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Intersections of potential energy surfaces of short-lived states:
The complex analogue of conical intersections

Sven Feuerbacher,a) Thomas Sommerfeld, and Lorenz S. Cederbaum
Theoretische Chemie, Physikalisch-Chemisches Institut, Universita¨t Heidelberg,
Im Neuenheimer Feld 229, 69120 Heidelberg, Germany

~Received 10 September 2003; accepted 19 November 2003!

Whereas conical intersections between potential energy surfaces of bound states are well known, the
interaction of short-lived states has been investigated only rarely. Here, we present several
systematically constructed model Hamiltonians to study the topology of intersecting complex
potential energy surfaces describing short-lived states: We find the general phenomenon of doubly
intersecting complex energy surfaces, i.e., there are two points instead of one as in the case of bound
states where the potential energy surfaces coalesce. In addition, seams of intersections of the
respective real and imaginary parts of the potential energy surfaces emanate from these two points.
Using the S* and P* resonance states of the chloroethene anion as a practical example, we
demonstrate that our complete linear model Hamiltonian is able to reproduce all phenomena found
in explicitly calculatedab initio complex potential energy surfaces. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1640615#

I. INTRODUCTION

The Born–Oppenheimer approximation1,2 constitutes a
cornerstone of quantum chemistry by enabling one to view
molecules as a set of nuclei moving on potential energy sur-
faces ~PES! provided by the eigenstates of the electronic
Hamiltonian. Intersections of PES are points where this ap-
proximation usually breaks down. The phenomena occurring
in the case of intersecting PES of bound states have been
studied extensively and are mostly well understood. It has
been found that the shape of the PES near the intersections
critically depends on the interaction of the states as a func-
tion of the nuclear coordinates. In particular, under suitable
conditions a so-calledconical intersection~CI! of the PES
arises leading to strongvibronic couplingof the states~see,
e.g., Refs. 3–5 and references therein!. These CIs have wide-
reaching consequences for the time development of the sys-
tem, e.g., greatly influence reaction pathways or the decay of
excited electronic states into lower lying electronic states by
opening up radiationless pathways~for recent reviews see,
e.g., Refs. 6, 7!. It is thus no wonder that CIs are of still
increasing interest to theoreticians as well as to experimen-
talists. As Yarkony puts it: ‘‘It is now appreciated that what
was once viewed largely as a theoretical curiosity is an es-
sential aspect of electronically nonadiabatic processes.’’5

Another topic much worked on is resonance states,
which play a central role in many processes in physics and
chemistry. Resonances are essential in electron-molecule
scattering~see, e.g., Refs. 8, 9 and references therein!, but
also occur, e.g., in atomic and molecular collisions~see, e.g.,
Ref. 10 and references therein! or in molecular
photoionization.8 In particular, metastable electronic states of
any kind, for instance of anions, can be viewed as electronic
resonance states. There are basically two possibilities to de-

scribe resonance states, one by Dirac and Weisskopf,11,12

later adapted and extended by Feshbach and Fano,13,14 and
another by Gamow and Siegert.15,16Both approaches have in
common that the energy of the resonance state is a complex
quantity whose imaginary part is related to the lifetime of the
metastable state.

The following questions thus arise: What happens to a
conical intersection if the intersecting PES cease to describe
stationary states but rather belong to electronic states with a
finite lifetime, i.e., resonance states? Can intersections then
exist at all? And if so, can these intersections of PES of
electronicallyunboundstates be described by a formalism
similar to that which has been very successfully used in the
case of intersecting PES ofboundstates~see, e.g., Ref. 4 and
references therein!? In the light of literally hundreds of pub-
lications covering CIs ofreal PES, it is quite surprising that
hardly anything has been published dealing with the problem
outlined here. The main work in this field was done by Es-
trada et al.17 In addition, we mention the work of Mies,18

who performed model calculations on resonances in diatomic
molecules which interact by coupling to the nonresonant
scattering continuum. Hazi employed the same mechanism
to interpret dissociative electron attachment to hydrogen
bromide.19 Another work penned by Devdarianiet al. deals
with the spectra of the decay products occurring in atomic
collisions by including the interaction of resonances with
two local models.20 Finally, there are two recent papers ana-
lyzing thevibronic resonance states which result from a coni-
cal intersection between a bound and a dissociative elec-
tronic state.21,22 However, apart from the paper by Estrada
et al.,17 none of these works studied the complex PES and
their intersections explicitly.

In this work we extend the model Hamiltonian presented
by Estradaet al.17 which describes the interaction of two
resonance states to a more general form. We study the effectsa!Electronic mail: sven.feuerbacher@pci.uni-heidelberg.de
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of different systematic extensions of the Hamiltonian on the
complex potential surfaces with special regard to the inter-
sections and their topologies. The new model Hamiltonians
are still analytically solvable and the most general one pre-
sented here is shown to reproduce the phenomena found in
explicitly calculatedab initio data for a practical example.
This example is the chloroethene anion, which possesses
two intersecting electronic resonance states of different
symmetry.

Apart from demonstrating the applicability of our new
model Hamiltonian, our example is of great interest by itself:
chloroethene is the prototype molecule for dissociative elec-
tron attachment to unsaturated chlorinated compounds, lead-
ing to an organic radical and a chloride anion. A description
of the intersections of the resonance states in the chloroet-
hene anion together with molecular dynamics calculations on
the complex PES would be extendible to describe many
other DEA processes in unsaturated halogenated compounds
such as chloro- and bromobenzene23,24 or the biologically
relevant molecule chlorouracil.25,26

In the next section we start with a short discussion of the
general theory of vibronic coupling and of resonance states.
The new model Hamiltonians are presented in Sec. III, where
we also discuss the new phenomena which emerge from the
different extensions and their influence on the topology of
the intersections. This is done by showing some simple, il-
lustrative examples. Section IV is devoted to the results of
our ab initio calculations on the chloroethene anion and to
the demonstration that our new model Hamiltonian repro-
duces the calculated complex PES of two resonance states
quite nicely in the interaction region. We close with Sec. V,
where the implications of our results are summarized.

II. GENERAL THEORY

In principle, we can make use of the work done on CIs
in the case of PES of bound electronic states and modify the
terms appearing there to describe metastable electronic
states. To do this consistently and to clarify our notation, we
briefly present here the basic concepts needed. The usual
case of stationary electronic states is discussed first and then
transferred to the metastable states situation.

A. Coupled PES of bound electronic states

As usual~see, for instance, Refs. 4, 27!, we start with the
total molecular wave functionC~r ,Q!. This function in-
cludes both nuclear and electronic motion, whereinQ desig-
natesall nuclear coordinates andr all electronic coordinates.
The next step is to expandC~r ,Q! in a product of a set of
electronic wave functions$f j (r ;Q)% and of a set of nuclear
motion wave functions$x j (Q)%

C~r ,Q!5(
j

f j~r ;Q!x j~Q!. ~1!

