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PREFACE

The triumphant vindication of bold theories—are these not
the pride and justification of our life’s work?

—Sherlock Holmes, The Valley of Fear
Sir Arthur Conan Doyle

The main purpose of our book is to present and explain mathematical methods
for obtaining approximate analytical solutions to differential and difference
equations that cannot be solved exactly. Our objective is to help young and
also established scientists and engineers to build the skills necessary to analyze
equations that they encounter in their work. Our presentation is aimed at
developing the insights and techniques that are most useful for attacking new
problems. We do not emphasize special methods and tricks which work only
for the classical transcendental functions; we do not dwell on equations whose
exact solutions are known.

The mathematical methods discussed in this book are known collectively as
asymptotic and perturbative analysis. These are the most useful and powerful
methods for finding approximate solutions to equations, but they are difficult
to justify rigorously. Thus, we concentrate on the most fruitful aspect of applied
analysis; namely, obtaining the answer. We stress care but not rigor.

To explain our approach, we compare our goals with those of a freshman
calculus course. A beginning calculus course is considered successful if the
students have learned how to solve problems using calculus. It is not necessary
for a student to understand the subtleties of interchanging limits, point-set
topology, or measure theory to solve maximum-minimum problems, to compute
volumes and areas, or to study the dynamics of physical systems. Asymptotics
is a newer calculus, an approximate calculus, and its mathematical subtleties
are as difficult for an advanced student as the subtleties of calculus are for a
freshman. This volume teaches the new kind of approximate calculus necessary to
solve hard problems approximately. We believe that our book is the first
comprehensive book at the advanced undergraduate or beginning graduate level
that has this kind of problem-solving approach to applied mathematics.

The minimum prerequisites for a course based on this book are a facility with
calculus and an elementary knowledge of differential equations. Also, for a few

xiii



Xiv PREFACE

advanced topics, such as the method of steepest descents, an awareness of
complex variables is essential. This book has been used by us at Washington
University and at M.LT. in courses taken by engineering, science, and mathemat-
ics students normally including juniors, seniors, and graduate students.

We recognize that the readership of this book will be extremely diverse.
Therefore, we have organized the book so that it will be useful to beginning
students as well as to experienced researchers. First, this book is completely
self-contained. We have included a review of ordinary differential equations and
ordinary difference equations in Part I for those readers whose background is
weak. There is also an Appendix of useful formulas so that it will rarely be
necessary to consult outside reference books on special functions.

Second, we indicate the difficulty of every section by the three letters E (easy),
I (intermediate), and D (difficult). We also use the letter T to indicate that the
material has a theoretical as opposed to an applied or calculational slant. We
have rated the material this way to help readers and teachers to select the level
of material that is appropriate for their needs. We have included a large selection
of exercises and problems at the end of each chapter. The difficulty and slant
of each problem is also indicated by the letters E, I, D, and T. A good
undergraduate course on mathematical methods can be based entirely on the
sections and problems labeled E.

One of the novelties of this book is that we illustrate the results of our
asymptotic analysis graphically by presenting many computer plots and tables
which compare exact and approximate answers. These plots and tables should
give the reader a feeling of just how well approximate analytical methods work.
It is our experience that these graphs are an effective teaching device that
strengthens the reader’s belief that approximation methods can be usefully applied
to the problems that he or she need to solve.

In this volume we are concerned only with functions of one variable. We hope
some day to write a sequel to this book on partial differential equations.

We thank our many colleagues, especially at M.LT., for their interest,
suggestions, and contributions to our book, and our many students for their
thoughtful and constructive criticism. We are grateful to Earl Cohen, Moshe
Dubiner, Robert Keener, Lawrence Kells, Anthony Patera, Charles Peterson,
Mark Preissler, James Shearer, Ellen Szeto, and Scot Tetrick for their assistance
in preparing graphs and tables. We are particularly indebted to Jessica Bender
for her tirelegs editorial assistance and to Shelley Bailey, Judi Cataldo, Joan Hill,
and Darde Khan for helping us prepare a final manuscript. We both thank the
National Science Foundation and the Sloan Foundation and one of us, S. A. O,
thanks the Fluid Dynamics Branch of the Office of Naval Research for the
support we have received during the preparation of this book. We also ac-
knowledge the support of the National Center for Atmospheric Research for
allowing us the use of their computers.

Carl M. Bender
Steven A. Orszag



PART

FUNDAMENTALS

I am afraid that I rather give myself away when I explain.
Results without causes are much more impressive.

Sherlock Holmes, The Stock-Broker’s Clerk
Sir Arthur Conan Doyle

Part I of this book is a synopsis of exact methods for solving ordinary differential
equations (Chap. 1) and ordinary difference equations (Chap. 2). Since our pri-
mary emphasis in later parts is on the approximate solution of such equations, it is
important to review those exact methods that are currently known.

Our specific purpose with regard to differential equations is to refresh but not
- .to intreduce these concepts that would be learned in a low-level undergraduate
- course. Although Chap. 1is self-contained in the sense that it begins with the most
elementary aspects of the subject, the language and pace are appropriate for
someone who has already had some experience in solving elementary differential
equations. Our approach highlights applications rather than theory; we state
theorems without proving them and stress methods for obtaining analytical solu-
tions to equations.

The beauty of differential equations lies in their richness and variety. There is
always a large class of equations which exhibits a new behavior or illustrates some
counterintuitive notion. Unfortunately, many students, rather than enjoying the
abundance of the subject, are confounded and appalled by it. To those who view
the subject as an endless collection of unrelated methods, rules, and tricks, we say
that the collection is actually finite; apart from transform methods (see the Refer-
ences), it is entirely contained in Chap. 1. The reader who masters the material in
Chap. 1 will be fully prepared for any problems he or she may encounter.
And to those mathematicians who prefer to study the general properties of a forest
without having to examine individual trees, we are pleased to say that as we
progress toward the approximate study of differential equations in Parts II, III,
and IV our approach becomes far more general; approximate methods apply to
much wider classes of equations than exact methods.



2 FUNDAMENTALS

Our presentation in Chap. 2 is more elementary because most students are
unfamiliar with difference equations. Our treatment of the subject emphasizes the
parallels with differential equations and again stresses analytic methods of
solution.
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CHAPTER

ONE
ORDINARY DIFFERENTIAL EQUATIONS

Like all other arts, the Science of Deduction and Analysis

is one which can only be acquired by long and patient study,
nor is life long enough to allow any mortal to attain the
highest possible perfection in it. Before turning to those
moral and mental aspects of the matter which present the
greatest difficulties, let the inquirer begin by mastering

more elementary problems.

Sherlock Holmes, A Study in Scarlet
Sir Arthur Conan Doyle

1.1 ORDINARY DIFFERENTIAL EQUATIONS

An nth-order differential equation has the form

yO(x) = Flx, y(x), y'(x), ..., "~ P(x)], (1.1.1)

where y* = d*y/dx*. Equation (1.1.1)is a linear differential equation if F is a linear
function of y and its derivatives (the explicit x dependence of F is still arbitrary). If
(1.1.1) is linear, then the general solution y(x) depends on n independent pa-
rameters called constants of integration; all solutions of a linear differential equa-
tion may be obtained by proper choice of these constants. If (1.1.1) is a nonlinear
differential equation, then it also has a general solution which contains n constants
of integration. However, there sometimes exist special additional solutions of
nonlinear differential equations that cannot be obtained from the general solution
for any choice of the integration constants. We omit a rigorous discussion of these
fundamental properties of differential equations but illustrate them in the next
three examples.

Example 1 Separable equations. Separable equations are the easiest differential equations to
solve. An equation is separable if it is first order and the x and y dependences of F in (1.1.1) factor.
The most general separable equation is

¥(x) = a(x)b(y). (L12)
Direct integration gives the general solution

Y dt x )

‘ b_(l—)z [ a(s) ds + Cy (1.1.3)
where ¢, is a constant of integration. [The notation |* a(s) ds stands for the antiderivative of a(x).]

3



4 FUNDAMENTALS

Linear equations have a simpler and more restricted range of possible behav-
iors than nonlinear equations, but they are an important class because they occur
very frequently in the mathematical description of physical phenomena. Formally,
a linear differential equation may be written as

Ly(x) = f(x), (1.1.4)

where L is a linear differential operator:

d dn -1 dn
L= po(x) + p(x) 5+ +"'+Pn—1(X)W toa (1.15)
It is conventional, although not necessary, to choose the coefficient of the highest
derivative to be 1. If f(x) =0, the differential equation (1.1.4) is homogeneous;
otherwise it is inhomogeneous.

Example 2 Solution of a linear equation. The general solution of the homogeneous linear
equation

1+x 1
-y +-y=0 (1.1.6)
x X

"

y

is y(x) = ¢, € + ¢,(1 + x), which shows the explicit dependence on the two constants of integra-
tion ¢, and c,. Every solution of (1.1.6) has this form.

Nonlinear equations have a richer mathematical structure than linear equa-
tions and are generally more difficult to solve in closed form. Nevertheless, the
solution of many difficult-looking nonlinear equations is quite routine.

Example 3 Solutions of nonlinear equations. Two nonlinear differential equations which can be
routinely solved-(see Secs. 1.6 and 1.7) are the Riccati-equation

Al
y=— —y%,  Aisaconstant, (1.L.7)
X
whose general solution is
=l A (118)
X)=- 4+~ L
y x  xte, + M
and the equidimensional equation
V' =yy/x (1.1.9)
whose general solution is
y(x)=2c,tan (c, In x + ¢c,) - L. (1.1.10)

There is a special solution to (1.1.9), namely y = c;, where c; is an arbitrary constant, which
cannot be obtained from the general solution in (1.1.10) for any choice of ¢, and c,. (See Prob.
12)

The rest of this chapter gives a brief theoretical discussion of the existence and
uniqueness of solutions to initial- and boundary-value problems and surveys the
elementary techniques for obtaining closed-form solutions of differential
equations like those in the above three examples.
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Systems of First-Order Equations

The general nth-order differential equation (1.1.1) is equivalent to a system of
n first-order equations. To show this, we introduce the n dependent variables
yi(x) = d*y/dx* (k = 0, 1, 2, ..., n — 1). These variables satisfy the system of n first-
order equations

d
Eyk(x)=)’k+1(x), k=0,...,n—2,

d
IV 1(x) = F[x, yos Y15 Y2, -1 Y- 1(x)]-

Conversely, it is usually true that a system of n first-order equations

d
EZI‘ =filx, 2y, 25, .-, 2,), k=1,2,...,n (1.1.11)

can be transformed to a single equation of nth order. To construct an equivalent
nth-order equation for z,(x), we differentiate (1.1.11) with respect to x, using the
chain rule and (1.1.11) for dz,/dx. We obtain

4 I«

ot B,

Repeating this process (n — 1) times we obtain n equations of the form
&

E;:izl =f(lj)(x’ Zys ...,Z,,), .]= 1’ cees (1112)

Se=fOx, 24, ones 20)

where f{” = f, and f{* V= af{/ox + Y- 1(0f?/0z,) fi. If these n equations can
be solved simultaneously to eliminate z,, z3, ..., z, as functions of x, z,, dz,/dx,
d*zy/dx?, ..., d"" 'z /dx"" !, then the system (1.1.11) has been transformed to an
nth-order equation for z,. Can you construct an example in which the equations
(1.1.12) cannot be solved for z,, ..., z,?

1.2 INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS

A solution y(x) to a differential equation is not uniquely determined by the differ-
ential equation alone; the values of the n independent constants of integration
must also be specified. These constants of integration may be specified in several
quite disparate ways. In an initial-value problem one specifies y-and its first n — 1

derivatives, y/, ..., y" 1), at one point x = x,:
y(xo) = do,
V(xo)=ay,..., (1.2.1)

i 1)(xo) =04,
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The numbers ay, ..., a,_, are the n constants of integration of the initial-value
problem. In a boundary-value problem a total of n quantities are specified at two or
more points. For example, for a fifth-order differential equation, one might impose
the conditions: y(x;)=a;, y(x;)=ay, y(x3)=as, y"(x3)=as y"(x;)+
[¥(x2)]* = as. It may be that some or all of the points xy, x5, ... are interior to and
not on the boundary of the region in which y(x) is to be found. In any case, the
quantities g; are still the constants of integration for the problem.

The many theorems which deal with the existence and uniqueness of the
solutions to initial-value and boundary-value problems provide the basis for two
levels of applied analysis. Local analysis consists of investigating the solution in
the neighborhood of a point; the results are valid when the neighborhood is
sufficiently small. Global analysis, which is much more difficult, attempts to
determine the nature of the solution over a region of finite extent. This distinction
provides the organizational structure of this book. For example, asymptotic series
(see Part II) are only valid locally, whereas WKB approximations (see Part IV)
are global.

Initial-value problems are intrinsically much simpler than boundary-value
problems. Initial-value problems may be subjected to local analysis to determine
whether a unique solution y(x) exists in a sufficiently small neighborhood of x,.
For example, the differential equation (1.1.1) may be differentiated repeatedly (if
this is possible) to compute the coefficients in the Taylor expansion of y(x) about
the point x,. (A series expansion is a typical tool of local analysis.) In fact, there is
a standard existence theorem for initial-value problems which applies whether or
not this Taylor series exists or converges. In general, if F, dF/dy, 0F/dy, ...,
0F/dy""~ Y are all continuous functions of x, y, y/, ..., ¥™~ ! in some neighborhood
of x¢, ag, ay, ..., a,—,, then a unique solution y(x) satisfying (1.1.1) and (1.2.1)
exists in some interval containing x,. In Prob. 1.3 we examine the proof of this
theorem for first-order equations using a technique that may be generalized to
nth-order equations.

Example 1 Initial-value problems having unique solutions. Because they satisfy the conditions for
the existence and uniqueness theorem, the following five initial-value problems all have unique
solutions which exist for x sufficiently near 0:

(a) y = sin (xy), y0)=1;

(b) ¥y =(x+yp?y? y0)=1

(c) y=e+x/y, y(0)=1;

d) y'=y*+e, ¥(0) = y(0)=0;

(e) y" = e, y(0)=y(0)=y"(0)=0.

Unfortunately, the solutions to these problems have at best a metaphysical existence because we
do not know how to express any of them in terms of known functions.

If F is not a smooth function of its arguments, then the existence and
uniqueness theorem may not hold.

Example 2 Differential equation having a nonunique solution. For the initial-value problem
y' = y*3 [y(0) = 0] it is clear that F is continuous near x = 0 and y = 0, but that dF/dy is not. It is
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therefore not surprising that there are two solutions to this problem: y = 0, y = (2x/3)¥2. Notice
that the general solution to the first-order equation y' = y* is y(x) = n(2x/3 + ¢,)*'2, where
n= +1,0and c, is arbitrary. This general solution depends on more than the single constant of
integration c,; it also depends on the discrete parameter 5. In general, if F in (1.1.1) is not smooth,
then the solution y(x) may depend on more than n constants of integration.

Example 3 Differential equation having a unique solution. The initial-value problem y’ = x~1/2
[¥(0) = 1] does have a unique solution y = 2x!2 + 1, even though F is discontinuous at x = 0.
But this does not contradict the uniqueness theorem which gives a sufficient, but not necessary,
condition on F for existence and uniqueness.

If it can be shown that the initial-value problem has a solution near x,, the
next step is to determine the global properties of this solution. In particular, one
must determine the extent of the interval containing x, on which the local solution
exists. This is relatively easy to do for linear equations. For example, it can be
shown (see Prob. 1.4) that, independent of the initial conditions, the interval is at
least as large as the largest interval containing no discontinuities of po(x), py(x),
pa(x), ..., pa—1(x). Additional analysis may establish that the interval is even
larger.

Example 4 Interval of existence of solution to a linear equation. The result in Prob. 1.4 ensures
that the solution to y’ = (tan x)y + 1[y(0) = 1] exists in the interval in which tan x is continuous,
namely (—n/2, n/2). However, the solution y(x)= (1 + sin x)/cos x actually exists for
=3n/2 <x < w2

Global analysis of initial-value problems for nonlinear differential equations
is much more difficult. Solutions of nonlinear equations may develop spontaneous
singularities whose locations depend on the initial conditions (see Chap. 4).
Hence, the region in which the solution exists depends on the initial conditions as
well as on the equation. Observe that the positions of the singularities of solutions
to the nonlinear equations in Example 3 of Sec. 1.1 change as the initial conditions
vary.

Boundary-value problems are inherently global. Existence and uniqueness
theorems for solutions must be proved for an interval large enough to include all
the points x,, x,, .... Local analysis of the solution near any of these points is
insufficient. The global properties of linear differential equations are relatively
easy to obtain, but it is very difficult to state rigorous criteria for existence and
uniqueness of solutions to boundary-value problems for nonlinear differential
equations. Boundary-value problems for nonlinear differential equations may
have no solution, a finite number k of solutions, or even infinitely many solutions.
The same possibilities are true for linear equations except that k = 1.

1.3 THEORY OF HOMOGENEOUS LINEAR EQUATIONS

In this section we review the elementary aspects of the elegant theory of initial-
value and boundary-value problems for homogeneous linear differential
equations.
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Linear Independence of Solutions
The general solution of an nth-order homogeneous linear equation
Y 4 paoa (YT 4 o+ po(x)y =0 (13.1)

has the particularly simple form

y(x)= ,Zl ¢iyix) (1.3.2)
i=
where the c; are arbitrary constants of integration and {y;(x)} is a linearly indepen-
dent set of functions, each satisfying (1.3.1). There are always exactly n linearly
independent solutions to (1.3.1) in any region where the coefficient functions p(x),
p1(x), ..., p,—1(x) are continuous.

[A set of functions {y;(x)} is said to be linearly dependent if it is possible to find
a set of numbers {c;} which are not all zero and which satisfy Y7, ¢;y;(x) = 0. If it
is not possible to find such a set, then {y;(x)} is linearly independent.]

The concept of linear independence is important because it enables one to
decide whether any solution of the form (1.3.2) is indeed the general solution. If
the n functions {y;(x)} are not linearly independent, then at least one y; is a linear
combination of the others and it is necessary to search for more solutions of the
differential equation. Note that it does not make sense to discuss linear indepen-
dence at a point; linear independence is a global concept. A set of functions is
always said to be linearly dependent or independent throughout an interval.

The Wronskian

There is a simple test for the linear dependence of a set of differentiable functions.
The Wronskian W(x) is defined as the determinant

W(x) = Wlyi(x), ya(x), -, ya(x)]

Y1 Y2
g . ¥,
=det | 002 (133)
s S yoov

W(x) vanishes identically over an interval if and only if {y;(x)} is a linearly depen-
dent set of functions (see Prob. 1.5). If {y;(x)} is linearly independent over some
interval, then W(x) does not vanish, except possibly at isolated points.

Example 1 Linear dependence. Since W[e*, e™*, cosh x] = 0 for all x, {*, e™*, cosh x} is a linearly
dependent set of functions.

Example 2 Linear independence. To verify that the solution y(x)=c e* +c,(1 +x) of
y" = y'(1 + x)/x + y/x = 0 in Example 2 of Sec. 1.1 is in fact the general solution, we evaluate
the Wronskian: W[l + x, €] = xe*. Note that xe* vanishes only at x = 0 (because ¢ and 1 + x
are tangent there). Thus, for all x, {I + x, "} is a linearly independent set.
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Homogeneous linear equations have a remarkable property: the Wronskian
W(x) of any n solutions of (1.3.1) satisfies the simple first-order equation

W/(x) = — pue s (x) W(x). (13.4)

(For the derivation of this equation, see Prob. 1.7.) The solution of (1.3.4) is
known as Abel’s formula:

W(x) = exp [—[ T l0) d:]. (13.5)

Thus, we have the surprising result that W(x) can be computed before any of the
solutions of the differential equation are known. The indefinite integral in Abel’s
formula means that W(x)is determined up to an arbitrary multiplicative constant.
Choosing a new set of n solutions (which, of course, will all be linear combinations
of the old set) merely alters the constant.

Let us now use these theoretical results to discuss the wellposedness of initial-
value and boundary-value problems. We define a well-posed problem here as one
for which a unique solution exists. (Wellposedness is a concept which is usually
associated with partial differential equations, but it is also appropriate here.)

Initial-Value Problems

To solve an initial-value problem one must choose the c; in (1.3.2) so that the
initial conditions in (1.2.1) are satisfied. The c; are determined by a set of n

simultaneous algebraic equations Y 7-, ¢;)¥(x¢)=a; (i=0, 1,..., n — 1). But,
according to Cramer’s rule, these equations have a unique solution only if
det [y{(xo)] = W(x,) # 0. (1.3.6)

Thus, the Wronskian appears naturally in the study of initial-value problems.
It actually has two related but distinct diagnostic applications. First, it may be
used globally to determine whether a solution of the form in (1.3.2) is in fact the
general solution of (1.3.1) by testing whether {y;} is a linearly independent set. In
fact, the exponential form of the Wronskian implies that the general solution in
one region remains the general solution in any region which can be reached
without passing through singularities of the coefficient functions. [The exponential
in (1.3.5) can never vanish except possibly at a singularity of p,_,(x).]

Second, and less importantly, the Wronskian may be used locally to spot an
ill-posed initial-value problem without actually solving the differential equation
by simply evaluating (1.3.5) and referring to (1.3.6). (A problem is ill posed if it has
no solution or if the solution is not unique.) A homogeneous initial-value problem
is ill posed if the initial conditions are given at a point x, for which the Wronskian,
as calculated by Abel’s formula, vanishes; either there is no solution at all or else
there are infinitely many solutions.

Example 3 [ll-posed problem—vanishing Wronskian. The Wronskian for the differential equation
in Example 2 vanishes only at x = 0. Thus, it is not surprising that the initial-value problem
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Y =y +x)/x+y/x=0 [y(1)=1,y(1)=2] is well posed. When these initial conditions
are replaced with y(0) = 1, y'(0) = 2, the problem is ill posed because there is no solution. When
these initial conditions are replaced with y(0) = 1, y'(0) = 1, the problem is still ill posed because
the solution y(x) = ¢* + ¢(e* — 1 — x) is not unique.

Unfortunately, a nonvanishing Wronskian does not imply that the problem is
well posed.

Example 4 [ll-posed problem—nonvanishing Wronskian. The initial-value problem
Y —6y/x* =0

[y(0) = 6, y'(0) = 6] is ill posed because the general solution y(x)=c,x* + c,x” 2 is either
infinite or vanishing at x = 0. Abel’s formula (1.3.5) tells us that the Wronskian is constant
everywhere, including x = 0, and that this constant does not vanish because y(x) is the general
solution. Thus, unfortunately, the nonvanishing of W(x)at x = x,in (1.2.1)is a necessary but not
a sufficient condition for the wellposedness of an initial-value problem. Of course, this initial-
value problem is clearly suspect because the initial conditions are given at a discontinuity of

Po(x).

When the Wronskian is infinite at x,, the initial-value problem may or may
not be well posed.

Example 5 Singular Wronskian. The general solution of (x? + x)y” + (2 — x?)y = (2 + x)y =0
is y = ¢, /x + ¢, ¢* and the Wronskian is W(x) = W[c,/x, c,e"] = ¢, ¢, €*(x + 1)/x. The initial
conditions y(0) = 0, y'(0) = 1 give an ill-posed problem because no solution exists, but the initial
conditions y(0) = 1, y'(0) = 1 give a well-posed problem whose unique solution is y(x) = €*.

Thus, although the Wronskian is a theoretically interesting object, it is
sometimes impractical as a tool for local analysis of initial-value problems. The
best advice is to beware of initial conditions that are given at a discontinuity of the
coefficient functions; one should never worry about initial conditions given at a
point where the coefficient functions in (1.3.1) are continuous.

Boundary-Value Problems

The solution to a boundary-value problem is determined by conditions given at
two or more distinct points. In contrast with initial-value problems, continuity of
the coefficient functions is not sufficient to guarantee a solution to a boundary-
value problem:

Example 6 Boundary-value problem with no solution. Consider the boundary-value problem
y' +y=0 [y'(0)=0, y(n/2) = 1] The general solution to the differential equation is y(x)=
¢, sin x + ¢, cos x. The Wronskian W(sin x, cos x) = — 1 is nonvanishing and the coefficient
functions of the differential equation are continuous. Nevertheless, the boundary-value problem
has no solution; the condition y'(0) = 0 implies that ¢, = 0 and the remaining solution y(x) =
¢, cos x cannot satisfy y(n/2) = 1 for any value ¢, because cos (n/2) = 0.

