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Quantum phase transitions studied within the interacting boson model
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We study quasicritical phenomena in transitions between two “quantum phases” of a finite boson system,
described by the interacting boson model 1 used in nuclear physics. The model is formulated in the algebraic
framework and has a simple geometrical interpretation; the “phases” represented by dynamical symmetries
U(5) and SU3) correspond to spherical and deformed nuclear shapes. The quasicriticality of3hgU3)
transition is shown to be connected with the following phenomena simultaneously occurring in a narrow
parameter region between the symmetri@s:abrupt structural changes of eigenstates,multiple avoided
crossing of levels(c) peaked density of exceptional poinigl) qualitative changes of the corresponding
classical potential. We show that these spectroscopic features influence the dynamics of intersymmetry tran-
sitions in the model parameter space if the parameters themselves become dynamical variables.

PACS numbdis): 05.70.Fh, 21.60.Fw

[. INTRODUCTION The phase transition that we will be dealing with is usu-
ally tracted as a transition between spherical and deformed
Consider a Hamiltonian given by the following weighted nuclear shapels,7]. We will discuss both the spectroscopic

sum of two incompatible parts: and dynamical consequences of this transition—see Secs. IlI
and IV. Here, the term “spectroscopic” is used for the phe-
Hy,=(1-MHo+XH;, \e[0,]. (1)  nomena directly related to wave functions and energies of

the Hamiltonian eigenstates. It will be shown that the quan-

The termsi:lo andfi, (with[l:lo [1,]#0) may represent two tum phase tr_ans_itions are characterized by quite specific
fundamental modes of motion,—suppose that they are Classcl:_hanges of this kind, changes that take place in a very narrow

) ) ] ] < parameter interval around the critical point. The term “dy-
fied by two different dynamical symmetrigs}—andH, is  pamjcal,” on the other hand, is reserved for those phenom-

intermediate between them fare (0,1). Parameter thus  ena that are encountered if the intersymmetry transition, the
controls th(? transition between both dynamical limits. Do thegeformation in our case, is considered as a dynamical pro-
features oH, go smoothly from one limit to the other, or do cess. In such a case, the model parameters become dynami-
they flip at a certain criticah? The answer, of course, de- cal variables coupled to an external physical system, and the
pends on what particular terms in E(l) are considered. qualitative changes of the Hamiltonian in the critical region
Although one somehow tends to expect a smooth change @fifluence their evolution.

properties, the critical, “phase-transitional” behavior is en-  In spite of the specific character of the model used we
countered in a number of physically relevant situationspelieve that our results hold qualitatively also for other quan-
[2—-8]. It is met in nuclear physics, for instance, where thetum parameter-dependent Hamiltonians that exhibit critical
Ho, and H, “phases” usually represent normal and super-behavior and will thus be valuable for understanding the
conducting or rotational and vibrational modes of the nucleafluantum phase-transitional phenomena in general.

motion.

In this paper, the phenomenon of “quantum phase transi-
tion,” as we tentatively call it, is studied within a simple
model that describes an ensemble of interacting bog®js We will study the transitions in the parameter space of the
Our choice is motivated by the transparent algebraic strucsimplest nuclear interacting boson model, commonly abbre-
ture of this model, but also by its relation to real atomicviated as the IBM-19,10]. This model describes a system of
nuclei. The former ensures well defined dynamical symmea fixed numbefN) of spin=0 and 2 bosonss(andd boson$
tries and transitions between them controlled by a few modedubject to one- and two-body interactions. The IBM-1 re-
parameters. The latter follows from the fact that in an approveals a transparent algebraic structure witf)Las the dy-
priate coordinate representation the bosonic Hamiltoniamamical group. Varying six free parameters of the model
turns out to describe certain rotational and vibrational mo-this number results from plausible requirements set on the
tions of a “quantum drop,” i.e., images nuclear collective Hamiltonia, one can reach three standard dynamical
degrees of freedom. In this sense, the model used is an edymmetries—\(6), SU3), and S@)—and two additional
egant example, realistic and toy at the same time. ones—SUW3)* and SA6)* (differing from the corresponding

standard symmetries only by gauge transformations of the

boson operatojd9]. It turns out(see also beloywthat these
*Electronic address: pavel.cejnar@mff.cuni.cz dynamical symmetries provide an appropriate framework for
"Electronic address: jan.jolie@unifr.ch the description of low-energy collective motions of real nu-
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clei with certain shape symmetries) the U5) limit corre-  integrable. Transitions between various dynamical symme-
sponds to spherical nucldih) the SU3) and SU3)* limits tries can but may not lead through completely chaotic inter-
to axially symmetric nuclei with a quadrupole deformation mediate regimes. We must admit that the explanation for this
[two SU(3) realizations distinguish prolate and oblate shapedehavior is still missing although recently some hint was
[9]], and (c) the SA6) and SA6)* limits to quadrupolly  given[14,15 by the analysis of wave-function entropies of
deformed nuclei that are unstable against the axial-symmetrihe Hamiltonian eigenstates with respect to the symmetry
breaking[9] or even have tendency for a small stabilizedbases.

triaxiality [11] (two SQ6) realizations differ in electric Another interesting feature that can be investigated with
quadrupole propertigd 2]). the intersymmetry IBM-1 Hamiltonians is the above-
In this work we adopt a simplified, two-parameter IBM-1 mentioned critical behaviof6,7]. The model in the most
Hamiltonian from Ref[13]: general parametrization exhibits a phase transition with re-
o spect to the (b)-symmetry breaking. It turns out that if the
. Q, Qy - Hamiltonian with the 5) dynamical symmetry is perturbed,
Hio=0=m)| - N T7Ng, the ground-state structure remains basically tti6) $truc-
ture until some critical perturbation is reached. At this point,
ne[01], xe[- \/7/2’0]' 2) the ground state flips to another form and continues varying
slowly as the perturbation goes on.
Here,ny is the d-boson number operator ar, a quadru- More precisely, what the IBM experts call the shape-
pole operator, phase transition is standgrdly dgnved in _th(_e following way:
The model ground state is considered within the mean-field
ng=d’-d, 3) approximation, i.e., in the form of the boson condensate
IN, @) (ass'+3 ,a,d")N0) (where [0) is the boson
Q,=d's+sd+x[d"xd]?, (4y ~ vacuum. Any such state can be expressed via an appropriate

rotation of the “intrinsic” condensate state,
with [dxd]® standing for thd =2 tensor coupling of the

d-boson creation and annihilation operatorﬁaﬂ Bsiny N
=(—-1)*d_,, where u=-2...+2 is the angular- IN, B, y)| s"+ B cosydf+ 2 [di+d",1] |o),
momentum projectiohand “-” denoting the scalar product. 2