For the set$f j (r ;Q)% we choose the stationary solutions
of the electronic Hamiltonian Ĥel(r ,Q), denoted by$f i

ad%
~the superscript ‘‘ad’’ stands for adiabatic!. In the following
we drop the explicit dependency off i andx i on the coordi-
nates for simplicity. By inserting the ansatz~1! into the mo-

lecular Schro¨dinger equation, multiplying withf i* on the
left, and integrating over all electronic coordinates, we get
the following set of coupled equations:

@ T̂N1Vi
ad2E#x i5(

j
Li j x j . ~2!

T̂N is the nuclear kinetic energy operator,Vi
ad are the adia-

batic electronic energies@^f i
aduĤeluf j

ad&5Vi
ad(Q)d i j # which

constitute the PES, and the so-called nonadiabatic coupling
operatorsLi j are defined by

Li j 5T̂Nd i j 2^f i
aduT̂Nuf j

ad&. ~3!

If a specific electronic statef i
ad is energetically well

separated from all others, one can neglect the nonadiabatic
coupling operatorsLi j .28 This is the famousBorn–
Oppenheimer approximation. The adiabatic approximation
is defined by additionally neglecting the diagonal termLi i .
The nonadiabatic coupling operatorsLi j essentially measure
the validity of the Born–Oppenheimer approximation, i.e., a
sizableLi j indicates the intrusion of other electronic states.

In regions of nuclear coordinates where the adiabatic
PES approach each other, the Born–Oppenheimer approxi-
mation breaks down and theLi j cannot be neglected any-
more. Generally only a few—in many cases two—electronic
states approach each other in a particular region of nuclear
coordinate space, i.e., this subset of states is energetically
well separated from all other states. Thus, one can employ
the group adiabatic approximation, that is, neglect only the
nonadiabatic coupling operatorsLi j with i being a state from
the small subset andj one of the other states. This truncates
the sum in Eq.~2! to only those states included in the
subset.4

We have yet to define thediabatic representation~de-
noted by the superscript ‘‘dia’’! which allows us to under-
stand the coupling between the states via potentials instead
of via momenta as in Eq.~2!. To this end we unitarily trans-
form the adiabatic$f i

ad% to diabatic states$f i
dia% such that

^f i
diauT̂Nuf j

dia&5T̂Nd i j and thusLi j 50. We now term the
transformed potential energy matrixVdia(Q) and get from
Eq. ~2!

@TN11Vdia~Q!2E#xdia50. ~4!

Because in generalVdia(Q)5^f i
diauĤeluf j

dia& is not diagonal,
the x i

dia are coupled by the potential energy matrix and are
given by the components of the vectorxdia in Eq. ~4!.

It is clear that the unitary transformation depends on the
nuclear coordinatesQ. We may choose a special geometry
denoted byQ0—usually the equilibrium geometry of the
molecule—for which the adiabatic and the diabatic represen-
tations are equivalent~for more details see, e.g., Ref. 4!. In
the subspace of states obtained by employing the group adia-
batic approximation, the transformation will be accomplish-
able only approximately. But, generally a sufficiently high
accuracy can be achieved, in particular in CI situations.29–31

In the following, we will restrict ourselves to a subset of
two nondegenerate states; a generalization to more states is
straightforward. By extracting a smooth potentialV0(Q),
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e.g., in the case of metastable anions one could choose the
ground-state potential of the underlying neutral system, we
rewrite Eq.~4! in this subset as follows:

@H01V#xdia5Exdia, ~5!

where

H05@TN1V0~Q!#1, ~6!

and

V5S V1~Q! K~Q!

K~Q! V2~Q!
D . ~7!

Herein, V1/2 are the diabatic differences in energy between
the respective state andV0 and K is the coupling term be-
tween the two states.

B. Coupled PES of metastable electronic states

Metastable states are generally characterized by one of
the two following formalisms. The first one was developed
and extended by several authors,11–14 but is normally re-
ferred to as Weisskopf resonance theory. This approach de-
fines resonances as discrete states embedded into and inter-
acting with a continuum. Following this ansatz, a so-called
level shift operator Fi j arises naturally, which additionally to
shifting the real part of the energy of the discrete state aug-
ments it with an~energy-dependent! imaginary part. A com-
mon technique used to compute Weisskopf resonance param-
eters is Stieltjes imaging.8,32,33

The other possibility is to characterize resonances as so-
called Gamow–Siegert eigenstates15,16 of the time-
independent Schro¨dinger equation. These grow exponentially
in the asymptotic region, describing the decay of the meta-
stable state. As a consequence, the eigenenergies also possess
an imaginary part. Siegert energies can be identified with
poles of theS matrix34 and can be calculated, e.g., by the
stabilization technique,35 the complex scaling method,36 or
the complex absorbing potential approach.37–40 The imagi-
nary parts2 iG/2 of both the Weisskopf as well as the Sieg-
ert energies are related to the lifetimet of the metastable
state byt5\/G.

Note that in principle information about resonance states
can also be extracted from actual scattering calculations~see,
e.g., Ref. 41 for theR-matrix formalism and Ref. 42 for the
Schwinger multichannel variational method and the complex
Kohn method!, but here we consider only methods which
give the resonance energy and width directly. The latter
methods all exploit the usual Gaussian basis sets and thus in
contrast to scattering calculations work entirely inL2 space.

Independently of the method used to compute reso-
nances, the calculations provide a set of adiabatic energies
which depend on the nuclear coordinates and are complex
quantities. Formally, we may proceed as in the preceding
subsection and transform the adiabatic resonance states to
diabatic ones. There is little, if any, experience in the litera-
ture on such transformations for resonance states. Neverthe-
less, we expect on physical grounds that they do exist. Since
the resonance energies are complex, the transformation is not
unitary and thus does not lead to a Hermitian~or real sym-

metric! matrix Hamiltonian as obtained in Eq.~7! for bound
states—one rather obtains a complex symmetric matrix
Hamiltonian.36 We may still use Eqs.~5!–~7!, discussed
above for bound states, to describe resonances and their dy-
namics. To this end we just have to assume the elementsV1 ,
V2 , andK of the matrix potentialV to be complex quantities.

An alternative derivation of a complex symmetric matrix
potentialV is given by Estradaet al.17 Note that they con-
cluded thatK has to be real~in particular, they stated that for
the off-diagonal elements there is no level shift operatorFi j )
because of symmetry reasons. But, this is only true in astrict
two-level system. There are however almost always addi-
tional resonance states. Although these states are~in good
approximation! vibrationally decoupled from the two states
of interest, their presence nevertheless modifies the Hamil-
tonian of the whole system. In effect, the strict requirement
for K to be real is no longer present.

We mention that the set of coupled states used can, in
principle, comprise bound and resonance states. Consider,
for instance, an anion. This anion can possess bound states as
well as resonances, and both types of states can interact via
the nuclear motion.43 However, since we are interested here
in intersections of PES, the interacting states are all either
resonances or bound.

