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 Tyndall Avenue, Bristol BS8 lTL, U.K.

 (Received 13 June 1983)

 A quantal system in an eigenstate, slowly transported round a circuit C
 by varying parameters R in its Hamiltonian H(R), will acquire a geo-
 metrical phase factor exp {iy(C)} in addition to the familiar dynamical
 phase factor. An explicit general formula for y(C) is derived in terms of the
 spectrum and eigenstates of H(R) over a surface spanning C. If C lies near
 a degeneracy of H, y(C) takes a simple formi which includes as a special
 case the sign change of eigenfunctions of real symmetric matrices round a
 degeneracy. As an illustration y(C) is calculated for spinning particles in
 slowly-changing magnetic fields; although the sign reversal of spinors on
 rotation is a special case, the effect is predicted to occur for bosons as well
 as fermions, and a method for observing it is proposed. It is shown that the
 Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

 1. INTRODUCTION

 Imagine a quantal system whose Hamiltonian H describes the effects of an un-

 changing environment, and let the system be in a stationary state. If the environ-

 ment, and hence H, is slowly altered, it follows from the adiabatic theorem (Messiah

 I962) that at any instant the system will be in an eigenstate of the instantaneous H.

 In particular, if the Hamiltonian is returned to its original form the system will

 return to its original state, apart from a phase factor. This phase factor is observable

 by interference if the cycled system is recombined with another that was separated

 from it at an earlier time and whose Hamiltonian was kept constant.

 My purpose here is to explain how the phase factor contains a circuit-dependent

 component exp (iy) in addition to the familiar dynamical component exp ( - iEt/h)

 which accompanies the evolution of any stationary state. A general formula for y

 in terms of the eigenstates of H will be obtained in ? 2. If the circuit is close to a

 degeneracy in the spectrum of H, y takes a particularly simple form which will be

 derived in ? 3; this contains, as a special case, the sign change around a degeneracy

 of the eigenstates of a system whose Hamiltonian is real as well as Hermitian

 (Herzberg & Longuet-Higgins i963; Longuet-Higgins I975; Mead I979; Mead &

 Truhlar I 979; Mead I 980 a, b; Berry & Wilkinson I 984).

 A particle of any spin in an eigenstate of a slowly-rotated magnetic field is another

 case where y canl be calculated explicitly (? 4), anid gives predictions that could be

 [ 45 1
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 46 M. V. Berry

 tested experimentally. This phase factor exists for bosons as well as fermions.

 A special case is the sign change of spinors slowly rotated by 2n, predicted by

 Aharonov & Susskind (I967); this will be shown to be different from the dynamical

 phase factors measured in experiments on precessing neutrons (reviewed by

 Silverman I980).

 Finally, it is shown in ? 5 that physical effects of magnetic vector potentials in

 the absence of fields, predicted by Aharonov & Bohm (I959) and observed by
 Chambers (i 960), can be understood as special cases of the geometrical phase factor.

 2. GENERAL FORMULA FOR PHASE FACTOR

 Let the Hamiltonian H be changed by varying parameters R = (X, Y,...) on

 which it depends. Then the excursion of the system between times t = 0 and t = T

 can be pictured as transport round a closed path R(t) in parameter space, with

 Hamiltonian H(R(t)) and such that R(T) = R(O). The path will henceforth be called

 a circuit and denoted by C. For the adiabatic approximation to apply, T must be

 large.

 The state I fr(t)> of the system evolves according to Schrodinger's equation

 H(R(t)) l?0r(> = it 132(t>. (1)

 At any instant, the natural basis consists of the eigenstates In(R)> (assumed

 discrete) of H(R) for R = R(t), that satisfy

 11(R) In(R)) = En(R) In(R)>, (2)

 with energies En(R). This eigenvalue equation implies no relation between the
 phases of the eigenstates In(R)> at different R. For present purposes any (differen-
 tiable) choice of phases can be made, provided In(R)> is single-valued in a parameter

 domain that includes the circuit C.

 Adiabatically, a system prepared in one of these states In(R(O))> will evolve withi
 H and so be in the state In(R(t))> at t.