While » and y are varied as the control parameters, the total ®)

number of bosonsl is taken as a constant. Clearlfy(,,,x) is
of the form of A, from Sec. | if y is constant. The Whereg andy allow to be interpre_te@_16] as corresponding
(7,x)-parameter sheet of Eq2) contains the standard o the Bohr parameters of the intrinsic-frame quadrupole de-
IBM-1 dynamical symmetries: (8) for =1, SU3) for »  formation in the drop modelBohr geometrical parameters
=0, x=—7/2, and S@) for =x=0. The nonstandard 2aPPearin the ex.pan5|dﬁ(0,.¢_)oc1+EMaMY2ﬂ(Q,¢) of the
symmetries, on the other hand, are abdadj (we choose nuclear surfa_lce if the coefﬂmen@_are written m_the same
here the phase convention from REFO0]). A natural repre- Way asa,’s in Eq. (5)]. The variational method is then ap-
sentation of the parameter sheet is in a nonrectangular cooplied to find the optimal values of these variables, i.e., the
dinate grid that maps the rectangle defined in @jonto a  Values that minimize the energy function&(N,z,7)
triangle (the so-called Casten triangl@]) with vertices cor-  =(N,B,y/H|N,B,y). It turns out that if the (5)-symmetry
responding to the standard dynamical symmetries and thlereaking reaches the critical point, the optimal valuegof
other points to various transitional cagsse Fig. 7 beloiw ~ moves abruptly from zerfvalue corresponding to the()
Since the model is analytically soluble in the dynamical-symmetryl to nonzero. Within the above-mentioned geo-
symmetry limits, the textbooks mostly deal with only thesemetrical interpretation this transition mimics the flip of the
cases, the transitional Hamiltonians leaving just for a nufuclear shape from sphericaB€0) to a prolate >0)
merical treatment. One of the aims of this paper is to showorm.
that the intersymmetry transitions are not only more generic To be concrete, the Hamiltonian in E@®) yields the en-
in nature than the exact symmetries, but also perhaps moergy functional as followscf. [16]):
interesting in some respect. An important feature studied in
this connection is the onset of chaos in such transitions. The
Hamiltonian(2) is exactly integrable in the symmetry limits
and also along the S6)-U(5) leg of the Casten triangley(
=0), which leads to semiregular properties in neighboring
parameter regions. No other case of integrability is known.
The dynamics outside these nearly integrable regions was
indeed found to be mostly chaotic—with one important ex-
ception, however. A narrow strip of increased regularity was

EGon(N.B,y)=—5(1-n)+ {[Nn—(l—n)

(1+8%)?

X (4N+ x?—8)]1B%+|Ny—(1—7n)

2

e

found [13] in the parametrization represented by Ef) x 7 X —4

along the y~(\7—1)7/2—\7/2 curve connecting the 5

SU(3) and U5) limits through the triangle interior. Thus the \ﬁ . 3

suppression of chaos is not a privilege of the regions close to 4 7N(1 mx |Bcos 3y . ®




PRE 61 QUANTUM PHASE TRANSITIONS STUDIED WITHIN . .. 6239

The critical point in the above expression is given by thehere that thgg>0 minimum of the potentialor energy func-

value of  where the coefficient 82 vanishes, i.e., tional) does not disappear at the criticg) but coexists with
the =0 minimum in a very narrowy region above the
() AN+ x°—8 0 critipal point (at first even preserving its role of the global
X 5N+ x%2—8’ minimum).

Before closing this section, we have to stress that the limit

At this value, the secong derivative of Eq.(6) for g=0  Of infinite boson numbers has a key role for all effects con-

comes a local minimum. Note that the critical poiii} de- ~ densate trial functions provide the exact representation of the

pends on y: it changes betweemy&(—\/?/Z):(lGN IBM-1 eigenstate$16] and also the coherent states describe

—25)/(20N—25) at the SB)-U(5) side of the Casten tri- truly classical motiond18]—the model then has a purely
angle and;%(0)= (16N —32)/(20N—32) at the ST6)-U(5) geometrical interpretation and a classical counterpart. There-
€(0)=

side, but this dependence is practically negligible for suffi-fore't.the dphase trahnS|t|qn, as 'delrlvgdf'ln dbOthI 't\?e Sbove'
ciently large boson numbergven withN=10 the critical mentioned approacnes, 1S precisely detined onlyNes .

region is located within a narrow interval between 0.762 ancpn the other hand, as will be demonstrated below, although

) c .
0.77). It should be mentioned that a more sophisticated nthe Ch"’?”ge qf the elgerjs_tate structurezat nN(X) IS T‘Ot
merical treatmenf11,22 with an angular-momentum pro- really discontinuous for finite boson numbers, it remains fast

jection of the staté5) would yield an energy functional and enough to keep the term “criticallor quasicritical sensible
phase separatrix differing in general from those in Hgs. €VeN in such cases.
and(7). Both these approaches, however, converge gses

to infinity.
Another method used for studying the IBM phase transi- !ll. SPECTROSCOPIC SIGNATURES OF THE PHASE
tion is based on the time-dependent variational principle with TRANSITION
the coherent stath) = exp(ass’+X ,a,d})|0) trial functions In this section, we will study spectroscopic properties of

