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A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is
not Hermitian but instead satisfies the physical condition of space—time reflection syn{f&try
symmetry. Thus, there are infinitely many new Hamiltonians that one can construct that might
explain experimental data. One would think that a quantum theory based on a non-Hermitian
Hamiltonian violates unitarity. However, iP7 symmetry is not broken, it is possible to use a
previously unnoticed physical symmetry of the Hamiltonian to construct an inner product whose
associated norm is positive definite. This construction is general and works f@P&asymmetric
Hamiltonian. The dynamics is governed by unitary time evolution. This formulation does not
conflict with the requirements of conventional quantum mechanics. There are many possible
observable and experimental consequences of extending quantum mechanics into the complex
domain, both in particle physics and in solid state physics.2088 American Association of Physics
Teachers.
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[. INTRODUCTION of quantum mechanic$x,p]=i, known as the Heisenberg
_ _ algebra
In this paper we present an alternative to the one of the |t is easy to construct infinitely many Hamiltonians that
standard axioms of quantum mechanics; namely, that thgre not Hermitian but do posseB§ symmetry. For example,

Hamiltonian H, which incorporates the symmetries and consider the one-parameter family of Hamiltonians
specifies the dynamics of a quantum theory, must be Hermit-

ian: H=H". It is commonly believed that the Hamiltonian H=p?+x%(ix)¢ (e rea). (1)

must be Hermitian in order to ensure that the energy spec-

trum (the eigenvalues of the Hamiltonigis real and that the  Note that whileH in (1) is not symmetric undef® or T
time evolution of the theory is unitarfprobability is con-  genarately, it is invariant under their combined operation. We
served in timg Although this axiom is sufficient to guaran- say that such Hamiltonians possess space—time reflection

tee these desired properties, we argue here that it is not negymmetry. Other examples of complex Hamiltonians having
essary. We believe that the condition of Hermiticity is aPTsymmetry areH =p2+x4(ix) ¢, H=p2+x%(ix)¢, and so

mathematical requirement whose physical basis is somewh h23 Eor example, the Hamiltonian obtained by continuing
remote and obscure. We demonstrate here that there is a sirl'q-i'n (1) along the p;atrr' 0—8 has a different spectrum from
pler and more physical alternative axiom, which we refer tothe Hamiltonian that ' is obtained by continuirkg = p>
alSHﬁ?aﬁ].‘“me reflte ct|0|r|1 syrr;metthl(g L syr_r;r.rlj?try:f H +x8(ix) € along the pathe: 0—4. This is because the bound-
—H. This symmetry: aflows for thé possibility of non- . -4nditions on the eigenfunctions are different.

I—!ermitian and complex Hamiltonians but still leads to a con- The class ofPZ-symmetric Hamiltonians is larger than
sistent theory of quantum mechanics. . and includes real symmetric Hermitian Hamiltonians be-
we also show th‘?‘t. bepa}uw’symmetry IS an alternat]vg cause any real symmetric Hamiltonian is automatic@Hy
ﬁﬁgfjltﬁ;‘;o n"éerrr_"gﬁ']t.ﬁo'tn.';nnog’r‘]’a‘:os??(Ijehtg gok;‘;g#?é.'gé't; ymmetric. For example, consider the real symmetric Hamil-
inl th)(/a pas%/ becv:\;use tlheylarz not nlerumitianv An exarr{ple 0{onlan H=p2+x2+2x. This Hamiltonian is time-reversal
' ymmetric, but according to the usual definition of space

such a Hamiltonian i1 =p”+ix”. It should be emphasized reflection for whichx— —x, this Hamiltonian appears not to

that we do not regard the condition of Hermiticity as wrong. :
e .. < have P7 symmetry. However, recall that the parity operator
Rather, the condition 0P7 symmetry offers the possibility is defined only up to unitary equivalen&én this example, if

of studying new and interesting quantum theories. AR T, 5
Let us recall the properties of the space reflectioarity) W€ €XPress the Hamiltonian in the for=p~+(x+1)

operatorPT and the time-reflection operatdf The parity 1+ then itis evident thal is 77 symmetric, provided that

operatorPTis linear and has the effect the parity operator performs a space reflection about the
point x=—1 rather thanx=0. See Ref. 5 for the general
p——p and x——X. construction of the relevant parity operator.

Five years ago it was discovered that with properly de-
fined boundary conditions the spectrum of the Hamiltonian
p——p, x—x, and i——i. H in (1) is real and positivewhen e=0.° The spectrum is

partly real and partly complex whes#i<0. The eigenvalues
Note that7 changes the sign df because, like the parity have been computed numerically to very high precision, and
operator, it preserves the fundamental commutation relatiothe real eigenvalues are plotted as functiong of Fig. 1.

