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Intersections of potential energy surfaces of short-lived states:
The complex analogue of conical intersections

Sven Feuerbacher,? Thomas Sommerfeld, and Lorenz S. Cederbaum
Theoretische Chemie, Physikalisch-Chemisches Institut, Univieksitiaelberg,
Im Neuenheimer Feld 229, 69120 Heidelberg, Germany

(Received 10 September 2003; accepted 19 November) 2003

Whereas conical intersections between potential energy surfaces of bound states are well known, the
interaction of short-lived states has been investigated only rarely. Here, we present several
systematically constructed model Hamiltonians to study the topology of intersecting complex
potential energy surfaces describing short-lived states: We find the general phenomenon of doubly
intersecting complex energy surfaces, i.e., there are two points instead of one as in the case of bound
states where the potential energy surfaces coalesce. In addition, seams of intersections of the
respective real and imaginary parts of the potential energy surfaces emanate from these two points.
Using the>* and IT* resonance states of the chloroethene anion as a practical example, we
demonstrate that our complete linear model Hamiltonian is able to reproduce all phenomena found
in explicitly calculatedab initio complex potential energy surfaces. ZD04 American Institute of
Physics. [DOI: 10.1063/1.1640615

I. INTRODUCTION scribe resonance states, one by Dirac and WeissRdpf,

later adapted and extended by Feshbach and Edhand

The Born-Oppenheimer approximatihconstitutes a another by Gamow and Siegért:® Both approaches have in

cornerstone of quantum chemistry by enabling one to view :
) . ; common that the energy of the resonance state is a complex
molecules as a set of nuclei moving on potential energy sur-

faces (PES provided by the eigenstates of the electronicquantitywhose imaginary part is related to the lifetime of the

Hamiltonian. Intersections of PES are points where this ap[netastable stgte. ) )
The following questions thus arise: What happens to a

proximation usually breaks down. The phenomena occurring "'~ 2 . ) .
in the case of intersecting PES of bound states have bequnlcal intersection if the intersecting PES cease to describe

studied extensively and are mostly well understood. It hasStationary states but rather belong to electronic states with a
been found that the shape of the PES near the intersectiofigite lifetime, i.e., resonance states? Can intersections then
critically depends on the interaction of the states as a funceXist at all? And if so, can these intersections of PES of
tion of the nuclear coordinates. In particular, under suitablé!€ctronicallyunboundstates be described by a formalism
conditions a so-calledonical intersectionCl) of the PES similar to that which has been very successfully used in the
arises leading to strongibronic couplingof the stategsee, ~case of intersecting PES bbundstates(see, e.g., Ref. 4 and
e.g., Refs. 3-5 and references theyeiese Cls have wide- references therejfd In the ||ght of Iiterally hundreds of pUb'
reaching consequences for the time development of the sycations covering Cls ofeal PES, it is quite surprising that
tem, e.g., greatly influence reaction pathways or the decay dfardly anything has been published dealing with the problem
excited electronic states into lower lying electronic states byutlined here. The main work in this field was done by Es-
opening up radiationless pathwagfsr recent reviews see, tradaet al!’ In addition, we mention the work of Mi€$,
e.g., Refs. 6, ¥ It is thus no wonder that Cls are of still who performed model calculations on resonances in diatomic
increasing interest to theoreticians as well as to experimermolecules which interact by coupling to the nonresonant
talists. As Yarkony puts it: “It is now appreciated that what scattering continuum. Hazi employed the same mechanism
was once viewed largely as a theoretical curiosity is an esto interpret dissociative electron attachment to hydrogen
sential aspect of electronically nonadiabatic processes.”  bromide!® Another work penned by Devdariagt al. deals
Another topic much worked on is resonance stateswith the spectra of the decay products occurring in atomic
which play a central role in many processes in physics andollisions by including the interaction of resonances with
chemistry. Resonances are essential in electron-molecut@o local model€? Finally, there are two recent papers ana-
scattering(see, e.g., Refs. 8, 9 and references thgrdint  |yzing thevibronic resonance states which result from a coni-
also occur, e.g., in atomic and molecular collisi¢see, €.g., cal intersection between a bound and a dissociative elec-
Ref. 10 and references therginor in molecular tronic staté’*?> However, apart from the paper by Estrada
photoionizatiorf In particular, metastable electronic states ofet al,1” none of these works studied the complex PES and
any kind, for instance of anions, can be viewed as .e.lectronigqeir intersections explicitly.
resonance states. There are basically two possibilities to de- |, this work we extend the model Hamiltonian presented

by Estradaet all” which describes the interaction of two
3Electronic mail: sven.feuerbacher@pci.uni-heidelberg.de resonance states to a more general form. We study the effects
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of different systematic extensions of the Hamiltonian on thdecular Schrdinger equation, multiplying with$* on the
complex potential surfaces with special regard to the interleft, and integrating over all electronic coordinates, we get
sections and their topologies. The new model Hamiltonianshe following set of coupled equations:
are still analytically solvable and the most general one pre-
sented here is shown to reproduce the phenomena found in
explicitly calculatedab initio data for a practical example.
This example is the chloroethene anion, which possesses
two intersecting electronic resonance states of differenfy is the nuclear kinetic energy operatdf? are the adia-
symmetry. batic electronic energids ¢ He |47 =V(Q) 8;;] which
Apart from demonstrating the applicability of our new constitute the PES, and the so-called nonadiabatic coupling
model Hamiltonian, our example is of great interest by itself:operatorsA;; are defined by
chloroethene is the prototype molecule for dissociative elec- . R
tron attachment to unsaturated chlorinated compounds, lead- Aij=Tnd; —(¢f Tyl 679. )
ing to an organic radical and a chloride anion. A description -~ ) ad - )
of the intersections of the resonance states in the chloroet- T @ specific electronic statey™ is energetically well
hene anion together with molecular dynamics calculations of€Parated from all otherzg, one can neglect the nonadiabatic
the complex PES would be extendible to describe manyCUPIing operatorsA;;. This is the famousBorn-
other DEA processes in unsaturated halogenated compoun@®Penheimer approximationThe adiabatic approximation
such as chloro- and bromobenz&# or the biologically IS defined by additionally neglecting the diagonal teAm.
relevant molecule chlorouradi:26 The nonadiabatic coupling operatoks essentially measure
In the next section we start with a short discussion of thdh€ validity of the Born—Oppenheimer approximation, i.e., a
general theory of vibronic coupling and of resonance stateSizableA;; _|nd|cates the |ntru5|on_ of other electronic sFates_.
The new model Hamiltonians are presented in Sec. IIl, where _ N régions of nuclear coordinates where the adiabatic
we also discuss the new phenomena which emerge from tHeES approach each other, the Born—Oppenheimer approxi-
different extensions and their influence on the topology ofnation breaks down and th&;; cannot be neglected any-
the intersections. This is done by showing some simple, ilMore. Generally only a few—in many cases two—electronic
lustrative examples. Section IV is devoted to the results oftates approach eqch oth'er in a particular region of nuglear
our ab initio calculations on the chloroethene anion and toc00rdinate space, i.e., this subset of states is energetically
the demonstration that our new model Hamiltonian repro\Vell separated from all other states. Thus, one can employ
duces the calculated complex PES of two resonance statd® group adiabatic approximatigrthat is, neglect only the
quite nicely in the interaction region. We close with Sec. Vv,nonadiabatic coupling operatas; with i being a state from

