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Abstract
A simple and accurate numerical technique for finding eigenvalues, node structure, and expectation
values of  -symmetric potentials is devised. The approach involves expanding the solution to the
Schrödinger equation in series involving powers of both the coordinate and the energy. The technique
is designed to allow one to impose boundary conditions in  -symmetric pairs of Stokes sectors. The
method is illustrated by usingmany examples of  -symmetric potentials in both the unbroken- and
broken- -symmetric regions.

1.Numerical procedure

The area of research known as  -symmetric quantum theory beganwith the discovery that the complex
 -symmetric Schrödinger equation

z z z E zi 1Ny y y-  - =( ) ( ) ( ) ( ) ( )

has real spectra ifN�2 [1–3]. This is called the region of unbroken  symmetry. If 0<N<2 the spectrum
is partly real and partly complex; this is called the region of broken  symmetry. Since this early work, research
on  -symmetric systems has spread tomany other areas of physics such as optics [4–6] and nonlinear wave
equations [7, 8] tomention just a few.

IfN is integer, the eigenfunctions are entire functions and the complex plane splits naturally intoN+2
Stokeswedges. (For the numerical technique described in this paperN need not be an integer, as wewill see in
section 3). Energy quantization is a consequence of demanding thatψ(z)decay exponentially in a
 -symmetric pair of Stokes sectors. For any energyE, real or complex, there is a solution that decays
exponentially in any givenwedge. For special values ofE one canfind solutions that decay in two
(noncontiguous)wedges. (Note thatwe are using the notation−(iz)N that was used in [1] to represent
 -symmetric potentials. Subsequently, the notation x xi2 e( ) was used.However, the original notation ismore
suitable for the series techniques described in this paper.)

In [9] a technique for finding the eigenvalues of a Schrödinger equation (1)was explored that involved
expanding the eigenfunctions as formal perturbation series in powers of the energyE. The techniquewas
moderately effective, although it sometimes required the use of summation techniques to handle divergent
series. In this paper we extend this technique to include series in powers of both iz andE. Consider the double
power series
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where the ap,q are constants. Because the parameterN appears in the power of iz, if we insert this series into the
Schrödinger equation (1), we obtain a particularly simple recursion relation for the coefficients ap,q:

N p q N p q a a a2 2 1 2 2 . 3p q p q p q, 1, , 1+ + - + + = +- -[( ) ][( ) ] ( )

Viewing ap,q as amatrix, (3) expresses the element ap,q in terms of the elements that are immediately
adjacent. Thus, onfixing the top left element a0,0 one can, in principle, determine all the other elements. For the
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convenient choice a0,0=1 all the ap, q are positive rational numbers. (This is because the  symmetry of the
series representation is enforced by this structure).With this choiceψ1(0)=1 and 0 01y¢ =( ) .

A second solution of the Schrödinger equation is
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where the coefficients bp, q satisfy the recursion relation

N p q N p q b b b2 2 2 2 1 . 5p q p q p q, 1, , 1+ + + + + = +- -[( ) ][( ) ] ( )

It is convenient to take b0,0=1 so thatψ2(0)=0 and i02y¢ =( ) .
Now consider a linear combination of the two solutions

z z c z ,1 2y y y= +( ) ( ) ( )

where c is a complex constant. By a suitable choice of c one can ensure thatψ(z) decays exponentially in any one
of theN+2 Stokes sectors. For example, to obtain decay in the sector centered at (the anti-Stokes line)
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Thisworks for anyE but it only gives a decayingwave function in one of theN+2 sectors. However, the key
point of this paper is that if both E and c are real, then the solution will also decay in the  image of the sector.This
is the crucial step in the numerical procedure because itmakes explicit use of the  symmetry of the potential.

To determine the spectrum associatedwith a  symmetric pair of sectors it suffices to determine the real
energies for which c is real. This can be implemented graphically by plotting Im c as a function ofE. The zeros of
this plot correspond to the energy levels. Infigure 1 Im c is plotted forN=3.Note that as E increases, Im c
approaches zero in an oscillatory fashion. Im c has no roots for negative E. To produce this plot wemade two
approximations:

(i) In the double power series (2) and (4)we retained all termswith p+q�100.

(ii) In (6) a largefinite value of r (in this case r=8)was taken instead of the r  ¥ limit.

Inmatrix language the truncation is anti-diagonal in the sense that entries below the p+q=100 line are
discarded. By applying a root-finding algorithm to the approximation for c(E)we can compute the energy levels
and associated values of Re c. These are given in table 1.

