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Abstract
The coupling of non-Hermitian PT -symmetric Hamiltonians to standard
Hermitian Hamiltonians, each of which individually has a real energy spectrum,
is explored by means of a number of soluble models. It is found that in all cases
the energy remains real for small values of the coupling constant, but becomes
complex if the coupling becomes stronger than some critical value. For a
quadratic non-Hermitian PT -symmetric Hamiltonian coupled to an arbitrary
real Hermitian PT -symmetric Hamiltonian, the reality of the ground-state
energy for small enough coupling constant is established up to second order in
perturbation theory.

PACS numbers: 11.30.Er, 12.38.Bx, 2.30.Mv

1. Introduction

Since the work by Bender and Boettcher [1] on non-Hermitian but PT -symmetric
Hamiltonians, subsequent research has gone through various stages. First came an exploration
of various non-Hermitian generalizations of well-known soluble models to determine if their
spectra are real. However, reality of the spectrum does not by itself guarantee a viable quantum
theory. One also needs a probabilistic interpretation, and since the most obvious choice of
metric for a PT -symmetric model is not positive definite, a Hilbert space endowed with
this metric does not represent a physical framework for quantum mechanics. Instead, one
must find an alternative, positive-definite metric [2–4], which is dynamically determined by
the particular Hamiltonian in question. It was further shown [5] that this metric η ≡ e−Q

provides a similarity transformation from the non-Hermitian H to an equivalent Hermitian H̃ .
This equivalent Hermitian Hamiltonian was subsequently constructed, often in perturbation
theory only, in a variety of models [6–8].

3 Permanent address: Department of Physics, Washington University, St. Louis, MO 63130, USA.

1751-8113/08/244006+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/24/244006
mailto:cmb@wustl.edu
mailto:h.f.jones@imperial.ac.uk
http://stacks.iop.org/JPhysA/41/244006


J. Phys. A: Math. Theor. 41 (2008) 244006 C M Bender and H F Jones

These investigations were all concerned with isolated non-Hermitian systems, but more
recently much attention has been given to situations where a non-Hermitian system interacts
with the world of Hermitian quantum mechanics. For example, [9] examined a non-Hermitian
analogue of the Stern–Gerlach experiment in which the role of the intermediate inhomogeneous
magnetic field flipping the spin is replaced by an apparatus described by a non-Hermitian
Hamiltonian. This type of set-up has been further elaborated by Assis and Fring [10] and
Günther et al [11], and it continues to be the focus of lively discussion [12–16]. Recently,
[17] explored the problem of scattering from localized non-Hermitian potentials.

It is in this spirit that we investigate the nature of the energy spectrum when Hermitian and
non-Hermitian systems, individually having real spectra, are coupled together. In section 2
we first look at a simple matrix model and then in section 3 we explore couplings of various
non-Hermitian quadratic Hamiltonians to a simple harmonic oscillator. Section 4 examines
the reality of the spectrum in perturbation theory for a complex quadratic PT -symmetric
Hamiltonian coupled to a generic real PT -symmetric and Hermitian Hamiltonian. We
summarize our results in section 5.

2. Simple matrix model

In this section we consider coupling a Hermitian matrix Hamiltonian

H1 = a1 + bσ1 =
(

a b

b a

)
(a, b real) (1)

to the non-Hermitian PT -symmetric matrix Hamiltonian introduced in [2]

H2 = r(1 cos θ + i sin θσ3) + sσ1 =
(

r eiθ s

s r e−iθ

)
(r, s, θ real), (2)

where 1 is the identity matrix and σk are the Pauli matrices. We choose the parameters r, s

and θ so that the inequality s2 > r2 sin2 θ is satisfied; this inequality guarantees that the
eigenvalues of H2 are real [2]. The parity operator is taken as

P = σ1 =
(

0 1
1 0

)
, (3)

while T implements complex conjugation. Note that both H1 and H2 are symmetric under
PT , and each separately has real eigenvalues.

To couple these two systems together we take the direct sum, but introduce nonzero
elements in the off-diagonal sector

H =

⎛
⎜⎝

a b εA εB
b a εB∗ εA∗

εC εD r eiθ s
εD∗ εC∗ s r e−iθ

⎞
⎟⎠ . (4)

These are chosen in such a way that H remains invariant under combined parity reflection and
time reversal, where the parity operator is given by

P = 1 ⊗ σ1 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ (5)

and time reversal is complex conjugation.
The question is whether the eigenvalues of this combined system remain real, and if there

is any constraint on the strength of the coupling parameter ε. As a specific example we choose
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a = b = 1 in H1, r = s = 1 and θ = π/6 in H2 and A = C = 1, B = D = 0 in the coupling
matrices. Numerically, we find that in this case the eigenvalues remain real until ε exceeds
a critical value of approximately 0.7045. For other choices of the parameter the picture is
similar. In all cases the eigenvalues remain real for ε sufficiently small. In some cases they
appear to remain real for all values of ε; in others, as in the example above, they become
complex at a critical value of ε but then become real again beyond a second critical value.