[Tyt V- E]xi=; A - ©

where the implications of our results are summarized. "the small subset andone of the other states. This truncates
the sum in Eqg.(2) to only those states included in the
subsett

Il. GENERAL THEORY We have yet to define thdiabatic representatior{de-

noted by the superscript “dig”which allows us to under-

In principle, we can make use of the work done on CISstand the coupling between the states via potentials instead
in the case of PES of bound electronic states and modify the pling P

. . of via momenta as in Ed2). To this end we unitarily trans-
terms appearing there to describe metastable electron;f%rm the adiabati({¢-a°} to diabatic state$<;/>-dia} such that
states. To do this consistently and to clarify our notation, we,” ; Fogia_T s : d thusA. —0. W ' ¢ th
briefly present here the basic concepts needed. The usu%ﬂ”ia1 N[ ¢ =Tndy and thusA;;=0. We now term the

; i
case of stationary electronic states is discussed first and th%?nséormed potential energy matri™(Q) and get from
transferred to the metastable states situation. a2

A. Coupled PES of bound electronic states [Tnd1+VI(Q)—E]x*?=0. (4)

As usual(see, for instance, Refs. 4, RWe start with the  gecause in general®®(Q) :<¢idia“:|ell¢?ia> is not diagonal,

total molecular wave function?(r,Q). This function in- e Xidia are coupled by the potential energy matrix and are
cludes both nuclear and electronic motion, whe@idesig- given by the components of the vectgt® in Eq. (4).

natesall nuclear coordinates amdall electronic coordinates. It is clear that the unitary transformation depends on the

The next step is to expartdi(r,Q) in a product of a set of y,clear coordinate®. We may choose a special geometry
electronic wave function$e;(r;Q)} and of a set of nuclear §enoted byQu—usually the equilibrium geometry of the

motion wave functiong x;(Q)} molecule—for which the adiabatic and the diabatic represen-
tations are equivaler(for more details see, e.g., Refl.. 4n
W (r,Q)= 2,: #i(r;Q)x;(Q). (1) the subspace of states obtained by employing the group adia-

batic approximation, the transformation will be accomplish-
For the se{¢;(r;Q)} we choose the stationary solutions able only approximately. But, generally a sufficiently high
of the electronic Hamiltonian Hg(r,Q), denoted by{¢f‘d}~ accuracy can be achieved, in particular in ClI situatfonst
(the superscript “ad” stands for adiabatidn the following In the following, we will restrict ourselves to a subset of
we drop the explicit dependency @f andy; on the coordi- two nondegenerate states; a generalization to more states is
nates for simplicity. By inserting the ansdt® into the mo-  straightforward. By extracting a smooth potenti&)(Q),
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e.g., in the case of metastable anions one could choose theetric matrix Hamiltonian as obtained in E¢) for bound
ground-state potential of the underlying neutral system, westates—one rather obtains a complex symmetric matrix

rewrite Eq.(4) in this subset as follows: Hamiltonian®® We may still use Eqs(5)—(7), discussed
i i bove for bound states, to describe resonances and their dy-
+ ia_ dia a ' ! '
[Ho+VIx"*=Ex" ® namics. To this end we just have to assume the elemgnts
where V,, andK of the matrix potentiaV/ to be complex quantities.
_ An alternative derivation of a complex symmetric matrix
Ho=[Tn+V 1 6 _ S
0= [Tt Vo(Q)] © potential V is given by Estradat al!’ Note that they con-
and cluded thaK has to be redlin particular, they stated that for
V1(Q) K(Q) the off-diagonal elements there is no level shift operé&tpy
=( ) ) (7) because of symmetry reasons. But, this is only truestriat
K(Q) V2Q)

two-level system. There are however almost always addi-
Herein, V), are the diabatic differences in energy betweertional resonance states. Although these states(iargood
the respective state and, andK is the coupling term be- approximation vibrationally decoupled from the two states
tween the two states. of interest, their presence nevertheless modifies the Hamil-
tonian of the whole system. In effect, the strict requirement
for K to be real is no longer present.
B. Coupled PES of metastable electronic states We mention that the set of coupled states used can, in
inciple, comprise bound and resonance states. Consider,
(?gr instance, an anion. This anion can possess bound states as
well as resonances, and both types of states can interact via
déhe nuclear motiof’> However, since we are interested here
{o, intersections of PES, the interacting states are all either
resonances or bound.

Metastable states are generally characterized by one
the two following formalisms. The first one was developed
and extended by several authdtst® but is normally re-
ferred to as Weisskopf resonance theory. This approach
fines resonances as discrete states embedded into and in

acting with a continuum. Following this ansatz, a so-called . . .
Instead of computing adiabatic resonances and trans-

level shift operator f; arises naturally, which additionally to forming them to diabati lso f v start
shifting the real part of the energy of the discrete state aug_ormmg em 1o diabalic ones, we may also formally star

ments it with an(energy-dependentmaginary part. A com- from the assumption that diabatic resonances are given for a

mon technique used to compute Weisskopf resonance pararW—an'fpld of mterac_tmg resonances. In th_|s way useful ex-
32,33 pressions for the diabatic complex potenti¥ls,, and cou-

eters is Stieltjes imaging: . N .
The other possibility is to characterize resonances as S(p_hngs K can b? obtalned,. see Ref. 17 for details. .
A remark is appropriate here. When computing reso-

called Gamow-Siegert eigenstdfe¥ of the time- discrete stat bedded into and interacti ith
independent Schdinger equation. These grow exponentially nances as discrete states embeaded Into and interacting wi
a continuum, the resulting quantiti®s ,, and K depend on

in the asymptotic region, describing the decay of the meta- | dinat d in additi | the total
stable state. As a consequence, the eigenenergies also poséggsnuc ear coordinates and, In addition, aiso on the tota
nergy of the system. This energy can often be successfully

an imaginary part. Siegert energies can be identified wittf . ) .
poles of theS matrix®® and can be calculated, e.g., by the replaced by a function of the nuclear coordinates by going on

stabilization techniqu& the complex scaling methd,or resonancefor details and references see Ref),dgliminat-
the complex absorbing potential approdét® The imagi- Ing the explicit energy dependence. In some cases, .however,
nary parts—iI'/2 of both the Weisskopf as well as the Sieg- itis favorable to use the energy dependence explicithe,

ert energies are related to the lifetimeof the metastable €.9., Ref. 43 1f t_h|s is the case, we advocgte Fo follow t.he
state byr=#T. formalism described above and the analysis discussed in the