Instead of computing adiabatic resonances and trans-
forming them to diabatic ones, we may also formally start
from the assumption that diabatic resonances are given for a
manifold of interacting resonances. In this way useful ex-
pressions for the diabatic complex potentialsV1/2, and cou-
plings K can be obtained; see Ref. 17 for details.

A remark is appropriate here. When computing reso-
nances as discrete states embedded into and interacting with
a continuum, the resulting quantitiesV1/2 and K depend on
the nuclear coordinates and, in addition, also on the total
energy of the system. This energy can often be successfully
replaced by a function of the nuclear coordinates by going on
resonance~for details and references see Ref. 17!, eliminat-
ing the explicit energy dependence. In some cases, however,
it is favorable to use the energy dependence explicitly~see,
e.g., Ref. 44!. If this is the case, we advocate to follow the
formalism described above and the analysis discussed in the
following for each value of the total energy separately.

We conclude that Eqs.~5!–~7! could describe as well the
coupling between metastable electronic states, provided that
these equations contain the respective imaginary terms in
V1/2 andK.

III. MODEL HAMILTONIANS

A. General properties

An accurate solution of the molecular Schro¨dinger equa-
tion for polyatomic molecules, even in the form given by Eq.
~5!, generally requires an extreme effort. In practice, one has
to make approximations to make the solution feasible. Usu-
ally V0 is approximated to be harmonic in the vicinity ofQ0 ,
but the exact form of the ground-state potential is not rel-
evant for our following discussion. Since for each nuclear
configurationV0(Q) is a constant which is added on the
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diagonal of the potential matrixV, it only shifts the eigenen-
ergies of both electronic states by the same amount.

By diagonalizingV from Eq.~7! we thus obtain the gen-
eral solution for the adiabatic energy differences between the
resonance eigenenergies of the states and the ground state,
denoted byV6

2V6~Q!5SV~Q!6A~DV!2~Q!14K2~Q!, ~8!

where we introduced the following notation for two arbitrary
factors A1 and A2 :SA5A11A2 and DA5A12A2 . If we
now allow the matrixV to be complex, Eq.~8! splits into
two equations for the real and for the imaginary part ofV6

2 Re~V6~Q!!5Re~SV~Q!!

6A 1
2~AR2~Q!1I2~Q!1R~Q!!, ~9!

2 Im~V6~Q!!5Im~SV~Q!!

6A 1
2~AR2~Q!1I2~Q!2R~Q!!, ~10!

with R5Re((DV)214K2) and I5(Im(DV)214K2). These
quantities were introduced to simplify the calculations and at
first sight have no direct physical equivalent, but their sig-
nificance will become clear below.

Our objective is to find intersections of the complex
adiabatic PESV6(Q). For this to happen, the square roots in
Eqs. ~9! and ~10! must vanish. It is convenient to start by
searching for special pointsq in Q space for whichI~q!50.
For these points, the other relevant quantityR~q! appearing
in Eqs.~9! and~10! can be either positive, negative, or equal
to zero. Accordingly, the following three relationships be-
tweenR~q! and the PES hold:

R~q!H ,0
.0
50

J ⇔H Re~V1~q!!5Re~V2~q!!

Im~V1~q!!5Im~V2~q!!

V1~q!5V2~q!.
~11!

If R~q! is positive, the imaginary parts of the PES intersect,
but the real parts do not. The opposite holds ifR~q! is nega-
tive. Only for bothR~q!50 andI~q!50 both the imaginary
and real parts of the PES intersect.

Let us discuss this finding first before we introduce some
model Hamiltonians by giving explicit expressions forV1/2

and K. Assumed that there is an interval of points$q% for
which I~q!50 holds, there generally will be more than one
point for which R~q!,0 is satisfied. In the case of PES of
bound states, conical intersections are of dimensionN22,
with N being the number of nuclear degrees of freedom.4

Apparently this no longer holds for the real part of the
eigenenergy Re(V6)! Already in the two-dimensional case
there generally is a seam of intersections in the real part of
V6 . Following the same line of argument, it follows that
there is in general also a seam of intersections for the imagi-
nary part of the eigenenergy.

These seams meet at special generalized points~if they
exist! for which R~q! is zero, too. Here, ‘‘generalized point’’
is meant to be an object of dimensionN22. Since they rep-
resent the complex analog of conical intersections, we will
call all the ‘‘points’’ q, for which I~q!5R~q!50 holds, the
complex conical intersection~CCI! points in the following.

Note that there could be special cases ofV for which there
are no or only a finite number of pointsq for which I~q!50
andR~q! less than, greater than, or equal to zero holds. But,
as we will see below,I~q!50 is easily satisfied and in gen-
eral there will be an infinite number of points for whichR~q!
is less or greater than zero and more than one point for which
R~q!50 holds if one makes reasonable assumptions for the
expressions forVi andK. For example, Estradaet al.already
observed the real and imaginary seams mentioned above
with their simple two-dimensional model Hamiltonian for
two interacting resonance states~see Sec. III C and Ref. 17!.

We now continue with some model Hamiltonians which
will clarify the points discussed above. The first step is to
restrict ourselves to two nuclear modes denoted byQg and
Qu , which can be chosen to be normal coordinates of the
molecule in its ground state. The labelingQg is chosen to
denote a totally symmetric vibrational mode which is respon-
sible for the energy differenceV22V1 . Because of this it is
also called the ‘‘tuning’’ mode, whereasQu is termed the
‘‘coupling’’ mode.4 The latter is chosen to be a nontotally
symmetric vibrational mode, with the only restriction that the
direct product of the irreducible representations of the two
states and ofQu contains the totally symmetric representa-
tion GA

GAPG13Gu3G2 . ~12!

Let us further assume thatV1/2 andK in Eq. ~7! are slowly
varying functions ofQg andQu in the vicinity of Q0 . This
makes an expansion ofV1/2 andK in these two coordinates
possible. Note that these expansions are restricted for sym-
metry reasons. The fact that the potential termV of Eq. ~7!
has to be totally symmetric leads to the restriction thatV1/2

have to be even inQu and thatK has to be odd inQu .
Strictly, this holds true only for Abelian point groups, but for
degenerate groups a similar argument can be employed.

B. Usual conical intersection

In order to make the differences between intersecting
PES of bound and resonance states more clear, we briefly
review the former case first. For bound states, the termsV1/2

andK up to linear order are given by4

Vi5Ei1k iQg , i 51,2;
~13!

K5lQu .

Since there is no imaginary part, only the condition (DV)2

524K2 has to be fulfilled for intersections to occur between
the adiabatic PES. We easily see that this is the case for only
one point (Qg

CI ,Qu
CI) ~apart from accidental degeneracies!,

where

Qg
CI52

DE

Dk
and Qu

CI50, ~14!

using the notation introduced above, i.e.,DE5E12E2 and
Dk5k12k2 .

C. Minimal model for resonances

The simplest complex model Hamiltonian which makes
sense physically is obtained by setting
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Vi5Ei1k iQg2
i

2
G i , i 51,2;

~15!
K5lQu .