The previous example may suggest that boundary-value problems rarely have
solutions. However, exactly the opposite is true; most boundary-value problems
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have a unique solution. Suppose we consider the general second-order linear
differential equation y” + p,(x)y’ + po(x)y = 0 and impose the boundary condi-
tions y'(xo) = a, y(x,) = b. If y,(x) and y,(x) are two linearly independent solu-
tions of the differential equation, then the general solution can be written as
y(x) = Ay,(x) + By,(x). The boundary conditions require that Ay’(x,)+
By,(xo) = a, Ay,(x,) + By,(x,) = b. These equations can be solved for unique 4
and B in terms of a and b, provided that

Yilxo) ¥a(xo)
yilx1)  yalxy)

This condition, which is a generalization of the Wronskian condition in (1.3.6), is
usually satisfied, guaranteeing a unique solution to the boundary-value problem.
However, if the points x, and x, are chosen so that y'(xo)ya(x;)—
¥a(Xo)y1(xy) = 0, then the boundary-value problem is ill posed; either there is no
solution or there are an infinite number of solutions. The latter situation may
occur if byi(xe) = ay,(x,) and yi(xo) # O, y,(x,) # 0. When this happens the
boundary-value problem has infinitely many solutions which differ from each
other by arbitrary constant multiples of z(x) = y, (x)y5(xo) — y2(x)y}(xo)- Because
2(x) satisfies the boundary conditions z'(x,) = z(x,) = 0, y(x) + az(x) (« constant)
satisfies the same boundary conditions as y(x).

det

14 SOLUTIONS OF HOMOGENEOUS LINEAR EQUATIONS

Here we turn to the more practical aspects of the equation Ly = 0; namely, how to
solve it. A first-order equation of this type is easy to solve because it is separable
(see Example 1 of Sec. 1.1). However, when the order n is > 2, exact closed-form
solutions exist only rarely. We briefly classify and discuss some of the equations
which are soluble.

Constant-Coefficient Equations

Constant-coefficient equations are characterized by having po, py, ..., Pa-y
independent of x. One seeks solutions of the form y(x) = €. Substituting this trial
function into the differential equation gives L[e"*] = ¢"*P(r), where

n—1

Pry=r"+ Y p#
j=o

is an nth-degree polynomial. The solutions to Ly = 0 corresponding to distinct
roots ry, ry, ... of P(r) =0 are
y=e" e .. (L4.1)

However, if there are repeated roots, (1.4.1) is not a complete set of solutions. To
construct the remaining solutions, assume that r, is an m-fold repeated root. Then

L{e™] = e™*(r — ry)"Q(r), (14.2)
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where Q is a polynomial of degree n — m. The function in square brackets is a
solution of the differential equation if it makes the right side of (1.4.2) vanish.
Indeed, letting r = r, shows that ¢"** is a solution. To generate more solutions, we
simply take derivatives with respect to r and set » = r,. This process yields the m
solutions

y = e, xe, x2enE L xm T e, (1.4.3)

A linear combination of all the solutions in (1.4.1) and (1.4.3) constitutes a general
solution to the differential equation.

Example 1 Constant-coefficient equations.

(a) Substituting y = ¢* into the equation y” — 5y’ + 4y =0 gives the quadratic equation
(r — 1)(r — 4) = 0 that must be satisfied by r. The general solution is therefore

y=c, & +c,e*

(b) Substituting y = ¢’ into the equation y” — 3y” + 3y’ — y = 0 gives a cubic polynomial equa-
tion for r with a triple root at r = 1. The general solution is therefore

y(x)=c, & + c, xe* + cyx’es.

Equidimensional Equations

Equidimensional (or Euler) equations are so named because they are invariant
under the scale change x — ax. The coefficients have the form pj(x) = q;/x" ™/,
where g; is independent of x. Equidimensional differential equations may be
solved by transforming them into constant-coefficient equations in ¢ by the change
of variables
d d

Yax Tar
Alternatively, equidimensional equations may be solved by directly substituting
the trial function y = x" into the differential equation. This substitution gives
L[x"] = P(r)x"~" where P(r) is a polynomial of degree n. Thus, the solutions have
the form

x=é,

(1.4.4)

y=x"x"2 ., (1.4.5)

when ry, r,, ... are distinct roots of P(r). When P(r) has a repeated root ry, a
complete set of solutions is derived by differentiating the relation L[x"] = P(r)x" ™"
with respect to r and then setting r = r,. A complete set of solutions has the form

y=x",x"1nx, x"(In x), ..., (1.4.6)

when r, is a repeated root of P(r). The roots of P(r) are called indicial exponents.

Example 2 Equidimensional equation. If we substitute y = x" into the equidimensional equation
y" + y/4x? = 0, we obtain the polynomial equation (r — 4)*> = 0. The general solution is there-

fore y(x) = ¢, /x + ¢,/ In x.
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Exact Equations

An exact equation is a derivative of an equation of lower order: Ly = (d/dx) x
(My) = 0. This equation is simplified by integrating with respect to x: My = c,.
(The resulting equation is no longer homogeneous.)

Example 3 Exact equation. The equation y” +xy'+ y=0 may be rewritten as (d/dx)x
(y' + xy) = 0. Thus, y' + xy = ¢,, which is easily solved (see Sec. 1.5):

y = (cl J e dr + cz) e *12,
o
An integrating factor is a function of x and y which, when multiplying a
differential equation, makes it exact.

Example 4 Integrating factor. The differential equation y” + y'(1 + x)/x + y(x — 1)/x> =0 is
not exact, but it becomes exact when multiplied by the integrating factor e*:

x—1 d . e
e*y = —(e’y + —y).
dx X

L, l+x
ey + —— €y +—
X X

Thus, ¥ + y/x = c,e™ %, which is easily solved (see Sec. 1.5):

Yx)= —cy (1 + x)e™¥/x + ¢y/x.

Reduction of Order

Reduction of order is a technique for simplifying a linear differential equation to
one of lower order by factoring off a solution that one has been lucky enough to

find. Let y,(x) be a solution of Ly = 0. One then seeks further linearly independent
solutions of the form

y(x) = u(x)y,(x). (14.7)

Clearly, substituting this expression for y(x) into Ly = 0 gives a new equation for
u(x) of the form Mu = 0. The beauty of this substitution is that Mu has no term of
the form po(x)u. Thus, Mu = 0 is a linear homogeneous equation of order (n — 1)
for v(x) = u'(x).

Example 5 Reduction of order. We observe that the sum of the coefficients of the differential
equation y” — y'(1 + x)/x + y/x = 0 is 0. It follows that one solution is y,(x) = e*. Substituting
y(x) = u(x)e* gives u” + u'(x — 1)/x = 0, which is a first-order equation for u'(x). The general
solution for y(x) is given in Example 2 of Sec. 1.1.

Transformation to a Known Equation

If the other techniques fail, it is sometimes possible to transform the differential
equation into one of the classical equations of mathematical physics. Some well-
analyzed equations that appear frequently in this text are the Airy equation

y" =Xy, (1.4.8)
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the parabolic cylinder (Weber-Hermite) equation
Y+ +i-&Y)y=0, (14.9)

and the Bessel equation

1" 1 ’ vz
y +;y + 1—;3 y=0. (1.4.10)

Some properties of the solutions to these and other classical differential equations
are given in the Appendix.

1.5 INHOMOGENEOUS LINEAR EQUATIONS

Inhomogeneous linear differential equations are only slightly more complicated
than homogeneous ones. This is because the difference of any two solutions of
Ly = f(x) is a solution of Ly = 0. As a result, the general solution of Ly = f(x) is
the sum of any particular solution of Ly = f(x) and the general solution of Ly = 0.

Example 1 General solution to an inhomogeneous equation. Suppose y = x, y = x2, and y = x>
satisfy the second-order equation Ly = f(x). Can you find the general solution without knowing
the explicit form of L and f? The differences x — x* and x* — x* are both solutions of Ly = 0.
These functions are linearly independent, so the general solution of Ly = 01is y(x) = ¢,(x — x?) +
cy(x* — x?). Hence, the general solution of Ly = f(x), which must contain two arbitrary
constants of integration, is y(x) = c;(x — x?) + c,(x* — x?) + x.

All first-order linear inhomogeneous equations are soluble because it is
always possible to find an integrating factor which is a function of x only. The
integrating factor I(x) for

Y(x) + po(xylx) = f(x) (15.1)

is I(x)=exp [[* po(t) dt]. Multiplying by I(x) gives I(x)y'(x) + po(x)y(x)I(x) =
(d/dx)[I(x)y(x)] = f(x)I(x). So the solution of (1.5.1) is

x

) =15+ ﬁ [ i) ae (152)

Example 2 First-order inhomogeneous equation. The equation y'(x) = y/(x + y)is not linear in y,
but is linear in x! To demonstrate this, we simply exchange the dependent variable y with the
independent variable x:

d o x(y)+y
d—x()’)—- .
y y

An integrating factor for this equation is I(y) = 1/y. Multiplying by I(y) gives (d/dy)x
(x/y)=1yorx(y)=yny+cy

The technique of exchanging the dependent and independent variables is essential for the
solution of Prob. 1.22. A generalization of this method to partial differential equations is called
the hodograph transformation.
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There are several standard techniques for solving higher-order inhomoge-
neous linear equations.

Variation of Parameters

The only new complication in solving an inhomogeneous equation if the asso-
ciated homogeneous equation is soluble is finding one particular solution. The
method of variation of parameters is a general and infallible technique for deter-
mining a particular solution. The method could be classified as a super reduction
of order.

We illustrate with a second-order equation. Let y,(x) and y,(x) be two
linearly independent solutions of the homogeneous equation Ly =0, where
L = d*/dx* + py(x) d/dx + po(x). We seek a particular solution of Ly = f(x)
having the symmetric form

Y(x) = ua(x)y1(x) + ua(x)y2(x) (153)

Of course, u; and u, are underdetermined so we have the freedom to impose a
constraint which simplifies subsequent equations. We choose this constraint to be

Wy ()1 (x) + ua(x)ya(x) = 0. (L54)

Next, we differentiate (1.5.3) twice, substitute into Ly = f(x), and remember
that Ly, = Ly, = 0. Using (1.5.4) we have

uy (W1 (x) + uy(x)ya(x) = £ (x). (1.5.5)
The solution of the simultaneous equations (1.5.4) and (1.5.5) for u (x) and u,(x)is

U, (x) — (x)YZ(x)
1 W(x) >
(1.5.6)
) = L)
2 W(x) 5

where W(x) = W[y,(x), y2(x)] is the Wronskian. Observe that the denominators
W do not vanish because y,(x) and y,(x) are assumed to be linearly independent
solutions of Ly = 0.

Integrating (1.5.6) gives the final expression for the particular solution in
(1.5.3):
* f(e)ya(t) S (eya(t)

= - ————dt 5.7
y) = =yi(x) | M0d+hMJ W & (157)

Example 3 Variation of parameters. To solve y” — 3y’ + 2y = ¢** by variation of parameters, we
first determine that two solutions of the associated homogeneous equation are y, = e* and
y, = e**. Next we compute the Wronskian: W(e*, e**) = ¢** Substituting into (1.5.7) gives

x x
y(x) = —¢ “ dt e4teZle'3l erJ dt e4lexe—31
=Cxex + czer + le4x

which is the general solution to the inhomogeneous differential equation.

Variation of parameters for nth-order equations is discussed in Prob. 1.15.
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Green’s Functions

There is another general method for constructing the solution to an inhomoge-
neous linear differential equation which is equivalent to variation of parameters.
This method represents the solution as an integral over a Green’s function.

To define a Green’s function it is necessary to introduce the Dirac delta
function §(x — a). This function may be thought of as a mathematical idealization
of a unit impulse; it is an infinitely thin spike centered at x = a having unit area.}
The & function has two defining properties. First,

6x—a)=0, x+#a (1.5.8a)

Second, [ oc—ayax=1 (1.5.8b)

From these properties we have the crucial result (see Prob. 1.16) that

o0

| 8l —a)f(x) dx = f(a) (159)

— o0
if f (x) is continuous at a.
There are many ways to represent the  function. It may be expressed (non-
uniquely) as the limit of a sequence of functions:

O(x —a)= lim F(x), (1.5.10a)
e—0+
0, x <a-1e
where Fx)={1lle, a—-4<x<a+i
0, a+ie<x;
3
S(x—a)= lim — & . 1.5.10b
or (x—a) EE?+ n[(x — a)* +¢&*]’ ( )
or S(x —a)= lim (meg)™ 2=, (1.5.10¢)
-0+ i L .
or S(x—a)= lim [ e=agr (1.5.10d)
Lo+w <M L

(The notation ¢ - 0+ means that ¢ approaches 0 through positive values only.) It
is easy to verify (see Prob. 1.17) that the formulations in (1.5.10) satisfy (1.5.8).

Alternatively, 6(x — a) may be viewed as the derivative of a discontinuous
function. If h(x — a) is the Heaviside step function defined by

0, x <a,
h(x—a)E %‘, X = a,
1, x> a,
d
then (see Prob. 1.18) O(x —a)= E;h(x —a). (1.5.11)

t Technically, the é function is not really a function; it is a distribution (see References).
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Notice that integration is a smoothing operation but that differentiation is un-
smoothing. For example, the Heaviside function, which is the integral of the §
function,

hc—a)=[ o—a)d

- 0

has a finite jump discontinuity while the 6 function has an infinite jump disconti-
nuity. Similarly, the ramp function, which is the integral of the Heaviside function,

X

r(x —a)= h(t — a) dt
_ 15 x<a,
Clx—-a ax<x

is continuous everywhere.
Next, we define the Green’s function. The Green’s function G(x, a) associated
with the inhomogeneous equation Ly = f(x) satisfies the differential equation

LG(x, a) = 6(x — a). (1.5.12)

Once G(x, a) is known, it is easy to represent the solution to Ly = f(x) as an
integral

o0

y(x) = J da f(a)G(x, a). (L.5.13)

— o0

To verify that y(x) in (1.5.13) solves Ly = f, we differentiate under the integral:

Ly(x)=L ‘_w da f(a)G(x, a)
= [
=" das(apix - a)
=fx),

where we have used (1.5.12) and (1.5.9) in turn.

The only remaining problem is to solve (1.5.12) for G(x, a). But this is easy
once the solutions to the associated homogeneous equation Ly = 0 are known. To
illustrate we solve the second-order equation

oo}

da f(a)LG(x, a)

LG(x, a)= ;:—1 + pl(x)% + po(x)| G(x, @) = 6(x —a).  (1.5.14)

We denote two linearly independent solutions to Ly = 0 by y,(x) and y,(x). Then,
when x # a, the right side of (1.5.14) vanishes and we have

G(x, a)= A, y,(x) + 425,(x), x<a,
G(x, a) = B, y,(x) + B, y,(x), x> a.
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In order to relate the solution for G(x, a) for x < a to the solution for x > a,
we argue that G(x, a) is continuous at x = a and that 0G/0x has a finite jump
discontinuity of magnitude 1 at x = a. To show this, we observe that the most
singular term on the left side of the Green’s function equation (1.5.14) must be
0%G/0x? because differentiation is an unsmoothing operation; if G or dG/dx had
an infinite jump discontinuity at x = a like that of a & function, then 9*G/dx>
would be even more singular than a ¢ function and (1.5.14) could not be satisfied.
Thus, (1.5.14) implies that 0*G/0x* — §(x — a) must be less singular than a &
function at x = a. Therefore, integrating *G/0x* — 6(x — a) from — oo to x gives
a function which is continuous even at x = a: dG/0x — h(x — a) is continuous
everywhere. Hence the discontinuity in dG/0x at x = a is the same as that of
the Heaviside function h(x — a):

[66 G

x=a+e 0x

lim I

e—0+

) } =1 (1.5.15)

Finally, since 0G/dx has only a finite jump discontinuity, its indefinite integral
G(x, a) must be continuous at x = a.
Continuity of G(x, a) at x = a gives the condition

Ayy1(a) + Ay5(a) = Byy,(a) + B,y,(a).
Also, (1.5.15) requires that
B1yi(a) + Baya(a) — A1yi(a) — Azys(a) = L.

Using these relations and solving for B, — 4, and B, — A4,, we obtain

4 - ya(a)
B A= "5, (L5.16)
Py — C) (1.5.17)

2" Wy(a), y2(@)]

Observe the strong parallel between these equations and (1.5.6).

We have now completed the solution of the Green’s function equation
(1.5.14). However, A, and A, are still arbitrary because G(x, a)is only determined
by (1.5.14) up to a solution of the homogeneous equation. Choosing 4, = 4, =0
and using (1.5.16) and (1.5.17) to determine B, and B,, we obtain

—ya(@i(x) + ya(ahyax)
G(x, a)= Wiyi(a), y2(a)] ’ 7 (1.5.18)

0, x <a.

Substituting this formula for G(x, a) into (1.5.13) reproduces exactly the variation
of parameters result in (1.5.7).

The Green’s function approach has a distinct advantage over the method of
variation of parameters when it is necessary to solve a differential equation Ly = f
where L and the boundary conditions are fixed but f ranges over a wide variety of
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functions. (Why?) The analysis is particularly simple when the boundary con-
ditions are homogeneous.

Example 4 Solution of a boundary-value problem by Green’s functions. The Green’s function for
the boundary-value problem y” = f(x)[y(0) = 0, y'(1) = 0] is defined by the equations

(0°G/ox*)(x,a)=é(x —a), G(0,8)=0, (9G/dx)(1,a)=0.
Notice that we have chosen G to satisfy the same homogeneous boundary conditions as y.
The solution for G(x, a) is
-x, x<a,

G(x,a)= —a ‘>a
3 >a,

when 0 <a< 1 For any f(x), y(x) can then be represented as y(x)= (§ G(x, a)f(a) da
(0 < x < 1). Note that we do not integrate from — oo to + 00. Why?

Example 5 Solution of a boundary-value problem by Green's functions. The Green’s function for
the boundary-value problem y” — y = f(x)[y{+ o0) = 0] is defined by the equations 82G/ox* —
G(x, a) = 8(x — a), G(+ o0, a) = 0. The solution for G(x, a) is G(x, a) = —3e”*~°. Thus, for
any f(x), y(x) = =3 {2, €77 f(a) da.

Reduction of Order

For the sake of completeness, it is important to state that reduction of order
reduces the order of inhomogeneous as well as homogeneous equations. Thus,
since all first-order linear equations are soluble, reduction of order is especially
useful for second-order linear equations.

Example 6 Reduction of order for an inhomogeneous equation. One solution of the homogeneous
equation a(x)y” + xy' —y =0 is y,(x) = x. Therefore, to solve the inhomogeneous equation
a(x)y” + xy’ — y = f(x) by reduction of order, we seek a solution of the form y(x) = y,(x)u(x) =
xu(x). Substituting gives a first-order equation for w/(x) which is easy to solve:
xa(x)u" + [2a(x) + x*Ju’ = f(x).

Method of Undetermined Coefficients

There is another technique for determining a particular solution to Ly =f(x)
called the method of undetermined coefficients, which we discuss briefly. This
method is really little more than organized guesswork, but when it works it is
faster than variation of parameters. Its application is usually limited to constant-
coefficient equations where f (x) is an additive or multiplicative combination of €%,
sin x, cos x, and polynomials in x, or equidimensional equations where f (x)is a
polynomial in x.

Example 7 Method of undetermined coefficients.
(a) To solve y” +y=¢€*sin x we guess a particular solution of the form y = ae* sin x +

be* cos x and determine the “undetermined coefficients” a and b by substituting into the
differential equation. The results area= —}and b= —2.
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(b) To solve y* —~ y = e* we guess a particular solution of the form y = axe* because * already
solves the homogeneous equation. The result is a = 7.

(c) To solve y” — y/x? = x*+ x> we guess a particular polynomial solution of the form
y=ax® + bx>. We find that a = & and b = ;.

(d) Tosolve y” + xy' + 2y = 1 or x* we guess particular polynomial solutions of the formy = a
or y = ax* + bx? + c, respectively. The results are y = 4 or y = x*/6 — x?/2 + 1.

E) 1.6 FIRST-ORDER NONLINEAR DIFFERENTIAL
EQUATIONS

Although most nonlinear differential equations are too difficult to solve in closed
form, it is important to be able to recognize those equations which are soluble and
to know the appropriate techniques for obtaining a solution. For first-order equa-
tions the usual procedure is to make a substitution which converts the equation
into one that is either linear or exact.

Bernoulli Equations
Bernoulli equations have the form
y = a(x)y + b(x)y", (L.6.1)

where a(x) and b(x) are arbitrary functions of x and P is any number. This
equation has two elementary cases: when P = 0 the equation is linear and when
P = 1 the equation is separable. For all other values of P, dividing (1.6.1) through
by y* suggests the substitution

u(x) = [y(x)]* ~~. (1.6.2)
The new differential equation for u(x),
w'(x) = (1 — P)a(x)u(x) + (1 — P)b(x), (1.6.3)

is soluble because it is linear in u(x).

Example 1 Bernoulli equation. The differential equation y'(x) = x/(x2y> + y*) is not a Bernoulli
equation in y. However, exchanging the dependent and independent variables gives (d/dy)x(y) =
xy? 4+ y*/x which is a Bernoulli equation in x (P= —1). The solution is x(y)=
(e~ 3y -

Riccati Equations
Riccati equations are quadratic in y(x):
Y(x) = alx)y*(x) + b(x)y(x) + c{x). (L6.4)

There are two elementary cases: when a(x) = 0 the equation is linear and
when ¢(x) =0 the equation is a Bernoulli equation. Unfortunately, apart from
these special cases, there is no general technique for obtaining a solution. This is
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not at all surprising because the substitution

_ W)
yx) = o) (1.6.5)
converts the Riccati equation into a second-order linear equation for w(x):
1 a,(x) !
w'(x) — ) + b(x) | w'(x) + a(x)c(x)w(x) = 0. (1.6.6)

This transformation also goes in reverse. There is a Riccati equation for every
second-order homogeneous linear equation. Thus, a general closed-form solution
for all Riccati equations (say, like the one for Bernoulli equations) would be
equivalent to a quadrature solution for all linear second-order equations, which
has never been discovered!

Nevertheless, many Riccati equations can be solved. For these equations the
procedure is to guess just one solution y = y,(x), no matter how trivial, and then
to use this solution to reduce the Riccati equation to a Bernoulli equation by an
additive kind of reduction of order. Specifically, one seeks a general solution of the

form Y06) = () + u(x). (167)
The resulting Bernoulli equation for u(x) is
u'(x) = [b(x) + 2a(x)y, (x)]u(x) + a(x)u(x).

This equation is soluble. The transformation in (1.6.5) which connects Riccati
and second-order linear equations motivates this beautiful substitution, which
replaces one Riccati equation with another that is lacking a ¢(x) term. Reduction
of order for linear equations requires the multiplicative substitution y = y, (x)u(x)
[see (1.4.7)]. The transformation in (1.6.5) converts (1.4.7) to an additive substitu-
tion of the form in (1.6.7).

Example 2 Riccati equation. It is not hard to see that a solution of y'(x)=y?> —xy + 1 is
y1(x) = x. This is not the general solution which must contain an arbitrary integration constant
and which is much too difficult to guess; it is merely one solution.

Now let y = x + u(x); the equation for u(x) is u’ = u? + xu. The solution of this Bernoulli
equation is 2

ux)=———5—.
() ¢, — 5 e de
So the general solution of the Riccati equation is

12

X)=X+—————"5.
ye) ¢, =[5 e dt

Example 3 Difficult Riccati equation. It requires some fiddling to discover that a solution of the
Riccati equation (1.1.7) y'(x) = A%/x* — y? is y,(x) = 1/x — A/x>. However, once this y(x)
has been found it is routine to solve the resulting Bernoulli equation for u(x) = y(x) — y,(x):

u + 2u/x — 2uA/x? = —u’.

The solution to this equation gives y(x) in (1.1.8).
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Example 4 Factoring. Riccati equations arise from the attempt to solve a second-order linear
equation by factoring. Factoring a linear equation means rewriting the nth-order linear operator
L as a product of first-order linear operators:

Ly= [d—‘i- +p,-1(x)d%_.—. +o +p1(>c)% + po(x) | ¥(x)
d
= lE +a.(x)J dix +ay(x)| [ ] [;; +an(x)}y(x)~ (1.68)

Observe that for nonconstant a;(x)# a,(x) the factors may not commute. For example,
S R P R
-y ={—+-{-—-+x —+x|l—+-]y
4 x/° Y dx  x/\dx Y dx ax " x)?
Also, the factorization may not be unique (!)