The time-reversal operatdris antilinear and has the effect
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Fr g ' - ' HamiltonianH in (1) the P7 symmetry is unbroken when
PO Y . e=0 and it is broken wher<0. Note that the conventional
17 Virs 7/ d Hermitian Hamiltonian for the quantum mechanical har-
15 L ‘ monic oscillator lies at the boundary of the unbroken and the
Ko o o . broken regimes. Recently, Dorest al. proved rigorously
FA r ’ that the spectrum oH in (1) is real and positivein the
region e=0. Many otherP7Z-symmetric Hamiltonians for
which space—time reflection symmetry is not broken have
o g been investigated, and the spectra of these Hamiltonians
7 (‘,--"’ - = have also been shown to be real and posttive.
: - - While it is useful to show that a given non-Hermiti&?-
r: t e symmetric Hamiltonian operator has a positive real spec-
e trum, the urgent question that must be answered is whether
e such a Hamiltonian defines a physical theory of quantum
; mechanics. By ghysical theorywe mean that there is a
-1 0 1 2 Hilbert space of state vectors and that this Hilbert space has
E an inner product with a positive norm. In the theory of quan-
Fig. 1. Energy levels of the Hamiltoniad = p2+x2(ix)€ as a function of tum. meChan.ICS we mf((.erpret the norm .Of a state as a prob-
the parametee. There are three regions: Whe#0, the spectrum is real ability and this prObab_lhty must be positive. Furthermore’ we
and positive and the energy levels rise with increasinhe lower bound of ~ MUSt show that the time evolution of the theory is unitary.
this region,e=0, corresponds to the harmonic oscillator, whose energy lev-This means that as a state vector evolves in time the prob-
els areE,=2n+ 1. When—1<e<0, there are a finite number of real posi- ability does not leak away.
tive eigenvalues and an infinite number of complex conjugate pairs of ei- |t is not at all obvious whether a Hamiltonian suchHas
genvalues. Ax decreases from 0 te-1, the qumber of _real eigenvalues (1) gives rise to a consistent quantum theory. Indeed, while
decreases; whens—o.577+93, the only real elgenvalue_ls the ground-state past investigations of this Hamiltonian have shown that the
energy. Ase approaches-1", the ground-state energy diverges. lest—1 . . i .
there are no real eigenvalues. spectrum is e.ntlrely real and positive wherO, it appeared
that one inevitably encountered the severe problem of deal-
ing with Hilbert spaces endowed with indefinite metrit$n
this paper we will identify a new symmetry that gh7-

We say that theP7 symmetry of a Hamiltoniar is un- ~ Symmetric Hamiltonians having an unbrok@-symmetry
brokenif all of the eigenfunctions oH are simultaneously possess. We denote the operator representing this symmetry
eigenfunctions ofP7.’ It is easy to show that if th®7 sym- by C because the properties of this operator resemble those of
metry of a HamiltoniarH is unbroken, then the spectrum of the charge conjugation operator in particle physics. This will
H is real. The proof is short and goes as follows: Assume tha@llow us to introduce an inner product structure associated
a HamiltonianH possesse$7 symmetry (that is, thatH with CPT conjugation for which the norms of quantum states
commutes with thePT operato), and that if¢ is an eigen- ~ are positive definite. We will see thaP7 symmetry is an
state ofH with eigenvalueE, then it is simultaneously an alternative to the conventional Hermiticity requirement; it
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eigenstate ofP7 with eigenvaluex: introduces the new concept ofdgnamically determineah-
_ _ ner producione that is defined by the Hamiltonian itgeks
H¢=E¢ and PIp=A¢. 2 a consequence, we will extend the Hamiltonian and its eigen-

We begin by showing that the eigenvalieis a pure states into the complex domain so that the associated eigen-
phase. MultiplyingPZ¢=\¢ on the left byP7 and using the values are real and the underlying dynamics is unitary.
fact that?7 and 7 commute and thaP7?=72=1 we con-
clude thatp=A*\¢ and thus\=e'® for some reakr. Next, Il. CONSTRUCTION OF THE C OPERATOR
we introduce the convention that is used throughout this pa-
per. Without loss of generality we replace the eigensisly
e '*2¢ so that its eigenvalue under the opera®Fis unity:

We begin by summarizing the mathematical properties of
the solution to the Sturm—Liouville differential equation ei-
genvalue problem

P1$=¢. ®) — B0 +X(X)“G(X) = Eqnéhn(X) @
Let us turn to the eigenvalue equatibhp=E¢. We multi-
ply this equation on the left by?7 and use the fact that
[P7,H]=0 to obtainE¢=E* ¢. Hence,E=E* and the ei-
genvalueE is real.