 Thus I If > can be written as

 13bt> = exp ( ijif dt'En(R (t')) exp (iyn (t) I n(R(t))>. (3)

 The first exponential is the familiar dynamical phase factor. In this paper the object

 of attention is the second exponential. The crucial point will be that its phase y,(t) is
 non-integrable; yn cannot be written as a function of R and in particular is not

 single-valued under continuation around a circuit, i.e. Yn(T) # yn(O).

 The function yn(t) is determined by the requirement that I b(t)> satisfy Schr6-
 dinger's equation, and direct substitution of (3) into (1) leads to

 n (t) =i (n (R(t)) I VRn (R(t))> *R(t). (4)
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 Phase factors accompanying adiabatic changes 47

 The total phase change of I3>) round C is given by

 (T) > = exp (iy.(C)) exp (jf dtEn(R(t)4I ?f(O))> (5)

 where the geometrical phase change is

 Yn(C) = i <n(R)| VRn(R)>*dR. (6)
 c

 Thus yn(C) is given by a circuit integral in parameter space and is independent of
 how the circuit is traversed (provided of course that this is slow enough for the

 adiabatic approximation to hold). The normalization of In> implies that (nIVRn>
 is imaginary, which guarantees that Yn is real.

 Direct evaluation of IVRn> requires a locally single-valued basis for In> and can
 be awkward. Such difficulties are avoided by transforming the circuit integral (6)
 into a surface integral over any surface in parameter space whose boundary is C. In

 order to employ familiar vector calculus, parameter space will be considered as

 three-dimensional, and this will turn out to be the important case in applications;

 the generalization to higher dimensions will be outlined at the end of this section.

 Stokes's theorem applied to (6) gives, in an obvious abbreviated notation.

 Yn(C) =-Imff dS- V x (nl Vn>, (7a)

 =-Imjj dS.(Vnl x IVn>, (7b)

 =-Imff dS E KVnlm>x<mlVn>, (7 c)

 where dS denotes area element in R space and the exclusion in the summation is

 justified by <nI Vn> being imaginary. The off-diagonal elements are obtained from
 (2) as

 <mJVn>=K<mlVHIn>/(En-Em), m/zn. (8)
 Thus yn can be expressed as

 Yn(C) = jjdS. Vn(R), (9)
 where

 Vn(R) =-Im , (n(R) I VR H(R) I m(R)> x <m(R)|I VR H(R) I n(R)> (10)
 m#An (Em(R) -En(R))2

 Obviously yn(C) is zero for a circuit which retraces itself and so encloses no area.
 Equations (9) and (10) embody the central results of this paper. Because the

 dependence on I Vn> has been eliminated, phase relations between eigenstates with
 different parameters are now immaterial, and (as is evident from the form of (10)),

 it is no longer necessary to choose I m> and In> to be single-valued in R: any solutions
 of (2) may be employed without affecting the value of Vn. This is a surprising
 conclusion, as can be seen by comparing (9) with (7a) which show that Vn is the
 curl of a vector, <nlVn>, and <nlVn> certainly does depend on the choice of phase
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 48 M. V. Berry

 of the (single-valued) eigenstate In(R)>. The dependence on phase is of the following
 kind: if In> -? exp {i,u(R)} In> then (n Vn> -* <n Vn> + iV,u (in another context the
 importance of such gauge transformations has been emphasized by Wu & Yang

 (I 975)). Thus the vector is not unique but its curl is. The quantity V. is analogous to
 a 'magnetic field' (in parameter space) whose 'vector potential' is Im Kn I Vn>. In
 Appendix A it is shown directly from (10) that V* V. vanishes, thus confirming that
 (9) gives a unique value for y.(C).

 Using perturbation theory, Mead & Truhlar (I979) obtained essentially the
 formulae (9) and (10) for an infinitesimal circuit, in a study of molecular electronic

 states which (in the Born-Oppenheimer approximation) depend parametrically on

 nuclear coordinates. Their phase factor was not intended to apply to a J3f> that
 evolves slowly under the time-dependent Schr6dinger equation, but to the variation

 of eigenstates In> under a particular phase-continuation rule in R-space which can
 be shown to give the same result.