[17,18. ForN—co this procedure yields the classical limit of the Hamiltonian2) along the SI(3)-U(5) transitional region.

the model. The classical IBM-1 Hamiltonian depends on five\yq therefore consideﬁi( , with x=— J7/2 and look at the
mX

coordinates and associated momertg,, )(di,pi), While  gnergies and wave funcions of individual levels as they de-
its potential-energy pai(,, (i) ="M, (di.pi=0) (clas-  yang ony.

sical potential only on two appropriately chosen coordi- * The gstandard treatment of the shape-phase transition
nates. In particular, for the Hamiltonid@) we have based on the variational principle reflects explicitly only the
5 2 ground-state properties. However, the structure of the ground
V(W’X)(’B,Ty)oc E,7_2 B2+ (1— ,7)< 1— ﬂ) B* state should influence also the excitation modes. Indeed, the
change of form of the classical potential at the critieal
5 = signals a qualitative change of the quantum Hamiltori&n
+=(1=7)x | B /1_ ﬁ—cos?y (8) at the same place—the potenti@) is just an appropriate
\/7 2 ’ coordinate representation of the corresponding quantum

operator—which means that the quasicritical behavior is ex-
whereB and’y are connected with the above-defined intrin- pected also for excited states, at least those not too high in

sic shape variables through the relation energy. This expectation is verified in Figs. 1 and 2.
Figure 1 shows the structure of the lowest-energy states
_ V2, B _ with the angular momenturd=0, 2, and 4(parity is always
B= N Y=17 (9)  positive in the IBM-1. Exact(numerica) wave functions of
1+p these states in the $8)-U(5) transitional region were ex-

) ) ) ~ panded in both the unperturbed @Y and U5) bases. At
which maps the restricted interval @e[0,y2] onto the 3 _¢ "the SU3) expansion has just one component, while
infinite rangeB [0,) in the standard paraingtrlzau()m]. the U(5) expansion is trivial ay=1. In the 7 < (0,1) region,

It is easy to check that the potentig}, )(8,y) with the  on the other hand, the real eigenstates are spread over all the
substitution (9) is nothing but the N—o limit of  U(5) and SU3) eigenstates with the same angular momen-
E(0(N,B8,7)/N. Both expressiong8) and (6) are thus tum. The curves on the right-hand side of Fig(those in-
equivalent for the infinite boson number. Indeed, the classiereasing withy) represent the admixtuséhe squared modu-

cal potential yields the same critical behavior as the energyus of amplitude of the U5) state q 2{, or 4f in the
functional since a minimum gB=0 obviously rises in the actual state D, 21, and 4, respectively. The left curves
potential atn equal to (decreasingshow the same for the §8) admixtures. This

all is given for boson numbend=10, 20, and 30.

Naturally, the SW3) admixture shown in Fig. 1 drops
from 1 to 0, as it must, and the(8) admixture goes oppo-
site. A more interesting feature is that while the (SUad-
which is just theN—o limit of Eq. (7). Note that the mixture decreases to zero gradually, in a wide regiomof
asymptotic independence off(x) on N is due to the I between 0 and-=0.8, almost the whole ©-1 increase of the
scaling of the first term in Eq.2). It should be pointed out U(5) admixture takes place in a relatively narrow region

- (10)
7700_51
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the low-energy spectrum is associated with a spherical drop
while the rotational spectrum implies some deformation. As
apparent from the figure, however, the switch between these
two limiting regimes is very sudden even for boson numbers
as low asN =10, which was showh20,21] to have measur-
able consequences in real nuclei.

It is known that rapid structural changes of tHg eigen-
states{|<I>'§>} are typically correlated with some specific
variations of the eigenspectru{vE‘;}, namely with the so-
called avoided level crossings, i.e., mutual approaching of
two or more levels with the same symmetry quantum num-
bers. It can be easily shown that at the avoided-crossing
places the mutual mixing of eigenstate is most efficient. In-
deed, as the parameter value in Ef). shifts from\ to \

+ O\, new eigenstates become mixtures of the old ones, the
rate of mixing of theith andjth state(both with the same
symmetry quantum numberbeing expressed in the follow-
ing way:

su(3)|2
1
u(5)|2

11

la
la

o

. N ST (@)\[H1—Ho|®})
FIG. 1. Structural changes of the first 027, and 4" states  lim ——(®}|D}, ;)= O}| 7= P} )= — :
(upper, middle, and bottom panel, respectiyejong the SI3)- on—0ON di E\—E\
U(5) transition. Admixtures(squared amplitudgsof the unper- (11
turbed SU3) and U5) J7=0;, 2], and 4 state in the corre-
sponding) transitional state are shown for various boson numbersThe energy difference in the denominator of the last expres-

The onset of the (5) structure has a critical behavior. sion clearly implies an acceleration of mixing if the two lev-
els become close.
close top=0.8= 7%, i.e., around the critical poin). The This general conclusion can be illustrated by considering

transition becomes apparently sharper as the excitation dée wave-function entropy in a simple two- or three-level

creases and also for larger boson numbers. This all is consystem. The wave-function entropy of a sta#e with re-

patible with the above explanations. The reason why thepect to a given reference bagis={|i%)}!"_; is just the in-

SU(3) admixture does not behave critically is that the potenformation entropy of the|i) distribution over the basis

tial minimum atB>0, existing belown~0.8, does not stay states:

at a fixed position but moves gradually gsvaries. There-

fore, the overlap of an actual eigenstate fp£ (0,0.8) with n

the correspondingy=0 eigenstate is imperfect even for in- ~ W5(y)=— 2, [af(¥)|2In[a’(p)[2,  af(y)=(i%y).

finite boson numbers. =1 (12
Figure 2 shows the rati& (2, )/E(4;) of excitation en-

ergies(measured from 'the ground stat§)09f the lowest 2 It has been used by a number of authésse, e.g., Refs.

and 4" states. The ratio equal to 0.3 indicates the spectrurP23,24,15 and references thergifor measuring the above-

of an ideal rotor whereas the value of 0.5 is typical for amentioned effects of mixing. Indeed, [if%) coincides with

harmonic vibrator. Indeed, these values characterize thSne of theB-states, its entropywith respect ta) is mini-
SU(3) and U5) limits in Fig. 2—the vibrational character of mal, equal to 0, while if ) is uniformly spread over all the

n basis states, the entropy yields the maximal possible value,
Inn. Note that the relation of the information entropy to von
N=30 Neumann basis-independent entropy was discussed in Ref.
[25] along with some instructive examples.