The crucial assumption in this argument is thes simul-
taneously an eigenstate HfandP7Z. In quantum mechanics
if a linear operatoX commutes with the Hamiltoniad, then
the eigenstates dfl are also eigenstates #f (provided that
there is no degeneracyHowever, we emphasize that the o
operatorPT is not linear(it is antilinea) and thus we must _ Whene=0, the Hamiltonian has an unbrok@ty symme-
make the extra assumption that R symmetry ofH is tr_y. Thus, the eigenfunctionsp,(x) are simultaneously
unbroken; that is, thap is simultaneously an eigenstatetof ~€igenstates of th@T operator:PZ¢,(X) =Nnén(X). As we
andP7. This extra assumption is nontrivial because it is notargued above), is a pure phase and, without loss of gener-
easy to determina priori whether theP7 symmetry of a  ality, for eachn this phase can be absorbed intg(x) by a
particular HamiltonianH is broken or unbroken. For the multiplicative rescaling so that the new eigenvalue is unity:

associated with the Hamiltoniad in (1). The differential
equation(4) must be imposed on an infinite contour in the
complexx plane. For largdx| this contour lies in wedges
that are placed symmetrically with respect to the imaginary-
x axis® The boundary conditions on the eigenfunctions are
that ¢(x)—0 exponentially rapidly a$x|— on the con-
tour. For Gse<2, the contour may be taken to be the real
axis.

1096 Am. J. Phys., Vol. 71, No. 11, November 2003 Bender, Brody, and Jones 1096



PIn(X)= ¢ (—X) = bn(X). (5
There is strong evidence that, when properly normalized,
the eigenfunctions,(x) are complete. The coordinate-space ;qin (6)(8) it is easy to see that this Hamiltonian satisfies

statement of completenef®r real x andy) reads Ho(X)=E,é,(x). Fourth, we construct the coordinate-
space Green’s functio®(x,y):

H(x,y>=§ (—1)"Enpn(X) dn(Y). (11)

2 (= 1)) hn(y) = AX-). (6) )
— n

This is a nontrivial result that has been verified numerically Gxy) ; (=1 E, $n(X) bn(Y). (12
to extremely high accuracytwenty decimal placest!?
Note that there is a factor of(1)" in the sum. This unusual Note that the Green’s function is the functional inverse of the
factor does not appear in conventional quantum mechanicélamiltonian; that isG satisfies the equation
The presence of this factor is explained in the following dis-
cussion of orthonormalitysee(8)].

Here is where we encounter the underlying problem asso- f dy H(x,y)G(y,2)=
ciated with non-Hermitian”Z-symmetric Hamiltonians.
There seems to be a natural choice for the inner product of =8(x—2). (13)
two functionsf(x) andg(x):

2

d +X2(ix) €| G(X,2)
— —— +x3(ix X,z
dx?

While the time-independent Schiinger equatiorf4) cannot
_ be solved analytically, the differential equation &¢x,z) in
(f,g)_J dx[PTT)]9(x), @ (13) can be solved exactly and in closed foffThe tech-
<

whereP7T (x) =[f(—x)]* and the integral is taken over the 2\? l:(Sallsatr?dctor?:r;d?c: tdheecgassége ;Z?(i;h?rft;v ?w@iigt]rigﬁ{s,
contour described above in the complepiane. The appar- -7 andx<z. We can solve the differential equation in each
ent advantage of this inner product is that the associategs these regions in terms of Bessel functions. Then, using
norm (f,f) is independent of the overall phasef¢k) and is  this coordinate-space representation of the Green’s function,
conserved in time. Phase independence is desired becauseya construct an exact closed-form expression forsectral
the theory of quantum mechanics the objective is to construcieta function(sum of the inverses of the energy eigenvalues
a space of rays to represent quantum mechanical states. Wil do so we sey=x in G(x,y) and us€8) to integrate over
respect to this inner product the eigenfunctiafig(x) and  x For all >0 we obtaif®
¢n(x) of H in (1) are orthogonal fon#m. However, when

m=n the norm is evidentlyhot positive em \ [ w
1 C°5<26+8 sin 4+e)
&) =(—1)"6mn. 8 —=

(¢m d’n) ( ) mn ( ) zn: En 1+ pon . 37
This result is apparently true for all values ©fn (4) and it COE(4+25 sin a4+ 6)
has been verified numerically to extremely high precision.
Because the norms of the eigenfunctions alternate in sign, 1 €
the Hilbert space metric associated with fA€inner product r 4+ e r 4+el \dte
(-,-) is indefinite. This split signaturésign alternationis a (14)
genericfeature of theP7 inner product. Extensive numerical (4+ 6)(4+25)/4+5F(2) (2+ €
calculations verify that the formula iK8) holds for all € 4+€ 4+€
=0.