This is equivalent to the model example discussed by Estrada
et al.17 and we will call this choice the ‘‘minimal model’’ in
the following. Compared to Sec. III B, only the terms2 iG i /2
were added, corresponding to widths which are independent
of the positions of the nuclei. The implications of this slight
modification were discussed extensively in Ref. 17 and we
will only summarize the points relevant to our discussion
here.

The most startling result is that there is no longerone
conical intersection point (Qg

CI ,Qu
CI)5(2DE/Dk,0) as in

case of bound states~see Sec. III B!, but two points (Qg
CCI ,

6Qu
CCI) for which V15V2 holds true. These points lie sym-

metrically to theQg axis and are given by

Qg
CCI52

DE

Dk
and Qu

CCI5
DG

4l
, ~16!

i.e., Qg
CCI5Qg

CI still holds in the minimal model.
The two CCI points are connected by a straight line

formed by the seam of intersections of the real part ofV6

which was already mentioned in Sec. III A. The seam of
intersections of the imaginary part ofV6 which was also
discussed above has two branches which start from the two
intersecting points, and go to6` from there on in a straight
line.

We picture the real and the imaginary parts ofV6 in Fig.
1. It is important to note the difference from Fig. 2 in Ref.
17, stemming from a slightly different notation: There, the
PES including the ground-state potential were shown,
whereas in our Fig. 1 only the differencesV65Vi

ad2V0 are
pictured. We do this to simplify the comparison with the PES
of the following, more complicated model Hamiltonians.
Also shown in Fig. 1 is a projection of the real~solid line!
and the imaginary~dashed line! seams of intersections onto
the QgQu plane. This projection will also simplify the com-
parison in between the different model Hamiltonians. In this
picture we marked the CCI points with crosses and the point
2DE/Dk on theQg axis with a filled circle.

The two parts of the PES are shown only for positive
values ofQu , since the other halves are simply obtained by
taking the mirror image at the plane consisting of theQg axis
and the respectivez axis. This also allows us to make another
important result more clearly visible: The imaginary PES are
discontinuous over the whole range of points which form the
real seam. This interesting result was not discussed in Ref.
17 and we will see below that the discontinuity apparently
is no artifact of the oversimplified nature of the model
Hamiltonian.

D. Linear widths

The most obvious modification of the minimal model is
to include a dependency of the widths on the positions of the
nuclei. In lowest order one thus obtains

FIG. 1. ~Color! PES for the minimal model.~a! shows the real parts and~b!
the imaginary parts of the complex adiabatic PES given byV6(Qg ,Qu).
The position of the real seam is marked with a solid line inbothpictures to
guide the eye. The same holds for the imaginary seam for which a dashed
line was chosen. Note that the PES are only shown for positive values ofQu

in ~a! and ~b! to uncover the discontinuity in the imaginary parts~see the
text!. A projection of the seams onto theQgQu plane yields figure~c!. It also
shows the half plane for whichQu,0 and thus demonstrates the symmetry
of the PES to theQg axis. In~c!, we marked the CCI points with crosses and
the coordinates for which the real seam crosses theQg axis with a filled
circle.
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Vi5Ei1k iQg2
i

2
~G i1a iQg!, i 51,2; ~17!

K as in Eq.~15!. Note that we have to setG i1a iQg50 for
values ofQg for which this term becomes less than zero,
since negative widths make no sense physically.

The adiabatic PES which are the solutions for this choice
of V and the projection of the seams are shown in Fig. 2. As
is clearly seen, there are nowtwo solutions forI(Qg ,Qu)
50, namely

~1!Qg52
DE

Dk
and ~2!Qg52

DG

Da
, ~18!

with (1)Qg being the same solution asQg
CCI in the minimal

model. Whether(1)Qg, (2)Qg ~as in Fig. 2! or the opposite
applies can only be decided if explicit parameters are given.
In the projection picture we additionally marked the second
solution (2)Qg with an empty circle.

The real parts of the PES in Fig. 2 are at first sight the
same as for the minimal model, but there is a slight differ-
ence: The CCI points are now found at (Qg

CCI ,6Qu
CCI) with

Qg
CCI5 ~1!Qg and Qu

CCI52
DE

Dk

Da

4l
1

DG

4l
. ~19!

Additionally, there is a second seam of intersections. It is
found to be a straight line atQg5 (2)Qg completely lying in
the imaginary parts of the PES. Also note thatR(Qg ,Qu)
depends onQu quadratically, contrary toI(Qg ,Qu) which is
independent ofQu . Looking at Eq. ~10! it follows that
Im(V1)2Im(V2)→0 for Qu→`, independently of the value
of Qg . This is the same behavior already observed in the
minimal model ~see Fig. 1 and Ref. 17!. Additionally, we
also find a discontinuity in the imaginary parts of the PES
similar to the discontinuity in the minimal model.

E. Complex coupling

As discussed at the end of Sec. III A, the coupling term
could as well be complex. We thus chose the following
expression:

K5lQu2
i

2
hQu , ~20!

V1/2 as in Eq.~15!. In Fig. 3, we again show the real and
imaginary parts of the PES together with the projection
picture.

At first glance the only difference to the minimal model
is that the seams no longer lie on a straight line but on a
‘‘outwardly’’ bent parabola. The curvature depends on the
sign of the termh~DG/4l!. For h~DG/4l!.0 one arrives at
the situation pictured in Fig. 3; if the term is less than zero,
the parabola is bent ‘‘inwards.’’ This holds if one restricts
oneself~without losing generality! to the caseE1.E2 and

Dk,0, effectively placing the intersection of the real parts
for Qu50 @the black dot in Fig. 3~c!# at a positive value for
Qg , namely atQg52DE/Dk.0. We conclude that the
complex-coupling model is equivalent to the minimal model
~and to the linear widths model! there. This immediately be-

FIG. 2. ~Color! PES for the linear widths model.~a!–~c! are pictured the
same way as in Figs. 1, 3, and 5 and allow a direct comparison of the
models. Most interesting is the appearance of a second imaginary seam. The
position at which this seam crosses theQg axis is marked with an empty
circle in ~c!. Also note that Im(V1)2Im(V2)→0 for Qu→` still holds as in
the minimal model.
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comes clear by looking at the expressions forK which are
zero atQu50.

The CCI points are placed at (Qg
CCI ,6Qu

CCI), which are
now given by

Qg
CCI52

DE1h
DG

4l

Dk
and Qu

CCI5
DG

4l
, ~21!

i.e., the solution forQu
CCI stays the same as in the minimal

model. As can be easily checked,AR21I22R→(2l
2h)2Qu

2, i.e., Im(V1)2Im(V2)→` for Qu→` ~excluding
the points on the imaginary seam!. Such a behavior is found
only for the real part of the energy in the minimal and the
linear widths models, whereas Im(V1)2Im(V2)→0 for Qu

→` holds in those two models. We again observe that there
is a discontinuity in the imaginary parts of the PES.