0.6

0.5

)—E(0D)]

+
1
prd
I
N
o

¥ | We consider first, as the simplest example, a two-level
= mixing given by the following Hamiltonian:
P I N=10
S eten v\
Lt s . - v
¥ os - HE=H@+\H@=| ]l a3
1N UA e—e\
o
02 8o 67 03 04 05 08 07 08 09 The wave-function entropy of both the Hamiltonian eigen-
n states in the basig={(3),(3)} depends on the value of

FIG. 2. A ratio of excitation energies of the first 2and 4" x=(g— eN)/uh, having a sharp maXImum[WB(l)
levels along the S(B)-U(5) transition. The flip between the rota- =W?(2)=In2] at x=0. Therefore, the entropy increases
tional and vibrational limits is very sudden even for low bosonwith X from O (for A=0) to In2 (for A=e/e) and then
numbers. decreases again to a limiting valur-«) determined by
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g=4,h=8 g=2,h=4 g=0.5h=8 g=0.5h=4

A — k=4 \V/
E
(arb. —/ —~
units) T Yo
—— S
‘ _\ _\ L‘_l
<w>|(@) () (c) (o) ~
0.5 B 6
e
/\ /\ L
0
0 1 1 0 1 0 1
129
FIG. 3. The spectrum and average wave-function entropy of the 0 01 02 03 04 05 06 07 08 09
eigenstates of the three-state Hamilton{@d) as a function of\. 5

The spectra, shown in the upper panels for various choices of con-
stants(see the tejt are accompanied in the lower panels by the
corresponding average entropies with respect ta\th® eigenba-

sis. The avoided crossings of the lower two levels apparently accel-

erate the mixing process, regardless of whether it results in justan 7 ~ >
exchanggmore or lessof unperturbed wave functions for large o
(left) or in their complete spread ogtight). =

IS

2

the ratioe/v. The maximum rate of mixing is thus connected 1
with the avoided crossing of both the levels.

A bit more complex behavior is characteristic for a three-
level system, 6 01 02 03 04 05 06 07 08 08

7
€o WA WA FIG. 4. The spectrum of O stateswith the ground-state energy
HO=HE +\H®=| wn —e+ex on |, set to 0 along the SWB)-U(5) transition(upper part and the cor-
‘ . . . responding wave-function entropy of the first and fourth state in the
WA UA e—en U(5) and SU3) bases(lower pari for N=30. Major as well as

(14 minor variations of the wave-function entropy are correlated with
the avoided level crossings.

describing again the two-state mixing, but influenced by a
third state. Figure 3 shows the energy spectrum and the coexactly coincide with the single avoided level crossings of
responding average wave-function entra@gain in thex  the 0; level with its neighbors. Note that the structural os-
=0 eigenbasis, the averaging involves all three sfadssa  cillations of individual eigenstates, like those shown here for
function of A\/\o=\e/e for different values ofw/v=f and the Q; state, occur quite generally in parameter-dependent
e/lv=g (we considere,/e=h=1). Common to all the typi- guantum systems and can have drastic consequences for the
cal patterns shown in panelg)—(d) is the fact that the en- behavior of transition probabilitief22].
tropy grows most rapidly when the lower two states become We just saw that the “macroscopic” flip of the eigenstate
closest. Note that although the Hamiltoniéh4) contains  Structure atp~0.8 is correlated witlfone even tends to say
nominally five constants, the only ones relevant for the‘caused by”) a simultaneous avoided crossing of many lev-
present analysis are the above dimensionless ritjsand  €ls at the same parameter value. This conclusion, verified
h. also in other quantum systems possessing critical behaviors

These principles can be applied also to the interactindg4,5,8, leads to a natural question of what makes the levels
boson model. Figure 4 shows a correlation between the levédlehave in such a peculiar way. The true origin of this phe-
dynamics and wave-function entropies for the €igenstates nomenon is clearly the qualitative change of the Hamiltonian
of the Hamiltonian(2) in the case ofN=30. In the upper at the critical point, namely the rise of the=0 potential
part, the energy spectrum of all'Ostates is d|sp|ayed as it minimum. It is known that the connection between the
varies with » along the SWB)-U(5) transition (the ground- Hamiltonian and level dynamics goes via the notion of so-
state energy is constantly set to 0 herehile the corre- called exceptional pointgalso branch or crossing points
sponding wave-function entropies in the3) and SU3) [4,5,26—28. Exceptional points of the Hamiltoniad, are
bases are shown—for two selected states—in the lower padefined if the range of is extended to the complex plane—
(unlike Fig. 3, the entropies characterize only the giventhey represent those complex parameter values wheréiwo
single state heje A manifold avoided crossing of levels, more different levels become degenerated. Note that the
situated just to the phase-transitional regipn 0.8, is appar-  well-known rule that energy levels do not really cross, in
ently responsible for the basic variations of the wave-generic cases, if just one Hamiltonian parameter is varied
function entropies. The correspondence between the uppg29] is right for real\ only. Exceptional points have a simi-
and lower parts of Fig.4 persists even under the scrutinylar relation to the avoided level crossings as Simatrix
when the oscillations in the [Ostate entropy are found to poles to cross-section resonances: if an exceptional point is
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Energy

0 e N \
N N \
o N W
.-‘? o TR :\\\\\:\&“\\\\\\\ NN N W ‘
-‘E 0.4 1.5 1.2 14
o
o
é N n 9 0.2 ,8
S . . o~
L FIG. 6. The potentia(8) as a function of3 (with y=0) for 5
€[0,2.5] and y=—\7/2. The potential minimum moves frof
% 05 170 s 20 25 ~1.2 to =0 at »=0.8 and theB~1.2 maximum rises ap=1.
7 These features are behind the phenomena shown in Fig. 5.