 In parameter spaces of higher dimension, Stokes's theorem cannot be employed to

 transform the circuit integral (6). The appropriate generalization, provided by the

 theory of differential forms (see, for example, Arnold I978, chap. 7), transforms (6)

 into the integral of a 2-form over a surface bounded by C. The surprising result (10)

 can now be expressed as follows: independently of the choice of phases of the

 eigenstates, there exists in parameter space a phase 2-form, which gives y(C) when

 integrated over any surface spanning C. This 2-form is obtained from (10) by

 replacing V by the exterior derivative d and x by the wedge product A. The validity

 of this generalization is consistent with the observation that in the three-dimensional

 version there are infinitely many choices of interpolating Hamiltonian (and hence

 of parameter spaces) on the surfaces bounded by C, and the geometrical phase

 factor is independent of the choice.

 Professor Barry Simon (I983), commenting on the original version of this paper,

 points out that the geometrical phase factor has a mathematical interpretation in

 terms of holonomy, with the phase two-form emerging naturally (in the form (7 b))

 as the curvature (first Chern class) of a Hermitian line bundle.

 3. DEGENERACIES

 The energy denominators in (10) show that if the circuit C lies close to a point R*

 in parameter space at which the state n is involved in a degeneracy, then V,(R), and

 hence y.(C), is dominated by the terms m corresponding to the other states involved.
 We shall consider the commonest situation, where the degeneracy involves only

 two states, to be denoted + and -, where E+(R) > E_(R). For R near R*, H(R)
 can be expanded to first order in R - R*, and

 V+(R) =Im <+ (R)l VH(R*) -(R)> x <- (R)| VH(R*)l + (R)>
 OisV_(R) =-V+(R), so that y_(CE =R-E-(R .

 Obviously It(R) =-V,(R), so that y4C) = -y- C)
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 Phase factors accompanying adiabatic changes 49

 Without essential loss of generality we can take E?(R*) = 0 and R* = 0. H(R)
 can be represented by a 2 x 2 Hermitian matrix coupling the two states. The most

 general such matrix satisfying the given conditions depends on three parameters

 X, Y, Z which will be taken as components of R, and by linear transformation in

 R-space can be brought into the following standard form

 H(J.) = 2 [X+iY Z]l12 )

 The eigenvalues are

 E+(R) =-E_(R) = 2X2+ 2 Z2) =fR. (13)

 Thus the degeneracy is an isolated point at which all three parameters vanish. This

 illustrates an old result of Von Neumann & Wigner (I 929): for generic Hamiltonians

 (Hermitian matrices), it is necessary to vary three parameters in order to make a

 degeneracy occur accidentally, that is, not on account of symmetry. Alternatively

 stated, degeneracies have co-dimension three.

 The form (12) was chosen to exploit the fact that

 VH 2A' (14)

 where the components crx, ay, c&z of the vector operator a are the Pauli spin
 matrices. When evaluating the matrix elements in (11) it greatly simplifies the

 calculations to take advantage of the isotropy of spin and temporarily rotate axes

 so that the Z-axis points along R, and to employ the following relations, which

 come from the commutation laws between the components of e':

 ax +> =+>, ay l>i> iT>, C ?Z ? +> = (15)
 With these rotated axes, (11) gives

 TK+ = (Im<+I&y I-><-I&Jz+?>)/2R2=0,
 V+ = (ImK<?+Iz ->K-<I&x+?>)/2R2==0, (16)

 Vz+JIm?<I+ I 0&x I>K 1&y l > = 1/2R2. J

 Reverting to unrotated axes, we obtain

 V+(R) = R/2R3. (17)

 Now use of (9) shows that the phase change y+(C) is the flux through C of the
 magnetic field of a monopole with strength - -1 located at the degeneracy. Thus we

 obtain the pleasant result, valid for the natural choice (12) of standard form for H,

 that the geometrical phase factor associated with C is

 exp {iy?(C)} = exp {+iQ(C)}, (18)

 where Q(C) is the solid angle that C subtends at the degeneracy; Q is, in a sense,
 a measure of the view of the circuit as seen from the degeneracy. The phase factor is
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 50 M. V. Berry

 independent of the choice of surface spanning C, because Q can change only in

 multiples of 42t (when the surface is deformed to pass through the degeneracy).

