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A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is
not Hermitian but instead satisfies the physical condition of space–time reflection symmetry~PT
symmetry!. Thus, there are infinitely many new Hamiltonians that one can construct that might
explain experimental data. One would think that a quantum theory based on a non-Hermitian
Hamiltonian violates unitarity. However, ifPT symmetry is not broken, it is possible to use a
previously unnoticed physical symmetry of the Hamiltonian to construct an inner product whose
associated norm is positive definite. This construction is general and works for anyPT-symmetric
Hamiltonian. The dynamics is governed by unitary time evolution. This formulation does not
conflict with the requirements of conventional quantum mechanics. There are many possible
observable and experimental consequences of extending quantum mechanics into the complex
domain, both in particle physics and in solid state physics. ©2003 American Association of Physics

Teachers.
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I. INTRODUCTION

In this paper we present an alternative to the one of the
standard axioms of quantum mechanics; namely, that the
Hamiltonian H, which incorporates the symmetries and
specifies the dynamics of a quantum theory, must be Hermit-
ian: H5H†. It is commonly believed that the Hamiltonian
must be Hermitian in order to ensure that the energy spec-
trum ~the eigenvalues of the Hamiltonian! is real and that the
time evolution of the theory is unitary~probability is con-
served in time!. Although this axiom is sufficient to guaran-
tee these desired properties, we argue here that it is not nec-
essary. We believe that the condition of Hermiticity is a
mathematical requirement whose physical basis is somewhat
remote and obscure. We demonstrate here that there is a sim-
pler and more physical alternative axiom, which we refer to
as space–time reflection symmetry~PT symmetry!: H
5HPT. This symmetry allows for the possibility of non-
Hermitian and complex Hamiltonians but still leads to a con-
sistent theory of quantum mechanics.

We also show that becausePT symmetry is an alternative
condition to Hermiticity it is now possible to construct infi-
nitely many new Hamiltonians that would have been rejected
in the past because they are not Hermitian. An example of
such a Hamiltonian isH5p21 ix3. It should be emphasized
that we do not regard the condition of Hermiticity as wrong.
Rather, the condition ofPT symmetry offers the possibility
of studying new and interesting quantum theories.

Let us recall the properties of the space reflection~parity!
operatorPT and the time-reflection operatorT. The parity
operatorPT is linear and has the effect

p→2p and x→2x.

The time-reversal operatorT is antilinear and has the effect

p→2p, x→x, and i→2 i .

Note thatT changes the sign ofi because, like the parity
operator, it preserves the fundamental commutation relation

of quantum mechanics,@x,p#5 i , known as the Heisenberg
algebra.1

It is easy to construct infinitely many Hamiltonians that
are not Hermitian but do possessPT symmetry. For example,
consider the one-parameter family of Hamiltonians

H5p21x2~ ix !e ~e real!. ~1!

Note that whileH in ~1! is not symmetric underP or T
separately, it is invariant under their combined operation. We
say that such Hamiltonians possess space–time reflection
symmetry. Other examples of complex Hamiltonians having
PT symmetry areH5p21x4( ix)e, H5p21x6( ix)e, and so
on.2,3 For example, the Hamiltonian obtained by continuing
H in ~1! along the pathe: 0→8 has a different spectrum from
the Hamiltonian that is obtained by continuingH5p2

1x6( ix)e along the pathe: 0→4. This is because the bound-
ary conditions on the eigenfunctions are different.

The class ofPT-symmetric Hamiltonians is larger than
and includes real symmetric Hermitian Hamiltonians be-
cause any real symmetric Hamiltonian is automaticallyPT
symmetric. For example, consider the real symmetric Hamil-
tonian H5p21x212x. This Hamiltonian is time-reversal
symmetric, but according to the usual definition of space
reflection for whichx→2x, this Hamiltonian appears not to
havePT symmetry. However, recall that the parity operator
is defined only up to unitary equivalence.4 In this example, if
we express the Hamiltonian in the formH5p21(x11)2

21, then it is evident thatH is PT symmetric, provided that
the parity operator performs a space reflection about the
point x521 rather thanx50. See Ref. 5 for the general
construction of the relevant parity operator.

Five years ago it was discovered that with properly de-
fined boundary conditions the spectrum of the Hamiltonian
H in ~1! is real and positivewhen e>0.6 The spectrum is
partly real and partly complex whene,0. The eigenvalues
have been computed numerically to very high precision, and
the real eigenvalues are plotted as functions ofe in Fig. 1.
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We say that thePT symmetry of a HamiltonianH is un-
broken if all of the eigenfunctions ofH are simultaneously
eigenfunctions ofPT.7 It is easy to show that if thePT sym-
metry of a HamiltonianH is unbroken, then the spectrum of
H is real. The proof is short and goes as follows: Assume that
a HamiltonianH possessesPT symmetry ~that is, thatH
commutes with thePT operator!, and that iff is an eigen-
state ofH with eigenvalueE, then it is simultaneously an
eigenstate ofPT with eigenvaluel:

Hf5Ef and PTf5lf. ~2!