F. Complete linear model

Let us see what happens if one combines a linear ansatz
for the widths with a complex linear coupling term. To rec-
ollect, we now have

Vi5Ei1k iQg2
i

2
~G i1a iQg!, i 51,2;

~22!

K5lQu2
i

2
hQu .

Before we start to evaluate this model in detail, let us first
give some additional definitions and a small constraint,
which does not restrict generality but makes the discussion
simpler. We easily see that the intersections forQu50 are at
Qg52DE/Dk for the real parts of the PES, and atQg

52DG/Da for the imaginary parts. These are the same co-
ordinates as in Sec. III D and here we introduce the abbre-
viations Qg

Re,052DE/Dk and Qg
Im,052DG/Da. If we re-

quire bothQg
Re,0 and Qg

Im,0 to be positive and supposeE1

.E2 , it follows that Dk,0 andDGDa,0. The factor on
which the shape of the PES depends is again~as in Sec. III E!
the sign ofh~DG/4l!. But, here one can as well employ the
sign of h~Da/4l! for the characterization of the PES, which
is just the opposite. Additionally, the magnitude ofDk in
relation to the magnitude ofh~Da/4l! becomes important as
we will see below.

Employing the restriction given above, one can still dis-
tinguish eight different cases, which can be further grouped
into two sets of four cases each. For the first set, we only
show the projection of the seams onto theQgQu plane for
one example in Fig. 4. The projection of the seams now
forms the two branches of ahyperbola. The parameters are
chosen in such a way thatQg

Re,0,Qg
Im,0 and 0,h~Da/4l!

,uDku. The other three cases of this set can be obtained by
changing the ordering of the terms in these two inequalities,
but always keepingh~Da/4l! greater than zero. Graphically
this corresponds to either interchanging the dashed and solid
lines ~i.e., the real and imaginary seams!, or to taking the
mirror image of the seams at a line parallel to theQu axis
through the middle ofQg

Re,0 and Qg
Im,0, or to both of these

operations.
All four cases of this set are similar to the two models

discussed before in the sense that there are againtwo distinct
seams as in Sec. III D, one of which is either located totally
in the imaginary parts of the PES or totally in the real parts.

FIG. 3. ~Color! PES for the complex coupling model.~a!–~c! are pictured
the same way as in Figs. 1, 2, and 5 and allow a direct comparison of the
models. The most obvious new feature is a bending of the line which is
formed by the seams. Another difference is that now Im(V1)2Im(V2)→`
for Qu→`. This behavior is only found for thereal parts of the PES in the
minimal and the linear widths models.
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Both seams are alsobent as the single seam in Sec. III E.
But, since they are always bent away from each other, the
seams again extend toQu56`.

The question arises if it is possible to restrict the inter-
action domain to a finite region within the linear order ap-
proximation. This can indeed be achieved for the four cases
of the second set. One of these cases is pictured in Fig. 5;
there we again show the real parts of the PES, the imaginary
parts, and the projection of the seams. As can be seen, this
set features an all new shape of the PES: the seams now form
a closed loop. This loop is anellipse, as can be seen from the
equation

Qu
252~4hl!21~DE1DkQg!~DG1DaQg!, ~23!

which is obtained by settingI(Qg ,Qu)50.
For the case which is pictured in Fig. 5, the parameters

are chosen in such a way thatQg
Re,0,Qg

Im,0 andDk,h~Da/
4l!,0. The other three cases are again obtained by exchang-
ing the solid and dashed lines, i.e., the real and imaginary
seams in the projection picture, or by taking the mirror image
of the seams as described above, or by employing both of
these operations. This again corresponds to changing the or-
dering of the terms in the inequalities, but now always keep-
ing h~Da/4l!,0.

In all of the eight cases there are still exactly two points
(Qg

CCI ,6Qu
CCI), given by

Qg
CCI52

DE1h
DG

4l

Dk1h
Da

4l

and Qu
CCI5

2DEDa1DGDk

4lDk1hDa
,

~24!

which connect the real and imaginary seams. The disconti-
nuity of the imaginary parts at the coordinates of the real
seam is also still present in all eight cases, see, e.g., Fig. 5.

G. Discussion

As we have seen in the preceding subsections, small
extensions of the minimal model Hamiltonian in Eq.~15!
lead to profound changes in the PES. In particular, changing
the widths from constants to linear functions ofQg caused an

extra imaginary seam to appear, whereas the introduction of
a complex coupling linear inQu led to the bending of the
original seams. All three of these models show imaginary
seams extending toQu56`. But, this poses no problem,
since we only investigate expansions ofV @Eq. ~7!# in the

FIG. 4. Example of PES for the complete linear model withh~Da/4l!.0
~see the text!. We only show the corresponding projection picture~see Figs.
1–3, 5! since the PES are similar to the linear widths and the complex
coupling model, respectively. This is demonstrated by the fact that there is
an additional imaginary seam, like in the linear widths model~see Fig. 2!,
which is bent, as in the complex coupling model~see Fig. 3!.

FIG. 5. ~Color! Example of PES for the complete linear model withh~Da/
4l!,0 ~see the text!. ~a!–~c! are pictured the same way as in Figs. 1–3 and
allow a direct comparison of the models. Note that the real and imaginary
seam now form a closed loop, i.e., the interaction region is finite. However,
the discontinuity in the imaginary parts is still present.
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vicinity of Q0 here. In reality,K→0 for Qu→` holds, i.e.,
for large values ofQu the PES indeed intersect no more.

By combining the two extensions mentioned above and
constraining the parameters to certain values, we arrived at
PES for which the real and imaginary seams form a closed
loop. Let us mention that our study of another model Hamil-
tonian not presented here demonstrated that a bending of the
seams can also be enforced, e.g., by adding quadratic terms
in Qu to V1/2, but the introduction of a complex coupling
seems to be the conceptually easiest and most natural way to
arrive at a closed loop of the seams. Note a mathematical
curiosity: for PES of bound states, the intersection has the
form of a double cone, whereas for PES of metastable states
the models with a complex coupling yield intersection seams
with the shape of a parabola, hyperbola, or an ellipse. These
three forms actually can be obtained by cutting a double
cone with a plane.

We are still faced with the discontinuity of the imaginary
parts of the PES~see Fig. 5!. To investigate this phenomenon
further, we also tried more complicated models which incor-
porate higher order terms ofQg andQu in V1/2 andK. These
model Hamiltonians have the drawback that they are in gen-
eral not analytically solvable anymore. Apart from this, the
discontinuity does not disappear with these more sophisti-
cated models. We are thus left with the view that it seems to
be an intrinsic feature of the adiabatic picture. In order to
check if this discontinuity can be reproduced byab initio
data, we chose to investigate a practical example. The com-
plex PES obtained for this example and their relation to the
model Hamiltonian will be described in detail in the next
section.

