (E, −E). In non-Hermitian
systems, by contrast, time-reversal symmetry gives real energies E 2 R or complex-conjugate
pairs (E, E*), while particle-hole symmetry gives pure imaginary energies E 2 iR or pairs (E, −E*).
Chiral symmetry gives E= 0 or pairs (E, −E) in both Hermitian and non-Hermitian systems.
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disorder that respects time-reversal symmetry (see Supplemen-
tary Note 7 for details), which is a signature of the topological
phase. We emphasize that topological phases are absent in 1D
class AI in the presence of Hermiticity3–5; non-Hermiticity
induces the unique non-equilibrium topological phase as a result
of the topological unification of time-reversal and particle-hole
symmetries. Whereas the system is an insulator and does not
support non-Abelian Majorana fermions, the sublattice degrees of
freedom âj and b̂j play the roles of particles and holes in the
Majorana chain; the Majorana edge states, which are equal-
superposition states of particles and holes, correspond to the
equal superposition states of the two sublattices âj and b̂j in the
non-Hermitian topological insulator.

Emergent non-Hermitian topological phases. The topological
phases induced by non-Hermiticity are not specific to the above
model but general for all the non-Hermitian systems with anti-
unitary symmetry. To see this, we examine the complex-band
structure of a generic two-band system (E+ (k), E− (k)) in 1D
class AI. In the presence of Hermiticity, the real bands indivi-
dually respect time-reversal symmetry: E± kð Þ ¼ E�

± �kð Þ
(Fig. 4a), where topological phases are absent3,5. In the presence
of strong non-Hermiticity, on the other hand, time-reversal
symmetry is spontaneously broken and the complex bands are
paired via time-reversal symmetry: Eþ kð Þ ¼ E�

� �kð Þ. Impor-
tantly, this system has the same band structure as the Hermitian
topological superconductor protected by particle-hole symmetry
(1D class D) as a direct consequence of the topological unification
of time-reversal and particle-hole symmetries; it exhibits both
trivial (Fig. 4b) and topological (Fig. 4c) phases according to the
Z2 topological invariant defined by Eq. (4). The latter band
structure becomes gapless in the presence of Hermiticity due to
E+ (k0)= E− (k0) for a time-reversal-invariant momentum k0 ∈
{0, π}.

Remarkably, the emergent non-Hermitian topological phases
cannot be continuously deformed into any Hermitian phase that
belongs to the same symmetry class. In fact, there should exist a

non-Hermitian Hamiltonian that satisfies E+ (k)= E− (−k)
between the two types of band structures, and the complex gap
closes at k= k0. Thus complex-gap closing associated with a
topological phase transition should occur between these phases.
We also emphasize that the above discussions are applicable to all
the non-Hermitian topological phases in any spatial dimension
protected by anti-unitary symmetry. Here the corresponding
topological invariants are solely determined by the relationship
between symmetry and the complex-band structure as in the
Hermitian case22.

Quantum spin Hall insulator. Topological phases survive non-
Hermiticity also in two dimensions. In fact, the Z2 topological
invariant νAII can be defined in non-Hermitian two-dimensional
insulators that respect both time-reversal and parity (inversion)
symmetries just like the Hermitian ones11:

�1ð ÞνAII :¼
Y

k0

Y

n:occupied

πn k0ð Þ; ð6Þ

where k0 ∈ {(0, 0), (0, π), (π, 0), (π, π)} denotes the time-reversal-
invariant and inversion-symmetric momenta in the Brillouin
zone, and πn(k0) ∈ {±1} is the parity eigenvalue of the n-th
Kramers pair at k= k0. In particular, for four-band insulators
such as the Kane–Mele model8 and the Bernevig–Hughes–Zhang
model9, the 4 × 4 Hamiltonian in momentum space that satisfies
T H kð ÞT �1 ¼ H �kð Þ and PH kð ÞP�1 ¼ H �kð Þ is expressed as