We begin by showing that the eigenvaluel is a pure
phase. MultiplyingPTf5lf on the left byPT and using the
fact thatPT andT commute and thatPT 25T 251 we con-
clude thatf5l*lf and thusl5eia for some reala. Next,
we introduce the convention that is used throughout this pa-
per. Without loss of generality we replace the eigenstatef by
e2 ia/2f so that its eigenvalue under the operatorPT is unity:

PTf5f. ~3!

Let us turn to the eigenvalue equationHf5Ef. We multi-
ply this equation on the left byPT and use the fact that
@PT,H#50 to obtainEf5E* f. Hence,E5E* and the ei-
genvalueE is real.

The crucial assumption in this argument is thatf is simul-
taneously an eigenstate ofH andPT. In quantum mechanics
if a linear operatorX commutes with the HamiltonianH, then
the eigenstates ofH are also eigenstates ofX ~provided that
there is no degeneracy!. However, we emphasize that the
operatorPT is not linear~it is antilinear! and thus we must
make the extra assumption that thePT symmetry ofH is
unbroken; that is, thatf is simultaneously an eigenstate ofH
andPT. This extra assumption is nontrivial because it is not
easy to determinea priori whether thePT symmetry of a
particular HamiltonianH is broken or unbroken. For the

Hamiltonian H in ~1! the PT symmetry is unbroken when
e>0 and it is broken whene,0. Note that the conventional
Hermitian Hamiltonian for the quantum mechanical har-
monic oscillator lies at the boundary of the unbroken and the
broken regimes. Recently, Doreyet al. proved rigorously
that the spectrum ofH in ~1! is real and positive8 in the
region e>0. Many otherPT-symmetric Hamiltonians for
which space–time reflection symmetry is not broken have
been investigated, and the spectra of these Hamiltonians
have also been shown to be real and positive.9

While it is useful to show that a given non-HermitianPT-
symmetric Hamiltonian operator has a positive real spec-
trum, the urgent question that must be answered is whether
such a Hamiltonian defines a physical theory of quantum
mechanics. By aphysical theorywe mean that there is a
Hilbert space of state vectors and that this Hilbert space has
an inner product with a positive norm. In the theory of quan-
tum mechanics we interpret the norm of a state as a prob-
ability and this probability must be positive. Furthermore, we
must show that the time evolution of the theory is unitary.
This means that as a state vector evolves in time the prob-
ability does not leak away.

It is not at all obvious whether a Hamiltonian such asH in
~1! gives rise to a consistent quantum theory. Indeed, while
past investigations of this Hamiltonian have shown that the
spectrum is entirely real and positive whene>0, it appeared
that one inevitably encountered the severe problem of deal-
ing with Hilbert spaces endowed with indefinite metrics.10 In
this paper we will identify a new symmetry that allPT-
symmetric Hamiltonians having an unbrokenPT-symmetry
possess. We denote the operator representing this symmetry
by C because the properties of this operator resemble those of
the charge conjugation operator in particle physics. This will
allow us to introduce an inner product structure associated
with CPT conjugation for which the norms of quantum states
are positive definite. We will see thatCPT symmetry is an
alternative to the conventional Hermiticity requirement; it
introduces the new concept of adynamically determinedin-
ner product~one that is defined by the Hamiltonian itself!. As
a consequence, we will extend the Hamiltonian and its eigen-
states into the complex domain so that the associated eigen-
values are real and the underlying dynamics is unitary.

II. CONSTRUCTION OF THE C OPERATOR

We begin by summarizing the mathematical properties of
the solution to the Sturm–Liouville differential equation ei-
genvalue problem

2fn9~x!1x2~ ix !efn~x!5Enfn~x! ~4!

associated with the HamiltonianH in ~1!. The differential
equation~4! must be imposed on an infinite contour in the
complex-x plane. For largeuxu this contour lies in wedges
that are placed symmetrically with respect to the imaginary-
x axis.6 The boundary conditions on the eigenfunctions are
that f(x)→0 exponentially rapidly asuxu→` on the con-
tour. For 0<e,2, the contour may be taken to be the real
axis.