FIG. 5. The “dynamics” of 0" states N=30) induced by the N the respective regiongbe reminded that foN—c the
change of parameteje[0,2.5] (upper pandland the accompany- Condensate state§) become exact eigenstates and ).
ing (approximativé distribution of the exceptional-point real parts thus yields exact energipsAssociated with the spectrum
(lower panel. The peaks in the exceptional-point distribution cor- compression at the critical point is the well pronounced peak
respond to multiple avoided crossings of levels. in the exceptional-point distribution in the lower panel of
Fig. 5. We therefore confirm that the switch of the potential

close to the reak axis, the avoided crossing of the corre- fprm |.nfluences the avmdgd-crpssmg pat_tern thrc_>ugh the par-
tial alignment of the Hamiltonian exceptional points.

sponding levels is located at that place. Thus, the phase- However, then~0.8 peak in the exceptional-point den-

transitipnal behavior of a quantum.system .is encoun.tered %tity in Fig. 5 is not the only one. An increase is observed also
.)\:)‘ I:(I slotm?rgmgnw Qf the excep_ttlr(])nstle:p)c\)lcntz gre aligned in the regionn e (1,2), where, as apparent in the upper panel
N parafiel 1o In€ Imaginary axis wi . [4, ]'. of Fig. 5, another change of the slope of levels occur, similar

We calculated the distribution of exceptional points of the,[0 the one aty~0.8 but affecting in contrary only the high-
I-I_?mllftct)r:nan(Z) a{png the rtleal pflra_lrwp]eter iﬁ'sa"e" (tjhi ?(en'energy states. We have to first emphasize that although the
f' y o R ef ex2c89p |_onab7 lrea parts. ?. me bo u(;se ’ athen Hamiltonian(2) was originally considered only in the range
rom et 28], IS only approximative—based on ihe ne[0,1], the present values of>1 (in fact, all values
asymptotic behavior of the spectrum for large—but accu- T~ < +20) still yield perfectly acceptable IBM-1 Hamil-
rate enough for our purposes. The result for tates with tonians. They are also transitional between th@)Uand

N =230 is shown in Fig. Flower par} together with the cor- ) ) ~ . o
responding energy spectrutnpper part in the parameter SU(3) Symmetriessee the expansions b, ,) into Casimir
invariants given in Ref[15]), just like the n<[0,1] ones

range 0,2.5] (the reason for considering alsp>1 will . S ) -
gex £[0,2.5] ( g asp> (which was the reason for not considering them in the origi-

be clarified later. First of all, the level energies are now L L . .
plotted without subtracting the ground-state energy, whicHh@l parametrization but exhibit effects inequivalent to those

discloses some new features disregarded in the presentatiBﬁesem in t}?e “?]St”Cted :ntgrval.fCompanng |F|g§. 5 a}nd :
of Fig. 4. In particular, at the critical point the bunch of level O"€ S€€S that the cumulation of exceptional points in the

“trajectories” is squeezed in such a way that the S|0peregion n>1 is connected with another qualitative change of

changes more for low-energy levels than for the high-energyhe potential, the rise of thg~ 1.2 maximum. At the corre-
ones (the highest-energy states remain completely unafsponding parameter value, i.e., at=1 [see Eq.(8)], the
fected. This can be easily understood in terms of the potenglobal potential maximum moves frorﬁz J2 to the new

tial (8) shown for the corresponding region in Fig. 6 with  position and the rate of its increase with changes. For
y=0. The potential change at the criticalinfluences only  sufficiently large boson numbers, the same behavior must
the states whose average kinetic energy does not exceetlaracterize also the highest excitation energy, since@q.
much the depth of th@=0 minimum; for the ground state describes the true eigenspectrum fér-c. The level dy-

the slopes below and abovg~0.8 correspond approxi- namics shown in Fig. 5 apparently confirms these consider-
mately to the elevation rate of the global potential minimumations.
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FIG. 7. The Casten triangle for they(x)-parameter sheet of the

Q0
Hamiltonian (2) and the paths I-lIl between the(8) and SU3) 6 61 0z 03 04 05 06 07 08 09
dynamical symmetries, as considered in Sec. IV. The dashed semi- n

circles schematically indicate the most chaotic regions. FIG. 8. The “dynamics” of the unfolded spectrum of Ztates
(N=20) for the U5)-SU(3) path | (upper panel and the corre-
IV. DYNAMICAL CONSEQUENCES sponding entropic measures of chdtmsver panel. The U5) and
The importance of avoided level crossings in nonstationSU(3) entropy ratios quantify the average overlap of the actual 2

ary quantum problems is generally known. In particular, thestates W|th_ bases in the respective symmetry limits, while the

mechanism of so-called Landau-Zener transitii8@ is of- entropy-ratio product measures the overall degree of chaos.

ten mentioned in the literature. Suppose that the parameter

in Eg. (1) is made time dependent—consider the simpleseffects; rather we try to give some hints that will hopefully

dependenca (t) = At at the moment—and that the system is inspire a more detailed analysis.