Despite the lack of positivity of the inner product, we Having presented these general Sturm—Liouville construc-

proceed with the usual analysis that one would perform fofions, we now address the crucial question of wheth®fa
any Sturm-Liouville problem of the formH ¢, =E, ¢ symmetric Hamiltonian defines a physically viable quantum
¢ N mechanics or whether it merely provides an intriguing

turm—Liouville eigenvalue problem. The apparent difficulty
that ' with formulating a quantum theory is that the vector space of
quantum states is spanned by energy eigenstates, of which
half have norm+1 and half have norm-1. Because the
J dy 8(x—y)d(y—2z)=8(x—2). (9)  norm of the states carries a probabilistic interpretation in
standard quantum theory, the existence of an indefinite met-
Second, we reconstruct the parity operd®drin terms of the  ric in (8) seems to be a serious obstacle.
eigenstates. The parity operator in position space is The situation here in which half of the energy eigenstates
PI(x,y)= 5(x+Yy), so from(6) we get have positive norm and half have negative norm is analogous
to the problem that Dirac encountered in formulating the
spinor wave equation in relativistic quantum thethkol-
lowing Dirac’s approach, we attack the problem of an indefi-
nite norm by finding a physical interpretation for the nega-
By virtue of (8) the square of the parity operator is unity: tive norm states. We claim that iany theory having an

Pﬂx.y>=; (—1)"¢n(X) pn(—Y). (10)

P2=1. unbroken P7 symmetry there exists a symmetry of the
Third, we reconstruct the HamiltoniaH in coordinate = Hamiltonian connected with the fact that there are equal
space numbers of positive-norm and negative-norm states. To de-
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scribe this symmetry we construct a linear operator denotetdnlike the inner product of conventional quantum mechan-
by C and represented in position S,@ﬁce as a sum over thies, theCPT inner produci(19) is dynamically determinedt
energy eigenstates of the Hamiltonian: depends implicitly on the choice of Hamiltonian.
The operatoiC does not exist as a distinct entity in con-
_ ventional quantum mechanics. Indeed, if we allow the pa-
cx.y) zn: $n() bnly)- (19 rametere in (1) to tend to zero, the operat6rin this limit
) ) . becomes identical t®. Thus, in this limit theC7 operator
As st_ated_earller, the properties of this new operétare  pecomesZ, which is just complex conjugation. As a conse-
nearly identical to those of the charge conjugation operatogyence, the inner produ¢i8) defined with respect to the
in quantum field theory. For example, we can use equationgpr conjugation reduces to the complex conjugate inner

(6)—(8) to verify that the square af is unity (C*=1): product of conventional quantum mechanics wherO.
Similarly, in this limit (19) reduces to the usual statement of
| dyecye.z=sx-2. (16 completeness, dn(x) ¢ (y)= 3(x~y).

Note that the®P7 inner-produci18) is independent of the
Thus, the eigenvalues @f are =1. Also, C commutes with  choice of integration contour C so long as C lies inside the
the HamiltoniarH. Therefore, becausgis linear, the eigen- asymptotic wedges associated with the boundary conditions
states ofH have definite values af. Specifically, if the en- for the Sturm-Liouville problen{2). Path independence is a
ergy eigenstates satisfi@), then we haveCo,=(—1)"¢, consequence of Cauchy’s theorem and the analyticity of the

because integrand. In conventional quantum mechanics, where the
positive-definite inner product has the forgdx * (x)g(x),

_ the integral must be taken along the real axis and the path of

CbnlX) f dy CO6Y) éaly) the integration cannot be deformed into the complex plane

because the integrand is not analyti@he P7 inner product
:E bm(X) f dy dm(Y) bal(y). (7) shares with(18) the advantage of analyticity and path
m independence, but suffers from nonpositivity. We find it sur-

B , prising that a positive-definite metric can be constructed us-
We then use/dy ¢m(y) ¢n(Y) =(¢dm,¢n) according to our g ep7 conjugation without disturbing the path indepen-
convention. We conclude that is the operator observable gence of the inner-product integral.

that representssthe measurement of the signature oPthe Finally, we explain whyPZ-symmetric theories are uni-
norm of a staté: iHt

N hat th 4qc disti ¢ tary. Time evolution is determined by the operator'™,
ote that the operatof8 andC are distinct square roots of \yether the theory is expressed in terms G?Asymmetric

. . . 2_ 2
the unity operator5(x—y). That is, whileP*=1 andC Hamiltonian or just an ordinary Hermitian Hamiltonian. To
=1,P andC are not |dent|1%al. Indeed, the parity operadr  establish the global unitarity of a theory we must show that
is real, whileC is complex.” Furthermore, these two opera- as a state vector evolves its norm does not change in time. If

tors do not commute; in the position representation ¥o(X) is a prescribed initial wave function belonging to the
Hilbert space spanned by the energy eigenstates, then it
(CP)(x,y)zZ dn(X)dp(—Y) evolves into the state;(x) at timet according to
n .
but () =e"""yo(x).
With respect to the€P7 inner product defined iri18), the
norm of the vecton/,(x) does not change in time,
(POXY)= 2 ol =) ¢nly), (17) ) ?