Whene>0, the Hamiltonian has an unbrokenPT symme-
try. Thus, the eigenfunctionsfn(x) are simultaneously
eigenstates of thePT operator:PTfn(x)5lnfn(x). As we
argued above,ln is a pure phase and, without loss of gener-
ality, for eachn this phase can be absorbed intofn(x) by a
multiplicative rescaling so that the new eigenvalue is unity:

Fig. 1. Energy levels of the HamiltonianH5p21x2( ix)e as a function of
the parametere. There are three regions: Whene>0, the spectrum is real
and positive and the energy levels rise with increasinge. The lower bound of
this region,e50, corresponds to the harmonic oscillator, whose energy lev-
els areEn52n11. When21,e,0, there are a finite number of real posi-
tive eigenvalues and an infinite number of complex conjugate pairs of ei-
genvalues. Ase decreases from 0 to21, the number of real eigenvalues
decreases; whene<20.577 93, the only real eigenvalue is the ground-state
energy. Ase approaches211, the ground-state energy diverges. Fore<21
there are no real eigenvalues.
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PTfn~x!5fn* ~2x!5fn~x!. ~5!

There is strong evidence that, when properly normalized,
the eigenfunctionsfn(x) are complete. The coordinate-space
statement of completeness~for real x andy) reads

(
n

~21!nfn~x!fn~y!5d~x2y!. ~6!

This is a nontrivial result that has been verified numerically
to extremely high accuracy~twenty decimal places!.11,12

Note that there is a factor of (21)n in the sum. This unusual
factor does not appear in conventional quantum mechanics.
The presence of this factor is explained in the following dis-
cussion of orthonormality@see~8!#.

Here is where we encounter the underlying problem asso-
ciated with non-HermitianPT-symmetric Hamiltonians.
There seems to be a natural choice for the inner product of
two functionsf (x) andg(x):

~ f ,g![E dx @PTf ~x!#g~x!, ~7!

wherePTf (x)5@ f (2x)#* and the integral is taken over the
contour described above in the complex-x plane. The appar-
ent advantage of this inner product is that the associated
norm (f , f ) is independent of the overall phase off (x) and is
conserved in time. Phase independence is desired because in
the theory of quantum mechanics the objective is to construct
a space of rays to represent quantum mechanical states. With
respect to this inner product the eigenfunctionsfm(x) and
fn(x) of H in ~1! are orthogonal fornÞm. However, when
m5n the norm is evidentlynot positive:

~fm ,fn!5~21!ndmn . ~8!

This result is apparently true for all values ofe in ~4! and it
has been verified numerically to extremely high precision.
Because the norms of the eigenfunctions alternate in sign,
the Hilbert space metric associated with thePT inner product
~•,•! is indefinite. This split signature~sign alternation! is a
genericfeature of thePT inner product. Extensive numerical
calculations verify that the formula in~8! holds for all e
>0.

Despite the lack of positivity of the inner product, we
proceed with the usual analysis that one would perform for
any Sturm-Liouville problem of the formHfn5Enfn .
First, we use the inner product formula~8! to verify that~6!
is the representation of the unity operator. That is, we verify
that

E dy d~x2y!d~y2z!5d~x2z!. ~9!

Second, we reconstruct the parity operatorPT in terms of the
eigenstates. The parity operator in position space is
PT(x,y)5d(x1y), so from~6! we get

PT~x,y!5(
n

~21!nfn~x!fn~2y!. ~10!

By virtue of ~8! the square of the parity operator is unity:
P 251.

Third, we reconstruct the HamiltonianH in coordinate
space

H~x,y!5(
n

~21!nEnfn~x!fn~y!. ~11!

Using ~6!–~8! it is easy to see that this Hamiltonian satisfies
Hfn(x)5Enfn(x). Fourth, we construct the coordinate-
space Green’s functionG(x,y):

G~x,y!5(
n

~21!n
1

En
fn~x!fn~y!. ~12!

Note that the Green’s function is the functional inverse of the
Hamiltonian; that is,G satisfies the equation

E dy H~x,y!G~y,z!5F2
d2

dx2
1x2~ ix !eGG~x,z!

5d~x2z!. ~13!

While the time-independent Schro¨dinger equation~4! cannot
be solved analytically, the differential equation forG(x,z) in
~13! can be solved exactly and in closed form.12 The tech-
nique is to consider the case 0,e,2 so that we may treatx
as real and then to decompose thex axis into two regions,
x.z andx,z. We can solve the differential equation in each
of these regions in terms of Bessel functions. Then, using
this coordinate-space representation of the Green’s function,
we construct an exact closed-form expression for thespectral
zeta function~sum of the inverses of the energy eigenvalues!.
To do so we sety5x in G(x,y) and use~8! to integrate over
x. For all e.0 we obtain12

(
n

1

En
5F 11

cosS 3ep

2e18D sinS p

41e D
cosS ep

412e D sinS 3p

41e D G
3

GS 1

41e DGS 2

41e DGS e

41e D
~41e!~412e!/41e GS 11e

41e DGS 21e

41e D . ~14!