éollowing for each value of the total energy separately.
We conclude that Eq$5)—(7) could describe as well the
coupling between metastable electronic states, provided that

Schwinger multichannel variational method and the comple}hese equations contain the respective imaginary terms in
Kohn method, but here we consider only methods which Vi andK.
give the resonance energy and width directly. The latter
methods all exploit the usual Gaussian basis sets and thus in
contrast to scattering calculations work entirelydf space.  |1I. MODEL HAMILTONIANS

Independently of the method used to compute reso, | "
nances, the calculations provide a set of adiabatic energies eneral properties
which depend on the nuclear coordinates and are complex An accurate solution of the molecular Sctiimger equa-
guantities. Formally, we may proceed as in the precedingion for polyatomic molecules, even in the form given by Eq.
subsection and transform the adiabatic resonance states @), generally requires an extreme effort. In practice, one has
diabatic ones. There is little, if any, experience in the litera-to make approximations to make the solution feasible. Usu-
ture on such transformations for resonance states. Neverthally V, is approximated to be harmonic in the vicinity @f,
less, we expect on physical grounds that they do exist. Sinceut the exact form of the ground-state potential is not rel-
the resonance energies are complex, the transformation is nevant for our following discussion. Since for each nuclear
unitary and thus does not lead to a Hermit{@n real sym-  configurationVy(Q) is a constant which is added on the

Note that in principle information about resonance state
can also be extracted from actual scattering calculaiises,
e.g., Ref. 41 for thdr-matrix formalism and Ref. 42 for the
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diagonal of the potential matri¥, it only shifts the eigenen- Note that there could be special casesvofor which there
ergies of both electronic states by the same amount. are no or only a finite number of poingsfor which J(q)=0

By diagonalizingV from Eq.(7) we thus obtain the gen- andfi(q) less than, greater than, or equal to zero holds. But,
eral solution for the adiabatic energy differences between thas we will see belowj(q)=0 is easily satisfied and in gen-
resonance eigenenergies of the states and the ground stateal there will be an infinite number of points for whigt(q)

denoted by . is less or greater than zero and more than one point for which
N 5 5 2(g)=0 holds if one makes reasonable assumptions for the
2V.(Q=ZV(Q)*V(AV)H(Q) +4K*(Q), ® expressions fo¥; andK. For example, Estradat al. already

where we introduced the following notation for two arbitrary OPserved the real and imaginary seams mentioned above
factorsA; and A,:SA=A,+A, and AA=A,—A,. If we  With their simple two-dimensional model Hamiltonian for

now allow the matrixV to be complex, Eq(8) splits into WO interacting resonance statesge Sec. Il C and Ref. 17

two equations for the real and for the imaginary parvof _ We now continue with some model Hamiltonians which
will clarify the points discussed above. The first step is to
2ReV-.(Q))=Reg2V(Q)) restrict ourselves to two nuclear modes denotedJgyand

1 > = Q.. which can be chosen to be normal coordinates of the
= VIVR(Q+TAQ+R(Q), (9 molecule in its ground state. The labeli@, is chosen to
. denote a totally symmetric vibrational mode which is respon-
21m(V+(Q))=Im(ZV(Q)) sible for the energy differencé,—V,. Because of this it is
+ /L \/ﬁ_ also called the “tuning” mode, wherea,, is termed the
\/2( RQ+THQ-RQ), (19 “coupling” mode* The latter is chosen to be a nontotally
with R=Re((AV)>+4K? and J=(Im(AV)?+4K?). These symmetric vibrational mode, with the only restriction that the
quantities were introduced to simplify the calculations and atlirect product of the irreducible representations of the two
first sight have no direct physical equivalent, but their sig-states and of, contains the totally symmetric representa-
nificance will become clear below. tion T'p
Our objective is to find intersections of the complex
adiabatic PEY ., (Q). For this to happen, the square roots in FaeLiXTyx Iy (12
Egs. (9) and (10) must vanish. It is convenient to start by Let us further assume that;,, andK in Eq. (7) are slowly
searching for special pointgin Q space for whichli(q)=0.  varying functions ofQ, andQ, in the vicinity of Q. This
For these points, the other relevant quanfitfq) appearing makes an expansion &f;, andK in these two coordinates
in Egs.(9) and(10) can be either positive, negative, or equal possible. Note that these expansions are restricted for sym-
to zero. Accordingly, the following three relationships be- metry reasons. The fact that the potential te/nof Eq. (7)

tweenfi(q) and the PES hold: has to be totally symmetric leads to the restriction tiab
have to be even irQ, and thatK has to be odd imQ,.
<0 Re(V.(q))=Re(V_(q)) Strictly, this holds true only for Abelian point groups, but for
R(q)y >0 =4 Im(Vi(q)=Im(V_(q)) (1) degenerate groups a similar argument can be employed.
=0 V.(@)=V_(a).
If JR(q) is positive, the imaginary parts of the PES intersect,B' Usual conical intersection
but the real parts do not. The opposite hold{f) is nega- In order to make the differences between intersecting
tive. Only for both9:(q)=0 andJ(q)=0 both the imaginary PES of bound and resonance states more clear, we briefly
and real parts of the PES intersect. review the former case first. For bound states, the ta&rms
Let us discuss this finding first before we introduce someandK up to linear order are given By
model Hamiltonians by giving explicit expressions 1é,, Vi=E+xQq, =12

and K. Assumed that there is an interval of poidtg for

which J(q)=0 holds, there generally will be more than one K=\Q,.
point for which93(q)<0 is satisfied. In the case of PES of
bound states, conical intersections are of dimengi6n2,
with A being the number of nuclear degrees of freedom.
Apparently this no longer holds for the real part of the
eigenenergy R&{.)! Already in the two-dimensional case here
there generally is a seam of intersections in the real part o‘?’

V. . Following the same line of argument, it follows that al AE cl

there is in general also a seam of intersections for the imagi- 9 Ak and Q; =0, (14)
nary part of the eigenenergy.

These seams meet at special generalized péintsey
exisp for which 2R(q) is zero, too. Here, “generalized point
is meant to be an object of dimensigfi-2. Since they rep-
resent the complex analog of conical intersections, we wil
call all the “points” g, for which J(q)=2(g)=0 holds, the The simplest complex model Hamiltonian which makes
complex conical intersectiofCClI) points in the following. sense physically is obtained by setting

(13

Since there is no imaginary part, only the conditiax\{)?

= —4K? has to be fulfilled for intersections to occur between
the adiabatic PES. We easily see that this is the case for only
one point (Qg',Qg") (apart from accidental degeneragies

using the notation introduced above, i.AE=E;—E, and
w AK=K{— K.

|C. Minimal model for resonances
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i
Vi:Ei+Kng_§Fil |:1,2,

K=\Q,. (139

This is equivalent to the model example discussed by Estrada

et all” and we will call this choice the “minimal model” in
the following. Compared to Sec. Il B, only the termsTI;/2

were added, corresponding to widths which are independent

of the positions of the nuclei. The implications of this slight

modification were discussed extensively in Ref. 17 and we

will only summarize the points relevant to our discussion
here.