initially prepared in one of thélo eigenstateé,sbio). Because . In contrast to Sec. I!I, we allow for varlatlons.of both the
jumps between various eigenstates occur most likely at thEl(5 Parameters. It is expressed by a functional depen-
avoided-crossing places, the probability of finding itk dence ofy upon #: as 7 varies between 0 and }%, changes
eigenstatel®] ,,), at a timet>0 depends very much on the accordingly. In particular, we consider three paths from the
way in which the levels between théh andjth “collide” ~ Y() to SU3) limit (i.e., » goes down from 1 to) given by

with each other within the corresponding parameter intervaI'Fhe following formulas:
The transition probability is also sensitive to the rate of the
parameter change: in the limiting adiabatiifinitely slow) (7
regime the system exactly follows the stﬂ@k‘}\(t)) with no - — for path |
chance to jump, which is certainly very different from a typi-
cal behavior if the change is fagtlose to the diabatic limjt J7-1 J7
It is obvious that the most pronounced differences between x(m)= 2 175
fast and slow dynamics must be connected with the spectral
regions containing a large number of avoided level crossings. _2\/7< B
Practical implications of such investigations are numerous; K
remember, for example, elastoplastic and memory effects in
nuclear large-amplitude motior81,32 or other peculiar _ -
phenomena studied so far mostly in some schemati¥Vhereas path I is thg one from Sec. lll, the_ two addltlonz_;ll
models—see, e.g., Ref33,34. paths go through the interior of the Casten triangle—see Fig.
In this section we focus on a few nonstationary problems7- The choice qf the paths I-11l is motivated by the faqt that
related to the IBM Hamiltoniar§2). The reason for such a they cross regions of the parameter sheet characterized by
study is the expectation that the multiple avoided crossing oflifferent quantum and classical degrees of chaos, as de-
levels at the phase-separating cufvemay have interesting Scribed in Ref.[13]: whereas | and IIl pass through two
consequences for the dynamics induced by some driveflifferent chaotic regions at medium and small respec-
variations of the model parameters. It should be stresselively, the path Il follows the semiregular “valley” in be-
from the very beginning that we do not pretend to make heréveen both the chaotic regiorisee the schematic view in
a complete account of all such dynamical phase-transitionafig. 7). For each path, the Hamiltonia#,,, ,, can be written

for path Il (15

2
) for path IlI.

N -

\
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FIG. 9. The same as in Fig. 8 but for the path Il. The entropy- FIG. 10. The same as in Fig. 8 but for the path Ill. Regular as
ratio product, lower compared to Fig. 8, indicates a suppression ofvell as chaotic regions are crossed, as indicated by the entropy-ratio
chaos, which seems to be connected with the particular “moving”product. In contrast to Fig. 8, thg<0.3 chaotic region shows a
structure of level bunchings. turbulent “flow” of levels.

asl3|,, if the respective dependengd ») is substituted, and
it becomes a particular function of timesfis driven accord-
ing to a functiony(t).

To illustrate the above-mentioned features related t

clearly pushes the level statistics towards the Poissonian case
and thus contributes to the result that the corresponding re-

cgion of the Casten triangle is quasiregylaB]. Whether this

R B quasiregularity is caused by some hidden partial symmetry is

chaos, we present in Figs. 8-10 unfalded spectra of the 2stiII unclear, but the pattern shown in Fig. 9 might be a hint.

states forN=20 together with the corresponding average . .
wave-function entropies for all the paths I-Ill. Be reminded The US) and _SL(3) entropy ratios and _the entropy-ratio
Product, shown in the lower panels of Figs. 8-10, are de-

that the spectral unfolding is a special transformation of Ieveri ed from the averade wave-function entropies of the 2
energies, which ensures that the resulting spectra are free oY 9 P

“secular variations” of the level density and are thus pre_elgenstates in bases corresponding to the various dynamical

pared for studying fluctuations and correlations, as usual i ymmetries. In particular, the entropy ratié derived from

functi B -
the theory of quantum chaos. The unfolding procedure det— e wave-function entropy” (average over all 2 states in

. . B_ _

scribed in Ref[35] was employed here, which is based on our f:aséls d?f!ne({l4,lﬂ ast —é\f(expWB 1), where the
fitting the staircase functiohl(J™,E, 5), the number of)™ scaling coefficient\V ensures that®~1 for any ensemble of
levels below energg, by a two-d,im’ens,ionalli 7) polyno- eigenstates that exhibit a random overlap with the reference
mial and evaluating the smooth part of the level density frorrPas'SB (the expression fal contains in the denom!nator the
the fitted function. As a result, the transformati&q(») average entropy of eigenstates ofarandom-matrllx eqsemble,
—ei(n) is obtained, where the average spacipg, ;— ;) see Ref[15], which justifies the term “gntropy ratio’ Fig-
is constant 1) throughout the whole transformed ures 8—10 show the entropy ratios with respect to tlig) U
spectrum—see Figs. 8—10 and SU3) bases as a function af for the three paths be-

We do not show here tHe quantal measures of chaos d ween the S(B) and US) limits. It is evident that the phase-
rived from the unfolded spectra in Figs. 8—10, as this analy_ransitional behavior is washed out in the average containing

o
sis was done for the whole Casten triangle in R&8]. One all }T]e 2 f|genst::1_te$se3 "ﬂ;dllﬂ)' h in Figs. 8-10. i
can directly see, however, that the unfolded-level statistic € entropy-ratio produds, aiso shown in 1gs. 6—19, 1S

S, . :
interpolates the whole range between the chaotic gaite a geflneg[14,15] _ats 3 pr_?rt]ducl: 3f the _entlropy ratltt)s_ ove][ tt?]e
strong level repulsionand the regular casgvith a consid- asesi associated with all dynamical symmetries ot the

erable bunching of levelslt is interesting that neither the model. Expressing something like a content of dynamical

U(5) nor SU?3) limits yield the level statistics generic for Symmetries in a particular Hamiltonidt,,, ., , the entropy-
integrable systems, as was observed in Rgf8,36. Also  ratio productR was found[14,15 to be perfectly correlated
noticed should be the level dynamics with a peculiar patteriVith quantal measures of chaos corresponding to the given
of bunchings found for path Il—see Fig. 9. The sequence of, ,,. Indeed, the behavior & shown in the lower panels
bunchings, descending in energy.pgoes from~0.3t0 0.7,  of Figs. 8—10 is in agreement with the localization of chaotic