Having presented these general Sturm–Liouville construc-
tions, we now address the crucial question of whether aPT-
symmetric Hamiltonian defines a physically viable quantum
mechanics or whether it merely provides an intriguing
Sturm–Liouville eigenvalue problem. The apparent difficulty
with formulating a quantum theory is that the vector space of
quantum states is spanned by energy eigenstates, of which
half have norm11 and half have norm21. Because the
norm of the states carries a probabilistic interpretation in
standard quantum theory, the existence of an indefinite met-
ric in ~8! seems to be a serious obstacle.

The situation here in which half of the energy eigenstates
have positive norm and half have negative norm is analogous
to the problem that Dirac encountered in formulating the
spinor wave equation in relativistic quantum theory.13 Fol-
lowing Dirac’s approach, we attack the problem of an indefi-
nite norm by finding a physical interpretation for the nega-
tive norm states. We claim that inany theory having an
unbroken PT symmetry there exists a symmetry of the
Hamiltonian connected with the fact that there are equal
numbers of positive-norm and negative-norm states. To de-
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scribe this symmetry we construct a linear operator denoted
by C and represented in position space as a sum over the
energy eigenstates of the Hamiltonian:14

C~x,y!5(
n

fn~x!fn~y!. ~15!

As stated earlier, the properties of this new operatorC are
nearly identical to those of the charge conjugation operator
in quantum field theory. For example, we can use equations
~6!–~8! to verify that the square ofC is unity (C 251):

E dy C~x,y!C~y,z!5d~x2z!. ~16!

Thus, the eigenvalues ofC are 61. Also, C commutes with
the HamiltonianH. Therefore, becauseC is linear, the eigen-
states ofH have definite values ofC. Specifically, if the en-
ergy eigenstates satisfy~8!, then we haveCfn5(21)nfn
because

Cfn~x!5E dy C~x,y!fn~y!

5(
m

fm~x!E dy fm~y!fn~y!.

We then use*dy fm(y)fn(y)5(fm ,fn) according to our
convention. We conclude thatC is the operator observable
that represents the measurement of the signature of thePT
norm of a state.15

Note that the operatorsP andC are distinct square roots of
the unity operatord(x2y). That is, whileP 251 and C 2

51, P andC are not identical. Indeed, the parity operatorP
is real, whileC is complex.16 Furthermore, these two opera-
tors do not commute; in the position representation

~CP!~x,y!5(
n

fn~x!fn~2y!

but

~PC!~x,y!5(
n

fn~2x!fn~y!, ~17!

which shows thatCP5~PC!* . However, C does commute
with PT.

Finally, having obtained the operatorC we define a new
inner product structure havingpositive definitesignature by

^ f ug&[E
C
dx @CPTf ~x!#g~x!. ~18!

Like the PT inner product~7!, this inner product is phase
independent and conserved in time. This is because the time
evolution operator, just as in ordinary quantum mechanics, is
eiHt . The fact thatH commutes with thePT and theCPT
operators implies that both inner products,~7! and ~18!, re-
main time independent as the states evolve in time. However,
unlike ~7!, the inner product~18! is positive definite because
C contributes21 when it acts on states with negativePT
norm. In terms of theCPT conjugate, the completeness con-
dition ~4! reads

(
n

fn~x!@CPTfn~y!#5d~x2y!. ~19!

Unlike the inner product of conventional quantum mechan-
ics, theCPT inner product~19! is dynamically determined; it
depends implicitly on the choice of Hamiltonian.

The operatorC does not exist as a distinct entity in con-
ventional quantum mechanics. Indeed, if we allow the pa-
rametere in ~1! to tend to zero, the operatorC in this limit
becomes identical toP. Thus, in this limit theCPT operator
becomesT, which is just complex conjugation. As a conse-
quence, the inner product~18! defined with respect to the
CPT conjugation reduces to the complex conjugate inner
product of conventional quantum mechanics whene→0.
Similarly, in this limit ~19! reduces to the usual statement of
completeness(nfn(x)fn* (y)5d(x2y).

Note that theCPT inner-product~18! is independent of the
choice of integration contour C so long as C lies inside the
asymptotic wedges associated with the boundary conditions
for the Sturm-Liouville problem~2!. Path independence is a
consequence of Cauchy’s theorem and the analyticity of the
integrand. In conventional quantum mechanics, where the
positive-definite inner product has the form*dx f* (x)g(x),
the integral must be taken along the real axis and the path of
the integration cannot be deformed into the complex plane
because the integrand is not analytic.17 ThePT inner product
~7! shares with~18! the advantage of analyticity and path
independence, but suffers from nonpositivity. We find it sur-
prising that a positive-definite metric can be constructed us-
ing CPT conjugation without disturbing the path indepen-
dence of the inner-product integral.

Finally, we explain whyPT-symmetric theories are uni-
tary. Time evolution is determined by the operatore2 iHt ,
whether the theory is expressed in terms of aPT-symmetric
Hamiltonian or just an ordinary Hermitian Hamiltonian. To
establish the global unitarity of a theory we must show that
as a state vector evolves its norm does not change in time. If
c0(x) is a prescribed initial wave function belonging to the
Hilbert space spanned by the energy eigenstates, then it
evolves into the statec t(x) at time t according to

c t~x!5e2 iHtc0~x!.