" (d+1)(d 1) (d+t h )(d tanh )
—y=|-— — - y=|— + ta —— .
oy dx dx y dx i x dx anhxjpy

If an nth-order linear equation Ly = f'is factored, it is as good as solved because it is merely
a sequence of first-order linear equations. To illustrate, we consider (1.6.8) and define

w,(x) = [i + a,(x) % +a3(x)] [d—d; +a,‘(x)]y(X),

dx

mie) = [ + a9 5 + ate)| o

+ ay(x) y(x),

wy(x) = [;/id-v

ot

and so on. Then w,(x) satisfies the first-order linear equation (d/dx)w, + a, w, = f(x). The
solution to this equation has one integration constant. w,(x) solves the first-order linear equation
w(x) + a,{x)w,(x) = w,(x) and contains two integration constants. Continuing this process
(n — 1) times gives an easy-to-solve equation for y(x):

y(x) + a,(x)y(x) = w,_(x). (1.6.9)

The solution of (1.6.9) for y(x) contains all n integration constants and is therefore the general
solution of Ly = f.

The catch, of course, is that it is often very difficult to factor a linear operator. To illustrate,
we try to factor the second-order operator L = py(x) + p,(x)d/dx + d*/dx* by force. We write

E— + a,(x)

dx ¥

d
Ly= [— + a,(x)
dx

Multiplying out the factors gives Ly = y” + (a, + a,)y’ + (a2 + a,a,)y, and allows us to identify
a, + a, = p, and d} + a,a, = py. Eliminating a, from these equations gives a Riccati equation
for a,:

_ a2 .
ay=az — pa; + Po;

this is just as difficult to solve as the original second-order linear equation (although in rare
cases it is easier to spot a solution to a Riccati equation). Indeed, the transformation (1.6.5)
for linearizing a Riccati equation, a,(x) = — y'(x)/y(x), gives Ly = y” + p,¥' + poy = 0, which is
exactly the original second-order linear operator we tried to factor by force!
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Exact Equations

First-order exact equations can be written in the form

MEx ()] + Nyl (<) = T, )] = 0

and the solution of this equation is f[x, y(x)] = ¢,. A necessary and sufficient
condition for exactness is that (see Prob. 1.24)
0

5 M 3) = % Ny (16.10)

Example 5 Exact equation. To check that the equation y'(x) = (x> — y)/(y* + x) is exact, we
identify M = y — x? and N = y? + x and observe that 3M/dy = dN/dx = 1. The solution of the
exact equation is y* + 3xy — x> =¢,.

Example 6 Separable equations. Separable equations are exact because they have the form
M(x) + N(y)y'(x) = 0. Thus, dM/dy = ON/ox = 0.

Example 7 Integrating factor. The equation (1 + xy + y?) + (1 + xy + x?)y'(x) = 0 is not exact
because IM/dy + dN/dx. However, it becomes exact upon multiplying through by the integrating
factor I = €. Once this integrating factor has been guessed, it is easy to rewrite the equation as
(d/dx)[(x + y)e} = 0 and to obtain the solution (x + y)e® = c,.

The existence theorem for solutions tells us that every nonlinear equation can
be made exact. However, the previous example suggests that it may be quite
difficult to find the integrating factor. A brute force approach is useless. For exam-
ple, let us try to solve the equation a(x, y) + b(x, y)y'(x) = 0 by multiplying by an
unspecified integrating factor I(x, y) and demanding that the resulting equation
be exact. The condition for exactness (1.6.10) gives a linear partial differential
equation for I(x, y):

ot ) (2] 1690 = ) () 10 = (32~ 52 0.

The usual way to solve such an equation is by the method of characteristics, which
is a standard technique of partial differential equations. It is not surprising that
the characteristics are given by dy/dx = —a/b which is precisely the differential
equation we originally set out to solve! A more delicate approach which makes
explicit use of the equation to be solved is required.

Substitution

Sometimes, it is possible to find a substitution which converts a nonlinear equation
to one that is directly solvable. Linear substitutions should be considered first
because they are easiest to spot.
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Example 8 Substitutions.

(a) The substitution u = x + y makes y'(x) = cos (x + y) separable: u’' = 1 + cos u.

(b) The linear transformation x = av + bw + ¢, y = dv + ew + f, with a suitable choice of q, b, ¢,
d, e, and f, converts y'(x) = (Ax + By + C)/(Dx + Ey + F)into a separable equation for w(v).

(c) It is not immediately obvious that the solutions of y' = (y — x)/(y + x) are logarithmic spirals
until the substitution :

x=rcos 0, dx = cos 6 dr — r sin 0 d6,

y=rsiné, dy = sin 8 dr + r cos 0 df),

is made. The new equation for r() is separable, r'(§) = —r, and its solution is r = ¢, e %

(d) Substituting u = x + y changes the equation y’' = y/x + 1/(y + x) into one that is a Ber-
noulli equation: v’ = u/x + 1/u. What is the solution for y(x)? [See Prob. 1.31(a).]

() When an equation has the form y’(x) = F(y/x), the substitution u = y/x gives a separable
equation for u: u'(x)=[F(u) — u]/x. This substitution applies directly to the differential
equation in part (c) of this example.

(/) Although the substitution u = xy looks natural and promising, it is ineffective against the
formidable differential equation )’ = cos (xy). The new equation in terms of u is
u' = x cos u + u/x, which is no easier to solve than the original equation in x and y. As a rule,
multiplicative substitutions like u = xy, u = x2y, or u = xy? are ineffective for solving equa-
tions of the form y' = F(xy), F(x2y), or F(xy?).

1) 1.7 HIGHER-ORDER NONLINEAR DIFFERENTIAL
EQUATIONS

In this section we give a brief summary of the techniques for solving nth-order
nonlinear differential equations. Most of these techniques try to reduce the order
of the differential equation; the lower the order of the differential equation, the
higher the probability of ultimately finding a closed-form solution.

Autonomous Equations

An autonomous equation is one whose independent variable does not appear
explicitly. The following are autonomous equations: y” + )"+ y=0,
y” + yy' =0, yy = y"y". Autonomous equations are invariant under the transla-
tion x - x + a.

An nth-order autonomous equation can always be replaced by a nonautono-
mous equation of order (n — 1). The standard trick is to express u = y'(x) as a

function of y and to find an equation satisfied by u and its derivatives. We thus let

y(x)=u(y), (1.7.1a)
y'(x)= Z—: ZZ iyc ' (y)uly), (1.7.1b)

Y00) = o L) = WO + WP (LT10)
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and so on. The independent variable in the new differential equation is y. Note
that the highest derivative of u with respect to y in the new equation is always one
less than the highest derivative of y with respect to x in the original equation.

Example 1 Reduction of order of an autonomous equation.

(a) The substitution y'(x) = u(y) simplifies the equation y” + yy’ = 0 to the second-order equa-
tion w2 + uu” + y = 0, after dividing through by u.
(b) The equation yy’ = y”y" may be replaced by the second-order equation y = uu'® + u?u'u".

Equidimensional-in-x Equations

An equation is said to be equidimensional in x if the scale change x — ax leaves the
equation unchanged. The following equations are equidimensional in x:
V' 4+ 17y/x + 101y/x* = 0, y" = py/x, y" = y"y'x>.

All equations which are equidimensional in x can be transformed into auton-
omous equations of the same order. The necessary change of variable was already
given in (1.4.4):

x=¢é, (1.7.2a)
d d
—_—— 1.2b
Yix T av (1.7.25)
L& &t d

— = — — 12
YT ad T av (1.7.2¢)
and so on.

Example 2 Conversion of an equidimensional-in-x equation to an autonomous equation. The equi-
dimensional equation (1.1.9) y” = yy’/x may be rewritten as x?y"(x) = yxy'(x). The change of
variables in (1.72) transforms this equation into the autonomous equation
y(e) = y'(e) = yle}y'(t)

The substitution in (1.7.1) reduces this equation to one that is first order: uu’ — u = yu. This
equation implies that either u =0 so that y(x) = c,, a constant, or else u'(y) =y + 1, whose
solution is u(y) = y*/2 + y + ¢,.

If we now recall that u(y) = y'(¢) and that x = ¢', then we must finally solve the separable
equation y'(t) = y*/2 + y + ¢, for y(x). The final solution is given in (1.1.10). (See also Prob. 1.2.)

Scale-Invariant Equations

A differential equation is scale invariant if there is a value of p for which the scale
transformation
x—ax, y-aPy (1.7.3)

leaves the original differential equation unchanged.
Example 3 Scale-invariant equations.

(@) The Thomas-Fermi equation y” = y*2x™ "2 is scale invariant under the transformation
x—ax,y—ay.
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(b) w? + uu” + y =0, from part (a) of Example 1, is scale invariant under the transformation
y—ay, u—atu

(c) x%y" + 3xy' + 2y = x~*y~3 is scale invariant under the transformation x — ax, y = a~'y.

(d) The first-order equation y'(x) = F(y/x) considered in part (e) of Example 8 of Sec. 1.6 is scale

invariant under the transformation x — ax, y — ay.

Recognizing that a differential equation is scale invariant is major progress
toward its solution because all scale-invariant equations may be transformed into
equations which are equidimensional in x by substituting

y(x) = xPu(x). (1.7.4)

Example 4 Conversion of a scale-invariant equation to an equidimensional-in-x equation.

(a) The Thomas-Fermi equation in part (a) of the previous example may be made equidimen-
sional by substituting y = x~3u. The resulting equation x%u” — 6xu’ + 12u = u*/? is indeed
equidimensional, so the substitution x = ¢' makes it autonomous: u”(t) — 7u'(t) + 12u = u¥2.
This equation is equivalent to the first-order equation ww'(u) — 7w + 12u = u*2, where
w(u) = u'(t). Unfortunately, this first-order equation is too difficult to solve in closed form;
approximate rather than exact analytical methods are appropriate for understanding the
Thomas-Fermi equation. A discussion of the approximate solution is given in Example 7 of
Sec. 4.3.

(b) The equation in part (b) of the previous example may be converted to an equidimensional
equation by the substitution u(y) = y*?v(y). The resulting equation is 30 + y*v'2 + 6yvv’ +
y?ov” + 1 =0. The subsequent substitution y =e¢' makes this equation autonomous:
302 (t) + [v'(6))* + 6u(t)'(£) + v(t)"(t) — v(t)v'(t) + 1 = 0. Finally, this equation may be
reduced to first order by letting w(v) = v'(t):

d
3v2+wz+6vw+vw%—vw+l=0.
)

Again the final equation is very complicated, but it is the first-order equivalent of the

third-order equation y” + yy' = 0. The reduction through two orders has followed the se-
quence of transformations autonomous (order 3)-»scale invariant (order 2)-—
equidimensional (order 2) — autonomous (order 2) — complicated mess (order 1).
Not all equations become too complicated to solve when their order is reduced. The equation
in part (c) of the previous example simplifies beautifully when the transformation suggested
by scale invariance is made. This transformation y = u(x)/x reduces the scale-invariant equa-
tion

(c

~

x2y" 4 3xy 4+ 2y =x"4y73

to the equidimensional equation

X2+ xu +u=u"3,
The exponential substitution x = ¢' reduces this equation to one that is autonomous:
u” + u = u"3. The equivalent first-order equation is easy to solve and the final closed-form
solution for y(x) is

1
y(x) = - Jcosh ¢, + (sinh ¢,) sin (2 In x +c,),

where ¢, and c, are constants of integration.
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Equidimensional-in-y Equations

If an equation is invariant under the scale change y — ay, then the equation is said
to be equidimensional in y. When an equation is equidimensional in y, the
transformation

y(x) = e (1.7.5)

always reduces the order of the equation by one.

Example 5 Reduction of order of equidimensional-in-y equations.

(a) All homogeneous linear equations are equidimensional in y. However, for these equations the
substitution in (1.7.5) does not usually bring about progress. Letting y(x) = ¢“* in y"(x) +
pi(x)y'(x) + po(x)y(x) = O gives the Riccati equation

v+ 0% + py(x)v + po(x) =0,
where v(x) = u'(x). This first-order Riccati equation is no easier to solve than was the original

second-order equation.

g

(b) The equation x2yy” + xy'y” + yy’ = 0 is equidimensional in y. The transformation y = e*
reduces this equation to one that is first order in v(x) = w'(x):

v+ 02+ Ix = 1)(x + v) =0.

This equation is still too difficult to solve in closed form, but we have certainly reduced
its order by one!

(E) 1.8 EIGENVALUE PROBLEMS

An eigenvalue problem is a boundary-value problem that has nontrivial solutions
only when a parameter E that enters the problem has special values called
eigenvalues.

Example 1 A simple eigenvalue problem. Consider the boundary-value problem
y'+Ey=0, y0)=y(1)=0. (1.8.1)

For every value of the parameter E, there is a trivial solution to this problem: y(x) =0 for
0 < x < 1. However, for special values of E there are additional nonzero solutions to (1.8.1):

E=(nn)?, y(x)=A,sinnmx, n=123,..., (1.8.2)

where A, are arbitrary constants. The numbers E = %, 42,912, 1672, ... are the eigenvalues and
the corresponding nontrivial solutions sin 7x, sin 2zx, sin 3zx, sin 4zx, ... of (1.8.1) are called
eigenfunctions.

It is easy to show that there are no other eigenvalues of (1.8.1). The general solution to
y'+ Ey=0is y(x) = 4 sin (xﬁ) + B cos (xﬁ), 50 y(0) = 0 implies that B= 0, and y(1) =0
requires that 4 sin \/E = 0. If 4 = 0 then y(x) = 0, which is a trivial solution. Thus, the condi-
tion for an eigenvalue is sin \/E_= Oor E=(nm)* (n=1,2,3,...). Notice that E =0 is not an
eigenvalue because it gives a trivial solution y(x) = 0.

When E is an eigenvalue of a homogeneous linear boundary-value problem,
the solution to the boundary-value problem is not unique; in addition to the
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solution y(x) = 0 there are an infinite number of other solutions which are con-
stant multiples of an eigenfunction. On the other hand, when E is not an
eigenvalue the trivial solution y(x) = 0 is unique.

Example 2 Another simple eigenvalue problem. Consider the eigenvalue problem
y'+Ey=0, y(0) =0, y(1)y=0. (1.8.3)

Again, y(x) = O is a trivial solution for all E; the eigenvalues are determined by the condition that
there exist nontrivial solutions. Since the general solution of y” + Ey = 0 that satisfies y(0) = O is
y(x) = A sin (x\/.E_), y'(1) = 0 requires that A\/E cos \/_E = 0. Therefore, the eigenvalues are
E=(n) Gn), Gr)s

Example 3 Eigenvalue problem on an infinite domain. The eigenvalue problem
y' +(E - )y =0, — 00 < x < 00, (1.8.4a)
y(x0)=0, (1.8.46)

is known as the quantum harmonic oscillator. For any E this problem has the trivial solution
y(x) = 0, but for special E there are nontrivial solutions. The eigenvalues of (1.8.4)are E = 4, 3,3,
3....; when E = n + { the corresponding eigenfunction is

ylx) = 4 He, (x)e™", (18.5)

where A is an arbitrary constant and He, (x)is the Hermite polynomial of degree n [He, (x) = 1,
He, (x) = x, He, (x) = x? = 1,...]. It will be shown in Example 9 of Sec. 3.8 that E = n + } are
the only eigenvalues of (1.8.4).

The homogeneous boundary conditions (1.8.4b) will be shown (see Example 4 of Sec. 3.5) to
be equivalent to the seemingly weaker inhomogeneous constraints

y(x) bounded as x — 0.

For the differential equation (1.8.4a) boundedness of y(x) as |x| — co implies that y —+0 as
[x]| ~ 0.

Example 4 Eigenvalue problem having transcendental eigenvalues. Consider the eigenvalue
problem
y' +(E-x)y=0(0<x < ), y(0)=0, y(e0) = 0. (1.8.6)

It will be shown in Example 5 of Sec. 3.5 that the general solution to (1.8.6) that vanishes as
x— +o0is
y(x)= A Ai (x ~ E), (1.8.7)

where Ai (t) is an Airy function [see (1.4.8)]. The boundary condition y(0)=0 gives the
eigenvalue condition Ai (— E) = 0. The Airy function Ai (— E)is a transcendental function whose
zeros may be computed numerically. A computer calculation gives the infinite discrete sequence
of eigenvalues E, =2.338, E, =4.088, E, = 5521, E; =6.787, E, = 7944, E5 =9.023, .... The
graph of the Airy function in Fig. 3.1 may be used to determine the approximate values of the first
few zeros. Asymptotic methods give accurate approximations to the larger zeros (see Sec. 3.7).

Example 5 Eigenvalue problem having a finite number of eigenvalues. Consider the eigenvalue
problem
y' +(E+vsech’ x)y=0, y-0as|x|— 0. (1.8.8)

There are only a finite number of discrete eigenvalues: E = —4(2n + 1 ~ /1 + 4)* (0 <n< V),
where V = (\/l + 4v — 1)/2 and n is an integer (see Prob. 1.38).
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Example 6 Sturm-Liouville eigenvalue problem. The eigenvalue problem
a(x)y"(x) + b(x)y'(x) + c(x)y(x) + d(x)Ey(x) = 0, (1.8.9)

subject to the boundary conditions y(x) = y(8) = 0, can always be transformed to Sturm-Liouville
form (see Prob. 1.39):

4 {p(X)d-y

PR | Tl + Erxly =0, y(a) = y(B)=0. (18.10)

Equation (1.8.10) is a Sturm-Liouville problem. It is a mathe. aatical property of Sturm-Liouville
problems which we do not prove here that when

p(x) >0, q(x) <0, r(x)>0, a<x<B,

there are an infinite number of eigenvalues E = E,, E|, E,, ... which are all real and positive.
Moreover, the eigenfunctions y, (1 =0, 1, 2, ...) associated with the eigenvalues E, can be nor-
malized so that they are orthonormal with respect to the weight function r(x):

g 1 if n=m,

"1 dxr(x)y,(x)ya(x) = lo, if n#m

It is often useful to expand a given function in terms of an orthonormal set of functions. For a
discussion of the convergence of these expansions and their applications see the References.

In Example 5 of Sec. 10.1 we show how to use WKB theory to find approximate formulas
for the eigenvalues E, and eigenfunctions y,(x).

Example 7 Schrodinger eigenvalue problem. If we choose V(x) to be a positive function which
satisfies ¥(x) > + o0 as |x| — oo, then the Schrodinger eigenvalue problem

—y"(x) + V(x)ylx) = Ey(x),  y(£o0)=0, (18.11)

has an infinite number of real positive eigenvalues E, E,, E,, .... Physically, the eigenvalues are
the allowed energy levels of a particle in the potential ¥(x). The eigenvalue problem in (1.8.4) is
an example of a Schrodinger eigenvalue problem.

A closed-form solution to (1.8.11) exists only for very special choices of ¥(x). However, in
Sec. 10.5 we show how to find an approximate formula for the eigenvalues E, and eigenfunctions
ya(x) of a Schrodinger eigenvalue problem using WKB theory.

(TE) 1.9 DIFFERENTIAL EQUATIONS IN THE COMPLEX PLANE

Until now we have used the letter x to denote the independent variable of a
differential equation and have considered x to be real. However, in some of our
later analysis we will be concerned with the properties of differential equations in
the complex plane where the independent variable is written as z. When a differen-
tial equation is generalized from the real-x axis to the complex-z plane, it is
necessary to interpret all derivatives in the sense of complex derivatives. This leads
to an important conclusion which does not hold for functions of a real variable; in
regions where the complex derivative y'(z) exists, the function y(z) is analytic. This
conclusion restricts the kinds of differential equations that can be formulated in the
complex plane.
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Example 1 First-order differential equation. The differential equation dy/dx = |x| makes sense
on the real axis. Its solution is y(x)=4x|x| +¢,. However, the differential equation
dy/dz = |z| does not make sense in the complex plane because it is understood that when we
write y'(z) we mean that y(z), and therefore y'(z), are analytic. But the differential equation sets
y' = |z| which is nowhere analytic.

In general, in order for the complex differential equation dy/dz = g(z) to make sense, it is
necessary that there be some region in the complex-z plane where g(z) is analytic.

Example 2 Second-order differential equation. If two linearly independent solutions to the differ-
ential equation y” + p,(z)y’ + po(z)y = 0 exist in some region, then py(z) and p,(z) are restricted
to be analytic (except possibly at isolated points). To see why, suppose that y, and y, are two
linearly independent solutions (which must be analytic because their complex derivatives exist).
Then (see Prob. 1.40)

YiYa = ¥ivy Yi¥yi = ¥iV2
—, ="

Po(2) == n T
YiY2 = V1¥2 YiYa =)z

(1.9.1)
where the denominators can vanish only at isolated points.

It is possible for a second-order complex differential equation with nonanalytic coefficients
to have a solution, but the solution may not contain two independent arbitrary parameters. The
differential equation y” — |z|y’ + (|z| — 1)y = 0 has the solution y = ¢, €%, but no other solu-
tions exist.

Aside from these restrictions, there are no other major distinctions between
real and complex differential equations. The methods that we have introduced in
this chapter for solving real differential equations, such as reduction of order,
variation of parameters, and scaling, work equally well on complex differential
equations.

PROBLEMS FOR CHAPTER 1

Section 1.1

1.1 Solve the separable equations:

(@ y=e";

B)y=xy+x+y+1L
1.2 Show that in addition to the special solution y = ¢, to the differential equation in (1.1.9) there is
another special solution of the form y = —2/(c, + In x) — 1, where ¢, is arbitrary. The derivation of
the general solution to (1.1.9) is given in Example 2 of Sec. 1.7. Explain how this special solution can
arise in the derivation of the general solution. Also show how this special solution can be interpreted as
a singular limit of the general solution in (1.1.10).

Section 1.2

1.3 Existence and uniqueness theorem for initial-value problems:
(a) Consider the initial-value problem

dy

ax F(x, y), y(xo) = ao. *)
Show that if F and dF/dy are bounded continuous functions of x and y for x near x, and y near a, then
the Lipschitz condition |F(x, y)— F(x, z)| < L|y —z| holds for some L and for |x —x,| <r,
[y—ao| <R,and [z —a,| <R
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(b) Prove the existence of a solution to (*) by constructing the sequence of functions

Yo(x) = ao,
X

yalx)= a0+ [ Fltyu@]dt,  n=1,2,.... (**)
L

From the Lipschitz condition prove that there exists a number r, > 0 such that
1
[Vav1(x) = yalx)| < 5 max [valt) = Y- ()], [x = xo| <ry.

lr=xol<r

From this result deduce that

max i) = 3l <35 max (1,00 - oo

lt—xol<ry lt—xol<ry

so the sequence y,(t) converges uniformly for |t — x,| < r, as n— 0. The limit

y(e) = lim y, () = yo(t) + im ¥ [ya(t) = ym-(t)]
n—w n—o m=1
exists by the comparison test for convergence of infinite series. Since y(x) is the uniform limit of
continuous functions, y(t) is continuous and, since the Lipschitz condition implies that

lim F(¢, y,) = F(t, y),

~o

the limit of (**) is

yx)=ag + | Fle y(o)] de
X0
for [x — x4| < r,. This integral equation is equivalent to the initial-value problem (*) (why?), so the
existence of a solution y(x) for |x — x,| <r, is assured.
(c) Prove that the solution y(x) is unique by supposing that there exist two solutions, y(x) and
z(x), to the above integral equation. Use the Lipschitz condition to show that if this were true then

[y(x) = z(x)| <3 max  [y(t) = z(r)].
lt=xol=sry

If y(x) and z(x) were not identical, this inequality would be violated for that x which maximizes
| y(x) = z(x)|. This shows that a unique solution to (*) exists for x sufficiently close to x,.

(d) Now we generalize to higher-order equations. Show that the second-order differential equa-
tion y” = F(x, y, ') may be replaced by a system of first-order differential equations y' = F(x, y, u),
u' = Fy(x, y, u). Explain how to generalize the existence and uniqueness theorem of parts (@) to (c) to
cover this system of equations.

(e) How does one generalize the existence and uniqueness theorem to nth-order equations?
1.4 (a) Assume that F(x, y) is a linear function of y and that F(x, y) is a continuous function of x
on the interval a < x < b. Show that the solution to the initial-value problem y' = F(x, y), ¥(X,) = yo
(@ < x4 < b) exists and is unique on the interval a < x < b.

(b) Show that the solution to an initial-value problem for an nth-order linear differential equa-
tion exists and is unique on the largest interval in which the initial conditions are specified and on
which the coefficient functions py(x), p,(x), ..., p,_(x), f(x) are all continuous.