The most startling result is that there is no longee
conical intersection pointQ@g',Qf)=(—AE/A«,0) as in
case of bound statgsee Sec. Il B, buttwo points Qg
+QS®Y) for whichV, =V _ holds true. These points lie sym-
metrically to theQg axis and are given by

ccl_ _ A_E

9 Ak (16)

i.e., Qg°'=Qg' still holds in the minimal model.
The two CCI points are connected by a straight line
formed by the seam of intersections of the real parVof

which was already mentioned in Sec. IIlA. The seam of

intersections of the imaginary part &. which was also

discussed above has two branches which start from the two

intersecting points, and go the from there on in a straight
line.

We picture the real and the imaginary partsv/of in Fig.
1. It is important to note the difference from Fig. 2 in Ref.
17, stemming from a slightly different notation: There, the
PES including the ground-state potential were shown,
whereas in our Fig. 1 only the diﬁerech§=V?d—Vo are
pictured. We do this to simplify the comparison with the PES
of the following, more complicated model Hamiltonians.
Also shown in Fig. 1 is a projection of the re@olid line)
and the imaginarydashed ling seams of intersections onto
the Q4Q, plane. This projection will also simplify the com-

parison in between the different model Hamiltonians. In this
picture we marked the CCI points with crosses and the point

—AE/Ak on theQq axis with a filled circle.
The two parts of the PES are shown only for positive

values ofQ,, since the other halves are simply obtained by

taking the mirror image at the plane consisting of @yaxis
and the respectiveaxis. This also allows us to make another

important result more clearly visible: The imaginary PES are

Intersections of potential energy surfaces 3205
(a)
1
T
+ e,
— G
Q S
o 3
S
SR
s
DTN
RS
g
A
=

.
[ T

Q

9

discontinuous over the whole range of points which form the
real seam. This interesting result was not discussed in Ref.
17 and we will see below that the discontinuity apparently

is no artifact of the oversimplified nature of the model
Hamiltonian.

D. Linear widths

The most obvious modification of the minimal model is

FIG. 1. (Color) PES for the minimal modela) shows the real parts arit)

the imaginary parts of the complex adiabatic PES givervbyQg,Q,).

The position of the real seam is marked with a solid lindéath pictures to
guide the eye. The same holds for the imaginary seam for which a dashed
line was chosen. Note that the PES are only shown for positive valu@g of

in (a) and (b) to uncover the discontinuity in the imaginary patsge the

text). A projection of the seams onto tig,Q, plane yields figuréc). It also
shows the half plane for whic®,<0 and thus demonstrates the symmetry
of the PES to th®, axis. In(c), we marked the CCI points with crosses and

to include a dependency of the widths on the positions of thehe coordinates for which the real seam crossesQpeaxis with a filled

nuclei. In lowest order one thus obtains

circle.
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i .
Vi=Ei+Kng—§(Fi+ang), |:1,2; (17)

K as in Eq.(15). Note that we have to sétj+ a;Q,=0 for
values ofQq for which this term becomes less than zero,
since negative widths make no sense physically.

The adiabatic PES which are the solutions for this choice
of V and the projection of the seams are shown in Fig. 2. As
is clearly seen, there are nowo solutions forJ(Qg,Qy,)
=0, namely

AE AT
(]-)Qg:—ﬂ and (Z)QQZ_E’

(18

with (YQ, being the same solution &' in the minimal

model. Whetheﬁl)Q <Q, (as in Fig. 2 or the opposite
applies can only be deC|ded if explicit parameters are given.
In the projection picture we additionally marked the second
solution?Q, with an empty circle.

The real parts of the PES in Fig. 2 are at first sight the
same as for the minimal model, but there is a slight differ-
ence: The CCI points are now found &@¢“', +QS™) with

AE Aa+AF
Ak 4N 4N

qu:(l)Qg and QCCI (19)

Additionally, there is a second seam of intersections. It is
found to be a straight line &= ?Q, completely lying in
the imaginary parts of the PES. Also note tB&(Q,,Q,)
depends o, quadratically, contrary t6(Qg,Q,) which is
independent ofQ,. Looking at Egq.(10) it follows that
Im(V,)—Im(V_)—0 for Q,—, independently of the value
of Qg. This is the same behavior already observed in the
minimal model(see Fig. 1 and Ref. 17Additionally, we
also find a discontinuity in the imaginary parts of the PES
similar to the discontinuity in the minimal model.

W
Y

] ® @ o
E. Complex coupling
As discussed at the end of Sec. Il A, the coupling term
could as well be complex. We thus chose the following 4
expression:
i Q
K=AQy~ 5 7Qu. (20) o

FIG. 2. (Color) PES for the linear widths modela)—(c) are pictured the

. . . same way as in Figs. 1, 3, and 5 and allow a direct comparison of the
Vi a@s in EQ. (19). In Fig. 3, we again show the real and models. Most interesting is the appearance of a second imaginary seam. The

imaginary parts of the PES together with the projectionyosition at which this seam crosses Qg axis is marked with an empty
picture. circle in (c). Also note that Im{,)—Im(V_)—0 for Q,— < still holds as in

At first glance the only difference to the minimal model the minimal model.
is that the seams no longer lie on a straight line but on a
“outwardly” bent parabola The curvature depends on the Ax<O0, effectively placing the intersection of the real parts
sign of the termzn(AI'/4N). For n(AI'/4\)>0 one arrives at for Q,=0 [the black dot in Fig. &)] at a positive value for
the situation pictured in Fig. 3; if the term is less than zero,Q,, namely atQg,=—AE/Ax>0. We conclude that the
the parabola is bent “inwards.” This holds if one restricts complex-coupling model is equivalent to the minimal model
oneself(without losing generalityto the caseE;>E, and  (and to the linear widths modethere. This immediately be-
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e

Q

g

FIG. 3. (Color PES for the complex coupling modéh)—(c) are pictured
the same way as in Figs. 1, 2, and 5 and allow a direct comparison of tl
models. The most obvious new feature is a bending of the line which i
formed by the seams. Another difference is that nowMmEIm(V_)—oe

for Q,— <. This behavior is only found for theeal parts of the PES in the

minimal and the linear widths models.

comes clear by looking at the expressions Kokvhich are

zero atQ,=0.

The CClI points are placed aQf“', = QF“), which are

now given by
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AE+ Al

n—

QCCI: _ 4\ and QCClZA_F (21)
g Ak vooaANe

i.e., the solution forQS®' stays the same as in the minimal

model. As can be easily checked/R%+3%—9R—(2\

- 7)2Q2, ie., ImV,)—Im(V_)—x for Q,—o (excluding

the points on the imaginary seansuch a behavior is found
only for thereal part of the energy in the minimal and the
linear widths models, whereas IWy)—Im(V_)—0 for Q,

—oo holds in those two models. We again observe that there
is a discontinuity in the imaginary parts of the PES.