With respect to theCPT inner product defined in~18!, the
norm of the vectorc t(x) does not change in time,

^c tuc t&5^c0uc0&,

because the HamiltonianH commutes with theCPT operator.
Establishing unitarity at a local level is more difficult. Here,
we must show that in coordinate space, there exists a local
probability density that satisfies a continuity equation so that
the probability does not leak away. This is a subtle result
because the probability current flows about in the complex
plane rather than along the real axis as in conventional Her-
mitian quantum mechanics. Preliminary numerical studies
indeed indicate that the continuity equation is fulfilled.18

III. ILLUSTRATIVE EXAMPLE: A 2 Ã2 MATRIX
HAMILTONIAN

We will now illustrate the above results concerningPT-
symmetric quantum mechanics in a very simple context. To
do so we will consider systems characterized by finite-
dimensional matrix Hamiltonians. In finite-dimensional sys-
tems thePT, T, andC operators appear, but there is no ana-
logue of the boundary conditions associated with coordinate-
space Schro¨dinger equations.
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Let us consider the 232 matrix Hamiltonian

H5S reiu s

s re2 iuD , ~20!

where the three parametersr, s, andu are real. This Hamil-
tonian is not Hermitian in the usual sense, but it isPT sym-
metric, where the parity operator is given by19

P5S 0 1

1 0D ~21!

andT performs complex conjugation.
There are two parametric regions for this Hamiltonian.

Whens2,r 2 sin2 u, the energy eigenvalues form a complex
conjugate pair. This is the region of brokenPT symmetry. On
the other hand, ifs2>r 2 sin2 u, then the eigenvalues«6

5r cosu6As22r 2 sin2 u are real. This is the region of un-
broken PT symmetry. In the unbroken region the simulta-
neous eigenstates of the operatorsH andPT are given by

u«1&5
1

A2 cosa
S eia/2

e2 ia/2D
and

u«2&5
i

A2 cosa
S e2 ia/2

2eia/2D , ~22!

where we set sina5(r/s)sinu. It is easily verified that
(«6 ,«6)561 and that («6 ,«7)50, recalling that (u,v)
5(PTu)•v. Therefore, with respect to thePT inner product,
the resulting vector space spanned by energy eigenstates has
a metric of signature (1,2). The conditions2.r 2 sin2 u
ensures thatPT symmetry is not broken. If this condition is
violated, the states~22! are no longer eigenstates ofPT be-
causea becomes imaginary.20

Next, we construct the operatorC:

C5
1

cosa S i sina 1

1 2 i sina D . ~23!

Note thatC is distinct fromH andP and has the key property
that

Cu«6&56u«6&. ~24!

The operatorC commutes withH and satisfiesC 251. The
eigenvalues ofC are precisely the signs of thePT norms of
the corresponding eigenstates.

Using the operatorC we construct the new inner product
structure

^uuv&5~CPTu!•v. ~25!

This inner product is positive definite because^«6u«6&51.
Thus, the two-dimensional Hilbert space spanned byu«6&,
with inner product̂ •u•&, has a Hermitian structure with sig-
nature~1,1!.

Let us demonstrate explicitly that theCPT norm of any
vector is positive. We choose the arbitrary vectorc5(b

a),
wherea and b are any complex numbers. We then see that

Tc5(b*
a* ), thatPTc5(a*

b* ), and that

CPTc5
1

cosa S a* 1 ib* sina
b* 2 ia* sina D .

Thus,

^cuc&5~CPTc!•c

5
1

cosa
@a* a1b* b1 i ~b* a2a* b!sina#.

Now let a5x1 iy and b5u1 iv, wherex, y, u, andv are
real. Then

^cuc&5
1

cosa
~x21v212xv sina1y21u222yu sina!,

~26!

which is explicitly positive and vanishes only ifx5y5u
5v50.

Recalling that̂ uu denotes theCPT-conjugate ofuu&, the
completeness condition reads

u«1&^«1u1u«2&^«2u5S 1 0

0 1D . ~27!

Furthermore, using theCPT conjugatê «6u, we can express
C in the form C5u«1&^«1u2u«2&^«2u, as opposed to the
representation in~15!, which uses thePT conjugate.

In general, an observable in this theory is represented by a
CPT invariant operator; that is, one that commutes withCPT.
Thus, if CPT symmetry is not broken, the eigenvalues of the
observable are real. The operatorC satisfies this requirement,
and hence it is an observable. For the two-state system, if we
set u50, then the Hamiltonian~20! becomes Hermitian.
However, the operatorC then reduces to the parity operator
P. As a consequence, the requirement ofCPT invariance
reduces to the standard condition of Hermiticity for a sym-
metric matrix, namely, thatH5H* . This is why the hidden
symmetry C was not noticed previously. The operatorC
emerges only when we extend a real symmetric Hamiltonian
into the complex domain.