 An important special case of (18) occurs when C consists entirely of real Hamil-

 tonians and so is confined to the plane Y = 0 (cf. (12)). The energy levels E? inter-

 sect conically in the space E, X, Z, whose origin, where the degeneracy occurs,

 is a 'diabolical point' of the type recently studied by Berry & Wilkinson (I984) in

 the spectra of triangles. This illustrates the result that for real symmetric matrices,

 degeneracies have co-dimension two: see Appendix 10 of Arnold I 978. If C encloses

 the degeneracy, Q = + 27r; if not, Q = 0. Thus the phase factor (18) is

 exp {iy?(C)} =- 1, if C encircles the degeneracy,

 _ ? 1, otherwise, (19)

 which expresses the sign changes of real wavefunctions as a degeneracy involving

 them is encircled, a phenomenon first described by Herzberg & Longuet-Higgins

 (I963). (Sign changes are not restricted to circuits involving real Hamiltonians:

 (18) shows that the phase factor is - I if C lies in any plane through the degeneracy

 and encircles it.)

 Confirmation of the correctness of (17) can be obtained without the rotation-of-

 axes trick, by a lengthy calculation of (11) involving explicit formulae for the

 eigenvectors I ? (R)> of the matrix (12). Alternatively, direct continuation of the
 eigenvectors may be attempted. This cannot be accomplished for all circuits by

 means of (6) because it is not possible to construct eigenvectors that are globally

 single-valued continuous functions of R; multivaluedness can be reduced to

 singular lines connecting the degeneracy with infinity, and in the analogue V(R)

 these appear as Dirac strings attached to the monopole. Such approaches obscure

 the simplicity and essential isotropy of the solid-angle result (17).

 Using topological arguments not involving explicit formulae for yn(C), Stone
 ( 976) proved that if C is expanded from one point R and contracted on to another

 so as to sweep out a surface enclosing a degeneracy, then the geometrical phase

 factor traverses a circle in its Argand plane. This property (which follows easily

 from (18)), is the Hermitian generalization of the sign-reversal test for degeneracy.

 4. SPINS IN MAGNETIC FIELDS

 A particle with spin s (integer or half-integer) interacts with a magnetic field B
 via the Hamiltonian

 11(B) = KhBS *, (20)

 where K is a constant involving the gyromagnetic ratio and s is the vector spin

 operator with 2s + 1 eigenvalues n with integer spacing and that lie between -s
 and + s. The eigenvalues are

 En(B) = KIBn, (21)

 and so there is a (2s + 1)-fold degeneracy when B = 0. (The special case s-
 reproduices the two-fold degeneracy considered in the last section.) We consider
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 Phase factors accompanying adiabatic changes 51

 the components of B as the parameters R in our previous analysis, and calculate the

 phase change y.(C) of an eigenstate In, s(B)> of s in the direction along B, as B is
 slowly varied (and hence the spin rotated) round a circuit C.

 The vector Vn(B) as given by (10) can be expressed by using (20) and (21) as

 V I(B) = m <n, s(B) .sjm, s(B)> x <m, s(B) .s n, s(B)> (22)
 mB2 =- n (mr-n)2

 To evaluate the matrix elements we again temporarily rotate axes so that the

 Z-axis points along B, and employ the following generalization of (15):

 (^x + is'y) In, 8> = [8(,s+ 1) -n(n + 1)1 In + l ,s>,;
 (8^x-isy) In,s> = [s(s+ 1)-n(n-1)]j In-I,s), j (23)
 3z In,3>= n In,,s>.J

 It is clear that only states with m = n + 1 are coupled with In> in (22), and that Vx

 and VI are zero because they involve off-diagonal elements of 8^z. To find Vz, we make
 use of (23) to obtain

 <n Jr 1, s 1sx In, s> = 1 [s(S+ 1) -n(n + 1)], f(24
 <n 1,sI sy In,s> = + 'i[s(s+ 1)-n(n+ 1],J(

 then (22) gives

 Vzn= J2m(n j3Sx In + 1> Kn + 1 15Y In>-KnI 8s In + 1> (n + 11,sx In>

 +KnI s1X n- I><n-ls y In>-Kn1Iy i n- 1I>Kn- 1i sx n>}

 n (25)
 B2 .