Section 1.3

1.5 (a) Show that if W(y,, y,, y;)=0, then there are numbers ¢, c,, c¢; such that
Gy 6y ey =0

(b) Prove that W(y,, y,, ..., y,) vanishes identically over an interval if and only if y,, y;, ..., J,
are linearly dependent on that interval.
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1.6 Let {y(x)} be n linearly independent functions. Show that the functions y (x) solve a unique
nth-order homogeneous linear equation Ly = 0, with L having the form in (1.1.5). In particular, show
that

LA (n)

Yi ViV Y1
y: Y2 vy o
det |ovveininn..
Yo Vo Vi oowY
y ¥y oy o

W(y1, yas o5 ¥a)

1.7 Verify (1.3.4).
Clue: Differentiate W(x) in (1.3.3) once with respect to x and use the differential equation (1.3.1).

1.8 (a) Show that the initial-value problem yy' = 1, y(0) = 0 is not well posed. Find two solutions.
(b) Is d*y/dx* — 4y" + 3y" + 4y’ — 4y = 0 [y(0) = 1, y(+c0) = 0] well posed?

Section 1.4

1.9 Assume that y,(x) is a solution of y” + p(x)y’ + po(x)y = 0. From the definition of the Wronskian
and Abel’s formula, derive an expression for another linearly independent solution. Observe that the
second solution contains y,(x) as a factor. This result motivates the reduction-of-order substitution
(1.4.7).
1.10 Use reduction of order to obtain the repeated root solution of y” — 3y” + 3y’ — y = 0.
1.11 Solve y” + (x + 2)y' + (1 + x)y = 0.
1.12 Show that a substitution identical to that used in reduction of order y(x) = u(x)f(x) can be used
to eliminate the y™~ Y(x) term from an nth-order homogeneous linear differential equation. (When the
one-derivative term has been eliminated from a linear second-order differential equation, the resulting
equation is a Schrodinger equation.)
1.13 (a) Show that if a is a constant and b(x) is a function, then
PG IS

Y e

has a pair of linearly independent solutions which are reciprocals; find them.
(b) y(x) and [y(x)]* are both solutions of y” + p(x)y’ + 2y = 0. Find y(x).

1.14 Find the general solution to x*"(d/dx — a/x)'y = ky.

Section 1.5

1.15 Formulate the method of variation of parameters for a third-order linear equation. How does it
work for an nth-order equation?

1.16 Prove (1.5.9) using (1.5.8).

1.17 Verify that the representations of 8(x — a) given in (1.5.10a to d) are valid by showing that each
one satisfies (1.5.8).

1.18 Verify (1.5.11).

1.19 Find the formula for the Green’s function of a third-order inhomogeneous linear equation.
Generalize this formula to the nth order.

1.20 In Examples 4 and 5 of Sec. 1.5 we use Green’s functions to solve inhomogeneous differential
equations subject to homogeneous boundary conditions. How do we generalize to the case where the
boundary conditions are inhomogeneous?

1.21 By reduction of order, find the general solution of x2y” — 4xy’ + 6y = x* sin x after observing
that y, = x? is a solution of the associated homogeneous equation.
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1.22 There is a marvelous problem, the Snowplow Problem of R. P. Agnew, which reads, “*‘One day it
started snowing at a heavy and steady rate. A snowplow started out at noon, going 2 miles the first
hour and 1 mile the second hour. What time did it start snowing?” (Answer: 11:23 aA.M.) We also
recommend a more sophisticated variation by M. S. Klamkin called the Great Snowplow Chase: “One
day it started snowing at a heavy and steady rate. Three identical snowplows started out at noon, 1
P.M., and 2 P.M. from the same place and all collided at the same time. What time did it start snowing?”
(Answer: 11:30 A.M.)
Clue: The speed of the plow is inversely proportional to the height of the snow.

Section 1.6

1.23 A man stands atop a mountain whose altitude is given by z = ¢~ **** and pours boiling oil
upon the climbers below him. What paths do the rivulets of oil follow? [Assume that these paths are
orthogonal to the contour lines (level curves) of the mountain.]

1.24 Show that a necessary and sufficient condition that M(x, y) + N(x, y) dy/dx = 0 be exact is
0M/dy = ON/ox.

1.25 Use the method of factoring in Example 4 of Sec. 1.6 to derive Abel’s formula (1.3.5).

1.26 Show that the differential equation xy” + (cx + a)y’ + cby = f can be solved explicitly in closed
form provided that either (a) b is an integer or (b) b — a is an integer.

Clue: This second-order equation can be factored into a product of first-order operators by using
the novel trick of first converting the equation into a higher-order equation that can be easily factored.
To do this introduce the operator notation é = x d/dx so that the equation becomes §(5 + a')y +
¢(0 + b')xy = xf where @’ =a— 1, b'=b — 1. First show that if b’ >0 is an integer and we set
y=(0+1)0+2) (6 +b)z then the equation factors into the product of first-order operators
S6+1) - (0+b)0+a +cx)z=xf If b'<0 show that application of the operator
(6 = 1)+ (6 + b + 1) to the equation gives the factorization

G+a+cx)@—1)@+b+y=0—1) @+ + 1)

Use similar tricks to solve the differential equation when b — ais an integer. For a similar approach to
linear difference equations see Prob. 2.25.

.1.27 Four. caterpillars, initially at rest at the four corners of a square centered at the origin, start

walking clockwise, each caterpillar walking directly toward the one in front of him. If each caterpillar
walks with unit velocity, show that the trajectories satisfy the differential equation in part (c) of
Example 8 in Sec. 1.6.

1.28 Discuss the existence and uniqueness of solutions to the initial-value problem y' = ./1 — y?

[¥(0) = a), for all initial values a. Is there a unique solution if a = 1?
1.29 Find a differential equation having the general solution y = ¢,(x + ¢, )"

1.30 (a) At ¢t =0, a pig, initially at the origin, runs along the x axis with constant speed v. Att =0, a
farmer, initially 20 yd north of the origin, also runs with constant speed v. If the farmer’s instantaneous
velocity is always directed toward the instantaneous position of the pig, show that the farmer never
gets closer than 10 yd from the pig.

(b) Now suppose that the pig starts over again from x = 0,y = 0 at t = 0 and starts running with
the speed v. The farmer still starts 20 yd north of the pig but can now run at a speed of 3v. The farmer is
assisted by his daughter who starts 15 yd south of the pig at ¢ = 0 and can run at a speed of $v. If both
the farmer and the farmer’s daughter always run toward the instantaneous position of the pig, who
catches the pig first?

(c) At t =0, a pig initially at (1, 0) starts to run around the unit circle with constant speed v. At
t =0, a farmer initially at the origin runs with constant speed v and instantaneous velocity directed
toward the instantaneous position of the pig. Does the farmer catch the pig?

1.31 Solve the following differential equations:

(a) y' = y/x + 1/y;

(b) y' = xy/(x* + y*);

(c) y = x> +2xy + y%
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@ yy' =20
(e) ¥ = (1 +x)y*/x?
(f)x*y +xy+y*=0;
(9) xy' —-y(l—lnx+lny)
(h) (x + y*) + 2(y*> + y + x — 1)y’ = 0, using an integrating factor of the form I(x, y) = e thy;
() —xy' +y=xy* ()= 1];
() y' = (1 +x)2(y) =0 [y(0) = y(0) = 1];
(k) 2xyy +y* —x2=0;
() y'=(@) e (ify=1aty=o0,find y at y = 0);
(m)y = |y = x| [il y(0) =, find y(1)};
(n) xy' =y + xe’;
(0) ¥ = (x* = 3x%y? — y’)(2x%y + 3y*x);
(p) (% + Y1) = xy, yle) = ¢;
@y +2yy=0[y0)=y(0)= -1);
(r) x?y" +xy' —y=3x* [y(1) = y(2) = 1];
(5) Y0Py = =3 0)=y(0)=1];
() xy =y +/xy; ‘
() (xy)y’ + y In y = 2xy [try an integrating factor of the form I = I(y)];
(v) (xsiny +e)y = cos y;
(W) (x + y2x)y + x2y* =0 [y(1) = 1];
(x) (x = 1)(x = 2)y +y—2[y ) =1];
) v =1 +e);
(z) xy' +y=yx*
1.32 Find a closed form solution to the following Riccati equations:
(a) xy + xy? + xZ/Z =4
(b) X2y +2xy — y? = 4;
() ¥ + y* + (sin 2x)y = cos 2x;
(d) xy' ~ 2y + ay? = bx*;
@)y +y*+@x+1)y+1+x+x2=0.
1.33 Under what conditions does the differential equation y’ = f(x, y) have an integrating factor of the
form I(xy)?
1.34 Express the solution of the initial-value problem

xdix(X% B l)("gd; - 2) (";; - 3) yx)=f(x)  y)=y1)=y(1)=y"(1)=0,

as an integral.

1.35 An Abel equation has the general form y’ = a(x) + b(x)y + c(x)y? + d(x)y’. Solve the particular
equation y' = dy* + ax~ 32, where d and a are constants.

Section 1.7

1.36 Reduce the order and, if possible, solve the following equations:
(a) y"+ Yy + 1)/x + y/x*=0;
(b) y” + yy” = 0 (the Blasius equation);
(c) yy" +y* = yy/(L+x)=0;
@)y +@2y-y)x=0
(&) y' +y*y—yylx=0
(N)y +yQRy+1)yx=0
(g) x2y" — (1 + 2y/x*) xy’ + 4y = 0;
(k) Y" + [ = 2y)/%")y/x — y) =0
(i) ¥ = y(x* + 2y)/x* + dy/x* = 0;
() xy +3y—xy*=0;
(k) xyy" = yy' + xy'%
() y"+3yy +y*=0.
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1.37 Consider the equation y” + 2y’/x + y* = 0 [y(c0) = 0] for n # 0, 1. Using the methods of Sec. 1.7
show that the equation is soluble in terms of elementary functions when n = 5 and solve it.

Sections 1.8 and 1.9

1.38 Verify the claim in Example 5 of Sec. 1.8 that there are only a finite number of eigenvalues E for
the eigenvalue problem y” + (E + v sech? x)y =0 (y — 0 as |x| — c0).

Clue: Solve the differential equation in terms of hypergeometric functions. The Bateman M anu-
script Project or the Handbook of Mathematical Functions are good references on hypergeometric
functions.

1.39 Show that any equation of the form (1.8.9) can be transformed to Sturm-Liouville form (1.8.10).
1.40 Verify (1.9.1).



CHAPTER

TWO
DIFFERENCE EQUATIONS

From a drop of water a logician could infer the possibility
of an Atlantic or a Niagara without having seen or heard of
one or the other. So all life is a great chain, the nature of
which is known whenever we are shown a single link of it.

—Sherlock Holmes, A Study in Scarlet
Sir Arthur Conan Doyle

This chapter is a summary of the elementary methods available for solving differ-
ence equations. Difference equations are used to compute quantities which may be
defined recursively, such as the nth coefficient of a Taylor series or Fourier expan-
sion or the determinant of an n x n matrix which is expanded by minors. Differ-
ence equations arise very frequently in numerical analysis where one attempts to
approximate continuous systems by discrete ones.

Difference equations are the discrete analog of differential equations. The
solution of a difference equation is a function defined on the integers; the discrete
index n replaces the continuous independent variable x of differential equations.
Many of the analytical methods developed for differential equations in Chap. 1
(reduction of order, variation of parameters, integrating factors) are also applic-
able to difference equations. Therefore, the presentation of this chapter will closely
parallel that of Chap. 1.

2.1 THE CALCULUS OF DIFFERENCES

The study of difference equations rests on the notions of discrete calculus which
we review here. A function defined on the integers associates with each integer n
the number a(n), usually denoted by a,. The discrete derivative of a function a, of
the integers is defined as

Dan =ap+y — ap.

The second derivative D2a, is the derivative of the derivative; that is,
Dzan = (an+2 - an+l) - (an+1 - an) T 2an+1 + a,.

The kth derivative is defined by taking k derivatives sequentially.

36
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The discrete antiderivative or integral b, of the function a, is defined as the
sum b, = Y"_, aj.

Example 1 Discrete derivative of a sequence. The integer function that corresponds to the contin-
uous function f(x) = x* is the discrete function f, = n(n + 1) --- (n + k — 1), which also has k
factors. The continuous derivative of f(x) is f’(x) = kx*~!, while the discrete derivative of f, is

fosi—fi=m+ ) (n+k)y—(n) - (n+k-1)
=m+1)(n+k—1)[(n+k)—(n)]
=kin+1)-- (n+k—1),
which has (k — 1) factors.

Example 2 Discrete integral of a sequence. The integral off( ) =x*is x**!/(k + 1) + c,, where

¢, is an integration constant. The discrete integral of f, = (n) --- (n + k — 1) is

Y s= Z (- G+k=1)
i=no i=no

< +k-G-1)

+k—
; U+k=D =
k+1 S L0) k=D +R = (= D) (k1)
i=no

T 1n(n+ 1) (n + k) + ¢,

where ¢, is a summation constant whose value is —[(n, — 1)(ng) ~** (no + k — 1))/(k + 1).
Observe that to compute such a sum we convert the summand to a discrete derivative. In this
form the summand is a “ladder” whose rungs cancel in pairs: if f,=g,,, — g, then
Z’l':,,ofj = Gn+1 — Gny» Which is the discrete analog of the fundamental theorem of integral cal-
culus |5 g'(x) dx = g(b) —

Example 3 Discrete integral of a sequence. The discrete function which corresponds to the con-

tinuous function f(x)=(x+ A)™* k>1)is fy=1/[n+A)n+A+1)-(n+ A+ k- l)]

The integral {5 f(1) dt = (x + A)' 7*/(k — 1) + ¢,. Correspondingly, the discrete integral of f, is
i 1

) . -

o U+A) - (j+A+k-1)

o 1 _ 1
g (G+A+1) - (j+A+k=1) (+A)(+A+k=-2)

1 |
- + ¢, < ng,
k—1(n+tAn+A+]) - (n+A+k—2) o "=

where ¢, is the summation constant [(1 — k)(ng + A + 1)(ng + A +2) = (np + A + k — 1)]7!

(E) 2.2 ELEMENTARY DIFFERENCE EQUATIONS

Recalling the definition of an Nth-order differential equation from Sec. 1.1, it is
natural to define an Nth-order difference equation as

N) __ 1 2 3 4 N-1
aV = Fln, a,, al", a?, a®, a®, ..., a® V],
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where a’ is the jth discrete derivative of a,. However, it is better to simplify
this definition to avoid repetition of a,, d, 1, - --, in the arguments of F. Thus, the
conventional definition of an Nth-order difference equation is

apen =GN, ay, Qyryy - s Quin-q) (2.2.1)

Clearly, if one is given a difference equation of this form, it is easy to rewrite itina
form which makes the discrete derivatives explicit.

The general solution of the Nth-order difference equation (2.2.1) depends on
N independent parameters c;, c,, ..., cy. These parameters appear as constants of
summation.

Example 1 Factorial function. The solution of the first-order linear homogeneous difference
equation a,, ; = na, is a, = ¢,(n — 1)!. The arbitrary multiplicative constant c is the constant of
summation. The factorial function is closely related to the gamma function I'" (see Example 2).

Example 2 Gamma function T'(z). The gamma function is the most widely used of all the higher
transcendental functions. It is usually discussed first in reference texts on higher transcendental
functions because the function I'(z) appears in almost every integral or series representation of
the other advanced mathematical functions.

The gamma function I'(z) is the generalization to complex z of the factorial function, which
is defined only for integers: when z = n is a positive integer, I'(n) = (n — 1)!. More generally,
when Re z > 0, I'(z) can be defined as the integral

FE)=] e'e ' (222)
o
which converges for all z in the half plane Re z > 0. This integral cannot be evaluated in terms of
elementary functions except when z is an integer or a half integer. Other integral representations
hold for Re z < 0 (see Prob. 2.6).

I'(z) does not solve a simple differential equation but it is a solution of the difference

equation

I(z 4+ 1) = zI'(2). (22.3)

Using integration by parts it is easy to show that the integral in (2.2.2) satisfies (2.2.3).

This difference equation for I'(z) can be used to evaluate I'(z) for Re z < 0 from the integral
representation (2.2.2). I'(z) is a single-valued analytic function for all complex values of z except
forz=10, -1, —2, —3, —4, .... At these points I'(z) has simple poles (see Prob. 2.6 and Fig. 2.1).
For additional properties of the I function see Prob. 2.6.

Example 3 General first-order linear homogeneous difference equations. The solution of

a,., = pln)a, (22.4)

is a product over the function p(n):

2t g, T a) (22.5)

In this formula a, is an arbitrary constant.

To derive this result another way, we take the logarithm of both sides of (2.2.4):In a,., =
In p(n) + In a,. Letting b, = In a, gives b,,, — b, = In p(n). The left side of this equation is an
exact discrete derivative. Therefore, the solution b, is obtained by computing the discrete integral:
b, = b, + Y221 In p(j). Exponentiating this equation gives the result in (2.2.5) with a, = €.
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+-3.0
-+-4.0

—-5.0

— 6.0
Figure 2.1 A plot of I'(x) for —4 < x <4.

Observe the close similarity between this method of solution and the way in which we solve the
differential equation y' = p(x)y: y'/y = p(x), In [y/y(0)] = J3 p(t) dt, y(x) = y(0) exp [f; p(t) d].

Example 4 General first-order linear inhomogeneous difference equations. To solve
a,, = p(n)a, + q(n), (2.2.6)

we use a “summing factor” which is the difference equation analog of an integrating factor. The
summing factor is [[]}-, p(j)]~*. Multiplying both sides of (2.2.6) by this summing factor gives
a,e /[ =1 P() = a/[T3=1 () = q(n)/[13=1 p(), in which a, appears as an exact discrete
derivative. Summing both sides from 1 to n — 1 gives the solution to (2.2.6):

an=nﬁl p() "il kq(k) +a1]’ nz2 (22.7)

S 1 »0)

As a special case of (2.2.6), consider a,,, = na,/(n + 1) + n. To solve this equation we
multiply by the summing factor [[]j-,j/(j +1)]"'=n+ 1. The resulting equation is
(n+ 1)a,,, —na,=n(n + 1) Summing this equation from 1 to n—1 gves na,—a,=
4(n = U)n(n + 1) (see Example 2 of Sec. 2.1). Therefore, a, = a,/n + §(n* — 1) (n > 1).

Example 5 First-order linear difference equation with boundary condition. The requirement that
the solution to a,,, = na/(n + 1)+ (n— 1)/[(n + 1)*(n + 2)(n + 3)] be finite at n=0 is a
boundary condition that uniquely determines a, for all n. Multiplying by the summing factor



40 FUNDAMENTALS

n+ 1 and summing the resulting equation from 1 to n—1 gives the general solution
a,=(a, +&)/n = Y[(n + 1)(n + 2)] (n> 0). (Verify this!) If a, is finite, then a, must be —¢.
(Why?) Thus, the unique solution to this problem is a, = — 1/[(n + 1)(n + 2)] (n > 0).

There is a simple differential analog of this example. Suppose we require that the solution to
y + (cot x)y = —1 be finite at x =0. The general solution to this equation is y(x)=
(cos x + K)/sin x. The condition that y(0) be finite requires that K = —1 and uniquely deter-
mines the solution.

Nonlinear difference equations are usually harder to solve than nonlinear
differential equations. However, here are some examples that can be solved in
closed form.

Example 6 a,.,, = a2. To solve this equation we take the logarithm of both sides: In a,,, =
2 In a,. The solution to this equation is easy to find because it is a linear equation for In a,. The
solution is In a, = 2""! In a,. Thus, a, = a?" ™"\

Example 7 a,,, = a2, /a,. This equation can also be solved by taking logarithms of both sides:
Ina,,,—2Ina,,, +Ina,=0. Thus, the second discrete derivative of In a, is zero. Two con-
secutive summations give In a, = ¢, n + ¢, so that a, = €“"*%2, where ¢, and c, are arbitrary
summation constants.

Example 8 a,,, = 2a2 — 1. This equation is soluble because the transcendental functions cos x
and cosh x satisfy the functional relation f(2x)=2[f(x)]* — L. If |a,| <1, we substitute
a, = cos 0, and if |a, | > | we substitute a, = cosh 6,. In either case, the resulting equation for 8,
is linear: 0, ,, = 20,. Thus, 6, = 2"~ '6, and

cos (2" ! cos™! ay), if |a,|
a, =
" lcosh (2" ' cosh™'a,), if |a,|

v IA

() 23 HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS

In this section we survey the methods that are commonly used to solve higher-
order homogeneous linear difference equations. Our discussion will emphasize the
strong parallel between differential and difference equations.

A homogeneous linear difference equation of order N has the general form

iy + Py-1(M)an vy + Py-2(M)ayn—z +
+ pi(n)ay+ 1 + po(n)a, =0, (23.1)
where po, Py, -, Py— 1 are arbitrary functions of n. As is the case with differential

equations, the general solution a, to (2.3.1) is an arbitrary linear combination of N
linearly independent solutions.

'

Constant-Coefficient Equations

To illustrate this property we consider the easiest-to-solve class of higher-order
homogeneous linear difference equations, the constant-coefficient equations.
These equations take the form (2.3.1) in which the coefficients py, py, ..., py -1 are
independent of n.
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We recall from our treatment of constant-coefficient differential equations in
Sec. 1.4 that solutions usually have the form of exponentials: y(x) = exp (rx). For
an Nth-order differential equation there are N solutions of the form exp (r, x),
exp (r,x), ..., exp (ryx), unless the polynomial in r that results from substituting
y = exp (rx) has repeated roots. If r; is a double root, then solutions have the form
exp (ryx) and x exp (ry x); if r;, is a triple root, then solutions have the form
exp (r, x), x exp (r, x), and x* exp (r, x); and so on.

Using differential equations as a guide, we seek exponential solutions to
(2.3.1) of the form a, = r". Substituting this into (2.3.1) gives a polynomial equa-
tion for r:

My T v ey T pir 4 po =0, (232)

In general, if the roots of (2.3.2) are all distinct then solutions to (2.3.1) have the
form r, r3, r3, ..., and if r, is a multiple root then solutions have the form #}, nr},
n*r;, .... (See Prob. 2.9.)

Example 1 Constant-coefficient equations.

(a) Tosolve a,,, + 3a,,, + 2a, =0 we substitute a, = r" and obtain the polynomial equation
r? + 3r + 2 = 0. The roots of this equation are — 1 and —2. Thus, the general solution is a
linear combination of (— 1) and (=2)": a, = ¢,(— 1) + c,(—2)"

(b) Tosolvea,,— 6a,,, + 12a,,, — 8a, = 0 we substitute " for a,. The resulting equation for
risr® — 6r? + 12r — 8 = 0, which has a triple root at r = 2. Thus, the general solution has the
form a, = (¢, + c;n + c;n? 2"

(c) Tosolvea, 4+ a,,, — a,,, — a, =0 we substitute a, = r". The resulting polynomial in r is
r* 4+ r* —r—1=0, whose roots are —~1, —1, and 1. Thus, the general solution for a, is
a, = (c, + nc,)(— 1Y + ¢

Linear Independence and Wronskians

Since a complete solution to a homogeneous linear difference equation is a linear
combination of N linearly independent solutions, it is important to be able to test
the linear independence of a set of N functions of n. We define a finite set of
functions a,, b,, ... to be linearly independent for n in the interval n, < n < n, if
the only solution to ky a, + kyb, + - =0(n, <n <n,)isk, =k, =-=0.(We
always assume that the number of functions is smaller than n, — n; + 1.)

In the study of functions of a continuous variable x the Wronskian provides a
simple way to examine the linear independence of a set of functions. There is also a
Wronskian W, (sometimes called a Casoratian) for functions of the discrete vari-
able n. If there are N functions a,, b, c,, ..., then W, is defined as the N x N
determinant:

a, b, Cy

W, = W(a,, b,, ¢, ...) = det Gy Doy Gy . (2.3.3)

Gnyz burz Ciia

It is a theorem that W, =0 for all n; <n <n, if and only if a,, b,, c,, ...
constitute a linearly dependent set of functions. For the general proof of this
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theorem see Prob. 2.11. We prove this theorem for the simple case of two functions
in the next example.