For large values of n the value of cn is approximately En- . To investigate the accuracy of the numerical
scheme one can vary the p+q�100 truncation and the r value. The numerical results for thefirst few energy
levels are not affected by taking r=7 instead of r=8 at least to 20 significant figures. Similarly, increasing the
truncation to p+q�150 does not change the first few energy levels (again to 20 significant figures). However,
the higher energy levels aremore sensitive to changes in r and to the truncation.We have quoted E4 to 17 rather
than 20 significant figures as themissing three digits changewhen the truncation is improved. For higher n the
accuracy drops further. As the double power series are expansions in iz andE, we expect that the truncation is
less accurate for higher energies. Our energy levels are consistent with theRunge-Kutta based results reported
in [10].

For higherN there ismore than one pair of (nonadjacent)  -symmetric sectors [11]. Indeed, ifN is odd,
there are N 11

2
-( ) such pairs. IfN is even, there are N 21

2
+( ) pairs; one of these pairs is both  symmetric

Figure 1.The value of Im c plotted as a function of E. The first few energy levels in theN=3 theory appear as roots of Im c.
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and  symmetric. The graphicalmethod used here is also applicable in this case but the energy eigenstates are of
the formψ1 (even parity) orψ2 (odd parity). In this case onemay have to interchange the roles ofψ1 andψ2 in (6)
to obtain all the eigenvalues. (This is discussed in section 3).

To illustrate what happens for large values ofNwe examine the caseN=7. There are three  -symmetric
pairs ifN=7. Each pair gives a distinct real and positive spectrum; Im c is plotted infigure 2 as a function ofE
for the three pairs.

For higher n theEn have ratios 1.41: 1: 3.52 [11]. Although ourmethod is adapted to small n, such behavior is
evident in the third excited state; E3 has values 23.702, 16.872, 59.026. The ratios of the energies are different;E0
has values 1.6047, 1.2247, 3.0686.

For the upper spectrum (that is, withwedges centered at θ=π/6 and θ=5π/6) the cn values are positive
with c En n» for large n. The other two spectra yield negative cnwith c En n» - . The plots were produced
via the same p+q�100 truncation but with r=3 rather than r=83. Similar results can be obtained for
higherN. For example, theN=19model has 9 distinct spectra (4 giving positive cn, 5 with negative cn).

2.Nodes and expectation values

The truncations considered here can be used to identify the nodes and expectation values of the energy
eigenstates. Although our truncation is inaccurate for large enough z∣ ∣, at least for the first few energy levels the

Table 1.Energy levels and c values in theN=3 theory.

n En cn

0 1.1562670719881132937 −0.53871550451988192490

1 4.1092287528096515358 −2.32727424075874334001

2 7.5622738549788280413 −2.69833514190279036708

3 11.314421820195804397 −3.37823419494258452822

4 15.291553750392532 −3.90980926012776641

5 19.451529130691 −4.41178037226863

6 23.766740435 −4.87570168194

7 28.2175249 −5.312499663

Figure 2. Im c in theN=7 theory for three  -symmetric spectra. The upper left plot is for thewedges centered at θ=π/6 and
5 6;q p= the upper right plot haswedges centered at θ=−π/18 and θ=−17π/18; the lower plot haswedges centered at

θ=−5π/18 and θ=−13π/18.

3
ForN=7 the truncation breaks down for lower z∣ ∣.
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nodes are close enough to the origin for them to be determinedwith high precision. Returning to theN=3 case,
we note that all energy eigenfunctions have an infinite string of zeros on the positive imaginary axis; for each
energy level these lie above the classical turning point at iEn

1 3. In addition, the nth excited state has nnodes
below the real axis (thefirst excited state has a node at z=−0.661296226442715413308i). The nnodes arch
above and between the classical turning points at E en

1 3 i 6p- and E en
1 3 5 i 6p- [12].

An interesting question considered in [13] is the precise formof the arch for large n. Unlike theN=2
harmonic oscillator the nodes do not lie on the classical trajectory joining two turning points. In fact, forN=3
this trajectory is exactly circular with its center at the turning point on the imaginary axis [14].