Finally, note that all models investigated have in com-
mon that alwaysexactly twoCCI points exist, connecting the
real and imaginary seams. This appears to be a general phe-
nomenon and maybe is as common as the real analog,
namely two PES forming a conical intersection. We thus
term this special behavior of two complex PES, in particular
the most general model presented in Sec. III F,doubly inter-
secting complex energy surfaces~DICES!. It is important to
note that the nonadiabatic coupling operatorsLi j are singular
at these two CCI points—the same behavior also found at a
conical intersection in between PES of bound states.4 This
was already shown by Estradaet al. for the minimal model
Hamiltonian17 and still holds for the more advanced model
Hamiltonians presented here. Thus, the adiabatic approxima-
tion breaks down at the CCI points and one indeed has to
employ the group adiabatic approximation.

IV. PRACTICAL EXAMPLE: CHLOROETHENE ANION

The chloroethene anion turned out to be an excellent
example to investigate the occurrence of DICES in a real
molecule. This is because several experimental observations
led to the proposal that it possesses aS* -type (2A8) as well
as a P* -type (2A9) resonance state which cross near the
equilibrium geometry of the corresponding neutral~see, e.g.,
Refs. 45, 46!.

In electron transmission studies, dissociative electron at-
tachment~DEA! was observed, leading to a ethenyl radical

and a chloride anion. Similar processes have been found to
occur in many other unsaturated organic compounds which
have in common that a halogen atom is connected to one of
the carbon atoms involved in the double bond. Examples are
chlorobenzene,24,47,48 mono- to tetrachloroethene,48–50 and
chlorouracil.25,26 DEA to the latter is discussed as an impor-
tant contribution to radiation damage to DNA.25,51 Further-
more~unsaturated! halogenated hydrocarbons have become a
major threat to the environment and the DEA process ap-
pears to be an economic way of eliminating the halogen
atom ~see, e.g., Christophorou and Hunter in Ref. 52, p.
318!. Note that DEA is not limited to unsaturated organic
molecules containing halogen atoms~for recent reviews in-
cluding many other examples, see, e.g., Refs. 53–55!.

The DEA process is thought to occur in the following
way. First, the electron is captured into thep* orbital of the
unsaturated carbon–carbon bond. This results in a resonance
state which is energetically lower lying and possesses a
longer lifetime than the metastable state obtained from the
capture into thes* orbital of the carbon–halogen bond. The
electron is then transferred into thes* orbital at a nuclear
configuration where the lifetime of the corresponding repul-
sive state is long enough to eventually lead to the dissocia-
tion of the molecule. This transfer process is said to occur via
nuclear motion. Only a few publications have dealt with the
details of the process up to now~see, e.g., Refs. 46, 56, 57!.
In particular, no theoretical work at all has been published
which explicitly takes into account the metastable nature of
the system. But, the essential part of a theoretical description
of the DEA process is concerned with this metastability and
requires the computation of the complex PES.

In the following we will briefly explain our computa-
tional method for obtaining theab initio data for the PES of
the resonance states of the chloroethene anion. After outlin-
ing our method, we try to fit the PES obtained from the
model Hamiltonian in Sec. III F to ourab initio data, both for
testing our model and for providing an analytical expression
for the complex PES required for a molecular dynamics de-
scription of the DEA process. Note that the chloroethene
anion is the prototype for all halogenated, unsaturated or-
ganic molecules, because it consists of only two doubly
bound carbon atoms to which a chlorine atom is connected.
The three hydrogen atoms which saturate the remaining
bonds lie in the same plane, resulting in aCS symmetric
structure.

A. Computational methods

We first optimized the geometry of the neutral chloroet-
hene at the Hartree–Fock~HF! self-consistent field~SCF!
level of theory employing the standard 6-31G* basis set.
This geometry was taken to be the equilibrium geometryQ0

~see Sec. II! in the following calculations. The standard cal-
culations were done within the framework of theGAMESS UK

6.2.158 andMOLCAS 559 ab initio packages of programs.
The complex energy surfaces were calculated using our

newly developed method CAP/S (2). This efficient technique
to calculate resonance energies and widths for temporary an-
ions was described in detail in Ref. 40 and we will only give
a short overview of this method here. In the following we
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will use some terms, e.g.,h and S, which are not to be
confused with the quantities introduced in Sec. III.

As mentioned in Sec. II, Gamow–Siegert states grow
exponentially in the asymptotic region. This makes their de-
scription byL2 basis sets, like the Gaussian basis sets imple-
mented in all standard quantum chemistry programs, impos-
sible. One possibility to overcome this problem is to add a
complex potential2 ihW with a strength parameterh to the
HamiltonianH0 of the system, which ‘‘absorbs’’ the outgo-
ing wave at a distance from the molecule. Because of this it
is termedcomplex absorbing potential~CAP!.

One can define a one-particle Green’s function60 corre-
sponding to this modified Hamiltonian. As shown explicitly
in Ref. 61, this Green’s function can be evaluated using per-
turbation theory, in particular employing the algebraic dia-
grammatic construction scheme up to 2nd~or 3rd! order
~ADC~2/3!62,63!. By a projection of the resulting CAP/
ADC~2!-matrix on the one-particle space, a simple, complex
symmetric Hamiltonian of small dimension was obtained:40

H5H01S~2!~E!2 ihW. ~25!

Here,S (2)(E) is the so-called self-energy60 in second order,
which is energy dependent. Together with the CAP term it
represents an optical potential~see, e.g., Refs. 8, 64 and ref-
erences therein! for electrons which are bound temporarily to
the system.40 This explains the designation CAP/S (2).

The exact procedure to obtain the energies and widths of
the resonance states was described in detail in Ref. 40. In
short, the eigenvalues of the energy-dependent, complex-
symmetric eigenvalue problem defined by the Hamiltonian in
Eq. ~25! are calculated for varying values ofh and a reso-
nance state can be identified with a stabilization point in the
h trajectories. The real part of its respective eigenvalue is
equivalent to the negative of a electron attachment energy,
whereas its imaginary part gives the lifetimes of the corre-
sponding metastable anion. We found that the CAP/S (2)

method reproduces experimental electron attachment ener-
gies measured by electron transmission spectroscopy65

within a few tenths of an eV. The error introduced by using
finite basis sets was estimated to be of the order65% for the
energies and625% for the widths.40

The method is suited to investigate the crossing of the
complex PES of the chloroethene anion in detail. We em-
ployed a box-CAP,66 which started to increase 3 a.u. ‘‘out-
side’’ the molecule in each Cartesian direction, and the
double-zeta basis set by Dunning and Hay67 for our calcula-
tions. This basis set was further augmented with twod-type
~exponents 1.097 and 0.318 for C, 1.046 and 0.344 for Cl!
and onef-type ~exponent 0.761 for C and 0.706 for Cl! po-
larization functions, and ones-type diffuse function~expo-
nent 0.0765 for C and 0.0942 for Cl! on each heavy atom. To
describe the continuum part of the resonances properly, eight
even-tempered~factor 1.6! diffusep-type functions were also
added on each carbon and on the chlorine atom, starting from
the exponents 0.1146 and 0.1838, respectively. After discard-
ing the core and anticore orbitals we finally arrived at 111
molecular orbitals ofA8 symmetry and 47 ofA9 symmetry,
which coalesce into 158 orbitals when the symmetry of the

molecule is lowered by deflection of the chlorine atom out of
the molecular plane.