F. Complete linear model

Let us see what happens if one combines a linear ansatz
for the widths with a complex linear coupling term. To rec-
ollect, we now have

i :
Vi=Ei+Kng—§(l—'i+ang), |:1,2;

i (22)
K=AQu~— 2 7Qy.

Before we start to evaluate this model in detail, let us first
give some additional definitions and a small constraint,
which does not restrict generality but makes the discussion
simpler. We easily see that the intersections@qr=0 are at
Qg=—AE/A«k for the real parts of the PES, and @
=—AT'/A« for the imaginary parts. These are the same co-
ordinates as in Sec. IlID and here we introduce the abbre-
viations Q§*°= —AE/Ax and Qg"°= —AT'/Aa. If we re-
quire bothQg*® and Qg™° to be positive and suppose,
>E,, it follows that Axk<0 and AI'Aa<0. The factor on
which the shape of the PES depends is agaénn Sec. Il &

the sign of »(AL'/4\). But, here one can as well employ the
sign of 7(Aa/4\) for the characterization of the PES, which
is just the opposite. Additionally, the magnitude &k in
relation to the magnitude of(A«/4\) becomes important as
we will see below.

Employing the restriction given above, one can still dis-
tinguish eight different cases, which can be further grouped
into two sets of four cases each. For the first set, we only
show the projection of the seams onto 0gQ, plane for
one example in Fig. 4. The projection of the seams now
forms the two branches of layperbola The parameters are
chosen in such a way tha@§*°<Qy™ and 0<#n(Aa/4N)
<|Ax|. The other three cases of this set can be obtained by
changing the ordering of the terms in these two inequalities,

5%ut always keepingy(Aa/4\) greater than zero. Graphically

this corresponds to either interchanging the dashed and solid
lines (i.e., the real and imaginary seamsr to taking the
mirror image of the seams at a line parallel to Qg axis
through the middle oRg*°and Qy™°, or to both of these
operations.

All four cases of this set are similar to the two models
discussed before in the sense that there are agaidistinct
seams as in Sec. llI D, one of which is either located totally
in the imaginary parts of the PES or totally in the real parts.
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FIG. 4. Example of PES for the complete linear model witlh a/4\)>0

(see the text We only show the corresponding projection pict(see Figs.
1-3, 9 since the PES are similar to the linear widths and the complex
coupling model, respectively. This is demonstrated by the fact that there is
an additional imaginary seam, like in the linear widths modele Fig. 2,
which is bent, as in the complex coupling modste Fig. 3.

Both seams are alsbentas the single seam in Sec. Il E.
But, since they are always bent away from each other, the
seams again extend @,= *= .

The question arises if it is possible to restrict the inter-
action domain to a finite region within the linear order ap-
proximation. This can indeed be achieved for the four cases
of the second set. One of these cases is pictured in Fig. 5;
there we again show the real parts of the PES, the imaginary
parts, and the projection of the seams. As can be seen, this
set features an all new shape of the PES: the seams now form
a closed loop. This loop is aallipsg as can be seen from the
equation

Qi=—(47\) HAE+AKQy) (AT +AaQy), (23

which is obtained by setting(Qg,Q,) =0.
For the case which is pictured in Fig. 5, the parameters
are chosen in such a way th@f*°<Qy™° and Ak<n(Aa/
4)\)<0. The other three cases are again obtained by exchang- i E
ing the solid and dashed lines, i.e., the real and imaginary
seams in the projection picture, or by taking the mirror image
of the seams as described above, or by employing both of 1‘3\ -
k4
{

these operations. This again corresponds to changing the or- @
dering of the terms in the inequalities, but now always keep-
ing 7(Aal/4N)<O0.

In all of the eight cases there are still exactly two points

Q5. =Q7®), given by S
AE+ Al
KN —AEAa+AT A« Q
QCCI: _ and QCCI: g
9 @ u AINAK+nAa
Ax+ UK FIG. 5. (Colon Example of PES for the complete linear model wigf\ o/

(24) 4)\)<O0 (see the tejt (a)—(c) are pictured the same way as in Figs. 1-3 and
allow a direct comparison of the models. Note that the real and imaginary

which connect the real and imaginary seams. The discontiseam now form a closed loop, i.e., the interaction region is finite. However,
nuity of the imaginary parts at the coordinates of the reaf!® discontinuity in the imaginary parts is still present.
seam is also still present in all eight cases, see, e.g., Fig. 5.

G. Discussion extra imaginary seam to appear, whereas the introduction of
As we have seen in the preceding subsections, sma#l complex coupling linear ilQ, led to the bending of the
extensions of the minimal model Hamiltonian in Ed5) original seams. All three of these models show imaginary
lead to profound changes in the PES. In particular, changingeams extending tQ,= *=. But, this poses no problem,

the widths from constants to linear functions@f caused an  since we only investigate expansions\6f[Eq. (7)] in the
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vicinity of Q, here. In realityK—0 for Q,— holds, i.e., and a chloride anion. Similar processes have been found to
for large values ofQ, the PES indeed intersect no more. ~ occur in many other unsaturated organic compounds which

By combining the two extensions mentioned above andhave in common that a halogen atom is connected to one of
constraining the parameters to certain values, we arrived dlbe carbon atoms involved in the double bond. Examples are
PES for which the real and imaginary seams form a closeghlorobenzené}*”*® mono- to tetrachloroetherf&;* and
loop. Let us mention that our study of another model Hamil-chlorouracil®®>?° DEA to the latter is discussed as an impor-
tonian not presented here demonstrated that a bending of tit@nt contribution to radiation damage to DNA! Further-
seams can also be enforced, e.g., by adding quadratic termsore(unsaturatephalogenated hydrocarbons have become a
in Q, to V45, but the introduction of a complex coupling major threat to the environment and the DEA process ap-
seems to be the conceptually easiest and most natural way pears to be an economic way of eliminating the halogen
arrive at a closed loop of the seams. Note a mathematicatom (see, e.g., Christophorou and Hunter in Ref. 52, p.
curiosity: for PES of bound states, the intersection has th&18). Note that DEA is not limited to unsaturated organic
form of a double cone, whereas for PES of metastable statemolecules containing halogen atortier recent reviews in-
the models with a complex coupling yield intersection seamgluding many other examples, see, e.g., Refs. 53—55
with the shape of a parabola, hyperbola, or an ellipse. These The DEA process is thought to occur in the following
three forms actually can be obtained by cutting a doublavay. First, the electron is captured into th& orbital of the
cone with a plane. unsaturated carbon—carbon bond. This results in a resonance