The approximationmethod introduced heremay be used to compute expectation values. Ifψ(z) is an energy
eigenstate, then the expectation value of zm is a ratio of contour integrals4:

z
z z z z
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whereC is any curve that divides the complex plane in two and starts in onewedge and ends in the
 -symmetric wedge. ForN=3 one can simply chooseC to be the real line:
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whereψ n is the nth energy eigenstate (n=0, 1, 2, 3,K). As thewave functions decay exponentially these
integrals over the real line are well approximated by integrals over a finite range [−λ,λ] for sufficiently largeλ.
We have computed expectation values for the first few energy eigenstates in theN=3model.We have cut off
the integrals atλ=5 and have approximated theψ1 andψ2 with the truncation (p+q�100) described above.
Plots of thewave functions indicate that the cut offλ=5 is a good approximation for the first few eigenstates; a
plot ofψ3(x) is given infigure 3 and the expectation values zm

ná ñ in theN=3 are listed in table 2.
In our approximation z m

2á ñ is small ( z 102
0

11á ñ » - ). This is because z n
2á ñ is exactly zero. To seewhy this is

true, we note that I x x x x xd d2 2 1

3
3 2ò òy y= =

-¥

¥

-¥

¥
( ) ( ) ( ). Upon integrating by parts, we get

I x x x xd2

3
3ò y y= - ¢

-¥

¥
( ) ( ). Finally, we use the Schrödinger equation (1)withN=3 to replace x3ψ(x)with a

linear combination of xy( ) andψ(x) and observe that each term is an exact derivative that integrates to zero.

Figure 3.Eigenfunction for the third excited state forN=3 plotted along the real axis.

Table 2.Expectation values zm
ná ñ in theN=3 theory.

n 0 1 2 3

m

1 −0.5900725330i −0.9820718380i −1.2054807539i −1.3796870779i

2 0 0 0 0

3 −0.4625068288i −1.6436915011i −3.0249095421i −4.5257687286i

4 −0.3898751086 −2.3060330480 −5.2092431933 −8.9202066199

4
Note that ifψ is not an energy eigenstate, this formula is not valid. Expectation valuesmust then be computed via amodified inner product

in terms of a newoperator  [15]. This inner product is related to the standardDirac inner product via a nonunitary similarity
transformation [16].
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For generalN similar calculations indicate that zN
n

1á ñ- is zero for all  -symmetric pairs of Stokeswedges.
This is a  -symmetric example of the Ehrenfest theorem.One can also see a  -symmetric virial theorem in
theN=3 expectation values; z n

3á ñ is exactly Ei n
2

5
- . This can bewritten as V En n

2

5
á ñ = .

3.Numerical scheme applied to other potentials

The numerical scheme described in section 1 does not require thatN be an integer. Therefore, we can consider
noninteger values ofN in both the broken and unbroken  -symmetric regions.Wefirst study three values of
N in the  broken region:N=1.1, 1.5, 1.9. As one can see in [1] there is only one real eigenvalue forN= 1.1,
three real eigenvalues forN= 1.5, andmany real eigenvalues forN= 1.9 as indicated by the results infigure 4
and table 3.

Next we examine two values ofN in the  unbroken region:N=2.1 andN=2.5. In this case there are an
infinite number of real eigenvalues and no complex eigenvalues. Once again, our numerical procedure gives
highly accurate results for these cases. See figure 5 and table 4.

A particularly interesting  -symmetric potential isV zi 4= -( ) .While thismay naively appear to be an
upside down potential, whenwe quantize the theory by imposing boundary conditions in a pair of Stokes sectors
in the complex plane, we find that the spectrum is entirely real and positive. (An elementary proof of this is given
in [17]).Moreover, the spectrumof this potential is different from that of the quartic anharmonic oscillator

Figure 4.Plot of Im c for theN=1.1,N=1.5, andN=1.9 theories. All three of these theories are in the  broken region. In the
first case there is only one real eigenvalue, in the second case there are three real eigenvalues, and in the third case there aremany real
eigenvalues. In all cases the numericalmethod used here provides highly accurate results.

Table 3.Eigenvalues in the broken  regime for noninteger values ofN.

N=1.1 N=1.5 N=1.9

n Series soln n Series soln n Series soln

0 1.6836723247 0 1.08692903345877 0 1.0015867791272

1 − 1 3.195783621829 1 2.957492901530

2 − 2 4.42201575335 2 4.85886246929

3 − 3 — 3 6.7482128957

4 − 4 — 4 8.6180610339
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(V=x4).We can easily apply the numerical techniques described in this paper tofind the eigenvalues of both of
these potentials because both potentials are real functions of iz (see figure 6).

The eigenvalues for the potentialsV=−x4 andV=x4 and also those of the harmonic oscillatorV=x2 are
listed below in table 5. Aswe can see infigure 6, for potentials that are parity symmetric, such as x4, the slope of
the curve typically alternates between being very steep and not very steepwhen it crosses the horizontal axis.
When the slope is steep it is numericallymore difficult for the computer software to determine the precise value
ofE. This explains the varying accuracy in the eigenvalues for the x2 potential, for example. To improve
numerical accuracy one can do two things. First, one can compute the curve using afinermesh of grid points.
Second, one can interchange the roles ofψ1 andψ2 in (6) tomake the curve less steep.