Example 2 Wronskian for two functions. Two functions a, and b, are linearly dependent for
n, <n < n,ifb,is a constant multiple of a,. To see whether the Wronskian provides a test of the
linear dependence of two functions we compute

a, b,

W, = det =a,b,,, ~b,a,,,

Qnv1 On+y

Suppose first that b, is indeed a constant multiple of a, in some domain: b, = ca, (n; <n < n,).
Then the Wronskian vanishes in this domain: W, = a,a,,,(c — ¢) =0 (n, <n < n,). Now con-
sider the converse. Suppose that W, = 0for n, < n < n,. Then, assuming thata, # Oand b, # 0,
we have a,,/a, = b,,,/b, (n, <n <n,). Hence, [T32} a;,,/a;, =132} bj41 /b, s0 a, = cb,
(ny < n <ny), where ¢ = a,,/b,,. Thus the vanishing of W, implies the linear dependence of a,
and b,. (How do we alter this argument if a, = 0 or b, = 0 for some n?)

As is the case with differential equations, we can compute the Wronskian of
all N solutions to an Nth-order homogeneous linear difference equation, even if
the solutions are not known explicitly. This is because the Wronskian satisfies a
first-order difference equation. For the proof of this result see Prob. 2.12. In the
next example we consider the special case of a second-order difference equation.

Example 3 Wronskian of the solutions to a second-order homogeneous linear difference equation.
Suppose that a, and b, are two solutions to the second-order homogeneous linear difference
equation

@y + Pr{(n)8, 41 + Poln)a, = 0. 234)
If we multiply (2.3.4) by b, ; and subtract the equation obtained by interchanging a and b, the
result s a,,,b,,, — by, 28,41 + po(n)(a,b,,, — b,a,.,) = 0. But, a glance at (2.3.3) shows that
this equation is a first-order difference equation for W,: W, ., = W, po(n). Thus,

W,= W, T1 polih (235)

j=mo

where W, is an arbitrary constant. Equation (2.3.5) actually holds for difference equations of any
order (see Prob. 2.12). It is the equivalent of Abel’s formula for differential equations (1.3.5).

From (2.3.5) we can see that if W, is nonzero, then W, (n = n,) is also
nonzero in regions in which py(n) # 0 (n > ny). [Note that py(n) is nonvanishing
whenever the difference equation (2.3.4), and also (2.3.1), functions as a backward
as well as a forward difference equation; i.e., if we can compute g, for successively
smaller values of n as well as for successively larger values of n.] Thus, so long as
po(n) # 0, the difference equation preserves the linear independence of solutions.

Example 4 Wronskian for a constant-coefficient equation. Equation (2.3.5) predicts that the
Wronskian of two solutions toa, , , — 5a,, ; + 6a, = 0 is proportional to 6": W, = ¢ 6". To check .
this result we note that two linearly independent solutions, a, and b,, to this equation are
a,=c, 2" and b, = ¢, 3". Thus, W, =a, b, — b,a,,, =c,c, 6"

Initial-Value and Boundary-Value Problems

The general solution to an Nth-order homogeneous linear difference equation is
an arbitrary superposition of N linearly independent solutions. There are two
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possible ways to determine the N arbitrary parameters. In an initial-value problem
on the domain n; <n < n, we specify N discrete derivatives of a, at one point n,
{(ny < ng < ny — N) or, equivalently, we specify N successive values of a,, starting
with a, . Either a,, aty), ai?, ..., alf =V iS ZIVeN OF @py, Gy + 1> Grg+ 25 -+ s Bpg+n 115
given. (Why are these two formulations of the initial-value problem equivalent?)
Sufficient conditions for this initial-value problem to be well posed (ie., for a

unique solution to exist) on the interval n; < n < n, are:

(a) the Wronskian at n, does not vanish and
(b) po(n) does not vanish on the interval n, <n < ny.

It is not necessary that py(n) be nonvanishing for ny <n <n,. (Why?) What
happens if py(n) = 0 for n; <n <n,?

In a boundary-value problem on the domain n, < n < n, we specify N values of
a, or any of its discrete derivatives at any values of n scattered throughout the
interval n; < n < n,: for example, a,,, ai’, 7, a,,, al)- 1, .... The question of how
to determine whether a boundary-value problem is well posed is difficult; there is
no simple criterion like that for initial-value problems. See Prob. 2.13.

Reduction of Order

Abel’s formula (2.3.5) for the Wronskian implies that if one solution to an Nth-
order difference equation is known, then we can find an (N — 1)th-order equation
for the remaining unknown solutions. For example, if N =2 and one solution
a, i1s known, a second solution b, satisfies the first-order equation
Anbpiy = byaye =W,

There is a general procedure, called reduction of order, for lowering the order
of any difference equation once one solution A, of the equation is known. The
object is to seek additional solutions a, in the form of a product

ap = A,X, (2.3.6)

in which x, is to be found. In general, x{" = Dx, satisfies a homogeneous linear
difference equation of one lower order.

Let us examine reduction of order for second-order equations. Let A, be one
solution of a,.; + py(n)a,,, + po(n)a, = 0. Substituting a,=A,x, gives
Api2Xnsa + pi(M)Ans 1 Xa o1 + po(n)A, x, = 0. But, since A4, is already a solution,
we have py(n)4,,, = —A,+2 — po(n)4,. Hence, we can eliminate p,(n)A,,, ; from
the equation for x,:

An+2(xn+2 — Xn+ l) = pO(n)An(xn+ 1 xn)‘
Note that this equation is a first-order homogeneous equation for x{".
Example 5 Reduction of order for a second-order equation. The equation (n + 4)a,,, + a,,, —
(n 4 1)a, = 0 is difficult to solve because it is not a constant-coefficient equation. However, by

careful inspection you may be lucky enough to spot the solution: 4, = 1/[(n + 1)(n + 2)]. (Check
that this is indeed a solution!)
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To find a second solution linearly independent of A, we substitute a, = x, /[(n + 1)(n + 2)]:
Xnr2/(n+ 3) + X0 /[(n+2)(n+ 3)] — x,/(n +2) =0. After rearranging terms, we have
(%42 = Xps )/ + 3) + (Xps1 — X,)/(n+2) =0. Thus x{! satisfies the first-order equation
xt1/(n + 3) + xt9/(n + 2) = 0, whose solution is x{*) = ¢,(n + 2)(— 1)", where ¢, is an arbi-
trary constant. Now we must solve for x,, which satisfies x,,, — x, = ¢;(n + 2)(~ 1)". Summing
this equation from 0 to n — 1 gives x, = c,(— 1)"**(2n + 3)/4 + c,, where c, is an arbitrary
constant.

Thus, the general solution to the original second-order difference equation is

a =1yt 2n+3) N c,
" 4n+1)n+2)  (r+Dm+2)

The use of reduction of order for difference equations of order greater than 2 is
discussed in Prob. 2.17.

Euler Equations

You will recall from Sec. 1.4 that, in addition to constant-coefficient differential
equations, there is another kind of equation, called an Euler equation, which can
be solved in general. Euler differential equations take the form
N N-1
N N-1
XV —xy + Dy-y1 X
dxt TP dxV1

where po, py, ---, Dn—1 ar€ constants.

To construct the difference-equation analog of Euler equations we recall from
Example 1 of Sec. 2.1 that there are simple discrete analogs of powers of x: x < n,
x?onn+1), P onn+1)n+2),..,xNonn+)n+2)- (h+ N-1)

It is advantageous to adopt a simpler way of writing these lengthy formulas.
We do so in terms of the I" function:

I'(n+ N)
I'(n)

The gamma function is defined in Example 2 of Sec. 2.2.
Using this new notation, we define an Euler difference equation by

[(n+ N) Tn+N-1) vy, i _
) ) a + -+ pynal” + pya, = 0. (23.9)

Let us now recall how to solve the Euler differential equation (2.3.7). The
substitution

d
y+"'+p1xa%+p0y=0, (2.3.7)

=nn+1)n+2)-(n+N-1) (2.3.8)

N
a" + py-y

ylo)=x" (23.10)
reduces (2.3.7) to an algebraic equation for r:
rr—=1)r=2) - (r—=N+ 1)+ py_r(r—1)
x(r—=2)(r=N+2)+ - +pr+p=0  (23.11)
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If the roots ry, r,, ..., ry of (2.3.11) are all distinct, then the N linearly independent
solutions to (2.3.7) are y(x) = x", x"%, ..., x"™ If (2.3.11) has repeated roots then
solutions involve powers of In x. For example, if (2.3.11) has a triple root at ry,
then three solutions to (2.3.7) have the form y(x) = x", x"!(In x), x"(In x).

Apparently, to solve the discrete Euler equation (2.3.9) we must substitute the
discrete analog of the function x’”, where r is a real number. We must therefore
generalize (2.3.8) to noninteger values of N. We define the discrete analog of x" to
be ['(n + r)/T(n). Note that one discrete derivative of this is

F(n+r+1) T(n+r) rT(n+r)
I(n+1) I(n) n T(n °

which is the discrete analog of rx"/x. Two derivatives give
r(r — 1)I'(n + r)/[T(n)n(n + 1)], which is the discrete analog of r(r — 1)x"/x%. N
derivatives of I'(n + r)/T'(n) give

Hr—=1)(r—2)(r— N+ l)] [F(n +7)

I'(n + N)/I'(n) C(n) |

the discrete analog of r(r — 1) --- (r — N + 1)x"/x".

It is now clear that substituting a, = I'(n + r)/T'(n) into (2.3.9) gives a polyno-
mial equation for r:

rr=1)(r=N+1)+py_yrr—=1)(r—=N+2)+--
+pir+po=0. (2.3.12)

The roots of this equation determine the solutions to (2.3.9).
Example 6 Discrete Euler equations.

(a) To solve the Euler equation
n(n+ 1)a® + nal" — 4a, =0 (2.3.13)

we substitute a, = I'(n + r)/["(n). This gives the polynomial equation r? — 4 = 0, which has
two distinct solutions: r; =4, r, = —1 Thus, the general solution to (2.3.13) is
a, = ¢,[(n + 3)/T(n) + ¢,T(n — 3)/T(n).
(b) To solve the Euler equation
n(n + 1)at? + 4a, =0 (2.3.14)

we again substitute a, = I'(n + r)/T'(n). However, now we obtain the polynomial equation
r? —r + 4 = 0, which has a double root at r = 4. Thus, we have obtained only one solution to
(2.3.14): a, = I'(n + 1)/T(n).

To find a second linearly independent solution we use reduction of order (see Prob.
2.18) and obtain a, = ¢(n)I'(n + 4)/T'(n), where p(n) = Y%5_, 1/(k — $). Note that ¢(n) is the
discrete analog of In (x — §) = [%,, dt/(t — ). Thus, the general solution of (2.3.14) is

[(n+4)
I(n)

a, = ¢, r(;.(:)_i) + c20(n)

. (23.15)

Discrete Euler equations are very similar to Euler differential equations.
Whenever (2.3.12) has repeated roots, the solution to (2.3.7) contains discrete
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logarithms. These logarithm terms can be generated by differentiating with respect
to r (see Prob. 2.19). The procedure is similar to that used in Sec. 1.4 for Euler
differential equations.

Generating Functions

To facilitate the solution of a difficult difference equation, it is sometimes advis-
able to transform the difference equation into a differential equation. This trans-
formation is accomplished by means of a generating function F(x), which depends
on the continuous variable x. The hope is that if the solution g, to a difference
equation is taken to be the nth coefficient in the Taylor expansion of F(x), then
F(x) will satisfy an easy-to-solve differential equation.

Example 7 Solution of a difference equation by means of a generating function. To solve the
difference equation

(n+ 1)(n+2)ape, —2(n+ Va,4y — 3a,=0, n=0, (2.3.16)

subject to the initial conditions ay = 2, a, = 2, we take a, to be the nth coefficient in the Taylor
expansion of a generating function F(x): F(x) = Y %, a,x". Differentiating this series term by
term gives F'(x)= Y= ona,x"" ' =Y2, (n + l)a,,,x" and F'(x)= Y2 o n(n — 1)a,x""? =

©_o (n+ 2)(n + 1)a,, ,x". Hence, the difference equation (2.3.16) implies that F(x) satisfies the
constant-coefficient differential equation F” — 2F' — 3F =0, subject to the initial conditions
F(0) = 2, F'(0) = 2. This initial-value problem is easy to solve and a, is recovered by taking
derivatives of F(x) according to Taylor’s formula; F(x) = &** + e™* so

LR =%[3n+(—1)»].

a =
" nldx" =0

A generating function is particularly helpful when it replaces the difference
equation by a differential equation of lower order.

Example 8 Generating function as a means of reducing the order of a linear equation. The second-
order difference equation
Aypy =0Gyey + (n+ 1)a, (23.17)

subject to the initial conditions a, = a, = 1, can be transformed to a first-order differential
equation for the generating function F(x) if we define F(x) = }'*_, a,x"/n!. To obtain the differ-
ential equation for F(x) we multiply (2.3.17) by x"*!/(n + 1)! and sum from n = Oto co. The first

term gives
© aHzan d = a”zx,n»z
LD dx L nr2)
d 2 a,x"
Tdx wmp n!

= ()~ a0~ ay]

= F(x)— L.
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The second term gives

Gy X" = g x"
S e = =F - 1.
e 5w T

The third term gives

n+ 1
x"*la,

b

Combining these three results gives the equation for F(x): F'(x) = (x + 1)F(x), F(0) = 1. Thus,
F(x) = ¢/*** and the formula for a, is

= xF(x).

For further practice in solving difference equations using generating functions

see Probs. 2.22 to 2.24.

Eigenvalue Problems

As is the case with differential equations, there are difference-equation boundary-
value problems which determine eigenvalues and corresponding eigenfunctions.
We conclude this section with one example of such a problem.

Example 9 Difference-equation eigenvalue problem. Let us consider the difference equation
(n+8)(n +2)a,,, = (1 + 1)2n + 1)a,, + (n + 1)(n +2)a, = Ea,,,,  (23.18)
subject to the two boundary conditions

a_, is finite, (2.3.19)

S= 7Y a,is finite. (2.3.20)

n=0

We will see that (2.3.18) to (2.3.20) cannot hold simultaneously except for special values of the
parameter E called eigenvalues.

The boundary condition in (2.3.19) implies that the elements of the sequence aq, ay, a;, ...
are all multiples of a,. To see why, we simply evaluate (2.3.18) for n = —1: a, = Ea,/7. If we let
n=0 in (2.3.18), we obtain a, = (E? + 11E — 14)a,/112. Using a, and a, = Ea,/7 as initial
values we can continue in this manner and calculate the entire sequence ay, a,, a5, ... from
(2.3.18). Since (2.3.18) is linear and homogeneous, all elements of this sequence are multiples of
a,y. For simplicity we choose a, = 1. Now, a, is uniquely determined.

Next we examine the boundary condition in (2.3.20). Is this constraint already satisfied for
any E? In Sec. 5.2 we show how to determine the approximate large-n behavior of solutions to
linear difference equations. Using the techniques described there it is relatively easy to verify [see
Prob. 5.6(f)] that there are two linearly independent solutions to (2.3.18) which for large n
behave like

cl(En *VIFE ang cy(Eyn3~V2VE, (2.3.21)

where ¢,(E) and c,(E) depend on E. From these approximations we can test the convergence of
the series in (2.3.20). (A series of the form ). a, will converge if a, approaches 0 like n™* with
a>1as n—co.) It is easy to see that when E <2 this series always converges and when
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E > 2 the series will not converge, except possibly for discrete (isolated) values of E for which
¢, (E) is zero.

Next we use a trick which gives one eigenvalue E. We simply sum the difference equation
(2.3.18) from n = —1 to oo. The right side gives ES, where § is the sum in (2.3.20). The left side
simplifies dramatically:

@

i(www+n%4—z (n+1)2n +11)a, ., + i(m%w+ﬂm

n=-1 n=-1 n=-1

i (n + 6)a i n(2n + 9)a, + i (n+ 1)(n + 2)a,
n=0 n=0

n=0

Thus, so long as the sum S exists,
2§ = ES. (2.3.22)

Now we must consider two possibilities. If S is nonzero, then we can conclude that E = 2;
for all other finite values of E, S must vanish.
If we set E = 2 in (2.3.18), then we find the relatively simple solution
6!
a,= — S
" (n+2)(n+3)n+ 4)(n+5)(n+6)

(2.3.23)

which satisfies the conditions that a_, be finite, that S exist, and that a, = 1. You should check
that (2.3.23) really does satisfy (2.3.18) with E = 2 and that S = 3. Note also that as n - w, a,
goes to 0 like n™%; this is precisely what is predicted in (2.3.21) with E = 2 and ¢, = 0. We say that
(2.3.23) is the eigenfunction which corresponds with the eigenvalue E = 2. Can you use reduction
of order to find another linearly independent solution to (2.3.18) with E = 2? This other solution
will go to 0 like 1/n as n — oo according to (2.3.21) and the sum S will not converge.

We know that for all E < 2 there are solutions a, to (2.3.18) which satisfy the boundary
conditions in (2.3.19) and (2.3.20). However, most of these solutions are very complicated func-
tions of n. To find simple solutions we note that according to (2.3.21), when E = —1 and when
E = —2, a, approaches 0 as n — oo like an integral power of 1/n. Therefore, these solutions may
well be simpler than those for other values of E. Indeed, for these two values of E, there are
solutions which are rational functions of n. For E= —1,

a, = SN Ut L) L (2.324)
(n+ 2)(n + 3)(n + 4)(n + 5)(n + 6)

and for E = =2,
(n* = 13n + 6) 5!

W= (n +;)A(An +3)(n+ 4)(n+ 5)(n +6) (2.3.25)

You should verify that a,,in (2.3.24) and (2.3.25) satisfy the boundary conditions that a _, be finite
and that a, = 1, and you should prove by direct calculation that § = Z; a,= 0. Can you find
other simple eigenfunctions?

In many differential-equation eigenvalue problems eigenfunctions corresponding with dif-
ferent eigenvalues are orthogonal. The same is true here. It is easy to prove directly from (2.3.18)
that if a, and b, are eigenfunctions corresponding with eigenvalues E, and E, then

Z (n + 2)(n + 3)(n + 4)(n + S)n + 6)a,b,=0 (2.3.26)

if E, # E, (see Prob. 2.28). You should verify by direct calculation that a, in (2.3.23) to (2.3.25)
satisfy the orthogonality condition in (2.3.26).
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Additional examples of eigenvalue problems may be found in Probs. 2.29 and
2.30.

2.4 INHOMOGENEOUS LINEAR DIFFERENCE EQUATIONS

The general solution to an inhomogeneous linear difference equation takes the
form of a particular solution added to an arbitrary linear combination of solutions
to the associated homogeneous linear difference equation. As with differential
equations, once the homogeneous equation has been solved, it is relatively easy to
find the general solution of the inhomogeneous equation. The three standard
methods that are used have the same names as those used for differential equa-
tions: variation of parameters, reduction of order, method of undetermined
coefficients. In this section we explain and illustrate these three techniques.

Variation of Parameters

The method of variation of parameters is used to construct a solution to the
Nth-order inhomogeneous difference equation

Auin + Pv-1(M)anin-—1 + -+ pi(n)a, s + pol(n)a, = gq(n) (24.1)

in terms of a set of N linearly independent solutions to the associated homoge-
neous equation

iy + Py-1(M)an vy + -+ pi(n)an sy + po(n)a, = 0. (24.2)

To explain the method we show how to solve second-order equations here.
The case of Nth-order equations is treated in Prob. 2.31. We assume that 4, and
B, are two known linearly independent solutions to

12 + pi(n)ays 1 + po(n)a, = 0. (2.4.3)
To solve
y12 + pi(n)ay sy + po(n)a, = q(n), (2.4.4)
we seek a solution a, of the form
a,= A,x, + B,y,. (2.4.5)

Substituting a, in (2.4.5) into (2.4.4) gives
An+ 2Xn+2 + Bn+ 2Vn+2 + pl(n)A'H' 1Xn+1 + pl(n)BrH- tYn+1
+ pO(n)Anxn + PO(")Bnyn = q(")

We can eliminate A4,,, and B, , from this equation using the fact that A, and
B, solve (2.4.3). We obtain:

~Xps2P1(M)An+1 = Xn12P0(1)An = Yu+2P1(1)Bus 1 = Yus2P0(n)B,
+ pl(n)An+ 1Xn+1 + pl(n)Bn+1yn+l + pO(n)Anxn + Po(n)B,,y,, = q(”)
(2.4.6)
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Until now we have treated x, and y, as two independent functions of n. We are
free to impose a constraint which in effect determines y, in terms of x, but leaves
x, arbitrary. It is useful to impose the constraint

An+1(xn+2—xn+l)+Bn+l(yn+2 —yn+l)=0 (247)
because it simplifies (2.4.6) dramatically:

—Anl’o(")(xn+2 — Xn+ l) - PO(")Bn(y'H-Z — Yn+ 1) = q(n) (248)

We can solve (2.4.7) and (2.4.8) simultaneously for x,,, — x, and y,,, — y,.
The result is
- q(n)Bn+ 1

Xn+2 = Xyt =W’
0 n

_ . q(n)An-H
Ynt2 = Yn+1 = _P_o(—n_)—m ;

where W, = 4,B,., — B,A,., the Wronskian of the two solutions of the homo-
geneous equation. We therefore obtain for a,, the general solution of the inho-
mogeneous equation,

a, —CIA +Cz A Z ]+l Z q(] j+l’ (249)

]+ 1 1 +1
where we have left the lower summation limits arbitrary. In (2.4.9) ¢, and c, are
arbitrary constants and we have used the fact that W, , = po(j)W; [see (2.3.5)]
Equation (2.4.9) is the final result and is the difference-equation version of (1.5.7).

Example 1 Variation of parameters for a second-order equation. Here we use variation of pa-
rameters to find a particular solution to the second-order inhomogeneous difference equation

(n+4)a,,,+a,.,~(n+1a,=1 (24.10)

Comparing this equation with that in (2.4.4) in which the coefficient of a,, , is 1, we identify the
coefficient functions py(n) = 1/(n + 4), po(n) = —(n + 1)/(n + 4), g(n) = 1/(n + 4). Recall that
two linearly independent solutions to the associated homogeneous equation are already known
(see Example S of Sec. 2.3):
_ 1
"+ D +2)

_(=1)ri@en+3)

"4+ 1)(n+2)

Using these formulas for 4, and B, we compute W,:
W,=A4,B,11 — B4,y
S Gl ) A
(n+ 1)n+2)(n+3)
Thus, we have

B,y (n+4)@2n+5) Ay

Wi 4 W

= (=1y*Hn+4)
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Next, we substitute these results into (2.4.9) and obtain a formula for a particular solution:

"y Z ,+1 +B, Z‘I(J)A,H

j+1

1 n—2 ) . n=2 .

1

W[Z(ZJJ-I + (=1)"(2n+3) =Z —I)’].

where in the last step we have for definiteness chosen the lower limit of summation to be 0.
Evaluating the indicated sums gives

1

an=4v———(n+l)(n+2){(n+l)2+(2 +3)l+( )]

Note that we may discard the (—1)*(2n + 3) term in the square brackets because it is propor-
tional to B,, a solution of the homogeneous equation. Also, we may simplify further by dropping
constant (n-independent) terms in the square brackets because they are proportional to 4,. We
are left with a, = n(n + 3)/[4(n + 1)(n + 2)]. It is easy to check that this is a particular solution
to (2.4.10).

The general solution is obtained by adding a linear combination of solutions to the asso-
ciated homogeneous equation:

1 (=1)y*'2n + 3) n(n + 3)
"m0+ 2) T Anr Dnt2) Am et 2)

a,=c

Reduction of Order

Recall from Sec. 2.3 that if one solution to an Nth-order homogeneous linear
difference equation is known, reduction of order may be used to divide out the
known solution and reduce the order of the difference equation to N — 1. Reduc-
tion of order also works for inhomogeneous equations. Thus, if the order of the
original inhomogeneous equation is 2, then reduction of order gives a first-order
inhomogeneous equation which is solvable (see Sec. 2.2).

In the case of the second-order equation

ayiz + pi(n)a, 1 + polna, = q(n), (24.11)

we assume that A4, is a known solution of the associated homogeneous equation.
As in (2.3.6) we seek a general solution to the inhomogeneous equation of the form

a, = x,A,. (24.12)
Substituting (2.4.12) into (2.4.11) gives
An+2(xn+2 Xn+ 1) pO( )An( Xn+1 — xn) = q(n) (2413)

This is a first-order inhomogeneous equation for x{ = x, ,, — x,.