B. Results

We calculated the Siegert energies at 110 different
nuclear configurations, i.e., for 110 points (Qg ,Qu). As
shown in Fig. 6~a!, Qg corresponds to the elongation of the
C–Cl bond, whereasQu is the angle in between the C–Cl
bond and the plane defined by the remaining atoms.Qg lies
in between 0.0 and 0.8 a.u. andQu ranges from 0.0° to 10.0°.
We solved the electronic problem at each distinct nuclear
configuration and thus obtained the adiabatic PES. The ob-
tained data showed clear signs of only two resonance states
lying energetically close to another, which allowed us to
make use of the complete linear model Hamiltonian intro-
duced above.

In Fig. 6~b!, we show the dependence of the negative
electron attachment energies and the widths of theS* and
theP* resonance states onQg , i.e., a cut through the PES at
Qu50. The attachment energies are drawn as solid lines and
with filled symbols, whereas the dashed lines with empty
symbols represent the widths. Energies and widths corre-
sponding to theS* resonance are symbolized by circles,
whereas squares were chosen for the respective graphs for
theP* resonance. At the equilibrium geometry of the neutral
chloroethene (Qg50) we find an electron attachment energy
of 2.36 eV for theS* state, compared to values of 2.84

FIG. 6. Ab initio data on the chloroethene anion.~a! Definition of Qg and
Qu . Both are measured relative to the equilibrium geometry of neutral
chloroethene.~b! Dependency onQg (Qu50) of the negative electron at-
tachment energies~solid lines! and the widths~dashed lines! of the S*
~circles! andP* ~squares! resonances of the chloroethene anion. The lines
are only drawn to guide the eye. Note the wiggles in the curves for theS*
resonance which originate from the effective change of basis during the
elongation of the C–Cl bond.
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eV48,49 and 2.9 eV46 given by experimentalists. The respec-
tive values for theP* state are 1.59 eV from our calculation
and 1.2 eV,50 and 1.28 eV46,48,49from experimental data. Of
course, due to the vibronic excitations present in the experi-
ment, vertical electron attachment energies cannot be de-
duced from the experiments directly, and the experimental
values can only be considered as estimates. Another possible
origin for the deviation between the calculated and experi-
mental data is discussed below, with special regard to the
different sign of the deviation for theS* andP* states. For
metastable states of molecules of this size the results are
however of acceptable accuracy.

Note the small ‘‘wiggles’’ in the curves of the energy and
the width of theS* resonance state. This results from the
fact that we foundtwo stabilization points in theh trajecto-
ries ~see Sec. IV A! for nearly every point (Qg ,Qu) and in
the majority of cases could not decide which one was the
right one. Since together the two points formed a relatively
broad double minimum in the ‘‘velocity’’ of theh trajectory
instead of the usual single distinct minimum, both stabiliza-
tion points yielded energies and widths which were very
similar. But, even choosing in each case the one which gave
the most smooth curves still resulted in the wiggles shown in
Fig. 6. This problem can be explained by the realization that
by elongation of the C–Cl bond, the basis functions placed
on the Cl atom are moved together with the atom, effectively
resulting in a change of the basis set. The use of a larger
basis set presumably would solve this problem but is not
practical for the calculation of the large number of points
required for our purpose.

Luckily, the wiggles are not pronounced in the interac-
tion region of the two resonance states. We thus restrict our-
self to values ofQg in between 0.25 and 0.4 a.u. and further
to values ofQu less than 2°, satisfying the requirement of
small deflections. The resulting 76 points, corresponding to
in total 152 electron attachment energies and 152 widths,
were used for a fit to the complete linear model discussed in
Sec. III F to quantify the ten parametersEi , k i , G i , a i ( i
51,2) andl, h. The results are summarized in Table I.

With a value of 0.024 for the sum of squared differences,
corresponding to a standard deviation of 9 meV, the fit is
relatively good. Using the obtained parameters, we find the
following explicit values: Qg

Re,050.3016 a.u., Qg
Im,0

50.3503 a.u.,Qg
CCI50.3070 a.u., andQu

CCI50.8766°.
In Fig. 7 we compare the PES from the fit with theab

initio data for some cuts through the PES orthogonal to the

Qg axis, i.e., alongQu . Figure 7~a! is a blowup of the rel-
evant region of Fig. 6. There are, however, some important
differences: circles now represent the upper~i.e., energeti-
cally higher! PES and squares the lower PES as the assign-
ment to S* or P* no longer makes sense forQuÞ0. The
points areab initio data, whereas the curves are PES drawn
according to the fit to the model Hamiltonian. We also
marked the positions of the cuts orthogonal to theQg axis in
Fig. 7~a!.

Figure 7~b! shows the first of these cuts and is located at
Qg50.3 a.u., i.e., very close toQg

Re,0. We see that the real
PES nearly cross and that the imaginary PES approach each
other at aboutQu51°. This value ofQu is very similar to
Qu

CCI ~see above!. Cut ~c! at Qg50.304 a.u. is situated in
betweenQg

Re,0 and Qg
CCI , and shows two points of the real

seam at approximatelyQu560.75° and the discontinuity in
the imaginary seam at the same location inQu . The third cut
displayed in Fig. 7~d! lies shortly behindQg

CCI at Qg

50.308, i.e., the real parts of the PES have just separated.
The imaginary parts no longer show a discontinuity, but two
simple crossing points~out of the imaginary seam!, which of
course lie symmetrically to theQg axis. In cut ~e! at Qg

50.335 the distance in direction ofQu in between the two
imaginary crossing points is almost at its maximum, whereas
the two real PES are now smooth curves which no longer
show any direct sign of interaction. AtQg50.35, the absence
of interaction in between the real PES is perhaps even more
apparent as Fig. 7~f! shows almost straight lines. The imagi-
nary PES are shortly before separating becauseQg

Im,0 is only
slightly greater than 0.35. Note the minor change in scale in
between~b!–~d!, ~e!, and~f!, which however has no impact
on the points made above.

It becomes clear that all features of the model are repro-
duced at least qualitatively by the data. The seams of inter-
actions form a closed loop and the real and imaginary seam
are connected bytwo CCI points lying symmetrically to the
Qg axis. The most pronounced deviation in between the
model and theab initio data results from the wiggles stem-
ming from the change of basis with growingQg . Addition-
ally, the model Hamiltonian from Sec. III F is only an expan-
sion up to the linear term, and is thus expected to deviate
from theab initio data for larger values ofQg /Qu . Keeping
both these points in mind, the agreement between the model
and theab initio data is astonishingly good.