We have also calculated theC operator in infinite-
dimensional quantum mechanical models. For anx21 ix3

potentialC can be obtained from the summation in~15! using
perturbative methods and for anx22x4 potentialC can be
calculated using nonperturbative methods.21

IV. APPLICATIONS AND POSSIBLE OBSERVABLE
CONSEQUENCES

In summary, we have described an alternative to the axiom
of Hermiticity in quantum mechanics; we call this new re-
quirementPT invariance. In quantum field theory, Hermitic-
ity, Lorentz invariance, and a positive spectrum are crucial
for establishingCPT invariance.22 Here, we have established
the converse of theCPT theorem in the following limited
sense: We assume that the Hamiltonian possesses space–
time reflection symmetry, and that this symmetry is not bro-
ken. From these assumptions, we know that the spectrum is
real and we construct an operatorC that is like the charge
conjugation operator. We show that quantum states in this
theory have positive norms with respect toCPT conjugation.
In effect, we replace the mathematical condition of Hermi-
ticity, whose physical content is somewhat remote and ob-
scure, by the physical condition of space–time and charge-
conjugation symmetry. These symmetries ensure the reality
of the spectrum of the Hamiltonian in complex quantum
theories.
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Could non-Hermitian,PT-symmetric Hamiltonians be
used to describe experimentally observable phenomena?
Non-Hermitian Hamiltonians havealreadybeen used to de-
scribe interacting systems. For example in 1959, Wu showed
that the ground state of a Bose system of hard spheres, which
is described by a non-Hermitian Hamiltonian.23 Wu found
that the ground-state energy of this system is real and con-
jectured that all of the energy levels were real. In 1992, Hol-
lowood showed that even though the Hamiltonian of a com-
plex Toda lattice is non-Hermitian, the energy levels are
real.24 Non-Hermitian Hamiltonians of the formH5p2

1 ix3 also arise in various Reggeon field theory models that
exhibit real positive spectra.25 In each of these cases the fact
that a non-Hermitian Hamiltonian had a real spectrum ap-
peared mysterious at the time, but now the explanation is
simple: In each of these cases it is easy to show that the
non-Hermitian Hamiltonian isPT symmetric. That is, the
Hamiltonian in each case is constructed so that the position
operatorx or the field operatorf is always multiplied byi.

An experimental signal of a complex Hamiltonian might
be found in the context of condensed matter physics. Con-
sider the complex crystal lattice whose potential is given by
V(x)5 i sinx. While the HamiltonianH5p21 i sinx is not
Hermitian, it isPT symmetric, and all of the energy bands
arereal. However, at the edge of the bands the wave function
of a particle in such a lattice is always bosonic (2p periodic!
and, unlike the case of ordinary crystal lattices, the wave
function is never fermionic (4p periodic!.26 Direct observa-
tion of such a band structure would give unambiguous evi-
dence of aPT symmetric Hamiltonian.

There are many opportunities for the use of non-Hermitian
Hamiltonians in the study of quantum field theory. For
example, a scalar quantum field theory with a cubic

self-interaction described by the LagrangianL5 1
2 (¹w)2

1 1
2 m2w21gw3 is physically unacceptable because the en-

ergy spectrum is not bounded below. However, the cubic
scalar quantum field theory that corresponds toH in ~1! with

e51 is given by the Lagrangian densityL5 1
2 (¹w)2

1 1
2 m2w21 igw3. This is a new, physically acceptable quan-

tum field theory. Moreover, the theory that corresponds toH
in ~1! with e52 is described by the Lagrangian density

L5 1
2 ~¹w!21 1

2 m2w22 1
4 gw4. ~28!

What is remarkable about this ‘‘wrong-sign’’ field theory is
that, in addition to the energy spectrum being real and posi-
tive, the one-point Green’s function~the vacuum expectation
value of the fieldw! is nonzero.27 Furthermore, the field
theory is renormalizable, and in four dimensions is asymp-
totically free~and thus nontrivial!.28 Based on these features
of the theory, we believe that the theory may provide a useful
setting to describe the dynamics of the Higgs sector in the
standard model.