We are still faced with the discontinuity of the imaginary state which is energetically lower lying and possesses a
parts of the PES$see Fig. . To investigate this phenomenon longer lifetime than the metastable state obtained from the
further, we also tried more complicated models which incor-capture into ther* orbital of the carbon—halogen bond. The
porate higher order terms @y andQ,, in V,, andK. These  electron is then transferred into the orbital at a nuclear
model Hamiltonians have the drawback that they are in geneonfiguration where the lifetime of the corresponding repul-
eral not analytically solvable anymore. Apart from this, thesive state is long enough to eventually lead to the dissocia-
discontinuity does not disappear with these more sophistition of the molecule. This transfer process is said to occur via
cated models. We are thus left with the view that it seems tauclear motion. Only a few publications have dealt with the
be an intrinsic feature of the adiabatic picture. In order todetails of the process up to ndsee, e.g., Refs. 46, 56, 67
check if this discontinuity can be reproduced & initio  In particular, no theoretical work at all has been published
data, we chose to investigate a practical example. The comwhich explicitly takes into account the metastable nature of
plex PES obtained for this example and their relation to thehe system. But, the essential part of a theoretical description
model Hamiltonian will be described in detail in the next of the DEA process is concerned with this metastability and
section. requires the computation of the complex PES.

Finally, note that all models investigated have in com-  |n the following we will briefly explain our computa-
mon that alway®xactly twoCCl points exist, connecting the tional method for obtaining thab initio data for the PES of
real and imaginary seams. This appears to be a general phgre resonance states of the chloroethene anion. After outlin-
nomenon and maybe is as common as the real analoghg our method, we try to fit the PES obtained from the
namely two PES forming a conical intersection. We thusmodel Hamiltonian in Sec. IIl F to owab initio data, both for
term this special behavior of two complex PES, in particulartesting our model and for providing an analytical expression
the most general model presented in Sec. Id&Ubly inter-  for the complex PES required for a molecular dynamics de-
secting complex energy surfacésiCES). It is important to  scription of the DEA process. Note that the chloroethene
note that the nonadiabatic coupling operatdfsare singular  anjon is the prototype for all halogenated, unsaturated or-
at these two CCI points—the same behavior also found at 8anic molecules, because it consists of only two doubly
conical intersection in between PES of bound st&f€his  pound carbon atoms to which a chlorine atom is connected.

was _alref_:ldy7shown by Estragaal. for the minimal model  The three hydrogen atoms which saturate the remaining
Hamiltoniart” and still holds for the more advanced model honds lie in the same plane, resulting inCa symmetric

Hamiltonians presented here. Thus, the adiabatic approximayrycture.
tion breaks down at the CCI points and one indeed has to _
employ the group adiabatic approximation. A. Computational methods

We first optimized the geometry of the neutral chloroet-
hene at the Hartree—FodlKF) self-consistent field SCPH
level of theory employing the standard 6-31®asis set.

The chloroethene anion turned out to be an excellenThis geometry was taken to be the equilibrium geome€gy
example to investigate the occurrence of DICES in a realsee Sec. )lin the following calculations. The standard cal-
molecule. This is because several experimental observatiomsilations were done within the framework of theMESS UK
led to the proposal that it possesseX*atype CA’) as well 6.2.°% andMoLCAs 5°° ab initio packages of programs.
as all*-type (PA”) resonance state which cross near the  The complex energy surfaces were calculated using our
equilibrium geometry of the corresponding neutisge, e.g., newly developed method CABf?). This efficient technique
Refs. 45, 46 to calculate resonance energies and widths for temporary an-

In electron transmission studies, dissociative electron ations was described in detail in Ref. 40 and we will only give
tachment(DEA) was observed, leading to a ethenyl radicala short overview of this method here. In the following we

IV. PRACTICAL EXAMPLE: CHLOROETHENE ANION
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will use some terms, e.gy and 2, which are not to be
confused with the quantities introduced in Sec. Ill.

As mentioned in Sec. I, Gamow-Siegert states grow
exponentially in the asymptotic region. This makes their de-
scription by£? basis sets, like the Gaussian basis sets imple-
mented in all standard quantum chemistry programs, impos-
sible. One possibility to overcome this problem is to add a
complex potentiat-inW with a strength parameteyto the

(a)

Feuerbacher, Sommerfeld, and Cederbaum

iy, ,.l'”lH

'C=—C:
v \'8%
e

~
~

~
~
~
~

Qy (out of plane)

HamiltonianH, of the system, which “absorbs” the outgo- (b) o5
ing wave at a distance from the molecule. Because of this it T £
is termedcomplex absorbing potenti@CAP). G----o T3
One can define a one-particle Green's funcfororre- 27 =—a E(IT")
sponding to this modified Hamiltonian. As shown explicitly L LY
in Ref. 61, this Green’s function can be evaluated using per- < 15 *
turbation theory, in particular employing the algebraic dia- & I
grammatic construction scheme up to 2¢@ 3rd) order S ]
(ADC(2/3)%2%3. By a projection of the resulng CAP/ "
ADC(2)-matrix on the one-particle space, a simple, complex
symmetric Hamiltonian of small dimension was obtaifed: 054 . o
..... o
H=Ho+X2(E)~inW. (29) 0 o1 02 03 0.4 05 06

Q,=d¢_g, - d,[au]
Here,=(?)(E) is the so-called self-ener8fjin second order,
which is energy dependent. Together with the CAP term ifflG. 6. Ab initio data on the chloroethene anida) Definition of Q4 and
represents an optical potent(a.lee, e.g., Refs. 8, 64 and ref- Q, . Both are measured relative to the equilibrium gepmetry of neutral
. . chloroethene(b) Dependency oQ, (Q,=0) of the negative electron at-

erences therejrfor electrons which are bound temporarily t0 tachment energiessolid lines and the widths(dashed linesof the *
the systen‘ﬁ‘.o This explains the designation CAPP). (circles andIT* (squareksresonances of the chloroethene anion. The lines

The exact procedure to obtain the energies and widths gfre only drawn to guide the eye. Note the wiggles in the curves fokthe
the resonance states was described in detail in Ref. 40. Irﬁsonar_lce which originate from the effective change of basis during the

. elongation of the C—ClI bond.

short, the eigenvalues of the energy-dependent, complex-
symmetric eigenvalue problem defined by the Hamiltonian in
Eq. (25 are calculated for varying values af and a reso- mpolecule is lowered by deflection of the chlorine atom out of
nance state can be identified with a stabilization point in thghe molecular plane.
7 trajectories. The real part of its respective eigenvalue is
equivalent to the negative of a electron attachment energ)é Results
whereas its imaginary part gives the lifetimes of the corre-—
sponding metastable anion. We found that the CNP/ We calculated the Siegert energies at 110 different
method reproduces experimental electron attachment enemuclear configurations, i.e., for 110 pointQ{,Q,). As
gies measured by electron transmission spectro§topyshown in Fig. 6a), Qg corresponds to the elongation of the
within a few tenths of an eV. The error introduced by usingC—CI bond, wherea®), is the angle in between the C-CI
finite basis sets was estimated to be of the ord&% for the  bond and the plane defined by the remaining ata@slies
energies and:-25% for the widthg?® in between 0.0 and 0.8 a.u. afQ ranges from 0.0° to 10.0°.