Example 2 Reduction of order for a second-order inhomogeneous equation. Reduction of order
may be used to find the general solution of the inhomogeneous equation
a,,; — (2n+ 1)a,,,/n+ na,/(n — 1) = n(n + 1) once one solution 4, to the associated homo-
geneous equation is known. We assume that we have already discovered that 4, =n — 1.
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Using A,=n—1, po(n)=n/(n—1), and g(n)=n(n + 1), (2.4.13) becomes (n + 1)x
(Xp42 = Xp4q) — n(x,,, — X,) = n(n + 1). But this equation was already solved in Example 4 of
Sec. 2.2. The result is x,,; — X, = ¢;/n + (n* — 1)/3(n > 1), where ¢, is an arbitrary constant.
We solve for x, by summing from 1to n— 1: x, = ¢,¢(n) + ¢, + n(n + 1)(2n — 5)/18 where ¢,
is another arbitrary constant and ¢(n) = Y21 1/j. Finally, we substitute x, into (2.4.12) and
obtain the general solution to the inhomogeneous difference equation:

a, = ¢, (n)(n — 1) + cz(n — 1) + (n = 1)}(n)(n + 1)(2n — 5)/18.

Method of Undetermined Coefficients

In contrast with variation of parameters and reduction of order, the method of
undetermined coefficients is not a general method. It produces particular solu-
tions to Nth-order equations of the form in (2.4.1) for which (a) py, ..., py-, are
constants and (b) g(n) is a sum of terms of the form ¢"P(n), where ¢ is a constant
and P(n) is a polynomial in n. Only very rarely does the method work for more
complicated kinds of equations. We illustrate the method in the following example.

Example 3 Method of undetermined coefficients.

(a) To find a particular solution to a,,, + a,,, + a,=n, we seek a solution of the form
, = An+ B, where A and B are undetermined coefficients. Since the right side is a
polynomial of degree 1, it is clear that there must be a solution of this form.

Substituting into the difference equation gives 34n + 34 + 3B = n. This equation is
satisfied for all nif A =4 and B = —4. Thus, a particular solution is a, = (n — 1)/3.

Note that the method of undetermined coefficients gives only a particular solution
without even a clue to the general solution of the inhomogeneous equation. We emphasize
that there is much more information contained in one solution to the associated homoge-
neous equation than in a particular solution to the inhomogeneous equation. (Why?) In fact,
knowing one homogeneous solution is like knowing two different particular solutions.
(Why?)

(b) To find a particular solution t0 a,, 3 — a,,, + a,., — a, = 2"n?, we seek a solution of the
form a, = 2"(An* + Bn + C). We obtain 54n® + (364 + 5B)n + (584 + 18B + 5C) = n’.
This equation is satisfied for all nif 4 = 4, B= —3¢, C = 358 50 a particular solution is

a, = 2"(25n* — 180n + 358)/125.

(¢) To find a particular solution to a,, , + 2a,, + a, = cos n, we rewrite the inhomogeneous
term as a sum of two terms (¢ + e~ ™)/2 and find a particular solution for each term. For
example, we solve a,,; + 2a,4, + a, = €"/2 by seeking a particular solution of the form
a, = Ae™. Substituting this form into the equation, we obtain

1 el
A= 7+ = -,
2(e** +2¢'+1) 2(2cos 1+2)
1 ei{n—l)
= - v
4 1+4cos

Adding this solution to its complex conjugate gives the complete solution to the prob-

lem a, = [cos (n — 1)]/[2(1 + cos 1)].
(d) The method of undetermined coefficients happens to give a particular solution of
Sa,,, + na,,, + (n — 1)a, = n? even though the associated homogeneous equation does not
have constant coefficients. If we look for a solution of the form a, = An + B, then we obtain
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24n + (54 4+ 2B)n + 104 + 4B = n’, which is satisfied for all nif 4 = 4 and B = —3. Thus,
a particular solution is a, = (2n — 5)/4.

We must regard the success of the method of undetermined coefficients for the above
equation as sheer luck. If we try to solve Ka,,, + na,,, + (n — 1)a, = n?, where K # 5 and
K # 0, then the above approach fails because it is equivalent to solving three simultaneous
equations in the two unknowns 4 and B.

2.5 NONLINEAR DIFFERENCE EQUATIONS

There are very few general techniques beyond those already mentioned in Sec. 2.2
for solving nonlinear difference equations in closed form. In the following
examples we summarize very briefly those which are most widely applicable;
namely, substitution, use of known nonlinear functional relations, and introduc-
tion of generating functions.

Example | Use of substitution to solve a nonlinear equation. The equation a, ., = 2a,(1 — a,)
may be solved by substituting a, = (1 — b,)/2. The new equation for b, is b,,, = b2, whose

solution was already given in Example 6 of Sec. 2.2 as b, = b‘f"-". Thus,
a,=[1=(1=2a)" )2

Example 2 Use of a nonlinear functional relation to solve a nonlinear equation. The equation
a,4 1 =4a; —3a,(|ag| < 1) can besolved by substituting a, = cos 6,. The equation simplifies to
cos #,,, = cos (30,) because cos § satisfies the nonlinear functional relation cos (30) =
4 cos® 6 — 3 cos 6. Thus, the solution is a, = cos (3" cos ™! a,). Can you solve this difference
equation if |a,| > 17

Example 3 Use of a generating function to solve a nonlinear equation. The convolution equation
a,, =K Y aa,_;, ag=1, (2.5.1)
j=0
is best solved by introducing the generating function f(x)= Y., a,x" because [f(x)]* =
Yo X" 3" o a;a,_; If we multiply (2.5.1) by x" and sum from n =0 to co, we obtain an
algebraic equation for f(x): [f(x) — 1]/x = K[f(x)]>. The solution to this equation is f(x) =
(It \/1 — 4xK)/2xK and we must choose the minus sign to insure that f(0) = a, = 1. Expand-
ing the above expression into a Taylor series in powers of x gives
Z (4xK)'T(n +3)

TO=

Thus, a,, the coefficient of x”, is given by

_ (4K)T(n + )

W= nITd)

Further examples of solvable nonlinear difference equations are given in the
problems for Sec. 2.5.

PROBLEMS FOR CHAPTER 2

Section 2.1

2.1 Compute Y';_, a;, where a; = j* and j°.
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2.2 (a) Compute
E 2j+3
SPUHPG+ 2P0+ 3)

(b) Compute

ad 2j+3

U+ PG+ 27+ 3)
2.3 Compute
35
1

Y

amp (n+ D(n+2)(n + 3)

2.4 Show that a,,, = (D + I)‘a, where la, = a, and Da, = a,,, — a

Section 2.2

2.5 Solve the following equations:

(@) @,y =a,(n + 1)/n;

(b) @, — na, =n?;

(€) a4y ta,=n;

(d) a,,, —a,=2

(€) @psy —nay/(n+1)=1/n.

2.6 The I function is defined in (2.2.2) as I'(z) = [§ e™'t*~ ! dt (Re z > 0). Show that:

(a) T(1) = L,TR) =1, T#) = /x

(b) T(z + 1) = zI'(2).

Clue: Use integration by parts.

(c) Given that the difference equation in (b) is valid for all z, deduce the result that I'(z) has
simple poles when z=0, —1, —2, —3, .... Find the residue of I'(z) at each of these poles.

(d) Derive the duplication formula /7 T'(2z) = 2~ 'I'(z)[(z + 1) and the reflection formula
I'(z)I'(1 - z) = n/sin (nz).

Clue: 1t is difficult to derive these two formulas from the integral representation (2.2.2). See the
references on the I' function for useful ideas.

() Given that I'(3) = 3.62561 and I'(3) =2.67894, compute I'2), I'3), I'Z), TE).

(f) Show that the integral representation 2mi/I'(z) = [ t~%¢' dt is valid for all z. Here C is any
contour in the complex-t plane that begins at t = — oo — ia (a > 0), encircles the branch cut that lies
along the negative real axis, and ends up at —oo + ib (b > 0) (see Fig. 6.12).

Clue: When Re z < 1, use the reflection formula stated in (d) to show the equivalence of this
integral representation with that in (2.2.2).

2.7 Consider the partial difference equation 0= (j + 1)(2j + 1), j+; — 2jC0j+ Cumyjm2 —
Z;;, ko1 Ca—k,j» Where co o = Lc_y j=¢; =0 (j > 0), ¢,; = 0 (j > 2n). Use this partial differential
equation to derive the following results:

(@) ¢y 20 = 1/4"n;

(b) Cpzp-y = (@n +5)[3-4(n — 1)I];

(€) Cpan-2 = (16n* + 64n + 82)/[18 - 4"(n — 2)!].

2.8 Solve the partial difference equation a, , = a,_, ,, + @, .-, (n = 1,m =2 1)ilay,=a,,=1(n 20,
m > 0).

Section 2.3

2.9 Show that if (2.3.2) has a multiple root r, of order p, then there are p linearly independent solutions
to (2.3.1) of the form r}, nr, ..., n?~'r;.

Clue: As in Sec. 1.4 for constant-coefficient differential equations, treat r as a continuous variable
and differentiate with respect to r to generate new solutions to the difference equation.
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2.10 Solve:
(a) ay.y —5a,,, +4a,=0(a;, =0,a, = 1);
(b) a,4, —4a,,, +4a,=0(a,=0,a, =1);
(¢) ays3 —3a,4, +3a,,, —a,=0(ay=1,a,=2,a,=5);
@) aysy— 8,02+ a,, —a,=0(ay=0,a,=1,0,=2)
(€) a,2 — 41y +2a,=0(ap=1,a,=1).
2.11 (a) Prove that if W(a,, b,, c,)=0for all n; <n <n, where n, —n, >3 and W is defined in
(2.3.3), then a,, b,, and ¢, are linearly dependent. Also prove the converse.
(b) Generalize the above result to N sequences a,, b,, c,, - ...
2.12 Derive (2.3.5) for difference equations of arbitrary order N.
2.13 Show that the solution to the boundary-value problem \/f apyq — (1 + \/g)a" + \/5 a, ;=0
2<n<é6), Zﬁ a, = (1 + ﬁ)al, a; =0 is not unique.
2.14 One solution to 2na,,, + (n* + 1)a,,, — (n + 1)?a, =0 is clearly a, = 1. Find the general
solution.
2.15 One solution to n’a,,, — n(n + 1)a,, , +a, = 0is a, = n. Find the general solution.
2.16 Use reduction of order to rederive the result stated in Prob. 2.9.
2.17 Explain the method of reduction of order for difference equations of order larger than 2.

2.18 Use reduction of order to obtain a second solution to (2.3.14) given that one solution is
I'(n + 4)/T(n). [The general solution is given in (2.3.15).]
2.19 Show how to determine the structure of the general solution to an Euler difference equation when
(2.3.12) has repeated roots. In particular, show that differentiating with respect to r gives rise to discrete
logarithm terms as in (2.3.15).
2.20 Solve the following Euler difference equations:

(@) n{n + Va,,, —n2n — Da,,y + (n* — 2n + 2)a, = 0;

(b) n(n + a,,, —2n(n — Va,,, + ("> = 3n + 4)a, = 0.
2.21 Solve:

(@) n(n + 1)(n + 2)a® — n(n + 1)al? + nal" — a, = 0;

(b) n(n + 1)(n +2)(n + 3)a® —a, = 0.

2.22 Legendre polynomials P,(z) satisfy the difference equation (n+ 1)P,,, — (2n + 1)zP, +
nP,_, =0, with Py(z) =1, P\(z) =z

(a) Define the generating function f(x,z) by f(x,z)= Y o PJ(z)x" Show that
Sx,z)= (1 —2xz + x?)" V2 .

(b) If g(x, z) = Y2 Pu(z)x"/n!, show that g(x, z) = e“Jo(x\/l_— z?), where J, is a Bessel
function.

Clue: J(t) satisfies the differential equation ty” + y' + ty = 0 with J4(0) = 1, Jo(0) = O.

2.23 (a) The Bessel functions J,(z) satisfy the difference equation J,, (z) — 2nJ (z)/z + J,—,(z) = 0
(=00 <n< ), with J4(0)=1 and J,(0)=0 (n # 0). Define the generating function f(x, z) by
f(x,z) = Y2 _ o x"J,(z). Show that f(x, z) = exp [3z(x — 1/x)).

(b) Show that J_ (z) = J (—z) = (—1)J(2).

(c) Show that 1 =Jo(2) +2 Y'F J,5,(2), 2=2 3% (2n + 1M 3,4 4(2):

2.24 Hermite polynomials He, (z)satisfy the difference equation He, , , (z) = z He, (z) — n He,_, (2),
with He, (z) = 1, He, (z) = z. Define the generating function f (x, z) by f(x, z) = Y., [x" He, (z)/n!].
Show that f(x, z) = =%/,

2.25 Solve in closed form the second-order linear difference equation §(6 + a)y, + c(8 + b)ey, =/,

Evhere bor b — ais an integer. Here the difference operators d and ¢ are defined by 8y, = n(y, 4, — Ya)
Yn = MWns1-

Clue: Show that the difference equation can be factored by converting it first to a higher-order
difference equation with explicit first-order factors. To do this follow step-by-step the clue given in
Prob. 1.26 and perform the analogous operations on the difference equation. In this connection, it is
helpful to first show that &%y, = E¥(8 + N)y, where &V = & -+ & with N factors.

2.26 (a) A tridiagonal matrix A has nonzero entries g; ; only when |i—j| < 1. Define d, as the
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determinant of the submatrix consisting of the first n rows and columns of 4. Show that d,, satisfies a
three-term difference equation.

(b) Use this result to find the eigenvalues of the n x n matrix whose entries are a;; = 0,4;,_, = 1,
a4, = 1foralli
227 Let A4 be a real symmetric tridiagonal matrix whose nonzero entries are a,; = a;, a; ;3 , = b; # 0.
Let A, be the n x n matrix consisting of the first n rows and columns of A. Prove that the eigen-
values of A4, and those of 4,_, interlace. That is, show that if the eigenvalues of 4,-, and 4,
in order of increasing size are e;, e, ..., e,-; and fy, f5 ..., f,, respectively, then
fi<e <fy<ey,<fy<—<e_,<f.

Clue: Construct the three-term difference equation satisfied by d,, the determinant of 4,, and
note the signs of the coefficients in this relation. The proof may be done by induction.
2.28 Verify (2.3.26).

2.29 Consider the eigenvalue problem

(n+3Pn-1) 16 (n=2(n+2)

. — + 1 = =
FERIP TS A ey n(n+1)|a, + on_ 1) = Ea =234

subject to the boundary conditions that a, be finite and a, -0 as n — co.
(a) Show that a, = (2n + 1)/[(n + 2)(n + 1)(n)(n — 1)]* and

a,= (2n+ D[2n(n + 1) = 13)/[(n + 2)(n + L)(n)(n — )], n=2,

are eigenfunctions corresponding to the eigenvalues E = —3 and E = —7, respectively.
(b) Show that these eigenfunctions are orthogonal with respect to some appropriate norm.
(c) Find more eigenfunctions and eigenvalues.

2.30 Consider the eigenvalue problem (n + 1)(n + 3)a,,, — 2n(n + 2)a, + n*a,_, = Ea,, with a_,
finite and a,— 0 as n— co. One eigenfunction is a, = 1/[(n + 1)(n + 2)], n > 0, and its associated
eigenvalue is E = 1. Find another eigenfunction.

Section 2.4
231 Assume that N linearly independent solutions to (2.4.2) are known. Find a particular solution to
(2.4.1) using variation of parameters.
2.32 Find a particular solution to
(@) ysy + ayey +a, = ne" +n?e™
(b) a,+, — a4, +a, =sinh n;
(c) 4a,,3 +3a,,, +2a,,, +a,=n
2.33 Find particular solutions to @,+; —2a,,; +a,=n+ 1 and a,,, — (n — 1)a,., + na,=n+ 1.

2.34 Note that a, = 1 is a solution to the homogeneous part of na,,, — (n + 1)a,,, + a, = 1/(n + 1).
Find the general solution.

2.35 Note that a, = n is a solution to the homogeneous part of n’a, ,, — n(n + 1)a,,, + a, = 2". Find
the general solution.

2.36 Find the general solution to a,,, — 4a,,, + 4a, = 2"

Section 2.5

2.37 Solve a,,, = 2a2/(1 — 2a?).
238 Solve a,,, =4a,(1 —a,) and a,,, = 4a,(1 + a,).
2.39 Solve a,,; = [(a,)*(,-,)’]"*
2.40 The Fibonacci numbers a, satisfy the linear recursion relation a,,, = a,,, + a,. The first few
numbers are ag =0, a; =1, a, = |, a3 = 2, a, = 3, a5 = 5. Prove that Y., a;a,-; = (n — 1)a,/5 +
2na,- /5.
241 Solve a,, , a, — p(n)a,,, —a,)+ 1=0.
Clue: Let a, = tan b,.
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2.42 Solve a,, ,a, + /1 - a2, , \/T—:ZZ = p(n)[|p(n)| < 1).

Clue: Let a, = cos b,.
243 Solve a,(a,,, — a,)=n(a,,, —a,) + 1.

Clue: Letb, = a,,, — a,, apply the difference operator D to the resulting equation, and show that
b, satisfies either b, = b,,, or (n + 1)b,b,,, = L.
244 (a) Nonlinear difference-equation analogs of the Bernoulli differential equations y'(x) = )]~
and y'(x)=[y(x))"? which can be solved in closed form are a,,, —a,=2/(a,,, + a,) and
d,., — a,=3/(a2,, + a,a,,, + a?). Solve these equations.

(b) Find a solvable analog of y'(x) = [y(x)] ™.






PART

- LOCAL ANALYSIS

My mind rebels at stagnation. Give me problems, give me work,
give me the most abstruse cryptogram, or the most intricate
analysis, and I am in my own proper atmosphere.

—Sherlock Holmes, The Sign of the Four
Sir Arthur Conan Doyle

When the methods of Part I do not yield an exact closed-form solution of a
differential or difference equation or when the exact solution is too complicated to
be useful, then one should try to ascertain the approximate nature of the solution.
The first step toward an approximate solution is called local analysis.

The purpose of local analysis is to represent the solutions of equations which
cannot be solved in closed form as simple expressions in terms of elementary
functions. The results of a local analysis are valid in a sufficiently small neighbor-
hood of a point. Ultimately, a uniform approximation to the behavior of the
solution over an entire interval may be found by piecing together neighborhoods
in which the local behavior is known. This piecing-together process uses the
techniques of global analysis which are discussed in Part IV.

Chapter 3 introduces the basic tools of local analysis for linear differential
equations. It begins by classifying the possible local behaviors of linear equations.

The techniques introduced in Chap. 3 are a prototype for all the asymptotic
and perturbative analysis given in later chapters. The chapter establishes our
attitude toward asymptotic analysis. Aside from stating a few general facts, our
approach will be intuitive and heuristic. As in many areas of applied mathematics,
it is more urgent to get the answer, the local behavior in this case, than it is to
justify rigorously the means of getting it. Of course, the local behavior can usually
be checked by substituting it back into the differential equation. If the differential
equation is approximately satisfied, one may argue strongly for the validity of the
approximations!

Chapter 4 extends the discussion to nonlinear differential equations, where
the results are more limited because the techniques are less general. We will see
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that it is not always obvious whether the solution of a nonlinear differential
equation is regular (analytic) or singular. Local analysis helps to predict which of
these two behaviors occurs and, if the solution is singular, local analysis deter-
mines the nature of the singularity. Nonlinear equations can have an astonishing
variety of singularities.

In Chap. 5 we draw on the close similarity between differential and difference
equations to develop techniques, analogous to those in Chaps. 3 and 4, to obtain
approximate solutions of linear and nonlinear difference equations.

Chapter 6 introduces techniques for the local analysis of integrals. The
methods discussed here find frequent application because solutions of many math-
ematical and physical problems are expressible as integrals which are too difficult
to evaluate exactly.

Part II of this book is designed to enlighten those mathematicians who only
know how to seek exact results and who are often seen idly turning the pages in
dusty books on special functions and thick tables of integrals. A practitioner of
local analysis has an arsenal of useful and relatively easy things to do; local
analysis is a handy first-aid kit for difficult equations.



CHAPTER

THREE

APPROXIMATE SOLUTION OF LINEAR
DIFFERENTIAL EQUATIONS

Singularity is almost invariably a clue.

—Sherlock Holmes, The Boscombe Valley Mystery
Sir Arthur Conan Doyle

The theory of linear differential equations is so powerful that one can usually
predict the local behavior of the solutions near a point x, without knowing how to
solve the differential equation. It suffices to examine the coefficient functions of the
differential equation in the neighborhood of x,.

For example, the solutions to the formidable fourth-order differential equa-
tion d*y/dx* = (x* + sin x)y are not expressible in terms of known mathematical
functions. Nevertheless, the behavior of y(x) as x — co is well approximated by a
linear combination of the four elementary functions x ~%2e**¥2 x~3/2 gin (x2/2),
and x ~*? cos (x2/2). You will be pleased to know that after reading this chapter
you will be able to derive this nifty result on the back of a postage stamp.

Even when the solution to a differential equation can be expressed in terms of
the common higher transcendental functions, the techniques of local analysis are
still very useful. For example, saying that the solutions to y” = x*y are ex pressible
in terms of modified Bessel functions of order % does not convey much qualita-
tive information to someone who is not an expert on Bessel functions. On the
other hand, an easy local analysis of the differential equation shows that solutions
behave as linear combinations of x ™ 'e***3 as x —» + 0.

Some of the examples in this chapter involve differential equations that can be
solved exactly in terms of higher transcendental functions. Although the emphasis
is on asymptotic analysis and not on the properties of these special functions, by
the end of this chapter we will have accumulated a large number of results con-
cerning special functions. For the reader’s convenience, we have included an
appendix which summarizes the most important formulas.
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3.1 CLASSIFICATION OF SINGULAR POINTS OF
HOMOGENEOUS LINEAR EQUATIONS

In this section we begin the process of local analysis by classifying a point x,,
which may be complex, as an ordinary point, a regular singular point, or an irregu-
lar singular point of a homogeneous linear equation. This classification gives the
first indication of the nature of the solutions near x, and suggests the appropriate
route for further systematic analysis.

In this chapter we continue to represent homogeneous linear differential
equations by the form used in Chap. 1:

YO) + g1 )Y (x) + o+ pr(x)yV(x) + polx)y(x) =0,  (3.1.1)

where y®(x) = d*y/dx*. The classification scheme we are about to describe
assumes that py, ..., p,—, have been defined for complex as well as for real values
of their arguments.

Ordinary Points

The point x, (xq # o0) is called an ordinary point of (3.1.1) if the coefficient
functions po(x), ..., p.1(x) are all analytic in a neighborhood of x, in the com-
plex plane.

Example 1 Ordinary points.

(a) y" = €*y. Every point x, # oo is an ordinary point because ¢* is entire.

(b) x*y" = y. Every point x, except for x, = 0 and oo is an ordinary point.

(¢) ¥ = [x|y. There are no ordinary points in the complex-x plane because |x| is nowhere
analytic. (See Sec. 1.9.)

Fuchs proved in 1866 that all n linearly independent solutions of (3.1.1) are
analytic in a neighborhood of an ordinary point. Moreover, he proved that if any
solution is expanded in a Taylor series about the ordinary point x,, y(x)=
Y20 @a(x — Xo)', then the radius of convergence of this series is at least as large as
the distance to the nearest singularity of the coefficient functions in the complex
plane (see Prob. 3.9). The location of a singularity of a solution must coincide with
the location of a singularity of a coefficient function. The solution of a linear
equation cannot have singularities at any other points.

Example 2 Taylor series at an ordinary point. The equation (x? + 1)y’ + 2xy = 0 has an ordi-
nary point at 0. The solution y = ¢(1 + x?)™! can be expanded in a Taylor series whose radius of
convergence is 1; this is the distance to the coefficient singularities at x = +i when the differential
equation is written in the form of (3.1.1).

Regular Singular Points

The point x4 (xo # o) is called a regular singular point of (3.1.1) if not all of
Po(x), ..., pa-1(x) are analytic but if all of (x — xo)'po(x), (x — Xo)*~ 'py(X), - .-,
(x — xo)pn—1(x) are analytic in a neighborhood of x,.
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Example 3 Regular singular points.

a) (x — 1)y” = y has a regular singular point at 1.
P

(b) x2y” + xy' = y has a regular singular point at 0.