Other field theory models whose Hamiltonians are non-
Hermitian andPT-symmetric have also been studied. For
example,PT-symmetric electrodynamics is particularly in-
teresting because it is asymptotically free~unlike ordinary
electrodynamics! and because the direction of the Casimir
force is the negative of that in ordinary electrodynamics.29

This theory is remarkable because it can determine its own
coupling constant. SupersymmetricPT-symmetric quantum
field theories have also been studied.30

We have found thatPT-symmetric quantum theories ex-
hibit surprising and new phenomena. For example, wheng
is sufficiently small, the2gw4 theory described by the
Lagrangian~28! possesses bound states~the conventional
gw4 theory does not because the potential is repulsive!. The
bound states occur for all dimensions 0<D,3,31 but for
purposes of illustration we describe the bound states in the
context of one-dimensional quantum field theory~quantum
mechanics!. For the conventional quantum mechanical an-
harmonic oscillator, which is described by the Hamiltonian

H5 1
2 p21 1

2 m2x21 1
4 gx4 ~g.0!, ~29!

the small-g Rayleigh–Schro¨dinger perturbation series for the
kth energy levelEk is

Ek;m@k1 1
2 1 3

4 ~2k212k11!n1O~n2!# ~n→01!,
~30!

wheren5g/(4m3). The renormalized mass Mis defined as
the first excitation above the ground state:M[E12E0

;m@113n1O(n2)# asn→01.
To determine if the two-particle state is bound, we exam-

ine the second excitation above the ground state using~30!.
We define

B2[E22E0;m@219n1O~n2!# ~n→01!. ~31!

If B2,2M , then a two-particle bound state exists and the
~negative! binding energy isB222M . If B2.2M , then the
second excitation above the vacuum is interpreted as an un-
bound two-particle state. We see from~31! that in the small-
coupling region, where perturbation theory is valid, the con-
ventional anharmonic oscillator does not possess a bound
state. Indeed, using WKB, variational methods, or numerical
calculations, one can show that there is no two-particle
bound state for any value ofg.0. Because there is no bound
state thegx4 interaction may be considered to represent a
repulsive force.32

We obtain the perturbation series for the non-Hermitian,
PT-symmetric Hamiltonian

H5 1
2 p21 1

2 m2x22 1
4 gx4 ~g.0!, ~32!

from the perturbation series for the conventional anharmonic
oscillator by replacingn with 2n. Thus, while the conven-
tional anharmonic oscillator does not possess a two-particle
bound state, thePT-symmetric oscillator does indeed possess
such a state. We measure the binding energy of this state in
units of the renormalized massM and we define thedimen-
sionlessbinding energyD2 by

D2[
B222M

M
;23n1O~n2! ~n→01!. ~33!

This bound state disappears whenn increases beyond
n50.0465 . . . . As n continues to increase,D2 reaches a
maximum value of 0.427 atn50.13 and then approaches the
limiting value 0.28 asn→`.

In the PT-symmetric anharmonic oscillator, there are not
only two-particle bound states for small coupling constant
but alsok-particle bound states for allk>2. The dimension-
less binding energies are

Dk[~Bk2kM!/M;23k~k21!n/21O~n2! ~n→01 !.
~34!
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The key feature of this equation is that the coefficient ofn is
negative. Because the dimensionless binding energy be-
comes negative asn increases from 0, there is ak-particle
bound state. The higher multiparticle bound states cease to
be bound for smaller values ofn; starting with the three-
particle bound state, the binding energy of these states be-
comes positive asn increases past 0.039, 0.034, 0.030, and
0.027.

Thus, for any value ofn there are always a finite number
of bound states and an infinite number of unbound states.
The number of bound states decreases with increasingn until
there are no bound states at all. There is a range ofn for
which there are only two- and three-particle bound states.
This situation is analogous to the physical world in which
one observes only states of two and three bound quarks. In
this range ofn if one has an initial state containing a number
of particles~renormalized masses!, these particles will clump
together into bound states, releasing energy in the process.
Depending on the value ofn, the final state will consist either
of two- or of three-particle bound states, whichever is ener-
getically favored. Note also that there is a special value ofn
for which two- and three-particle bound states can exist in
thermodynamic equilibrium.

How does agw3 theory compare with agw4 theory? A
gw3 theory has an attractive force. The bound states that
arise as a consequence of this force can be found by using
the Bethe–Salpeter equation. However, thegw3 field theory
is unacceptable because the spectrum is not bounded below.
If we replaceg by ig, the spectrum becomes real and posi-
tive, but now the force becomes repulsive and there are no
bound states. The same is true for a two-scalar theory with
interaction of the formigw2x. This latter theory is an ac-
ceptable model of scalar electrodynamics, but has no analog
of positronium.

Another feature ofPT-symmetric quantum field theory
that distinguishes it from the conventional quantum field
theory lies in the commutation relation between theP andC
operators. Specifically, if we writeC5CR1 iCI , whereCR and
CI are real, thenCRP5PCR andCIP52PCI . These commu-
tation and anticommutation relations suggest the possibility
of interpretingPT-symmetric quantum field theory as de-
scribing both bosonic and fermionic degrees of freedom, an
idea analogous to the supersymmetric quantum theories. The
distinction here, however, is that the supersymmetry can be
broken; that is, bosonic and fermionic counterparts can have
different masses without breaking thePT symmetry. There-
fore, another possible observable experimental consequence
might be the breaking of the supersymmetry.