PRE 61 QUANTUM PHASE TRANSITIONS STUDIED WITHIN . .. 6245

and regular regions in the Casten triangle, as schematically The use of the canonical density opera{%@fexp(_ﬂg),
represented in Fig. 7. In particular, path(Rig. 9 crossing  eijther adiabatic or diabatic, can in our case be advocated by
the above-mentioned quasiregular region yields much lowegs simplicity: the variable population of levels that we need
R than path I(F'r?' 8, which gloes dllrectly_ through rt]hbe cha- {5 incorporate into our calculations is controlled here just by
F“C region at t eRS(.:Bg—U(S) tﬁgl'”ASO F'gt'hlo e;: tlh 'tsr? a single paramete. However, for our purposes, the stan-
c?tggerergi)xr;malﬂhg SVCVB)?QUF(JS) leg rsv%?IZSR i;oil:? conteracsta_ dard thermal population is disadvantageous as it gives lesser
o s ' . weights to higher excited states compared to those near to
negligible when the path is close to the integrable(©O the ground state. Indeed, in view of the discussion regarding

U(5) region. The small maximum d? at »~0.8 in Fig. 10 is P . 4
due to the deviation of path Il from the chaotic Y}U(5) spectra in Figs. 8 —10 we need 1o consider also the inverse
population of states, i.e., negative temperatures. We there-

region towards the regular $6-U(5) region; it is also X
clearly correlated with the multiple avoided crossings of lev-fore allow for any valugg e (— <, +«) and introduce a new

els in the upper panel of Fig. 10. variable,
It is clear that the unfolded spectra in Figs. 8—10 do not
exhibit the characteristic phase-transitional behavior shown e h for =0
in Figs. 4 and 5; it was removed by the unfolding. In the X(B)= 2-¢% for B<0 (18

following we will show, however, that the waving curves of
unfolded-level energies still carry—besides their apparent
aesthetic appeal—physical information important for the dy-which changes betweex(8)=0 for T=+0 (i.e., only the
namics induced by the driven variationsg,f)(t) along ground state populatgdndx(B)=2 for T=—0 (only the
paths I-Ill. In particular, the “laminar” and “turbulent” highest state populatgdhe intermediate value(B)=1 be-
character of the “flow” of unfolded levels is contrasted. One ing attributed toT = + (a uniform population of all statgs

can notice that whereas the chaotic region crossed by theo avoid possible confusion, it should be stressed that here
path | yields a laminar flow, see Fig. 8, the chaotic regionthe negative temperatures are just a formal tool to describe
crossed by path Il yields in contrast a turbulent flow in thedynamical features related to high-energy parts of spectra in
upper part of the spectrum, see Fig. 10. The laminar flow=igs. 8-10; any deeper physical justification of their use
implies a small number of avoided level crossings and leadg,qyid be misleading at the moment.

therefore to a more or less steady rate of the eigenstate mix- Now we are in a position to explain the main physical

ing. The tqrbulent rov_v, on the other hand, develops throughresult of this section, presented in Fig. 11. We calculated the
many avoided crossings and thus induces dramatic reaﬁverage energyE ), and the “force” d(E,)y/dy as a
7 n

rangements of eigenfunctions. This means that difference nction of 1— e [0.1] for the 2° states aN= 20 shown in
between slow and fast parameter variations and other. 7 ’ ¥ N o
igs. 8—10(note that the term “force” for they derivative

memory effects, as mentioned above, must be expected (9‘ energy results from an obvious generalization of the clas-
play the most important role if the turbulent flow of levels is sical relationdE—Fdx). The calculation was done fde)

encountered. . . : S
. o . . both the adiabatic and diabatic limitgh) all three paths
To confirm these qualitative considerations, we have Call—lll, and for () the whole intervak() < [0,2]. In Fig. 11,

culated the average energy and #tgerivative, a “force,” X X

in case of adiabatic and diabatic transitions between 15 U EEE forr]c(:)eléthstle(?ft;r;((é)st amerq'ﬁ:lz Z?g@h;é):;;hegtre.dh?r
and SU3) limits along the three paths in EGLS). In par- os\zv colurl'nm i:s/ Sh('.')v\\ll\ll’l IonIy forv theg limiting valulgs of
ticular, we assumed the system, characterized by an |nverX 8)=0 and 1. The aim pursued was to find differences

temperatureB=1/T, being at first in the (b) limit, i.e., at ; . X . S T
»=1. Within the adiabatic change, the thermal equilibriumbetween the adiabatic and diabatic dynamics, i.e., indications
1:,9_r dynamical memory effects.

is established at each new parameter value, so that the ¢ The main messace of Fia. 11 can be put as follows: the
nonical occupation probabilities always characterize the 9 9- P '

population of the actual energy eigenstates. The energy a\?—mst pronounced memory effects in the(3-SW3)

erage at any value of is then given by the following for- ransition—at least as far as th.e force. is concerned—are con-
mula: nected with the spectral regions with a large density of

avoided level crossings. It is, with the low-energy region
near the critical pointy~ 0.8 (like in Fig. 5 and for the path

' Tr(H e—ﬁﬁn) E. E, S Il also with the “turbulent” high-energy region af<0.3
(B30 = = . (16) (see Fig. 10 The low-energy crossings near the critical
Tre Ay D e~ FE, point (cf. Fig. 5 induce the adiabatic-diabatic difference of
i

the force at low positive temperaturps(8) ~0], while the

. . . high-energy crossings in the smajlregion of path IlI(Fig.
On the other hand, the diabatic change is so fast that thep iq,ce the difference at negative temperatures close to

system has no time to move from its initial state and thuszero[x(ﬁ)~2]—see the leftmost and middle columns of
deviates from the actual thermal equilibrium. We have Fig. 11

The steplike adiabatic evolution of the force fr(g)