¢) x*y' = (x + 1)y does not have a regular singular point at 0.
g

A solution of (3.1.1) may be analytic at a regular singular point. If it is not
analytic, its singularity must be either a pole or an algebraic or logarithmic branch
point. Fuchs showed that there is always at least one solution of the form

y=(x = xof'A(x), (3.1.2)

where o is @ number called the indicial exponent and A(x) is a function which is
analytic at x, and which has a Taylor series whose radius of convergence is at least
as large as the distance to the nearest singularity of the coefficient functions in the
complex plane (see Prob. 3.23).

Example 4 Taylor series at a regular singular point. The equation y' = y/sinh x has a regular
singular point at 0. The solution y(x) = ¢ tanh (x/2)is analytic at x = 0 but has poles at x = tin.
Thus, the radius of convergence of the Taylor expansion of y(x) is 7, the distance to the nearest
singularities in the complex plane of the coefficient function 1/sinh x.

If (3.1.1) is of order n > 2, then there is a second linearly independent solution
having one of two possible forms:

y = (x — x0)*B(x) (3.1.3)
or y = (x — xo)"A(x) In (x — x0) + C(x)(x — xo)’. (3.1.4)

Equations (3.1.3) and (3.1.4) are generalizations of the solutions of an Euler equa-
tion for nonrepeated and repeated indicial exponents (see Sec. 1.4). B(x) and C(x)
are new functions which are also analytic at x, and which have radii of conver-
gence at least as large as the distance to the nearest singularity of the coefficient
functions. A(x) is the same function that appears in (3.1.2).

In general, for each new linearly independent solution there is a new analytic
function of x and either a new indicial exponent or another power of In (x — x,).
Thus, the form of the nth solution is at worst

n—1

Yx) = (= xof 3 [In (x = xo) Aifx), (.L5)
i=0
where all the functions A4;(x) are analytic at x,. Conversely, Fuchs showed that if
all n solutions have the forms (3.1.2) to (3.1.5), then x is at worst a regular singular
point of the equation (see Probs. 3.14 to 3.17).

Irregular Singular Points

The point x, (xo # o) is called an irregular singular point of (3.1.1) if it is neither
an ordinary point nor a regular singular point. There is no comprehensive theory
of irregular singular points, but we can say that at an irregular singular point at
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least one solution is not of the forms (3.1.2) to (3.1.5). Typically, at an irregular
singular point, all solutions exhibit an essential singularity, often in combination with
a pole or an algebraic or logarithmic branch point. But this is not always the case.
Some of the solutions may not have an essential singularity and may even be analytic
at x,.

Classification of the Point x, = o0

We have completed the classification of points X, in the finite complex plane, but
it is also useful to classify the point x4 = co. We do this by analytically mapping
the point at infinity into the origin using the inversion transformation

1
x=-,
t
d ,d
E—_t i’ (3.1.6)
a2 42 s d
pr t i + 2t i

and so on, and then classifying the point ¢t = 0. The point x, = co is called an
ordinary, a regular singular, or an irregular singular point if the point at t = 0 is
correspondingly classified.

Illustrative Examples

The remainder of this section is a collection of elementary examples which further
explain and illustrate how to classify points of differential equations. In the follow-
ing examples observe how solutions behave in the vicinity of ordinary, regular
singular, and irregular singular points.

Example 5 Comparison of ordinary, regular singular, and irregular singular points. Consider the
three equations

dy 1

Z__y=0, 3.1.7
ax 2777 (317)
dy 1
2 —y=0, 318
dx 2x'v ( )
dy 1
=z y=0. 3.19
dx 2x2? (319)

The transformation x = 1/t gives three new equations which are respectively dy/dt +
y/2t2 = 0, dy/dt + y/2t =0, dy/dt + y/2=0. Every point of (3.1.7) is an ordinary point
except for oo which is an irregular singular point. As expected, the solution y(x) = ce*? is analytic
except for an essential singularity at x = oo. Every point of (3.1.8) is an ordinary point except for
0 and oo which are regular singular points. The solution y(x) = ¢x'/? is analytic except for branch
points at x = 0 and x = 0. Every point of (3.1.9) is an ordinary point except for 0 which is an
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irregular singular point. The solution y(x) = ce™*/* is analytic in the extended plane except for
an essential singularity at x = 0.

Example 6 Taylor series about an ordinary point. The equation y' + y/(x — 1) = 0 has regular
singular points at 1 and co. The solution y(x) = ¢/(1 — x) has a pole at x = 1 and is analytic at co.
The Taylor series of the solution about x = 0, y(x) = ¢ Y%, x", has radius of convergence 1,
which is the distance to the regular singular point at 1.

Example 7 Taylor series solutions which converge beyond the nearest singular point of the differen-
tial equation. The equation (x — 1)(2x — 1)y” + 2xy’ — 2y = 0 has regular singular points at 4, 1,
and oo. One solution of this equation is y(x) = 1/(x — 1). A Taylor series expansion of this
solution about the ordinary point at O converges beyond the first singular point at § but ceases to
converge at |x| = L. A linearly independent solution is y(x) = x whose Taylor series about x = 0
converges for all x.

Example 8 Essential singular behavior near an irregular singular point. The equation
y” + 3y'/2x + y/4x*> = 0 has an irregular singular point at 0 and a regular singular point at co.
Two linearly independent solutions are y(x) = sin x~*/2, y(x) = cos x~ /2, Both of these solu-
tions have an essential singularity at the origin. The first of these also has branch points at x = 0
and x = oo. The second solution has no branch cut and is analytic at x = co.

Example 9 Analytic solutions near singular points. At regular or irregular singular points, one or
even several linearly independent solutions may be analytic. The equation y” + (1 — x)y'/x —
y/x? = 0 has a regular singular point at 0 and an irregular singular point at co. One solution,
y(x) = (¢* — 1 — x)/x, is analytic at x = 0 but has an essential singularity at x = 0o. A linearly
independent solution, y(x) = (1 + x)/x, has a pole at x = 0 but is analytic at x = oo.
The equation in Example 2 of Sec. 1.3,
% l+xy'+;1cy=0, (3.1.10)

X

again has a regular singular point at 0 and an irregular singular point at co. Both linearly
independent solutions

yx)=¢, yx)=1+x (3.1.11)
are analytic at x = 0. The first has an essential singularity at x = oo and the second has a pole at
x = oo0. In general, all linearly independent solutions may be analytic at a regular singular point
but at least one solution must be singular at an irregular singular point.

Sometimes it is possible to alter the character of a singular point by a transfor-
mation of the independent or dependent variable.

Example 10 Removing a singularity by transforming the independent variable. The irregular singu-
lar point at 0 of y’ — 4x~!/?y = 0 disappears if we introduce a new independent variable t = x!/2,
The resulting equation, dy/dt — y = 0, has an ordinary point at t = 0.
Example 11 Removing a singularity by transforming the dependent variable.

2

y'+-y—-y=0 (3.1.12)

X

has a regular singular point at 0 and an irregular singular point at co. The singular point at 0 may

be removed by the transformation y(x) = w(x)/x, where w(x) satisfies an equation which still has
an irregular singularity at co: w” —w = 0.
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Example 12 Removing a singularity by converting to a linear system. Ostensibly the reason why
the singularity of (3.1.12) is removable is that the two solutions have the same kind of singularity
at x =0: y = €/x, y = e */x. However, it is difficult to find a transformation which eliminates
the regular singular point at 0 of (3.1.10), y” — (1 + x)y’/x + y/x =0, even though both solu-
tions y = ¢* and y = 1 + x are analytic at x = 0! The only way to eliminate this singular point is
to convert (3.1.10) into a linear system of equations of the form

¥ (x) = a(x)y(x) + b{x)z(x),

7'(x) = c(x)y(x) + d(x)z(x).

If the general solution of a second-order differential equation is analytic at x = 0, then it is
possible to find an equivalent homogeneous linear system of equations of the form (3.1.13) whose
coefficients are analytic at x = 0. This fact may be especially helpful to an unhappy numerical
analyst who is trying to solve a differential equation which has a singular point where the
solutions are all known to be analytic. An appropriate system for (3.1.10)is y' = y 4+ xz,z' = 0.

Can you find another system of the form in (3.1.13) with analytic coefficients which is
equivalent to (3.1.10)?

(3.1.13)

3.2 LOCAL BEHAVIOR NEAR ORDINARY POINTS OF
HOMOGENEOUS LINEAR EQUATIONS

The examples in Sec. 3.1 illustrate various kinds of local behavior that solutions to
homogeneous linear differential equations may exhibit in the neighborhood of a
point x,. However, those examples all have simple closed-form solutions. In the
rest of this chapter we show how to represent the local behavior in terms of infinite
series expansions when exact closed-form solutions are not known. The general
procedure consists of first classifying the point x, as an ordinary, a regular singu-
lar, or an irregular singular point and then selecting a suitable form for the series
based on this classification.

In general, it is very useful to know how to obtain answers to hard problems
in terms of infinite series. This mode of attack can reduce an otherwise tough
analysis to a sequence of simple operations for generating the terms in the series.
Infinite series techniques are a good psychological restorative because they can
give a scientist who is stalled on a problem a sense of forward progress as he or
she computes the terms. Moreover, the first few terms of the series are usually
sufficient to give a very accurate approximation to the local behavior of the
solution to a differential equation.

A local series expansion about x, of a solution to a differential equation is an
example of a perturbation series. A perturbation series is a series in powers of a
small parameter. In this instance the small parameter is the distance between x
and x,. Since y(x) is analytic near X, if x, is an ordinary point, the perturbation
expansion is a Taylor series in powers of x — x,. Here the nth approximant (the
sum of the first n terms of the perturbation expansion) to the local behavior near
an ordinary point becomes a more accurate approximation to the solution as
|x — xo| becomes smaller, or as n increases, or both. A general treatment of
perturbation series is given in Chap. 7.

To obtain a series solution about an ordinary point we substitute the Taylor
series y(x) = Y=o ay(x — xo)" into the differential equation and determine the
coefficients a, by solving a recursion relation.
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Example 1 Taylor series solution of a first-order differential equation. Consider the initial-value
problem y' = 2xy [y(0) = 1]. Since x = 0 is an ordinary point, we may seek a solution in the form
of the Taylor series y(x) = Y 2., a,x". Substituting into the differential equation and differentiat-
ing term by term gives Y 2. na, x" ! = 2x Y'®_, a, x". After a shift of indices on the right side, we
find that

@ @

Yonaxt=2Y% a,_,x" "

n=0 n=2

We now resort to an important formal procedure that is used frequently. Since the

coefficients of a Taylor expansion of a function are unique, it follows that if two functions are
equal, their Taylor series coefficients must agree. This argument justifies equating the coefficients
of x" ' in y" and 2xy and leads to the recursion relation of a,:

na, = 0, n=0,1,

na, = 2a,_,, n=213,...,
which can be solved in closed form. From the first equation with n =0 we conclude that a,
is an arbitrary constant and from the first equation with n=1 we conclude that a, =0.

The solutions to the second equation are a,, = ao/n!(n > 1), a5, = 0 (n > 1). Thus, the general
solution to y' = 2xy is

©
y(x)=ao Y x*"/n! = age*’.
n=0

This result may be verified by substituting it into the differential equation.
Example 2 Local analysis of the Airy equation at x = 0. To find the local behavior of the solu-

tions to the Airy equation (1.4.8) y” = xy near x = 0 we substitute the series y(x) = Y% a,x"
and differentiate term by term. The result is

M™Ms

@
an(n—1)x""2= Y ax"ti
n=0

n=0

After a shift of indices, the right side becomes Y . ; a,_3x"" 2.
Equating the coefficients of x"~2 in y” and xy gives

an(n—1)=0, n=0,12,
ann—1)=a,_,, n=3,4,...,
which can be solved in closed form. The first equation is already satisfied for n=0 and

n = 1.Hence, a, and a, are arbitrary constants. Also, a, = 0. The solutions of the second equation

are
o

A 3B — 1)Bn—3)n—4) - 9-8-6-5-3-2

ao
T Y- - 1-Hn-2-3) - G)E)
_ ar'3)
a,

A3ps1 =

(Bn+ 1)@Bn)3n—2)3n—3)--10-9-7-6-4-3
- a,

I3+ -1+ -2+8) - @)

_ alr(%)

T3 3T+ %)

3,42 =0.
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[The gamma function I'(z) is a function of complex z which satisfies I'(z + 1) = zI'(z). It is defined
so that I'(n + 1) = n! when n is a positive integer. I'(z) is discussed in Example 2 of Sec. 2.2.] I we
now define ¢, = a,I'(3) and ¢, = a, ['(3), then the general solution of the Airy equation is

3n o 3nt+1

it x
yx)=¢; ":ZO P +e )

X
Tn+d) @ 5T+ d)

We have obtained two linearly independent solutions, each multiplied by an arbitrary constant of
integration, even though we started with only one series!

The general solution is approximated for all finite x in terms of ¢, and ¢, by a rapidly
convergent Taylor expansion. As | x| gets smaller the expansion converges faster; fewer terms are
required for any desired accuracy. The radii of convergence of these series are infinite because the
Airy equation has no singular points in the finite x plane. Note, however, that ¢, and ¢, must be
known before y(x) can be approximated. Ordinarily, ¢, and ¢, would be determined from initial
conditions given at x =0, ¢, = I'(3)y(0), ¢, = I'(4)y'(0), or computed numerically from initial
conditions given at some other point. Ifc, and c, are not known, then the expansion of y(x)is not
known either. This is typical in perturbation theory (see Chap. 7): to compute the nth term in a
perturbation expansion, one must know the previous terms. In this problem, once the first two
terms are known (which requires that ¢, and ¢, be given) then the rest of the expansion is
relatively easy to obtain.

It is conventional to define two special linearly independent solutions of the Airy equation

by
. XSII @O x3n+l
Ai(x) =323 _3-43 — 321
i) ,;0 9"n! [(n + 2) o9 T(n+%) (32.1)
© x3n © x3n+1
Bi =3-ue — 4 3756 _— 322
W= L e T Bt 622

Al (x) and Bi (x)are called Airy functions. When x is not too large, the Taylor series in (3.2.1) and
(3.2.2) give good approximations to the Airy functions with only a few retained terms. For an
error estimate, see Prob. 3.7.

In Fig. 3.1 we have plotted Ai (x) and Bi (x) for —10 < x < 2. These functions are of
primary importance in perturbative analysis of differential equations (see Part IV). In (3.2.1) and
(3.2.2) ¢, and c, are chosen so that Ai (x) is exponentially decreasing as x — + oo and that Bi (x)
oscillates 90° out of phase from Ai (x) as x » —co (see Fig. 3.1). It is not trivial to derive these
properties from the series (3.2.1) and (3.2.2); these properties are established in Example 10 of Sec.
3.8 and Probs. 6.75 and 6.76.

(I) 33 LOCAL SERIES EXPANSIONS ABOUT REGULAR
SINGULAR POINTS OF HOMOGENEOUS LINEAR
EQUATIONS

We have seen in Sec. 3.2 that Taylor series are a good way to represent the local
behavior of a solution to a differential equation near an ordinary point. What
happens if we try to represent the local behavior of a solution near a regular
singular point by a Taylor series?

Example 1 Breakdown of a Taylor series representation at a regular singular point. If we seek a
solution to y” + y/4x? =0 in the form of a Taylor series about x =0, the formal expansion
procedure which works for ordinary points is not fruitful here. To wit, if we substitute the Taylor
series y = ) o a,x" into this equation and differentiate term by term, we obtain the following
sequence of equations for a,: (n — $)%a, =0 {n =0, 1, 2, ...). The solution to these equations is
a, = 0 for all n. Thus, we obtain only the trivial solution y(x) = 0. This is not progress.
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Figure 3.1 A plot of the Airy functions Ai(x) and Bi(x) for —10 < x < 2. Both functions are oscillatory
for negative x; Bi(x) grows exponentially and Ai(x) decays exponentially as x — + co.

Taylor series expansion failed in Example 1 because Taylor series are not
general enough to describe the local behavior of solutions near regular singular
points. Fortunately, the result of Fuchs stated in Sec. 3.1 suggests a more general
structure than Taylor series. In particular, we learned that if x, is a regular
singular point of a linear homogeneous differential equation, at least one solution
must have the form (3.1.2): y(x) = (x — x,)*A4(x), where A(x)is analytic at x,. This
solution has an algebraic branch point at x, if o is nonintegral and a pole at x, if «
is a negative integer. y(x) is analytic at x, if « =0, 1, 2, .... The other n — 1
linearly independent solutions of an nth-order equation have the form (3.1.3),
(3.1.4), or (3.1.5), so they may also exhibit logarithmic branch points.

Since A(x) is analytic, it can be expanded in a Taylor series:

y(x) = (x = xo)*A(x) = (x — xo)* Zo ay(x = Xo)" (33.1)
We call the right side of (3.3.1) a Frobenius series and we call the number o an
indicial exponent. It is conventional to assume that a;, # 0 in a Frobenius series,
which is ensured by a proper choice of a. A Taylor series is a special case of a
Frobenius series.

Example 2 Local analysis at a regular singular point. If we try a Frobenius series of the form
(3.3.1) with xo=0 in the differential equation of Example 1, we find that [(n + a)x
(n+a—-1)+14Ja,=0 (n=0,1,2,...). Since we are assuming that a, # 0, it follows that
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afe — 1) + 4 = 0soa = 4. With a = 4, the remaining equations for a, givea, =a, =a; == 0.
Thus, the Frobenius series takes the simple form y(x) = ao\/;, where a, is arbitrary. This
one-term Frobenius series is an exact solution of the differential equation y” + y/4x* = 0.

From our study of Euler equations in Sec. 1.4, we know that a second solution to this
differential equation is y(x) = by/x In x, which is not in the form (3.3.1) of a Frobenius series. The
general theory only guarantees that there be one solution in the form of a Frobenius series. The
other solutions can be slightly more complicated.

In this section we review a systematic procedure advanced by Fuchs and
Frobenius for calculating the indicial exponent a and the expansion coefficients a,.
This procedure can also be used to find series expansions of these solutions having
the form (3.1.4) and (3.1.5) in which logarithms appear. A central part of the
procedure is a recipe for deciding which of the forms (3.1.2), (3.1.3), (3.14), or
(3.1.5) are appropriate to represent the other solutions. The method is first worked
out in detail for second-order equations; the necessary generalizations to nth-
order equations are indicated at the end of the section and further developed in
the problems.

Frobenius Method for Second-Order Equations

If the differential equation

by Px) o alx)
y+x—x0y+(x—x0)2y_0 (3.32)
has a regular singular point at x,, then p(x) and g(x) are analytic at x,. Thus, we
may expand p(x) and g(x) in Taylor series about xo: p(x) =Y Lo pa(x — Xo)",
q(x) = Y20 galx — xo)". We substitute these Taylor expansions into (3.3.2) and
obtain a solution y(x) in the form of the Frobenius series (3.3.1) by equating the
coefficients of (x — xo)""* 2 forn=0, 1,2,...:

(x = xo) ™% [o% + (po — 1) + golap = 0, (3.3.3a)
(x=xof ™ % [(@+n)? + (po — 1)@ + n) + gola,
= —"Z [@+k)pa-ic + Gn-iJas n=12,.... (33.3b)

By assumption a, is nonzero, so (3.3.3a) requires that o must be a root of the
indicial polynomial P(«), where

P(a) = o + (po — L)t + go. (3.34)

Given these values of « we must then solve the recursion relation (3.3.3b) for a, in
terms of ay. The constant a, is arbitrary and will ultimately appear as an overall
multiplicative factor in the solution y(x). However, the recursion relation (3.3.3b)
can be solved for a, in terms of g, for k < n only if P(a + n) # 0 because the left
side of (3.3.3b) is precisely P(x + n)a,. If this condition holds for all positive
integers n, then it may be shown that the series (3.3.1) converges in a circle whose
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radius is at least as large as the distance to the nearest complex singularity of p(x)
or g(x) (see Prob. 3.23).

Let a, and o, denote the two roots of the indicial polynomial P(x) which are
ordered so that Re a; > Re a,. If we let « = o then P(a, + n) # Oforn= 1,2, ...
because a, is the only other root of P. Thus, the recursion relation (3.3.3b) can be
solved for a, in terms of a, for all n. This explains why there is always at least one
solution in the form of a Frobenius series.

Example 3 Modified Bessel equation of order v. The modified Bessel equation

L1 v?
y +)—Cy - 1+;5 y=0 (33.5)

has a regular singular point at x = 0. Substituting the Frobenius series y = Y%, a,x**" into
(3.3.5) gives
@ g @ ]
Ylatne+n—0ax "+ Y (@+n)ax - Y gxttn— 2 Y g x* "2 =0,
n=0 n=0 n=0

n=

Rewriting Y., a,x**" as Y'®_ , a, ,x**""? and equating coefficients of powers of x to zero

gives

x*"2 (o = v =0,

x* L [ + 1)* = v*]a, =0, (3.3.6)
a2, [l@ +n)* =v¥a, =a,.,, n=23,....

Since a, # 0, a must be a root of the indicial polynomial P(a) = «*> — v2. Therefore, a = +v.
Since v appears as v? in the Bessel equation, we may assume that Re v > 0 and denote a, = +v
and a, = —v. Thus P(a, + n)# 0 for n=1,2,... and a,, a,, a,, ... may be easily determined

from (3.3.6). The results are a, = a; =a5=---=0and
a = Q2n-2 - An-4a ...
 2n(v+n) 2Pn(n-1)v+m)v+n—1)
a (v + 1)

= Ty rnt 1) (337)

Thus ¥ix) = ap T + 1 3. o

’ ! 0 Son!T(v+n+1)
It is conventional to set a, = 27"/I'(v + 1) in the above equations; the result is the Frobenius
series expansion of the modified Bessel function /,(x): :

© %x)z” v 138
I'(x)_,.gon!l'(v+n+l)' (3:38)
The ratio test shows that this series has an infinite radius of convergence; we could have predicted
this result by noting that the only singular point of (3.3.5) in the finite complex plane is at x = 0.

A second solution to the modified Bessel equation may be obtained by choosing a = —v
whenever v is nonintegral. In fact, if 2v is also nonintegral then P(—v + n) # 0 for all positive
integers n, so the second Frobenius series exists. However, so long as 2v is not an even integer, a,
in (3.3.7) is determined by a, and the series (3.3.8) for I _ (x) converges. The solution I _, is clearly
linearly independent of I, when v is nonintegral because their series start with different powers of
x. Thus, we conclude that the Frobenius method gives a complete set of linearly independent
solutions so long as v # 0, 1, 2, 3, .... It is more difficult to find a second solution when v is an

integer. The appropriate method will be explained later in this section.
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In general, one can always construct a pair of linearly independent solutions
to (3.3.2) by solving the recursion relation (3.3.3b) with o =o; and a = oy,
provided that «; — «, is not an integer. If a; = a5 the solution obtained by choos-
ing o = o, is identical to the first solution obtained with o = «, except for a
multiplicative factor a,. Thus, to find a second solution requires more analysis. If
@« — oy = N, a positive integer, then the recursion relation (3.3.3b) with a = a,
and n = N reads

N-1
Oay = — Y [(e+k)py—i + qv—i]a (3.3.9)

k=0

There are now two possibilities:

1. If the right side of (3.3.9) is nonzero, then ay does not exist; thus, to find a
second linearly independent solution requires further analysis.

2 If the right side of (3.3.9) conspires to vanish, then (3.3.9) reduces to the identity
0 =0 and does not determine ay. It follows that ay is an arbitrary constant.
The recursion relation has successfully jumped the hurdle at n = N. We may
now calculate the rest of the coefficients ay, ;, dy 42, @v+3., --- as functions of
the two arbitrary constants a, and ay and thereby determine a second linearly
independent solution to the differential equation.

We may summarize the above discussion as follows:

Case I a; # a,; «; —a, # integer. There are two linearly independent solu-
tions in Frobenius form.

Case Il oy —a, =N=0,1,2,.... This case must be subdivided into two:

(a) oy = a,. There is just one solution in Frobenius form. We explain shortly
how to construct a second solution.
(b) ay —ay =1,2,3,.... This case must be further subdivided into two:

(i) The right side of (3.3.9) is nonzero. There is just one solution in
Frobenius form. We explain shortly how to construct a second
solution.

(i1) The right side of (3.3.9) is zero. There are two linearly independent
solutions in Frobenius form.

We dispose of the special case II(b)(ii) first because all solutions may be
represented as Frobenius series.