(el )= ol o),

which shows thatCP=(PC)*. However,C doescommute because the Hamiltonig commutes with th€P7 operator.
with P7. Establishing unitarity at a local level is more difficult. Here,
Finally, having obtained the operatGrwe define a new we must show that in coordinate space, there exists a local
inner product structure havingpsitive definitesignature by  probability density that satisfies a continuity equation so that
the probability does not leak away. This is a subtle result
= because the probability current flows about in the complex
(flo) deX[CPﬂ(x)]g(x). (18 plane rather than along the real axis as in conventional Her-

_ _ o _ mitian quantum mechanics. Preliminary numerical studies
Like the P7 inner product(7), this inner product is phase jngeed indicate that the continuity equation is fulfilféd.
independent and conserved in time. This is because the time

evolution operator, just as in ordinary quantum mechanics, is

e'"'. The fact thatH commutes with theP7 and theCPT |||, ILLUSTRATIVE EXAMPLE: A2 X2 MATRIX

operators implies that both inner producdtg) and (18), re-  HAMILTONIAN

main time independent as the states evolve in time. However,

unlike (7), the inner product18) is positive definite because  We will now illustrate the above results concernifg-

C contributes—1 when it acts on states with negati®  symmetric quantum mechanics in a very simple context. To
norm. In terms of th&P7 conjugate, the completeness con-do so we will consider systems characterized by finite-

dition (4) reads dimensional matrix Hamiltonians. In finite-dimensional sys-
tems theP7, 7, andC operators appear, but there is no ana-
2 ba()[CPTH,(Y)]=S(X—Y). (19 logue of the boundary conditions associated with coordinate-
n space Schringer equations.
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Let us consider the 22 matrix Hamiltonian Thus,
(re“’ s (Yly)y=(CPTY)- ¢

H= _iols (20

s re 1

, ) =——[a*a+b*b+i(b*a—a*b)sina].
where the three parametarss, and 8 are real. This Hamil- COSa

tonian is not Hermitian in the usual sense, but iIPBsym-  Now let a=x+iy andb=u+iv, wherex y, u, andv are
metric, where the parity operator is given'By real. Then ' A

0 1
P=(1 o) 2D (yly)= (X?+ 02+ 2xv sina+y?+u?—2yusina),

and 7 performs complex conjugation. (26)
There are two parametric regions for this Hamiltonian.which is explicitly positive and vanishes only ¥=y=u

Whens?<r?sir? ¢, the energy eigenvalues form a complex = =0.

conjugate pair. This s the region of brok@T symmetry. On Recalling that(u| denotes theZPT-conjugate oflu), the

the other hand, ifs>>r®sir? 6, then the eigenvalues.  completeness condition reads

=r cosf= /s>~ rZsir? ¢ are real. This is the region of un- 1 0

brokenP7 symmetry. In the unbroken region the simulta- |8+><8+|+|8_><8_|:( ) 27)

neous eigenstates of the operatdrand P7 are given by 0 1

COoS«

1 elal2 Furthermore, using théP7 conjugate(s .|, we can express
|s+>=—( ia/2> C in the formC=|e,){e|—|e_){e_|, as opposed to the
V2 cosa | € representation if15), which uses thé>7 conjugate.
and In general, an observable in this theory is represented by a
, CPTinvariant operator; that is, one that commutes Wif7.
i g a2 Thus, if CPT symmetry is not broken, the eigenvalues of the
le_)= m _giai2] (22 observable are real. The operafosatisfies this requirement,

and hence it is an observable. For the two-state system, if we
where we set sip=(r/9)sind. It is easily verified that set 6=0, then the Hamiltonian20) becomes Hermitian.
(e.,6.)==1 and that ¢£. ,e.)=0, recalling that ¢,v)  However, the operataf then reduces to the parity operator
= (PTU)-v. Therefore, with respect to tHeTinner product, - AS @ consequence, the requirement(gt7 invariance

the resulting vector space spanned by energy eigenstates Hgguces to the standard condition of Hermiticity for a sym-
a metric of signature £,—). The conditions?>r2sir? metric matrix, namely, thatl =H*. This is why the hidden

ensures thaPT symmetry is not broken. If this condition is SYMMetry C was not noticed previously. The operatr
violated, the state€2) are no longer eigenstates B be- emerges only when we extend a real symmetric Hamiltonian

; : into the complex domain.
causea becomes imaginar L
Next, we construct the operat6r We have also calculated thé operator in infinite-

dimensional quantum mechanical models. Forxarix3
potentialC can be obtained from the summation(ir) using
. (23 perturbative methods and for at—x* potentialC can be
calculated using nonperturbative methdtls.