 Reverting to unrotated axes, we obtain

 Vn(B) =- nB/B3. (26)

 Now, use of (9) shows that yn(C) is the flux through C of the 'magnetic field' of a
 monopole - n located at the origin of magnetic field space. Thus the geometrical

 phase factor is

 exp{iyn(C)} = exp{-inQ(C)}, (27)

 where Q(C) is the solid angle that C subtends at B = 0. Note that yn depeinds only
 on the eigenvalue n of the spin component along B and not on the spin s of the

 particle, so that yn is insensitive to the strength 2s + 1 of the degeneracy at B = 0.
 It follows from (27) that any phase change can be produced by varying B round

 a suitable circuit. For fermions (half-integer n), a whole turn of B (rotation through

 2t in a plane, giving Q = 2nt) produces a phase factor - 1. In the special case n = 2
 this shows that the sign change of spinors on rotation and the sign change of wave-

 functions round a degeneracy have the same mathematical origin. For bosons

 (integer n), a whole turn of B produces a phase factor + 1. To produice a sign change,
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 P2 M. V. Berry

 different circuits are required; if n = 1, for example, varying B round a cone of

 semiangle 60? will give Q = y = i and hence a phase factor - 1.

 The following experiment could be carried out to test the predictions embodied

 in (27). A polarized monoenergetic beam of particles in spin state n along a magnetic

 field, B is split into two. Along the path of one beam B is kept constant. Along the

 path of the other beam, B is kept constant in magnitude but its direction is varied

 slowly (in comparison with the dynamical precession frequency) round a circuit C

 subtending a solid angle Q, the field being generated by an arrangement enabling

 Q to be changed. The beams are then combined and the count rate at a detector is

 measured as a function of Q. The dynamical phase factor (the second exponential

 in (5) is the same for both beams because the energy En(B) (21) is insensitive to the
 direction of B. There will in addition be a propagation phase factor which can be

 made unity by adjusting the path-length of one of the beams when Q = 0. The

 resulting fringes occur as a consequence of the geometrical phase factor. If C is a

 circuit round a cone of semiangle 0, the predicted intensity contrast is

 I(0) = COS2(nir(1-cos 0)). (28)

 I wish to emphasize that this proposed experiment is different from those carried

 out by Rauch et al. (I975, I978) and Werner et al. (I975) (see Silverman I980) with
 unpolarized neutrons in a constant magnetic field. Those neutrons were not in an

 eigenstate, and their phase changed dynamically, rather than geometrically, under

 the Hamiltonian (20) (with B along Z and a replacing s) according to the evolution

 operator

 exp (-iHt/lh) = exp (- BKtz) = cos -KBt [o 1] + i sin 2IKBt [0 Ij. (29)

 The sign changed whenever -KBt was an odd multiple of i, and this was interpreted

 on the basis of precession theory as corresponding to odd numnbers of complete

 rotations about B.

 5. AHARONOv-BOHM EFFECT

 Consider a magnetic field consisting of a single line with flux 0. For positions R

 not on the flux line, the field is zero but there must be a vector potential A(R)

 satisfying

 A(R)*dR = P, (30)
 c

 for circuits C threaded by the flux line. Aharonov & Bohm (I959) showed that in
 quantum mechanics such vector potentials have physical significance even though

 they correspond to zero field. I shall now show how their effect can be interpreted as

 a geometrical phase change of the type described in ? 2.

 Let the quantal system consist of particles with charge q confined to a box

 situated at R and Inot penetrate(d bv the fluix line (figiure 1). In the absence of flux
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 flux

 line

 FIGURE 1. Aharonov-Bohm effect in a box transported round a flux line.