HQSH kð Þ ¼ d0 kð ÞI þ~d kð Þ �~Γþ i
X

1�i<j�5

dij kð ÞΓij; ð7Þ

where the coefficients di’s and dij’s are real, ΓI’s are PT -sym-
metric five Dirac matrices, and Γij’s are their commutators Γij:=
[Γi, Γj]/2i. We notice that Hermiticity leads to dij= 0. Here
only Γ1 and Γij (2 ≤ i < j ≤ 5) are invariant under space inversion
when Γ1 is chosen as P11. Moreover, when the parity and
time-reversal operators are given as P ¼ σz and T ¼ isyK, the
Dirac matrices can be expressed as Γ1 ¼ σzð¼ PÞ, Γ2 ¼ σy ,
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Fig. 3 Non-Hermitian one-dimensional topological insulator with time-reversal symmetry. The results shown are for the 1D class AI model described by
Eq. (3). a Schematic representation of the Hamiltonian. The system consists of the asymmetric hopping and the gain/loss. b Energy dispersion of the chain
with periodic boundaries (t= 1.0, δ= 0.5, γ= 1.0). The imaginary spectrum is gapped for |γ|≠ 2t. c Imaginary spectrum of the system of L= 50 sites with
open boundaries (t= 1.0, δ= 0.5). Edge states with ImE= 0 (red line) emerge in the topological phase (|γ/t|≤ 2)
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Γ3 ¼ σxsx , Γ4 ¼ σxsy , and Γ5 ¼ σxsz 11. Here σi’s (si’s) denote
the Pauli matrices that describe the sublattice (spin) degrees
of freedom. Since the Hamiltonian at k= k0 is invariant
under inversion PH k0ð ÞP�1 ¼ H k0ð Þ, it reduces to
HQSH k0ð Þ ¼ d0 k0ð ÞI þ d1 k0ð ÞP þ i

P
1�i<j�5 dij k0ð ÞΓij; the parity

of a Kramers pair at k= k0 corresponds to the sign of d1(k0), and
the Z2 topological invariant defined by Eq. (6) is obtained as
�1ð ÞνAII¼

Q
k0
sgn d1 k0ð Þ½ � as long as complex bands are gapped

and d1(k0) is non-zero.
This bulk Z2 topological invariant corresponds to the emergence

of helical edge states (Fig. 5). In stark contrast to Hermitian
systems8–11, the helical edge states form not a Dirac point but a pair
of exceptional points30,31,40,63,69,70 and have non-zero imaginary
energies at the time-reversal-invariant momenta. Nevertheless, they
are immune to disorder due to the generalized Kramers theorem
(see Supplementary Notes 5 and 7 for details), which states that all
the real parts of energies should be degenerate in the presence of
time-reversal symmetry with T 2 ¼ �1; the degeneracies of the real
parts of energies forbid the continuous annihilation of a pair of
helical edge states. Notably, the helical edge states are lasing (see
Supplementary Note 8 for details) like chiral edge states in a non-
Hermitian Chern insulator42.

The topological unification of anti-unitary symmetries indi-
cates that non-Hermitian systems that respect particle-hole
symmetry with C2 ¼ �1 (2D class C) also exhibit the Z2
topological phase, in contrast to the 2Z topological phase in
Hermitian physics3–5. Here the spin-up and spin-down particles
in insulators correspond to particles and holes in superconduc-
tors. This emergent Z2 topological phase is due to the presence of
Kramers pairs of particles and holes with imaginary energies,

which are forbidden in Hermitian systems where energies are
confined to the real axis; non-Hermiticity brings about topolo-
gical phases unique to non-equilibrium open systems.

Discussion
Non-Hermiticity manifests itself in many disciplines of physics as
gain and loss or asymmetric hopping43,44. We have shown that
such non-Hermiticity unifies the two fundamental anti-unitary
symmetries and consequently topological classification, leading to
the prediction of unique non-equilibrium topological phases that
are absent at equilibrium. The unveiled topological unification of
time-reversal and particle-hole symmetries provides a general
symmetry principle in non-Hermitian physics that also justifies a
different type of topological classification68. The modified topo-
logical classification implies that the symmetry unification can
bring about physics unique to non-Hermitian systems. It merits
further study to explore such unusual properties and function-
alities that result from our symmetry principle.

This work has explored topological phases characterized by
wave functions in non-Hermitian gapped systems, which is a
non-trivial generalization of the Hermitian topological phases. By
contrast, non-Hermitian gapless systems possess an intrinsic
topological structure, which accompanies exceptional points69,70,
and has no counterparts in Hermitian systems. This topology can
be characterized by a complex-energy dispersion28,30,31 and is
distinct from the topology defined by wave functions. A complete
theory of non-Hermitian topological systems should be for-
mulated on the basis of these two types of topology in a unified
manner, which awaits further theoretical development.
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Data availability
The data that support the findings of this study are available from
the corresponding author on reasonable request.
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