. . . _ J
N iy 2 ELY (@) |®h)[%e F5 ~0 (see the leftmost column of Fig. Lis connected with a
gian, _ 1T(H,€ 7" 7 J ving 2 .
(E %: = ) change of the slope of low-lying™2levels near the critical
U Tre AH1 S o BEL 7, similar to that shown for 0 states in Fig. 5. This is

i shown in the rightmost column of Fig. 11 for the lowest 2
(17)  state by the lower full curveladiabatic energy average with
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adiabatic diabatic
adiabatic /,/’/
d|o’t:0t|c— FIG. 11. The adiabatic and diabatic change of
the thermal average energy of Xtates forN
=20 (column on the rightand the corresponding
adiabatic “force” (left and middle columnsalong the
N 05 1 U(5)—SU(3) (p=1—0) paths I-lll (rows
L5 g from top to bottom). Both positive and negative
Vv T temperatures were considered in E@¢k6) and
CIE I e LN\ VO R (17), the results being presented as a function of
x(8) from Eg. (18). The differences between
adiabatic and diabatic behavior of the force
t (memory effects are well pronounced in the
N XX(B) regions with a large number of avoided
05 level crossings located in the corresponding spec-
«(8)=2 tral region. Besides the multiple avoided level
crossing at the criticak, also the crossings in the
T “turbulent” area in Fig. 10 play an important
’ x(#)=0 role.
1—7m x(8) x(B) 0 05 n

Xx(B)=0]. The diabatic energy average, shown %¢B) =0 areas—see, e.g., Ref87-39. As a simple example, con-
by the lower dashed curves, exhibits in contrary no change daider a nucleus colliding with a projectile, the situation being
slope, which leads to a force constant over the whole transicharacterized by a few “macroscopic” coordinates including
tional region (see the middle column of Fig. 1lLet us shape parameters of the target nucleus. Now suppose a fric-
stress again that this difference between the adiabatic arttbnal mechanism, which transfers the initial kinetic energy
diabatic behaviors is connected with the structural rearrangesf the system from the macroscopic motion into some
ments of eigenstates induced by the phase transition. Bewclear internal degrees of freedom. It is clear that the inter-
cause the avoided crossing at the critical point involves manyal dynamics depends on the nuclear shape parameters,
levels, the diabatic evolutions most likely change tﬂ%) which are, in the same time, among the macroscopic
state (7>0.8) into a quantum mixture of a large number of coordinates—these parameters thus mediate the coupling of
|q>'n> eigenstates ay<0.8. This is why the diabatic energy both the internal and macroscopic degrees of freedom. We
average foix(3)=0 goes steadily off the adiabatic averagecan assume the Hamiltonia®) as describing the internal
below 7~0.8 (note that for a constang the diabatic force dynamics, the parameters and x being the above shape
must be totally independent of—see box | in the middle coordinategin some generalized sens@&herefore, and y
column of Fig. 1. are not any more static or independently driven, as we con-
The adiabatic energy average witg3)=2 (upper full ~ Sidered them above; they become truly dynamical variables.
curves in the rightmost column of Fig. ) which represents We know that the internal dynamics undergoes a qualitative
the energy of the highest2state, exhibits no change of change at the critical», ) border. How does this influence
slope and therefore implies a constant adiabatic force nedp€ evolution of the system, for instance, the energy transfer
x(B)~2. On the other hand, the diabatic energy averagd’om macroscopic to internal degrees of freedom? In our
with x(8) =2 (upper dashed curves in the rightmost colymn OPinion, the answers to these kinds of questions carry physi-
varies in a different way, the most important deviation from¢c@lly interesting information and may also turn out to be
the adiabatic case being observed in the 0.3 region for ~important in some realistic situations.
path 1ll. This implies the increase of the path-lll diabatic
force nearx(B)=~2. Thex(B)=2 diabatic_ energy average V. CONCLUSIONS
for path Ill clearly corresponds to the trajectory that we see
in the “turbulent” part of the spectrum in Fig. 10 with half- We studied quantum phase-transitional behavior in the in-
open eyes. The present memory effect is thus again coreracting boson model 1. In literature, the shape-phase tran-
nected with the pattern of avoided level crossings, or morssition in this model is presented as a sharp qualitative change
precisely, with the accompanying structural changes of wavef the ground-state wave function fof—« or as a corre-
functions. sponding abrupt change of the classical potential. We
As was pointed out above, the present analysis is mainlghowed, however, that spectroscopic signatures of the phase
intended as an initialization of some more detailed works. Irtransition, still sharp enough even for boson numbers as low
particular, we believe that the nonstationary problems conas N=10, are characteristic also for a large humber of ex-
nected with phase-transitional quantum systems might haveited stategsee Figs. 1, 2, 4 This phenomenon was related
some impact in the theory of quantum dissipation and relatetb the multiple avoided crossing of levels near the critical
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parameter value, which is mediated by a partial alignment 09) that can be significant for the quasiregular behavior ob-
the Hamiltonian exceptional point&ig. 5. We then dem- served[13] in the parameter region along path II.
onstrated, on the simplest example of driven adiabatic and To conclude, we point out that the study of phase transi-
diabatic parameter variations, that the phase-transitional béions within the interacting boson model not only may open
havior has a significant impact on memory effects in nonstasome new theoretical viewpoints, but it is also very relevant
tionary quantum problem@-ig. 11). for the concrete physics of atomic nuclei. Spectroscopic sig-
Working in the above basic direction, several side resultsatures of a critical shape-phase transition were identified
were obtained(a) We derived a finiteN energy functional [20,2]] in spectra of even-even nuclei, for which the IBM-1
corresponding to the Hamiltoniai2), see Eq.(6), and the provides an adequate description. The features studied here
exact phase separatri¥) in the parameter plandb) We  may thus turn out to have observable nuclear consequences.
showed that besides the=0.8 phase transition, another We believe that even the dynamical studies using the IBM,
qualitative change of the classical potential takes place at such as that involved in Sec. IV, can be found useful for the
=1 (Fig. 6). It causes a multiple avoided crossing of high- modeling of the energy transfer into internal collective de-
energy levels(see Fig. % and constitutes a new class of grees of freedom in heavy-ion collisions.
IBM-1 phase-transitional effectéc) We calculated unfolded
parameter-dependent energy spectra for three paths crossing ACKNOWLEDGMENTS
parameter regions with different degrees of chabms.
8-10. It turned out that the fully chaotic regions can yield This work was supported by the Grant Agency of the
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