The method is suited to investigate the crossing of theMe solved the electronic problem at each distinct nuclear
complex PES of the chloroethene anion in detail. We em<¢onfiguration and thus obtained the adiabatic PES. The ob-
ployed a box-CAP® which started to increase 3 a.u. “out- tained data showed clear signs of only two resonance states
side” the molecule in each Cartesian direction, and thdying energetically close to another, which allowed us to
double-zeta basis set by Dunning and Bfapr our calcula- make use of the complete linear model Hamiltonian intro-
tions. This basis set was further augmented with tdatgpe  duced above.
(exponents 1.097 and 0.318 for C, 1.046 and 0.344 for CI  In Fig. 6(b), we show the dependence of the negative
and onef-type (exponent 0.761 for C and 0.706 for)Glo-  electron attachment energies and the widths of3keand
larization functions, and onstype diffuse function(expo-  thell* resonance states @y, i.e., a cut through the PES at
nent 0.0765 for C and 0.0942 for)G@in each heavy atom. To Q,=0. The attachment energies are drawn as solid lines and
describe the continuum part of the resonances properly, eightith filled symbols, whereas the dashed lines with empty
even-tempereffactor 1.6 diffuse p-type functions were also symbols represent the widths. Energies and widths corre-
added on each carbon and on the chlorine atom, starting frosponding to theX* resonance are symbolized by circles,
the exponents 0.1146 and 0.1838, respectively. After discardvhereas squares were chosen for the respective graphs for
ing the core and anticore orbitals we finally arrived at 111theIl* resonance. At the equilibrium geometry of the neutral
molecular orbitals oA" symmetry and 47 oA” symmetry,  chloroetheneQy=0) we find an electron attachment energy
which coalesce into 158 orbitals when the symmetry of theof 2.36 eV for theX* state, compared to values of 2.84
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TABLE |. Parameters obtained fron”_l the fit ab initio datg for the reso- Qg axis, i.e., alongQ,,. Figure 7a) is a blowup of the rel-
nance states of the ghloroethene anion to the_complete I|near_ ifsedeihe evant region of Fig. 6. There are, however, some important
text). In total 76 points Q4,Q,) were used, i.e., 152 energies and 152 diff - circl t th . ti
widths.E; and[’; are in eV,«; and¢; in eV/a.u., and\ and » in eV/radian. I erer_lces. circles now represen € quee" energe ".
cally highey PES and squares the lower PES as the assign-

i 1 2 ment to3* or IT* no longer makes sense f@,#0. The

E, 2563 1.608 points areab initio data, whereas the curves are PES drawn
T 1.254 0.404 according to the fit to the model Hamiltonian. We also
Ki —3.827 —0.661 marked the positions of the cuts orthogonal to @gaxis in

a; —2.728 —0.303 Fig. 7).

);7 ﬂg Figure 7b) shows the first of these cuts and is located at

Qy=0.3a.u.,, i.e. very close tQ;*°. We see that the real
PES nearly cross and that the imaginary PES approach each
other at abouQ,=1°. This value ofQ,, is very similar to

eV*®4and 2.9 eV® given by experimentalists. The respec- Qi (see Ratgov)e C%"CI(C) at Qg=0.304a.u. is situated in
tive values for thdT* state are 1.59 eV from our calculation PetweenQg*”andQg™', and shows two points of the real
and 1.2 eV° and 1.28 e¥**8*°from experimental data. Of Seam at approximatel,=*+0.75° and the discontinuity in
course, due to the vibronic excitations present in the experithe imaginary seam at the same locatioQip. The third cut
ment, vertical electron attachment energies cannot be délisplayed in Fig. @) lies shortly behinngC' at Qq
duced from the experiments directly, and the experimentaf=0.308, i.e., the real parts of the PES have just separated.
values can only be considered as estimates. Another possiblé€ imaginary parts no longer show a discontinuity, but two
origin for the deviation between the calculated and experisimple crossing point@out of the imaginary seamwhich of
mental data is discussed below, with special regard to theourse lie symmetrically to th@, axis. In cut(e) at Qg
different sign of the deviation for thB* andII* states. For ~=0.335 the distance in direction @, in between the two
metastable states of molecules of this size the results atglaginary crossing points is almost at its maximum, whereas
however of acceptable accuracy. the two real PES are now smooth curves which no longer
Note the small “wiggles” in the curves of the energy and show any direct sign of interaction. ,ng 0.35, the absence
the width of theS* resonance state. This results from theof interaction in between the real PES is perhaps even more
fact that we foundwo stabilization points in the; trajecto- ~ apparent as Fig.(?) shows almost straight lines. The imagi-
ries (see Sec. IV A for nearly every point @4,Q,) and in  nary PES are shortly before separating becae is only
the majority of cases could not decide which one was thelightly greater than 0.35. Note the minor change in scale in
right one. Since together the two points formed a relativelybetween(b)—(d), (e), and(f), which however has no impact
broad double minimum in the “velocity” of they trajectory ~ on the points made above.
instead of the usual single distinct minimum, both stabiliza- It becomes clear that all features of the model are repro-
tion points yielded energies and widths which were veryduced at least qualitatively by the data. The seams of inter-
similar. But, even choosing in each case the one which gavactions form a closed loop and the real and imaginary seam
the most smooth curves still resulted in the wiggles shown irare connected bywo CCI points lying symmetrically to the
Fig. 6. This problem can be explained by the realization thaf)y axis. The most pronounced deviation in between the
by elongation of the C—CI bond, the basis functions placednodel and theab initio data results from the wiggles stem-
on the Cl atom are moved together with the atom, effectivelyming from the change of basis with growii@, . Addition-
resulting in a change of the basis set. The use of a largally, the model Hamiltonian from Sec. Il F is only an expan-
basis set presumably would solve this problem but is nosion up to the linear term, and is thus expected to deviate
practical for the calculation of the large number of pointsfrom theab initio data for larger values d@,/Q, . Keeping
required for our purpose. both these points in mind, the agreement between the model
Luckily, the wiggles are not pronounced in the interac-and theab initio data is astonishingly good.
tion region of the two resonance states. We thus restrict our- We are now in a position to point to a possible reason for
self to values oRQg in between 0.25 and 0.4 a.u. and further the deviation of the experimental from the calculated values
to values ofQ, less than 2°, satisfying the requirement of at the equilibrium geometry. Looking at the real parts of the
small deflections. The resulting 76 points, corresponding t&PES it is obvious that they repel each other with growing
in total 152 electron attachment energies and 152 widthsQ, . Thus, if some vibrational modes alog, are excited,
were used for a fit to the complete linear model discussed ione would measure a higher electron affinity for Efeand
Sec. IlIF to quantify the ten parametdes, «;, I';, «; (i a lower for thell* resonance states than at the equilibrium
=1,2) and\, 7. The results are summarized in Table I. geometry. This would nicely explain that our calculated en-
With a value of 0.024 for the sum of squared differencesgergy for theX* state apparently is too low and that for the
corresponding to a standard deviation of 9 meV, the fit isIT* state is too high. Using the model and the fitted param-
relatively good. Using the obtained parameters, we find theters one even obtains energies of 2.85 and 1.32 eV, respec-
following explicit values: Qg*%=0.3016a.u., Q4™ tively, for the upper and lower states a®4,Q,)=(0.0,

g

=0.3503a.u.Q5“'=0.3070 a.u., an@Q;*'=0.8766°. +20.0°), which are very close to the experimental values