3. Coupled quadratic Hamiltonians

To determine if the energy levels of a coupled system of Hamiltonians are real, our strategy
here will be to find the Q operator by using the condition that

H † = e−QHeQ, (6)

and then to construct the equivalent Hermitian Hamiltonian H̃ by using the similarity
transformation

H̃ = e−Q/2HeQ/2. (7)

In some cases the resulting H̃ will need to be diagonalized by a further unitary transformation
in order to identify the spectrum.

3.1. Simple harmonic oscillator coupled to a shifted simple harmonic oscillator

In this subsection we consider a quantum system described by the interaction of a conventional
and a PT -symmetric Hamiltonian:

H = (p2 + x2) + (q2 + y2 + 2iy) + 2εxy. (8)

Since the Hamiltonian (8) is quadratic, we expect the Q operator to be linear in the momentum
variables

Q = αp + βq, (9)

which will produce the coordinate shifts

x → x + iα and y → y + iβ. (10)

We determine α and β by condition (6), which gives

α = 2ε

1 − ε2
and β = − 2

1 − ε2
. (11)

It is somewhat surprising that we are able to determine α and β because the condition
H † = e−QHeQ translates into a system of three coupled linear equations with only two
unknowns α and β. Yet, there is a unique solution. However, note that the solution becomes
singular as |ε| reaches 1.

Given Q we construct H̃ according to equation (7), which in this case produces

H̃ = e−Q/2H eQ/2 = p2 + x2 + q2 + y2 + 2εxy +
1

1 − ε2
. (12)

We have identified the equivalent Hermitian Hamiltonian H̃ , but it must still be
diagonalized. To do so we change variables from p, q, x and y to P,Q,X and Y:

p = aP + bQ, q = cP + dQ, x = eX + f Y, y = gX + hY. (13)

3
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We determine the unknown coefficients a through h by requiring that (i) the canonical
commutation relations

[p, q] = 0, [x, y] = 0, [y, p] = 0,

[x, q] = 0, [x, p] = i, [y, q] = i
(14)

be maintained, and that (ii) H̃ , when expressed in terms of X, Y, P and Q contains no
crossterms.

These two sets of conditions translate into six equations for the coefficients. The solutions
to these six equations are

c = ηa, d = −ηb, e = 1

2a
, f = 1

2b
, g = η

2a
, h = − η

2b
, (15)

where η = ±1 and a and b are arbitrary. The resulting H̃ is given by

H̃ = 2a2P 2 +
1 + ηε

2a2
X2 + 2b2Q2 +

1 − ηε

2b2
Y 2 +

1

1 − ε2
, (16)

which is the sum of two uncoupled quantum-harmonic-oscillator Hamiltonians.
Since the energy levels of the general-quantum-harmonic oscillator Hamiltonian H =

Ap2 + Bx2 are

En = (2n + 1)
√

AB (n = 0, 1, 2, . . .), (17)

the energy levels of H̃ in (16) are

Em,n = (2m + 1)
√

1 + ε + (2n + 1)
√

1 − ε +
1

1 − ε2
. (18)

This result is independent of the constants a and b as well as the choice of the sign of η. The
energy diverges at the critical value |ε| = 1 and becomes complex for |ε| > 1. Thus, there are
two regions, depending on whether the Hermitian component of the Hamiltonian is coupled
strongly or weakly to the non-Hermitian component of the Hamiltonian.

This result is not specific to the choice of coefficients in (8), as we now show by considering
the more general Hamiltonian

H = (
p2 + ω2

1x
2
)

+
(
q2 + ω2

2y
2 + 2iλy

)
+ 2εxy. (19)

Again, we take the Q operator to have the form Q = αp + βq, and determine α and β by the
condition that H † = e−QH eQ. We obtain

α = 2ελ

ω2
1ω

2
2 − ε2

and β = − 2ω2
1λ

ω2
1ω

2
2 − ε2

. (20)

The equivalent Hermitian Hamiltonian is then

H̃ = p2 + ω2
1x

2 + q2 + ω2
2y

2 + 2εxy +
λ2ω2

1

ω2
1ω

2
2 − ε2

. (21)

Making the ansatz in (13), we now obtain the unknown coefficients a through h by
following the same procedure as above. The solutions are

c = γ a, d = − b

γ
, e = 1

a(1 + γ 2)
,

f = γ 2

b(1 + γ 2)
, g = γ

a(1 + γ 2)
, h = − γ

b(1 + γ 2)
,

(22)

where γ satisfies the quadratic equation

εγ 2 + 2Dγ − ε = 0 (23)
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and we define