 (A = 0), the particle Hamiltonian depends on position r' and conjugate momentum

 p as follows:

 H-= H(p, f - R), (31)

 and the wavefunctions have the form 3fn(r - R) with energies En independent of R.
 With non-zero flux, the states In(R)> satisfy

 H(p-qA (r),r-R ) I n(R)> = E, I n(R)>, (32)

 an equation whose exact solutions are obtained by multiplying Wn by an appropriate

 Dirac phase factor, giving

 <rl n(R)> = exp {iq dr' A(r')4 }n(r- R). (33)

 These solutions are single-valued in r and (locally) in R. The energies are
 unaffected the vector potential.

 Now let the box be transported round a circuit C threaded by the flux line; in

 this particular case it is not necessary that the transport be adiabatic. After com-

 pletion of the circuit there will be a geometrical phase change that can be calculated
 from (6) and (33) by using

 Kn(R)l VRn(R)> = fJdd3rVf(r-R) ( A(R) Vff(r - R) + VRfn(r-R)}

 = -iqA(R)/hi. (34)

This content downloaded from 131.111.112.101 on Thu, 06 Dec 2018 16:36:04 UTC
All use subject to https://about.jstor.org/terms



 54 M. V. Berry

 (The vanishing of the second term in braces follows from the normalization of lf..)
 Evidently in this example the analogy between Im <n IVn) and a magnetic vector
 potential becomes a reality. Thus

 Yn(C) = q A(R)dR = qi/lh, (35)

 which shows that the phase factor is independent of n, and also of C if this winds

 once round the flux line. The phase factor could be observed by interference

 between the particles in the transported box and those in a box which was not

 transported round the circuit.

 In elementary presentations of the Aharonov-Bohm effect (including its antici-

 pation by Ehrenburg & Siday 1949), the Dirac phase factor is often invoked in
 comparing systems passing opposite sides of a flux line. Such invocations are subject

 to the objection that the wavefunction thus obtained is not single-valued. One way

 to avoid this objection is by summation over all contributions (whirling waves)

 representing different windings round the flux line (Schulman I98i; Berry i980;

 Morandi & Menossi I 984). Another way, adopted in the original paper by Aharonov

 & Bohm, is to solve Schr6dinger's equation exactly for scattering in the flux line's

 vector potential. The argument of the preceding paragraphs, which employs the

 geometrical phase factor, is a third way of obtaining the Aharonov-Bohm effect

 by using only single-va.lued wavefunctions.

 Mead (i980a,b), employs the term 'molecular Aharonov-Bohm effect' in a

 different context, to describe how degeneracies in electron energy levels affect the

 spectrum of nuclear vibrations. He explains two options, both leading to the same

 vibration spectrum. The first option is to continue the electronic states round

 degeneracies (in the space of nuclear coordinates) in the manner described in this

 paper, thus causing the electronic wavefunctions to be multi-valued, with a com-

 pensating multi-valuedness in the nuclear states, which must be incorporated into

 their boundary conditions. The alternative is to enforce single-valuedness on the

 electronic (and hence also the nuclear) states, and this introduces a vector potential

 into the Schr6dinger equation for nuclear motion. In general one may expect such

 effects whenever an isolated system is considered as being divided into two inter-

 acting parts, each slaved to a different aspect of the other (in the molecular case,

 electron states are slaved to nuclear coordinates, and nuclear states are slaved to the

 electronic states and wavefunctions). The systems considered in this paper might be

 regarded as a special case, in which the coupling is with 'the rest of the Universe'

 (including us as observers). The only role of the rest of the Universe is to provide a

 Hamiltoniaan with slowly-varying parameters, thus forcing the system to evolve

 adiabatically with phase continuation governed by the time-dependent Schr6dinger

 equation.
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 Phase factors accompanying adiabatic changes 55

 6. DiscusSION

 A system slowly transported round a circuit will return in its original state; this

 is the content of the adiabatic theorem. Moreover its internal clocks will register the

 passage of time; this can be regarded as the meaning of the dynamical phase factor.