In Fig. 7 we compare the PES from the fit with thb  (see above But, on the one hand such high deflectionQjn
initio data for some cuts through the PES orthogonal to thevould afford highly excited vibrational modes, and on the
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FIG. 7. (Color) Comparison of thab initio data on the chloroethene anion with the complete linear model. Several cuts through the PES of the two resonance
states are shown. Black circles were chosen forathénitio data of the upper curve and red squares for the data of the lower curve. The lines represent the
respective results obtained from the model; here, solid ones are negative electron attachment energies and dashed liaeshaidthan enlarged view of

Fig. 6 in the interaction region. The vertical dashed lines mark the locations of the cuts pictdbgd(fin These cuts are discussed in the text and lie at the
following values ofQq: (b) 0.3 a.u.;(c) 0.304 a.u.(d) 0.308 a.u.{e) 0.335 a.u.; andf) 0.35 a.u. For the fiQ, was converted to radiarisee Table), but

the figures are pictured wit,, in degrees.

other hand the fit to the model does not reproduceXhfe tories, or on the contrary no stabilization points could be
energy at Qq,Q,)=(0.0,0.0°) well(compare the value for found at all for configurations in theQy,Q,) region of in-
E, in Table | and the one derived from Fig. 6 given abpve teresf{see, e.g., Fig.(¢)]. The numerical problems of theb
Nevertheless, our explanation for the deviation at least holdmitio computations in the vicinity of these points can be
qualitatively. interpreted as a clear hint that there is indeed a discontinuity.
The goal to clearly reproduce the discontinuity in the Finally, let us have a look at the orbitals which get oc-
imaginary parts of the PES unfortunately could not becupied by the additional electron. Normally, propagator cal-
achieved. Just at those points where it was expected to occunlations result in so-called Dyson orbitals, which can be
i.e., near the CCI points, numerical problems occurred. Eiviewed as correlated generalizations of molecular orbffals.
ther additional stabilization points appeared in thérajec-  Since the Hamiltonian of the CABf?) method is complex,
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Equilibrium Geometry Near CCI-Point We systematically constructed several model Hamilto-
nians describing the vibronic coupling of two resonance
states, which also included the minimal model presented in
Ref. 17. In particular, we introduced the “complete linear”
model Hamiltonian which joins linear varying widths with a
complex linear coupling term. This choice has the great ad-
vantage of still being analytically solvable and led to the
interesting result of a closed loop of the intersection seams.
Let us mention that the model Hamiltonians investigated
here just include terms up to linear order and are thus only
valid in the vicinity of the reference geometry. Further ex-
FIG. 8. Generalized molecular orbitalsee the tejt calculated with  tensions of the model to increase the accuracy in regions

) ) . L . ' e
CAP/x'?) of the chloroethene anion at different points in nuclear coordmateiurther apart are straightforward—although more intricate
space. The chlorine atom is located at the upper right corner. At the equi-

librium geometry of neutral chloroethene, the orbitals are easily assigned tB10dels are not expected to possess explicit analytical solu-

be of o* and 7* type. But, near the CCI points, the real part of the orbital tions anymore.

with the lower energydesignated by “lower’ looks Iei(ke a mixing of both The most interesting finding was the occurrence of ex-

orbital types, whereas the one with the higher enddpsignated by “up- . . .

per”) shows no obvious mixing. Additionally, the imaginary parts of the f’iCtly_tWO intersection pOIhttS, where both the r?al an_d the

lower and upper orbitals have interchanged p|acesl |mag|nary pal’t Of the energIeS Coalesce, fOI‘ a” InveStIgated
model Hamiltonians. These two so-called complex conical

intersection points provided the reason to term this complex

we obtain complex continued Dyson orbitals here. We willanalog of conical intersections “doubly intersecting complex
call these orbitals generalized molecular orbit@8109) for ~ energy surfaces,” or DICES for short. Another feature ob-
simplicity. served in all cases was a discontinuity occurring in the
In Fig. 8 we show plots of the compact parts of the twoimaginary parts of the PES at the points where the seam of
GMOs, divided into their real and imaginary fractions. Note intersections of the real parts of the PES is located.
that the imaginary part is much more diffuse, i.e., the isoden- By calculating the PES of the resonance states of the
Slty surfaces pictured in Fig 8 are drawn at an approximateiyhloroethene anion we also demonstrated that the Complete
one order of magnitude smaller density for the imaginarylinear model Hamiltonian reprOduceS the qualitative features
part. Some interesting points can be seen immediately: At thef the PES quite nicely and also could be fitted reasonably
equilibrium geometry, both the real and the imaginary part ofvvell to theab initio data. Due to numerical problems, it was
the GMOs indeed look like typicar* and #* orbitals, but  hot possible to reproduce the discontinuity occurring in the
the imaginary part has the opposite phase of the real part. imaginary parts with the eXp|ICItIy calculated data. Further
For the GMOs near the CCI points there are some proWork possibly will clarify how this could be achieved.
found Changes_ Whereas the real part of the Ui@i]]maning The results from the fit of thab initio data of the reso-
higher in energyorbital does not look significantly different nance states of the chloroethene anion to the complete linear
from a #* orbital, the real part of the lower orbital shows model Hamiltonian strongly suggest that DICES play a
clear signs of a mixing of the™ and thec* orbitals. Addi-  Prominent role in the DEA process to chloroethene. Since
tionally, the imaginary parts of the two orbitals have inter-this molecule is the prototype for a great number of other
changed places; a*-like imaginary part pertains to the unsaturated halogenated compounds, the conclusion is evi-
7*-like real part and a clearly™*-like imaginary part to the dent that DICES are also responsible for the DEA process
mixed, but mostlyos*-like real part. This fits nicely with the taking place in these compounds.
picture obtained from the PES. The real parts of the PES Our work shed considerable light on the details of the
have already crossed at this point in nuclear coordinatéteraction of two resonance states through vibronic cou-
space, but not yet the imaginary parts_ Hence, the real arﬂing. Molecular dynamiCS calculations which make use of
imaginary parts of the orbitals correspond to the respectivéhis new description of intersections between metastable
parts of the complex energy. states are expected to give further interesting and illuminat-
ing results which finally will allow one to describe DEA
processes and related phenomena more completely.

o T lower

V. SUMMARY
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