D = 1
2

(
ω2

1 − ω2
2

)
and S = 1

2

(
ω2

1 + ω2
2

)
. (24)

The resulting Hermitian Hamiltonian H̃ is

H̃ = P 2 + �2
1X

2 + Q2 + �2
2Y

2 +
λ2ω2

1

ω2
1ω

2
2 − ε2

, (25)

where we have used the freedom in the choice of a and b to set a2 = 1/(1 + γ 2) and
b2 = γ 2/(1 + γ 2) and where the parameters �1 and �2 are given by

�2
1 = S ±

√
D2 + ε2 and �2

2 = S ∓
√

D2 + ε2. (26)

The energy levels of the Hamiltonian (25) are

Em,n = (2m + 1)

√
S +

(
D2 + ε2

)1/2
+ (2n + 1)

√
S − (

D2 + ε2
)1/2

+
λ2ω2

1

ω2
1ω

2
2 − ε2

. (27)

Again, we find that the energy diverges, this time at the critical value |ε| = ω1ω2, and for
|ε| larger than this value the energy becomes complex. Thus, again there are two regions,
depending on whether the Hermitian component of the Hamiltonian is coupled strongly or
weakly to the non-Hermitian component of the Hamiltonian.

3.2. Two coupled shifted simple harmonic oscillators

The pattern that we observed in the previous subsection re-emerges when we consider two
coupled PT -symmetric non-Hermitian Hamiltonians:

H = (p2 + x2 + 2iλx) + (q2 + y2 + 2iµy) + 2εxy. (28)

As before, we choose Q = αp + βq, and determine α and β by condition (6). This gives

α = 2
εµ − λ

1 − ε2
and β = 2

ελ − µ

1 − ε2
. (29)

Applying (7), we obtain the equivalent Hermitian Hamiltonian

H̃ = e−Q/2HeQ/2 = p2 + x2 + q2 + y2 + 2εxy +
λ2 + µ2 − 2ελµ

1 − ε2
, (30)

which is exactly the same as the result in (12), apart from the additive constant.

3.3. Simple harmonic oscillator coupled to Swanson Hamiltonian

Here we consider the non-Hermitian system described by the Swanson Hamiltonian [18],
written in terms of coordinate and momentum variables instead of creation and annihilation
operators:

H = (p2 + x2) + (q2 + y2 + ic{q, y}+) + 2εxy. (31)

We can exploit the ambiguity in Q for the Swanson Hamiltonian itself to choose Q = cy2.
This shifts q → q − icy but leaves y, and hence the coupling term 2εxy, unchanged. The
equivalent Hermitian Hamiltonian is then

H̃ = p2 + x2 + q2 + (1 + c2)y2 + 2εxy, (32)

which can be diagonalized to give

h = P 2 + �2
1X

2 + Q2 + �2
2Y

2, (33)
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where

�2
1,2 = 1 + 1

2c2
(
1 ±

√
1 + 4ε2/c4

)
. (34)

Note that the eigenvalues

Em,n = (2m + 1)�1 + (2n + 1)�2 (35)

now become complex when ε2 > 1 + c2. Indeed, in all of the examples studied in this section,
the overall Hamiltonians are PT symmetric, and the transition to complex eigenvalues is a
signal of the spontaneous breakdown of that symmetry.

4. Coupling to generic Hermitian Hamiltonian

In this section we examine the physical system described by a non-Hermitian PT -symmetric
harmonic oscillator Hamiltonian H1 = p2 + x2 + 2ix coupled to a general Hermitian
Hamiltonian H2 = p2 +V (y). The only assumptions we will make are that H2 is separately P
and T symmetric. Thus, we assume that V (y) is real and is symmetric under parity reflection:
V (y) = V (−y). Using only these assumptions we are able to show that the perturbative
expansion for the ground-state energy is real up to O(ε2).