V. CONCLUDING REMARKS

We have argued in this paper that there is an alternative to
the axiom of standard quantum mechanics that the Hamil-
tonian must be Hermitian. We have shown that the axiom of
Hermiticity may be replaced by the more physical condition
of PT ~space–time reflection! symmetry. Space–time reflec-
tion symmetry is distinct from the condition of Hermiticity,
so it is possible to consider new kinds of quantum theories,
such as quantum field theories whose self-interaction poten-
tials areigw3 or 2gw4. Such theories have previously been
thought to be mathematically and physically unacceptable
because the spectrum might not be real and because the time
evolution might not be unitary.

These new kinds of theories can be thought of as exten-
sions of ordinary quantum mechanics into the complex
plane; that is, continuations of real symmetric Hamiltonians
to complex Hamiltonians. The idea of analytically continuing
a Hamiltonian was first discussed in 1952 by Dyson, who
argued heuristically that perturbation theory for quantum
electrodynamics is divergent.33 Dyson’s argument involves
rotating the electric chargee into the complex planee→ ie.
Applied to the quantum anharmonic oscillator, whose Hamil-
tonian is given in~29!, Dyson’s argument would go as fol-
lows: If the coupling constantg is continued in the complex-
g plane to2g, then the potential is no longer bounded be-
low, so the resulting theory has no ground state. Thus, the
ground-state energyE0(g) has an abrupt transition atg50.
If we representE0(g) as a series in powers ofg, this series
must have a zero radius of convergence becauseE0(g) has a
singularity atg50 in the complex-coupling-constant plane.
Hence, the perturbation series must diverge for allgÞ0.
While the perturbation series does indeed diverge, this heu-
ristic argument is flawed because the spectrum of the Hamil-
tonian ~32! that is obtained remains ambiguous until the
boundary conditions that the wave functions must satisfy are
specified. The spectrum depends crucially on how this
Hamiltonian with a negative coupling constant is obtained.

There are two ways to obtain the Hamiltonian~32!. First,
one can substituteg5ugueiu into the Hamiltonian~29! and
rotate fromu50 to u5p. Under this rotation, the ground-
state energyE0(g) becomes complex. Evidently,E0(g) is
real and positive wheng.0 and complex wheng,0.34 Sec-
ond, one can obtain~32! as a limit of the Hamiltonian

H5 1
2 p21 1

2 m2x21 1
4 gx2~ ix !e ~g.0! ~35!

ase: 0→2. The spectrum of this Hamiltonian is real, positive,
and discrete. The spectrum of the limiting Hamiltonian~32!
obtained in this manner is similar in structure to that of the
Hamiltonian in~29!.

How can the Hamiltonian~32! possess two such astonish-
ingly different spectra? The answer lies in the boundary con-
ditions satisfied by the wave functionsfn(x). In the first
case, in whichu5argg is rotated in the complex-g plane
from 0 to p, cn(x) vanishes in the complex-x plane asuxu
→` inside the wedges2p/3,argx,0 and24p/3,argx
,2p. In the second case, in which the exponente ranges
from 0 to 2,fn(x) vanishes in the complex-x plane asuxu
→` inside the wedges2p/3,argx,0 and 2p,argx
,22p/3. In this second case the boundary conditions hold
in wedges that are symmetric with respect to the imaginary
axis; these boundary conditions enforce thePT symmetry of
H and are responsible for the reality of the energy spectrum.

Apart from the spectra, there is another striking difference
between the two theories corresponding toH in ~32!. The
one-point Green’s functionG1(g) is defined as the expecta-
tion value of the operatorx in the ground-state wave function
f0(x),

G1~g!5^0uxu0&/^0u0&[E
C
dx xc0

2~x!Y E
C
dx c0

2~x!,

~36!

whereC is a contour that lies in the asymptotic wedges de-
scribed above. The value ofG1(g) for H in ~32! depends on
the limiting process by which we obtainH. If we substitute
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g5g0eiu into the Hamiltonian~29! and rotate fromu50 to
u5p, we find by an elementary symmetry argument that
G1(g)50 for all g on the semicircle in the complex-g plane.
Thus, this rotation in the complex-g plane preserves parity
symmetry (x→2x). However, if we defineH in ~32! by
using the Hamiltonian in~35! and by allowinge to range
from 0 to 2, we find thatG1(g)Þ0. Indeed,G1(g)Þ0 for all
values ofe.0. Thus, in this theoryPT symmetry~reflection
about the imaginary axis,x→2x* ) is preserved, but parity
symmetry is permanently broken. We believe that this means
that one might be able to describe the dynamics of the Higgs
sector by using a2gw4 quantum field theory.
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