 The remarkable and rather mysterious result of this paper is that in addition the

 system records its history in a deeply geometrical way, whose natural formulation

 (9) and (10) involves phase functions hidden in parameter-space regions which

 the system has not visited.

 The total phase of the transported state (5) is dominated by the dynamical part,

 because T - oo in the adiabatic limit, and it might be thought that this must over-

 whelm the geometrical phase Yn and make its physical effects difficult to detect.
 This objection can be met by observing that the strengths of non-adiabatic transi-

 tions are exponentially small in T if Hchanges smoothly (Hwang & Pechukas I977),
 so that essentially adiabatic evolution can occur even when the dynamical phase is

 only a few times greater than 2X.

 As we saw in ? 3, degeneracies in the spectrum of H(R) are the singularities of the

 vector V(R) (equation (10)) in parameter space, and so have an important effect on

 the geometrical phase factor. This is reminiscent of the part played by singularities

 of an analytic function, but the analogy is imperfect: if y(C) were completely

 singularity-determined, 1V(R) would be the sum of the 'magnetic fields' of 'mono-

 poles' situated at the degeneracies (cf. (17)) and so would have zero curl, which is

 not the case (zero curl, unlike zero divergence, is not a property which is invariant

 under deformations of R space, and in the general case the sources of V are not just

 monopoles but also 'currents' distributed continuously in parameter space).

 A closer analogy is with wavefront dislocation lines, which are phase singularities of

 complex wavefunctions in three-dimensional position space (Nye & Berry I974;
 Nye I98I; Berry I98I), that dominate the geometry of wavefronts without com-

 pletely determining them.

 In view of the emphasis on degeneracies as organizing centres for phase changes,
 it is worth remarking that close approach of energy levels is not a necessary condition

 for the existence of nontrivial geometrical phase factors. Indeed, our examples have
 shown that y(C) can be non-zero even if C involves isospectral deformations of H(R)

 (in the Aharonov-Bohm illustration, the levels En do not depend on R at all).
 The results obtained here are not restricted to quantum mechanics, but apply

 more generally, to the phase of eigenvectors of any Hermitian matrices under a

 natural continuation in parameter space. Therefore they have implications through-

 out wave physics. For example, the electromagnetic field of a single mode travelling

 along an optical fibre will change sign if the cross section of the fibre is slowly

 altered so that its path (in the space of shapes) surrounds a shape for which the

 spectrum of the Helmholtz equation is degenerate (such as one of the diabolical

 triangles discovered by Berry & Wilkinson 1984).
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 I thank Dr J. H. Hannay, Dr E. J. Heller and Dr B. R. Pollard for several sug-

 gestions, and Professor Barry Simon for showing me, before publication, his paper

 which comments on this one. This work was not supported by any military agency.
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 APPENDIX A

 To show that y(C) is independent of the surface spanning C, it is necessary to
 prove that V(R) (equation (10)) has zero divergence. This can be accomplished by
 expressing V in terms of the vector Hermitian operator B defined by

 B_-iElVn><nI. (A1)
 n

 From (8), the off-diagonal elements of B are

 /ANl I Dm IA\ (m H In/E, -7 E .A. /X :7\A n / (A 2s
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 Phase factors accompanying adiabatic changes 57

 Thus (10) becomes

 V= Im<nIBxBIn>. (A3)

 Now we can calculate the divergence:

 V * V =JIm {<Vnj* BxlBn>+<nl Bx BIVn>+KnlV*(BxB)In>}, (A4)
 Use of a consequence of (A 1), namely

 IVn> = iBIn> (A 5)
 gives

 V.V=n(-B BxB+BxB B)In>+Jm<nI(VxB'B-B VxBln>. (A6)

 For the curl of B, (A l) and (A 5) give

 VxB = +iX, IVn>xKVnI = i BIn>xKnlB = iBxB>, (A7)
 n n

 whence V* V vanishes by the dot-cross rule for triple products.
 This result is valid everywhere except at the 'monopole' singularities arising

 from degeneracies.
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