The ground-state eigenfunction

η(x) = e−(x+i)2/2 (36)

of the PT -symmetric harmonic oscillator satisfies the Schrödinger equation

−η′′(x) + (x2 + 2ix)η(x) = 2η(x), (37)

whose ground-state energy is 2. Denoting the ground-state energy of H2 by �, the ground-state
wavefunction ψ(y) satisfies the Schrödinger equation

−ψ ′′(y) + V (y)ψ(y) = �ψ(y). (38)

We couple H1 and H2 via the coupling term εxy, so that the total Hamiltonian is
H = H1 + H2 + εxy, with ε considered as a small parameter. The ground-state eigenfunction
�(x, y) of the combined system then satisfies the Schrödinger equation

−�xx + (x2 + 2ix)� − �yy + V (y)� + εxy� = E�. (39)

Let us calculate E and �(x, y) perturbatively. The first three terms in the perturbation
expansion for the energy are

E = 2 + � + εE1 + ε2E2 + · · · (40)

and we write

�(x, y) = �0(x, y) + ε�1(x, y) + ε2�2(x, y) + · · · , (41)

where

�0(x, y) = e−(x+i)2/2ψ(y). (42)

The coefficient of ε1 in the expansion of equation (39) is

−(�1)xx + (x2 + 2ix)�1 − (�1)yy + V (y)�1 = −xy�0 + E0�1 + E1�0. (43)

The solution to the homogeneous part of this equation is satisfied by �0(x, y) = η(x)ψ(y).
Using the method of reduction of order, we therefore set �1 = �0(x, y)Q(x, y). The
integrating factor of the resulting equation is �0. Multiplying by this integrating factor gives
the differential equation(

�2
0Qx

)
x

+
(
�2

0Qy

)
y

= (xy − E1)�
2
0. (44)

6
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To find E1 we integrate this equation over all x and y and note that the integrals over the
total derivatives vanish. This gives the following expression for E1:

E1 =
∫ ∞
−∞ dx x e−(x+i)2 ∫ ∞

−∞ dy yφ2(y)∫ ∞
−∞ dx e−(x+i)2

∫ ∞
−∞ dy φ2(y)

. (45)

The integral over φ2(y) in the numerator vanishes because of parity symmetry. Thus E1 = 0.
This result simplifies the differential equation satisfied by Q(x, y) to(

�2
0Qx

)
x

+
(
�2

0Qy

)
y

= xy�2
0. (46)

Proceeding to next order, we find the coefficient of ε2 in the expansion of equation (39):

−(�2)xx + (x2 + 2ix)�2 − (�2)yy + V (y)�2 = −xy�1 + E0�2 + E2�0. (47)

To solve this equation we again use reduction of order and set �2(x, y) = �0(x, y)R(x, y).
Multiplying by the integrating factor �0, we get(

�2
0Rx

)
x

+
(
�2

0Ry

)
y

= (xyQ − E2)�
2
0. (48)

The next correction to the energy comes from integrating this equation over all space:

E2 =
∫ ∞
−∞ dx

∫ ∞
−∞ dy xyQ(x, y)�2

0(x, y)∫ ∞
−∞ dx

∫ ∞
−∞ dy �0(x, y)2

. (49)

This time the correction does not vanish and we therefore must determine whether it is real or
complex. Note that the integral in the denominator is real.

Let us assume that the numerator I ≡ ∫ ∞
−∞ dx

∫ ∞
−∞ dy xyQ(x, y)�2

0(x, y) is complex
and expand �2

0(x, y) into its real and imaginary parts

�2
0(x, y) = ψ2(y) e1−x2

[cos(2x) − i sin(2x)] ≡ E(x, y) + iF(x, y). (50)

Note that E is even in x and y, while F is odd in x and even in y. Next, we let Q = S + iT .
Then (46) reads

[(E + iF)(Sx + iTx)]x + [(E + iF)(Sy + iTy)]y = xy(E + iF). (51)

Taking the real and imaginary parts of this equation, we obtain

(ESx − FTx)x + (ESy − FTy)y = xyE (52)

for the real part, and

(ETx + FSx)x + (ETy + FSy)y = xyF (53)

for the imaginary part. We conclude that S is odd in x and y and that T is even in x and odd in
y. Now

Im(I ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy xy(ET + SF). (54)

Here both ET and FS are even in x. (Both are also odd in y.) Thus, we have shown that I is
real.

This result establishes that for small enough ε the ground-state energy remains real.
However, we do not have sufficient information to determine whether there is a critical value
of ε at which the energy becomes complex. If, as in [19], we were able to establish that E is a
Herglotz function of ε, that is, that Im(E) has the same sign as Im(ε), then we would indeed
know that there was such a critical value because a Herglotz function that is entire must be
linear [20], whereas we have shown that E2 	= 0. Unfortunately, we are at the moment unable
to construct a proof of the Herglotz property of E.
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5. Summary

We have shown in a number of examples that it is possible to couple Hermitian and PT -
symmetric non-Hermitian Hamiltonians together in such a way that the energy eigenvalues
of the combined system remain real for sufficiently small values of the coupling ε. In the
matrix model and in all of the quadratic systems we have studied there is a critical range of the
coupling, which, if exceeded, results in a complex spectrum. For coupling to a more generic
PT -symmetric potential we have as yet no analytic proof of the existence of a critical point
in ε.
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