Finally, we emphasize that our numerical technique is not limited tomonomial potentials. It applies equally
well tomultinomial potentialsV(z) that are  symmetric; that is, potentials that are real functions of iz. Thus,
for the Schrödinger equation (1) inwhich the potential has the form

Figure 5.Plot of Im c for theN=2.1 andN=2.5 theories. These two theories are in the  unbroken region. In thefirst case there
is only one real eigenvalue, in the second case there are three real eigenvalues, and in the third case there aremany real eigenvalues. In
all cases the numericalmethod used here provides highly accurate results.

Table 4.Eigenvalues in the unbroken  regime for
noninteger values ofN.

N=2.1 N=2.5

n Series soln n Series soln

0 1.003097514661 0 1.048954090261

1 3.06113230366 1 3.43453593249

2 5.16708540045 2 6.05173796085

3 7.2921244575 3 8.7910138373

4 9.4332388593 4 11.6206954696

Figure 6.Plot of Im c for the potentialsV=−x4 andV=x4.
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V z c z c zi iN M
1 2= +( ) ( ) ( )

wedefine the two solutionsψ1 andψ2 as triple sums rather than double sums:
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These lead to the two recursion relations

N p M r q N p M r q a c a c a a2 2 2 2 2 2 1 p r q p q r p r q p r q, , 1 1, , 2 , 1, , , 1+ + + + + + + + - = - - +- - -[( ) ( ) ][( ) ( ) ]

and

N p M r q N p M r q b c b c b b2 2 2 1 2 2 2 ,p r q p q r p r q p r q, , 1 1, , 2 , 1, , , 1+ + + + + + + + + = - - +- - -[( ) ( ) ][( ) ( ) ]

which are the generalizations of (3) and (5).
If we apply these techniques to themassive quartic anharmonic oscillators with either positive or negative

mass termsV x x x4 2= ( ) , we again obtain excellent numerical results for the low-lying eigenvalues (see
figure 7).

Indeed, table 6 shows the numerical schemeworks equally well for the single-well and the double-well
anharmonic oscillator.

However, if the potential is not a real function of the variable iz, then the numericalmethods described here
do notwork. To illustrate this we consider the potentialV(x)=x4+x. Table 7 shows that the eigenvalue
calculation fails.

In conclusion, we have demonstrated in this paper an extremely powerful and highly accurate technique for
computing the eigenvalues (and eigenfunctions) of a  -symmetric potential.We have established the
accuracy of themethod by studying a large number of examples. Our technique is important because it addresses
the difficult problemof solving complex non-Hermitian eigenvalue problems.Most conventional techniques
for solving real Hermitian eigenvalue problems fail towork for complex eigenvalue problems because complex
eigenvalue problemsmust be solved subject to boundary conditions imposed in Stokes sectors in the complex
plane. Of course, our technique alsoworks verywell for real eigenvalue problems, so long as the real potential is
 symmetric.

Table 5.Eigenvalues of the harmonic oscillatorV=x2 (N=2), the  -symmetric quartic
oscillatorV=−x4 (N=4), and the conventional anharmonic oscillatorV=x4 obtained by
using the numericalmethods described in this paper.

V=x2 V=−x4 V=x4

n Series soln n Series soln n Series soln

0 1.0000000000004 0 1.4771508111864 0 1.060363864841

1 2.9999999999999993 1 6.0033861147867 1 3.799673009836

2 4.99999999997 2 11.8024336007832 2 7.45569799483

3 6.99999999997 3 18.458818772430 3 11.6447453215

4 9.000000001 4 25.79178997784 4 16.2618260301

Figure 7.Plot of Im c for the anharmonic oscillator potentials V x x4 2=  .
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Table 6.Eigenvalues of the single-well (V x x4 2= + ) and
double-well (V x x4 2= - ) quartic anharmonic oscillators
obtained by using the numericalmethods described in this
paper. The numerical accuracy is excellent and is roughly
the same for either oscillator.

V x x4 2= + V x x4 2= -

n Series soln n Series soln

0 1.39235191352537 0 0.657656758014

1 4.648811867490 1 2.834533175294

2 8.65505000457 2 6.16390133772

3 13.1568037536 3 10.0386458708

4 18.0575574491 4 14.372406513

5 23.2974414415 5 19.085714647

Table 7.This table shows that
the numericalmethods used in
this paper fail if the potential is
not  symmetric; that is, it is
not a real function of the
variable iz.

V(x)=x4+x

n Wrong! Exact

0 0.991863 0.9305

1 1.53021 3.7819

2 8.42823 7.4351

3 17.4568 11.6283

4 27.8829 16.2478
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