1 i sina 1
C:
CcoSa

1 —isina

Note thatC is distinct fromH andP and has the key property

that
Cle.)==*|e.). (24) V. APPLICATIONS AND POSSIBLE OBSERVABLE
- B CONSEQUENCES

The operatoilC commutes withH and satisfie€?=1. The
eigenvalues ot are precisely the signs of te7 norms of In summary, we have described an alternative to the axiom
the corresponding eigenstates. of Hermiticity in quantum mechanics; we call this new re-

Using the operato€ we construct the new inner product quirementP7 invariance. In quantum field theory, Hermitic-
structure ity, Lorentz invariance, and a J)ositive spectrum are crucial

for establishing?PT invariance?” Here, we have established
(ulp)=(CPTU)-v. (29 the converse of th€PT theorem in the following limited
This inner product is positive definite because [¢.)=1.  Sense: We assume that the Hamiltonian possesses space—

Thus, the two-dimensional Hilbert space spanned y) time reflection symmetry, and that this symmetry is not bro-

with inner product(-|-), has a Hermitian structure with sig- K&N- From these assumptions, we know that the spectrum is

nature(+,+). real_ and_we construct an operatorthat is like the charge _
Let us demonstrate explicitly that th@7 norm of any conjugation operator. We show that quantum states in this

. o . a theory have positive norms with respectdB7 conjugation.
vehctor IS pgzltlve. we ChOOTe the ak;bltrar&/vv?ﬁm(b), th J[n effect, we replace the mathematical condition of Hermi-
wheréa andb are any compiex numbers. We then See thag;q. \vhose physical content is somewhat remote and ob-

T=(5x), thatPsz:(g*), and that scure, by the physical condition of space—time and charge-
1 .k conjugation symmetry. These symmetries ensure the reality
CPTy= a +!b 5!”“) of the spectrum of the Hamiltonian in complex quantum
cosa | b* —ia* sina/" theories.
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Could non-Hermitian, PZ-symmetric Hamiltonians be We have found thafZ-symmetric quantum theories ex-
used to describe experimentally observable phenomendfbit surprising and new phenomena. For example, wipen
Non-Hermitian Hamiltonians havalreadybeen used to de- is sufficiently small, the—ge* theory described by the
scribe interacting systems. For example in 1959, Wu showetagrangian(28) possesses bound statébe conventional
that the ground state of a Bose system of hard spheres, whigji,* theory does not because the potential is repujsivee
that the ground-state energy of this system is real and coryyrposes of illustration we describe the bound states in the
jectured that all of the energy levels were real. In 1992, Hol-context of one-dimensional quantum field thedguantum
lowood showed that even though the Hamiltonian of & comMipechanics For the conventional quantum mechanical an-
plex Toda lattice is non-Hermitian, the energy levels arenarmonic oscillator, which is described by the Hamiltonian
real?* Non-Hermitian Hamiltonians of the formH=p?
+ix3 also arise in various Reggeon field theory models that H= p2+ im?x®+ igx* (g>0), (29)
exhibit real positive spectrzé.ln each of these cases the fact ) o ) )
that a non-Hermitian Hamiltonian had a real spectrum apihe smallg Rayleigh—Schrdinger perturbation series for the
peared mysterious at the time, but now the explanation i&th energy leveE, is
simple: In each of these cases it is easy to show that the L 3o ) N
non-Hermitian Hamiltonian isP7 symmetric. That is, the Ex~Mm[k+ 3+ 7(2k“+2k+1)»+0O(»9)] (v—07),
Hamiltonian in each case is constructed so that the position (30

operatorx or the field operatogp is always multiplied byi. wherev=g/(4m?). Therenormalized mass N& defined as

An experimental signal of a complex Hamiltonian might the first excitation above the ground statet=E,—E,

be found in the context of condensed matter physics. Con-_ m[1+3v+0(r)] asy—0".

sider the.comple?( crystal Iattice vyhose pg te_nti_al i‘cf given by To determine if the two-particle state is bound, we exam-
V(x) =i sinx. While the HamiltonianH =p®+isinx is not ;. 1o "second excitation above the ground state u&fy
Hermitian, it isP7 symmetric, and all of the energy bands We define

arereal. However, at the edge of the bands the wave function

of a particle in such a lattice is always bosonicr(Beriodig B,=E,—Eq~m[2+9v+0(»?)] (v—07). (3D
and, unlike the case of ordinary crystal lattices, the wave ) )

function is never fermionic (# periodid.2® Direct observa- If B,<2M, then a two-particle bound state exists and the

tion of such a band structure would give unambiguous evi{negativé binding energy isB,—2M. If B,>2M, then the
dence of aP7 symmetric Hamiltonian. second excitation above the vacuum is interpreted as an un-
There are many opportunities for the use of non-HermitiarPound two-particle state. We see frdBi) that in the small-