We are now in a position to point to a possible reason for
the deviation of the experimental from the calculated values
at the equilibrium geometry. Looking at the real parts of the
PES it is obvious that they repel each other with growing
Qu . Thus, if some vibrational modes alongQu are excited,
one would measure a higher electron affinity for theS* and
a lower for theP* resonance states than at the equilibrium
geometry. This would nicely explain that our calculated en-
ergy for theS* state apparently is too low and that for the
P* state is too high. Using the model and the fitted param-
eters one even obtains energies of 2.85 and 1.32 eV, respec-
tively, for the upper and lower states at (Qg ,Qu)5(0.0,
620.0°), which are very close to the experimental values
~see above!. But, on the one hand such high deflections inQu

would afford highly excited vibrational modes, and on the

TABLE I. Parameters obtained from the fit ofab initio data for the reso-
nance states of the chloroethene anion to the complete linear model~see the
text!. In total 76 points (Qg ,Qu) were used, i.e., 152 energies and 152
widths.Ei andG i are in eV,k i anda i in eV/a.u., andl andh in eV/radian.

i 1 2

Ei 2.563 1.608
G i 1.254 0.404
k i 23.827 20.661
a i 22.728 20.303
l 1.717
h 1.112
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other hand the fit to the model does not reproduce theS*
energy at (Qg ,Qu)5(0.0,0.0°) well~compare the value for
E1 in Table I and the one derived from Fig. 6 given above!.
Nevertheless, our explanation for the deviation at least holds
qualitatively.

The goal to clearly reproduce the discontinuity in the
imaginary parts of the PES unfortunately could not be
achieved. Just at those points where it was expected to occur,
i.e., near the CCI points, numerical problems occurred. Ei-
ther additional stabilization points appeared in theh trajec-

tories, or on the contrary no stabilization points could be
found at all for configurations in the (Qg ,Qu) region of in-
terest@see, e.g., Fig. 7~c!#. The numerical problems of theab
initio computations in the vicinity of these points can be
interpreted as a clear hint that there is indeed a discontinuity.

Finally, let us have a look at the orbitals which get oc-
cupied by the additional electron. Normally, propagator cal-
culations result in so-called Dyson orbitals, which can be
viewed as correlated generalizations of molecular orbitals.68

Since the Hamiltonian of the CAP/S (2) method is complex,

FIG. 7. ~Color! Comparison of theab initio data on the chloroethene anion with the complete linear model. Several cuts through the PES of the two resonance
states are shown. Black circles were chosen for theab initio data of the upper curve and red squares for the data of the lower curve. The lines represent the
respective results obtained from the model; here, solid ones are negative electron attachment energies and dashed lines widths.~a! shows an enlarged view of
Fig. 6 in the interaction region. The vertical dashed lines mark the locations of the cuts pictured in~b!–~f!. These cuts are discussed in the text and lie at the
following values ofQg : ~b! 0.3 a.u.;~c! 0.304 a.u.;~d! 0.308 a.u.;~e! 0.335 a.u.; and~f! 0.35 a.u. For the fitQu was converted to radians~see Table I!, but
the figures are pictured withQu in degrees.
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we obtain complex continued Dyson orbitals here. We will
call these orbitals generalized molecular orbitals~GMOs! for
simplicity.

In Fig. 8 we show plots of the compact parts of the two
GMOs, divided into their real and imaginary fractions. Note
that the imaginary part is much more diffuse, i.e., the isoden-
sity surfaces pictured in Fig. 8 are drawn at an approximately
one order of magnitude smaller density for the imaginary
part. Some interesting points can be seen immediately: At the
equilibrium geometry, both the real and the imaginary part of
the GMOs indeed look like typicals* and p* orbitals, but
the imaginary part has the opposite phase of the real part.

For the GMOs near the CCI points there are some pro-
found changes. Whereas the real part of the upper~meaning
higher in energy! orbital does not look significantly different
from a p* orbital, the real part of the lower orbital shows
clear signs of a mixing of thep* and thes* orbitals. Addi-
tionally, the imaginary parts of the two orbitals have inter-
changed places; as* -like imaginary part pertains to the
p* -like real part and a clearlyp* -like imaginary part to the
mixed, but mostlys* -like real part. This fits nicely with the
picture obtained from the PES. The real parts of the PES
have already crossed at this point in nuclear coordinate
space, but not yet the imaginary parts. Hence, the real and
imaginary parts of the orbitals correspond to the respective
parts of the complex energy.

V. SUMMARY

In this paper we demonstrated that for PES of resonance
states points of intersection can indeed occur—similar to
conical intersections between PES of bound states—but ad-
ditionally seams of intersections of the real and imaginary
parts of the PES, respectively, arise. Since in many mol-
ecules two or more resonance states can be expected to ap-
proach each other in a limited region of nuclear coordinate
space, these intersections of metastable states should be quite
common and thus very relevant for many collision processes
involving short-lived states.

We systematically constructed several model Hamilto-
nians describing the vibronic coupling of two resonance
states, which also included the minimal model presented in
Ref. 17. In particular, we introduced the ‘‘complete linear’’
model Hamiltonian which joins linear varying widths with a
complex linear coupling term. This choice has the great ad-
vantage of still being analytically solvable and led to the
interesting result of a closed loop of the intersection seams.
Let us mention that the model Hamiltonians investigated
here just include terms up to linear order and are thus only
valid in the vicinity of the reference geometry. Further ex-
tensions of the model to increase the accuracy in regions
further apart are straightforward—although more intricate
models are not expected to possess explicit analytical solu-
tions anymore.

The most interesting finding was the occurrence of ex-
actly two intersection points, where both the real and the
imaginary part of the energies coalesce, for all investigated
model Hamiltonians. These two so-called complex conical
intersection points provided the reason to term this complex
analog of conical intersections ‘‘doubly intersecting complex
energy surfaces,’’ or DICES for short. Another feature ob-
served in all cases was a discontinuity occurring in the
imaginary parts of the PES at the points where the seam of
intersections of the real parts of the PES is located.

By calculating the PES of the resonance states of the
chloroethene anion we also demonstrated that the complete
linear model Hamiltonian reproduces the qualitative features
of the PES quite nicely and also could be fitted reasonably
well to theab initio data. Due to numerical problems, it was
not possible to reproduce the discontinuity occurring in the
imaginary parts with the explicitly calculated data. Further
work possibly will clarify how this could be achieved.

The results from the fit of theab initio data of the reso-
nance states of the chloroethene anion to the complete linear
model Hamiltonian strongly suggest that DICES play a
prominent role in the DEA process to chloroethene. Since
this molecule is the prototype for a great number of other
unsaturated halogenated compounds, the conclusion is evi-
dent that DICES are also responsible for the DEA process
taking place in these compounds.

Our work shed considerable light on the details of the
interaction of two resonance states through vibronic cou-
pling. Molecular dynamics calculations which make use of
this new description of intersections between metastable
states are expected to give further interesting and illuminat-
ing results which finally will allow one to describe DEA
processes and related phenomena more completely.
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