Hamiltonians in the study of quantum field theory. For COUPling region, where perturbation theory is valid, the con-
example, a scalar quantum field theory with a cubicventional anharmonic oscillator does not possess a bound

. . . . 1 state. Indeed, using WKB, variational methods, or numerical
self-interaction described by the Lagrangidte 3(V¢)® calculations, one ?:an show that there is no two-particle
+ 3m?@?+g¢3 is physically unacceptable because the enbound state for any value gf>0. Because there is no bound
ergy spectrum is not bounded below. However, the cubistate thegx* interaction may be considered to represent a
scalar quantum field theory that correspondsitm (1) with  repulsive force’?
e=1 is given by the Lagrangian densitf= (V)2 We obtain the perturbation series for the non-Hermitian,
1.9 2, 3 o , PT-symmetric Hamiltonian
+ sm°p°+ige°. This is a new, physically acceptable quan-
tum field theory. Moreover, the theory that correspondsl to H= p%+ im?x°— 1gx* (g>0), (32)
in (1) with e=2 is described by the Lagrangian density
from the perturbation series for the conventional anharmonic
_1 2, 1.2 2 1. 4 oscillator by replacingr with —». Thus, while the conven-

£=z2(Ve)™+ M= 2g¢" (28) tional anharmonic oscillator does not possess a two-particle

bound state, th®7-symmetric oscillator does indeed possess

What is remarkable about this “wrong-sign” field theory is ¢\ 4 state. We measure the binding energy of this state in
that, in addition to the energy spectrum being real and posi-

. . ’ : . units of the renormalized mas$4 and we define theimen-

tive, the one-point Green'’s functidthe vacuum expectation _. lessbindi Ao b

value of the fielde) is nonzerd Furthermore, the field S'OMeSSPINCING ENETgYA, Dy

theory is renormalizable, and in four dimensions is asymp- B,—2M

totically free (and thus nontrivial?® Based on these features A,= —

of the theory, we believe that the theory may provide a useful

setting to describe the dynamics of the Higgs sector in thehis bound state disappears when increases beyond

standard model. »=0.046 . .. . As v continues to increase), reaches a
Other field theory models whose Hamiltonians are nonmaximum value of 0.427 at=0.13 and then approaches the

Hermitian and’PZ-symmetric have also been studied. Forimiting value 0.28 ag—.

example, PT-symmetric electrodynamics is particularly in- | the PZ-symmetric anharmonic oscillator, there are not

teresting because it is asymptotically fragnlike ordinary  only two-particle bound states for small coupling constant

electrodynamicsand because the direction of the Casimirp, gsok-particle bound states for a&=2. The dimension-

force is the negative of that in ordinary electrodynandics. less binding energies are

This theory is remarkable because it can determine its own

coupling constant. SupersymmetfRZ-symmetric quantum A,=(B,—kM)/M~ —3k(k—1)»/2+O(»?) (v—0+).

field theories have also been studf&d. (34)

~=3v+0(¥?) (v—0"). (33
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The key feature of this equation is that the coefficient if These new kinds of theories can be thought of as exten-
negative. Because the dimensionless binding energy beions of ordinary quantum mechanics into the complex
comes negative as increases from 0, there islaparticle  plane; that is, continuations of real symmetric Hamiltonians
bound state. The higher multiparticle bound states cease to complex Hamiltonians. The idea of analytically continuing
be bound for smaller values of, starting with the three- a Hamiltonian was first discussed in 1952 by Dyson, who
particle bound state, the binding energy of these states bergued heuristically that perturbation theory for quantum
comes positive ag increases past 0.039, 0.034, 0.030, andelectrodynamics is divergeft. Dyson’s argument involves
0.027. rotating the electric chargeinto the complex plane—ie.

Thus, for any value of there are always a finite number Applied to the quantum anharmonic oscillator, whose Hamil-
of bound states and an infinite number of unbound statesonian is given in(29), Dyson's argument would go as fol-
The number of bound states decreases with increasimgil  lows: If the coupling constarg is continued in the complex-
there are no bound states at all. There is a range fufr g plane to—g, then the potential is no longer bounded be-
which there are only two- and three-particle bound statesow, so the resulting theory has no ground state. Thus, the
This situation is analogous to the physical world in which ground-state energio(g) has an abrupt transition gt=0.
one observes only states of two and three bound quarks. It e represen€,(g) as a series in powers of this series
this range ofv if one has an initial state containing a numbermust have a zero radius of convergence bec&iég) has a
of particles(renormalized massgshese particles will clump . . R .

S§|_ngular|ty atg=0 in the complex-coupling-constant plane.

together into bound states, releasing energy in the proce h . . : f
Depending on the value of the final state will consist either 1€NCe, the perturbation series must diverge forga#l0.
of two- or of three-particle bound states, whichever is enerYVhile the perturbation series does indeed diverge, this heu-

getically favored. Note also that there is a special value of "Stic argument is flawed because the spectrum of the Hamil-

for which two- and three-particle bound states can exist ifonian (32) that is obtained remains ambiguous until the
thermodynamic equilibrium. boundary conditions that the wave functions must satisfy are

How does age® theory compare with @e* theory? A spec!fied_. Thg spectrum depends crucially on hovy this
ge® theory has an attractive force. The bound states thal#amntonlan with a negative cqupllng constant is obt_alned.

X . .~ There are two ways to obtain the Hamiltoni&8®). First,
arise as a consequence of this force can be found by usi

n Ay .
the Bethe—Salpeter equation. However, ghe field theory She can substitutg=|gle’" into the Hamiltonian(29) and

is unacceptable because the spectrum is not bounded beIorOtate from 6=0 to ¢=m. Under this rotation, the ground-

If we replaceg by ig, the spectrum becomes real and posi-\S/¥ate energyEo(g) becomes complex. Evidentlfq(g) is

tive, but now the force becomes repulsive and there are nE)eal and positive w_heg>0 anq c_omplex wheg_<0134 Sec-
bound states. The same is true for a two-scalar theory witA"d: Oné can obtaifB2) as a limit of the Hamiltonian
interaction of the formige?y. This latter theory is an ac-
ceptable model of scalar electrodynamics, but has no analog

of positronium. , , ase: 0—2. The spectrum of this Hamiltonian is real, positive,
Another feature ofP7-symmetric quantum field theory and discrete. The spectrum of the limiting Hamiltoni@a)
that distinguishes it from the conventional quantum fieldgptained in this manner is similar in structure to that of the
theory lies in the commutation relation between i@andC  Hamiltonian in(29).
operators. Specifically, if we writ€é=Cr+iC,, whereCg and How can the Hamiltoniaii32) possess two such astonish-
C, are real, thegP="PCg andC/P=—PC,. These commu- ingly different spectra? The answer lies in the boundary con-
tation and anticommutation relations suggest the possibilitgitions satisfied by the wave function,(x). In the first
of interpreting P7-symmetric quantum field theory as de- case, in whiché=argg is rotated in the compleg- plane
scribing both bosonic and fermionic _degrees of freedpm, afom 0 to , ¥,(x) vanishes in the complex-plane asx|
|o!ea an_alogous to the supersymmetric quantum theories. The inside the wedges- m/3<argx<0 and — 4/3<argx
distinction here, however, is that the supersymmetry can be<_7_r In the second case. in which the exponemanaes
broken; that is, bosonic and fermionic counterparts can havF : . o P 9
different masses without breaking tRZ symmetry. There- 110M 010 2, $y(X) vanishes in the complex-plane asix|
fore, another possible observable experimental consequence® inside the wedges- n/3<argx<0 and —m<argx
might be the breaking of the supersymmetry. <—2/3. In this second case the boundary conditions hold
in wedges that are symmetric with respect to the imaginary
axis; these boundary conditions enforce PiEsymmetry of
V. CONCLUDING REMARKS H and are responsible for the reality of the energy spectrum.
Apart from the spectra, there is another striking difference
We have argued in this paper that there is an alternative tbetween the two theories correspondingHan (32). The
the axiom of standard quantum mechanics that the Hamilene-point Green'’s functio,(g) is defined as the expecta-
tonian must be Hermitian. We have shown that the axiom ofion value of the operatorin the ground-state wave function
Hermiticity may be replaced by the more physical condition(x),
of PT (space—time reflectiorsymmetry. Space—time reflec-
tion symmetry is distinct from the condition of Hermiticity,
so it is possible to consider new kinds of quantum theories, G1(9)=(0[x|0)/(0[0)= chxxwg(x)/ chxwg(x),
such as quantum field theories whose self-interaction poten- (36)
tials areige® or —ge*. Such theories have previously been
thought to be mathematically and physically unacceptablavhereC is a contour that lies in the asymptotic wedges de-
because the spectrum might not be real and because the tirseribed above. The value &;(g) for H in (32) depends on
evolution might not be unitary. the limiting process by which we obtald. If we substitute

H=1p2+ im?x®°+ 3gX3(ix)¢ (g>0) (35)
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g=g€e'’ into the Hamiltonian(29) and rotate fromy=0 to

0=, we find by an elementary symmetry argument that

G1(g) =0 for all g on the semicircle in the complexplane.
Thus, this rotation in the complex-plane preserves parity
symmetry &— —x). However, if we defineH in (32) by
using the Hamiltonian in35) and by allowinge to range
from 0 to 2, we find thaG,(g) # 0. IndeedG4(g) # 0 for all
values ofe>0. Thus, in this theoryP7 symmetry(reflection
about the imaginary axixs— —x*) is preserved, but parity
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