Discussion of case II(b)(ii) This case is characterized by the vanishing of the right
side of (3.3.9). This ensures that a Frobenius series with indicial exponent a, can
be found.
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Example 4 Frobenius series at an ordinary point. Although it is improbable that the right side of
(3.3.9) is zero, this case is not hard to illustrate. One sure way to observe case II{b)(ii)is to use
Frobenius theory at an ordinary point of a differential equation. If x, is an ordinary point then
Po = 4o = 43 = 0. Thus, the indicial equation is P(a) = a(¢ — 1) = 0, and the indicial exponents
are a, = 1, a, = 0. Accordingly, the solution with a, =1 has the form of the Taylor series
yix, a) = Y20 a,(x — xof'*!. This solution satisfies the initial conditions y(x,)=0,
V(xo)=a #0.

A linearly independent solution of the form (3.3.1) with « = «, = 0 and a, and a, arbitrary
is guaranteed to exist. Thus, the second solution is also a Taylor series.

Example 5 Modified Bessel equation with order v = 4,3, .... 1f we choose v in the modified Bessel
equation (3.3.5) to be a half-odd integer, v =4, 3, 3, ..., then the indices «, and «, differ by an
integer: @, —a, = 1,3,5,.... Here, py = 1,go = —v?,¢, = — | and all other p, and g, are zero. It

can be shown (see Prob. 3.25) that the right side of (3.3.9) vanishes. Thus, both solutions have
Frobenius series expansions: the Frobenius series expansions for I,(x) and I_ (x) are given
explicitly by (3.3.8).

In cases 1I(a) and II(b)(i) the second solution does not have the form of a
Frobenius series; a local expansion of the second solution involves the function
In (x — xo).

Discussion of case II(a¢) We will find a second linearly independent solution to
(3.3.2) when o, = a, by differentiating the Frobenius series (3.3.1) with respect to
the indicial exponent a. This procedure is an extension of the trick which was
introduced in Sec. 1.4 for generating a second solution to a linear equidimensional
equation. To prepare for differentiating with respect to o, we leave « arbitrary for
the moment by ignoring (3.3.3a) and solve the recursion relation (3.3.3b) for a, as a
function of a, and a. We denote the resulting Frobenius series by y(x, o):

y(x, a) = (x ~ xo ”:20 ay(a)(x — xo ). (3.3.10)

Of course, y(x, «) is not a solution of (3.3.2) unless a = a,.
It is convenient to define the shorthand notation

a* LPx) 4 )

L dx*  x—xgdx  (x = x)*’

I

Any solution y(x) of (3.3.2) satisfies the equation Ly(x) = 0.

Since a,(x) by construction satisfies the recursion relation (3.3.3b), y(x, «) in
(3.3.10) is almost, but not quite, a solution to the differential equation (3.3.2) when
a # oy. Instead of satisfying Ly = 0, y(x, a) satisfies

Ly(x, a) = ag(x — xo )~ 2P (). (33.11)

If at this point we choose o = o then the right side of (3.3.11) vanishes; this shows
that y(x, a,)is just the Frobenius series solution of Ly = 0. However, if we differ-
entiate both sides of (3.3.11) with respect to o and then let a = «,, the right side
again Vanishes because P(x) = (« — «,)* when a; = a,:
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2 ol = o2 = 3,

e =ay

= ag[2(x — @ )(x — xo)* "% + (x — xo)* (2 — ;)* In (x — xo)] =0.
Thus, (0/0x)y(x, @) |s=, is @ new solution to (3.3.2) because

0
L [é;y(x, a) a=a1] =0.

If we differentiate (3.3.10) with respect to o, we see that the form of this new
solution is that given in (3.1.4):

@

=y(x o) In (x —xo) + Y bylx — xo) ", (33.12)

e =ary n=0

0
EY(X, @)

(33.13)

0
where b=3, a,(«) .
We have now obtained series expansions for two linearly independent solutions to
(3.3.2) near a regular singular point. The new expansion in (3.3.12) has a radius of
convergence at least as large as the distance to the nearest singular point of the
differential equation (3.3.2).

Example 6 Modified Bessel equation of order v =0. When v = 0in (3.3.5) the indicial polynomlal
P(a) = a* — v? has a double root at « = 0. One solution (3.3.8) is

I = .
= Ly
A linearly independent solution must have the form (3.3.12). Thus, it is necessary to evaluate the
coefficients b, from (3.3.13) by performing the indicated differentiation. From equations (3.3.6)

with y = 0 it follows that ag(a) = ao, dzs+:(2) =0 (n=0, 1,2,...), and

_Lx)Zn

(33.14)

. o
= , =12...
4nla) (o + 2n)%(a + 2n — 2)% - (a + 2)? "

Thus, by = (0/6)ag(@)ly=0 = 0, byyey =0 (n=0,1,2,...), and

0
by = 7 a,(@)

—% (1+1+1+ +l) >1
=0 22"(n') 23 W) "=

Substituting this result into (3.3.12) gives a solution which is linearly independent of /,:

0 S ) ol O 1
| e B e X ! )
It is conventional to construct a special second solution K o(x) as follows. We take g, = — 1

in the above equation. Then we add to this a constant multiple of I,, where the constant is
In 2 — y; y = 0.5772 -+~ is an irrational number called Euler’s constant (see Prob. 6.5). Thus,

Ko(x) = —(In $x + y)Mo(x) + i ((%:!);"(1 + % + % +o 4 ;.) (3.3.15)
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It is, of course, not obvious why the function K(x) is defined in this fancy way (see Probs. 3.65
and 3.66). The reason is that K(x) has a beautifully simple behavior as x — oo, to be discussed
later in Secs. 3.5 and 3.8 and again in Example 3 of Sec. 6.4.

Discussion of case II(b)(i) To find a second linearly independent solution to (3.3.2)
when a; — o, = N, a positive integer, and the right side of (3.3.9) is nonvanishing
we try to follow the same procedure as in case II(a). Let us differentiate the
equation (3.3.11) with respect to o and see what differential equation
(0/0a)y(x, a) |s=a, satisfies. This time we are not so lucky: (0/x)y(x, &)|x=q, is a
particular solution of the inhomogeneous equation

0
aa y(x, a)

= ag P'(oy)(x — Xo)‘“‘2

a=ay
=aoP'(oy)(x — x>+ 2 (3.3.16)

The right side of this equation does not vanish as it does in case II(a) because
P(a) = (« — a;)( — ;) does not have a double root at a = «;.

We really want to construct a solution to the homogeneous part of (3.3.16).
One way to do this is to construct a second particular solution to the inhomoge-
neous equation (3.3.16) and subtract it from the first. The difference will be a
solution to the associated homogeneous equation (3.3.2). It is nice to discover that
the second particular solution has an ordinary Frobenius expansion

@
Y, cu(x — xo)2 ™. (33.17)
n=0
Substituting this series into (3.3.16) and equating coefficients of (x — xo)2*""2
gives

(x — xg)2™2%: P(ay)co = 0, (3.3.18a)
n-1

(x = xof2*" 2 Ploy +n)ey + Y, [(a2 + k)P + du-iJec =0, n#0,N,
=0

* (3.3.18b)
N-1

(x — xp)2 M2 Play + N)ey + Z [(o + K)pny—k + gn-iJei = ao P'(2y).

k=0

(3.3.18¢)

Since P(x, + N) = 0, the relation (3.3.18¢) does not determine cy; rather it relates
the value of a, to the coefficients ¢q, ¢y, ..., cy_y:
1 N-1

o = 2 Loz + K)py i + gy iJeie (3.3.19)
P(“l k=0

Note that a, does not vanish because the right side of (3.3.9) is nonzero.
We can now construct a second solution y(x) to the homogeneous equation
(3.3.2) by subtracting the two solutions to the inhomogeneous equation (3.3.16):

Z (x — xo)2*" — ;%y(x, a)l . (3.3.20)

@ =ay
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The coefficients ¢, in (3.3.20) satisfy the recursion relation (3.3.18b); ¢, and cy are
arbitrary, and the constraint (3.3.19) determines a,. Solutions with different values
of ¢y differ by constant multiples of y(x, «;). The expansions in (3.3.20) converge
in a complex disk whose radius is at least as large as the distance to the nearest
singularity of p(x) and g(x).

Example 7 Modified Bessel equation for integer order 1. When v = 1 one solution of the modified
Bessel equation (3.3.5) is /,(x), which is given by the Frobenius series (3.3.8). A second solution of
the form (3.3.20) may be determined by the method just explained. It is conventional to choose
the arbitrary constants ¢, and c, as follows: ¢, = 1, ¢, =4y — 4 In 2 — 4, where y is Euler's
constant. These choices define the modified Bessel function K (x) (see Prob. 3.65):

K In 4x)1,(x) L_x_ 5 G (1+l+1+~~+1+ ! (3.321)
)=+ )+ =g 2 il T2t PRSI S

This completes our exposition of the Frobenius method for second-order
equations.

Frobenius Series for Higher-Order Equations

The Frobenius method extends easily to the general nth-order homogeneous
linear differential equation at a regular singular point x,:

Yy () A7 gea(x) APy )
dx"  x—xg dx""1 T (x — xo)? dx""2 (x — xo)"

,V=0,

where go(x), ..., g,-(x) are analytic at x,. The indicial equation for o is
afe — 1) (e —n+ 1) + gy (xo)a(x — 1) - (¢ — n + 2)
+ Gu-2(Xo)ole — 1) (@ = n+ 3) + -+ + go(x0) = 0.

If the n roots a do not differ by integers, then there will be n linearly independent
solutions of the form (3.3.2); otherwise, the form of the solution must be generalized
to (3.1.4) or (3.1.5). Enumeration of special cases is left to Probs. 3.15 to 3.17.

3.4 LOCAL BEHAVIOR AT IRREGULAR SINGULAR POINTS
OF HOMOGENEOUS LINEAR EQUATIONS

Our analysis of ordinary and of regular singular points is fundamentally different
from the asymptotic analysis to be used throughout the remainder of this book.
The approach of the last two sections has been prosaic and heavy-handed: the
series were convergent, the manipulations were mechanical and rigorous, and the
treatment was thorough to the point of being devastatingly boring (to us). This
mummified style reflects the completeness of the theory; there was no room for
imaginative mathematics.

From this point on, our style changes. To analyze the local behavior of
solutions near irregular singular points, we will be forced to develop entirely new
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mathematical tools which as a whole comprise a calculus of approximations.
Although it is possible to justify the use of these tools on a rigorous level, such a
justification makes for slow reading and is contrary to the spirit of this book. Our
intention is to omit time-consuming rigor and to emphasize careful problem
solving. In contrast to the methods of the last two sections which we would
describe as exact, rigorous, systematic, limited in scope, and deadly, these new
methods are approximate, intuitive, heuristic, powerful, and fascinating.

In this section we will see that the formulas which express the local behavior
of a solution near irregular singular points are generalizations of Frobenius series
in much the same way that Frobenius series are generalizations of Taylor series.
Let us begin our analysis by discovering why Frobenius series are insufficient to
describe behavior near irregular singular points. We know that if all solutions to a
linear differential equation in the neighborhood of a point x, can be expanded in
Frobenius series, then x, is a regular singular point. Thus, at an irregular singular
point, at least one solution must not have a Frobenius series representation. Let us
observe explicitly how Frobenius series fail.

Example 1 Irregular singular point at which there are no solutions of Frobenius form. The differen-
tial equation y’ = x'/?y has an irregular singular point at x = 0. The solution y(x) may be
represented as a convergent series about x = 0: y(x) = ape?**® = a4 Y2 (2x3/2/3 y'/n!; but do
not mistake this series for a Frobenius series. Apart from an overall factor of x*, a Frobenius
series involves only integral powers of x.

Example 2 Irregular singular point at which there are no solutions of Frobenius form. What hap-
pens if we try to expand a solution of the differential equation

X}y =y (34.1)
in a Frobenius series about the irregular singular point at 0? If a solution of Frobenius form
Y=Y a,x""" with ag # 0 exists, then Yo (n +a)n + o — Na,x"** "' =Y = o a,x"*%

Equating coefficients of x* gives a, = 0, which is a contradiction. Therefore, no solution of
Frobenius form exists about x = 0.

In Example 2 the assumption of a Frobenius series led to an immediate
contradiction. However, in the next example the difficulty with assuming a Fro-
benius series occurs on a more subtle level.

Example 3 Irregular singular point at which there are no solutions of Frobenius form. The differen-
tial equation
X2y + (L +3x)y +y=0 (3.42)

has an irregular singular point at 0. What happens if we try to expand y(x)in the Frobenius series
=Y a,x"**? Substituting this series gives

x © ©
Z (n+a)n+o—1ax"*"* 2+ (1+3x) ¥ (n+a)ax"" "'+ Y agx*
n=0 =0

Equating coefficients of powers of x to zero, we get

a—1.

X aa, =0,

X"t (m+a+la,,, +(n+a+1)a,=0, n=01,...
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Since a, #0 in a Frobenius series, the indicial equation is just a=0. It follows that
Gy = —(n+ l)a, (n=0,1,2,..) Thus, a, = (— 1)"n! ao and the solution y(x) is

y(x}=a, i (—1yn! x". (3.4.3)

We have encountered no formal difficulty in constructing the nontrivial series solution
(3.4.3). However, a closer examination of this series shows that its radius of convergence is zero!
The series diverges for all x # 0. Since, by assumption, a Frobenius series has a nonvanishing
radius of convergence, we have again reached a contradiction; there are no Frobenius series
solutions.

Although the result of the above example may appear worthless, it is not. The
divergent series (3.4.3) is a new kind of series expansion that is often encountered
in applied mathematics. It is called an asymptotic series and has the remarkable
property that although it is divergent, it can be used to obtain accurate approxi-
mations to the solution y(x) of the differential equation. This example is typical of
what is usually found when we perform local analysis about an irregular singular
point. Specifically, if we seek a solution involving an infinite power series, the
series is usually divergent.

Notice also that (3.4.3) gives just one of the two linearly independent solutions
in Example 3. The missing solution does not have a formal (convergent or diver-
gent) power series expansion about x = 0. The rest of this section develops a
heuristic procedure for constructing series representations of all the solutions in
the neighborhood of an isolated irregular singular point.

Brief Introduction to Asymptotics

The asymptotic methods we are about to introduce are best understood if the
reader first masters the mechanical aspects, which are explained in this section and
which are no more difficult than those used to obtain Taylor or Frobenius series.
However, since the formal techniques are more difficult to justify mathematically,
we have postponed a more intensive but still nonrigorous discussion until Secs. 3.7
and 3.8.

We must introduce two new symbols which express the relative behavior of
two functions. The notation

fx)«<glx)  x-x,

which is read “f(x) is much smaller than g(x) as x tends to x,,” means
lim,. ., f (x)/g(x) = 0.
Second, the notation
fx)~g(x)  x—xo

which is read “f(x) is asymptotic to g(x) as x tends to x,,” means that the relative
error between f and g goes to zero as x — x,:

f(x) = g(x) < g(x),  x-xo
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or, equivalently,
lim, ./ (<)/g(x) = 1.
Note that if f(x) ~ g(x) (x = x,) then g(x) ~ f(x) (x — x,).

Example 4 Asymptotic relations.

(a) x « 1/x (x = 0).

(b) x*? « x"* (x > 0+), where the limit x - 0+ means that x approaches 0 through positive
values only.

(c) (log x)* « x¥* (x - +o0).

(@d) x'?~2(x—4)

(e) € + x ~ e (x > +oo), but note that the difference between the left and right sides of this
relation, x, goes to co as x — + 0. Thus, even if two functions are asymptotic, they may not
be approximately equal.

(f)x* # x (x - 0) because x? and x approach 0 at different rates. In this case, even though x? and
x are approximately equal to 0 as x — 0, they are not asymptotic.

(g) It is a common mistake to assert that a function is asymptotic to zero. For example, the
equation x* ~ 0 (x - 0) is wrong; by definition, no nonzero function can ever be asymptotic
to zero.

(h) x « —10 (x —» 0+), even though the signs are different.

Behavior Near Irregular Singular Points

Let us set aside any further discussion of the properties of asymptotic relations
until Sec. 3.7. For the moment, we will not be concerned with the validity of
adding, multiplying, integrating, or differentiating asymptotic relations. It is more
urgent for us to return to the two examples at the beginning of this section whose
behaviors we were unable to find using a Frobenius series.

Each of the second-order differential equations (3.4.1) and (3.4.2) has two
linearly independent solutions. Yet, only one solution out of those four could be
expressed as a series in powers of x, and this one was the divergent series
(3.4.3). We will shortly formulate a procedure for discovering the local behavior of
the other solutions near x = 0, but since it is always easier to derive a result that is
already known, let us peek at the answers. One solution to (3.4.1) exhibits the
behavior

y(x) ~ e xXPe T x5 0+4; (344a)
the other solution has the behavior
P(x) ~ ey x¥te T x5 0 4. (3-4.4b)
Also, the missing solution to (3.4.2) exhibits the behavior
yx)~ex7teT x>0+, (3.4.5)

Observe that these behaviors all involve exponentials of functions which become
singular at the irregular singularity of the differential equation. Thus, these three
functions have essential singularities at x = 0. This is not surprising; most of the
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solutions to the differential equations in the examples of Sec. 3.1 also have essen-
tial singularities at irregular singular points.

The asymptotic behaviors (3.4.4) and (3.4.5) are actually the first terms of
infinite series representations of the local behaviors of the solutions, whose terms
will be derived later in this section. We will refer to the first term in such a series as
the leading behavior of the series. We will also refer to the most rapidly changing
component of the leading behavior in the limit x — x, as the controlling factor.
For example, the controlling factor of the leading behavior given in (3.4.4a) is
e "% in (3.4.4b)itis e 2* ", and in (3.4.5)itis &* . Also, the leading behavior of
the series (3.4.3) is a,. For the Frobenius series ), a,x"*? the leading behavior is
ap x* and the controlling factor is x*.

The first step in deriving the leading behavior of a solution near an irregular
singular point consists of identifying the controlling factor. Since the controlling
factor is usually in the form of an exponential, this suggests the substitution

ylx) =¥, (3.4.6)

originally proposed by Carlini (1817), Liouville (1837), and Green (1837).
Although it is not immediately apparent why this substitution should facilitate the
calculation, it is, in fact, a beautiful trick. It reduces an nth-order linear differential
equation to an approximate first-order differential equation for S(x) which is
usually valid in a neighborhood of the irregular singular point.

To see how this exponential substitution (3.4.6) works, let us use it to solve for
the controlling factor of the solutions of the second-order differential equation

Y+ px)y +qlx)y=0 (3.4.7)
near an assumed irregular singular point at x,. Substituting y = ¢° gives
"+ (8 + p(x)S' + gq(x)=0. (3.4.8)

This equation is just as difficult to solve as (3.4.7), but if x, is an irregular singular
point, it is usually true that

S < (S, x—x,. (3.4.9)

For example, suppose the controlling factor of the behavior of y(x) has the form
exp [a(x — xo)~?], where b > 0'so that y(x) has an essential singularity at x,. Then
(S')? ~ a®b*(x — xo)" 272 and §” ~ ab(b + 1)(x — xo) ® "% Thus, the compari-
son (3.4.9) is indeed valid because b > 0. In this argument we have differentiated
an asymptotic relation; we discuss the correctness of this procedure later.

The asymptotic differential equation

()~ =p(x)S —q(x), x-xo, (3.4.10)

that is obtained by dropping S” is very easy to solve and its solutions may be
checked to see if the approximation (3.4.9)is valid. [Notice that we have taken the
trouble to move two terms to the right side of (3.4.10) to avoid asserting that a
quantity is asymptotic to 0!] Some examples in which the assumption in (3.4.9) is
not valid are given in Probs. 3.32 and 3.46. Also, the assumption (3.4.9) does not
hold if x, is an ordinary or regular singular point. Why?
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Example 2 (revisited) Controlling factor near the irregular singular point at 0. Let us return to the
differential equation (3.4.1), x3y” =y, and find the controlling factor of the solutions near the
irregular singular point at 0. For this problem the asymptotic differential equation (3.4.10) is
(8')* ~ x7* (x » 0+). The two possible solutions are S'(x) ~ +x~ 32 (x - 0+), and, therefore,

S(x)~ £2x7'2 x>0+, (3.4.11)

We have identified the controlling factor already given in (3.4.4). We are now considering only the
one-sided limit x - 0+ to avoid complications arising from imaginary values of S(x).

Observe that to solve for S(x) we had to integrate an asymptotic relation of the form
S(x) ~ g(x) (x = xo). If we were integrating an equality, the integrals would differ by an integra-
tion constant c. When we have an asymptotic relation, the integrals differ by a function C(x)
whose derivative is small compared with fand g as x — x,. The two integrals {* fdx and |* g dx
are asymptotic as x — x, only if C(x) « {* fdx or [* g dx. There are pathological cases for which
C(x) is not smaller than [* f dx or [* g dx (see Probs. 3.54 and 3.58). However, if f ~ a(x — x,)
as x — xq, where b > 1, then

fotlx~[a/(l—b)](x——xojl"’ as x = Xq;

ifb < 1, then [* fdx ~ cas x = xo, where ¢ is some constant; if b = 1, then [* fdx ~ a In |x — x|
as x — xo (see Prob. 3.28).

Example 2 (revisited) Leading behavior near the irregular singular point at 0. We have found two
solutions (3.4.11) for the controlling factor. This is not surprising because the differential equation
(3.4.1) is second order and must have two linearly independent solutions. Let us focus our
attention on the solution § ~ 2x~Y/? (x — 0+). The treatment of the other solution § ~ —2x~ /2
(x — 0 +) is analogous (see Prob. 3.29).

We can improve upon (3.4.11) by estimating the integration function C(x), where

S(x)=2x""2+C(x), Cx)«2xY2  x-0+. (3.4.12)

Again, we cannot hope to calculate C(x) exactly because that would be equivalent to solving the
original differential equation (3.4.1). Instead, we seek an asymptotic estimate of C(x).

To obtain this estimate, we substitute (3.4.12) into the differential equation (3.4.8) with p = 0
and ¢ = —x~? and obtain 3x™ %2 + C” — 2x™32C’ + (C’)* = 0. This equation may be approx-
imated by a soluble asymptotic differential equation for C(x) obtained by using (3.4.12). From
this it follows that §' ~ —x~¥? (x - 0+) or, equivalently, C' « x™¥? (x » 0+). Therefore,
(C')* « x™32C" (x > 0+), which gives the asymptotic differential equation

3IxT 4 C" ~ 27T, x>0+

This linear equation is soluble, but for practice let us simplify it further by making another
asymptotic approximation. Since C’ « x~ 2 (x — 0+ ), then (if differentiation of this order rela-
tion is permissible) C” « x~*2 (x - 0+ ). Therefore,

%x—5/2~2x-312cf, x= 0+, (3413)

whose solution is C ~2In x (x »0+). Note that differentiating (3.4.13) gives C" ~ —3x~2
(x »0+), 50 C" « x™ 3% (x - 0+) as assumed. Substituting C(x) into (3.4.12) gives

S(x)=2x""*+3Inx + D(x), (3.4.14)
where D(x), the arbitrary function which arises from integrating (3.4.13), satisfies

D(x) « In x, x—=0+. (3.4.15)

Let us attempt to refine our asymptotic analysis even further by computing D(x). Following
the procedure used to determine the asymptotic behavior of C(x), we substitute (3.4.14) into
(3.48) with p=0,g= —x"3:

=3x7%16 + D" + (D')* = 2x™¥2D' + 3x~ D2 = 0.
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As usual, this equation can be replaced by a much simpler asymptotic equation. We make the
following estimates. First, since x ™! « x™¥2 (x > 0+),

IXTID2 «2x7D, x 04,
Second, D' « x~! (x — 0+) by differentiating (3.4.15), so
(DY «x'D, x-0+.

Finally, differentiating (3.4.15) twice gives

D" «x~?, x—0+.

These estimates enable us to replace the above exact five-term differential equation for D(x) by
the two-term asymptotic differential equation —2x732D' ~ 3x72/16 (x » 0+ ) or

D'~ —3x7 Y232, x—=0+4.
If we now compute the indefinite integral of this asymptotic differential equation, we find that
D(x) —d ~ —3x'%/16, x-0+,
where d is some constant. In other words,
D(x)=d + d(x), (3.4.16)

where 6(x) ~ —3x"%/16 as x » 0+.

We will return to a more detailed analysis of the function &(x) later in this section. But first,
let us observe that we have determined all the contributions to $(x) which do not vanish as
x — 0+ the last correction d(x) vanishes as x — 0+.

We can now make our definition of leading behavior more precise. The leading behavior of
y(x) is determined by just those contributions to S(x) that do not vanish as x approaches the irregular
singularity. Specifically, for this problem the leading behavior of y(x) is y{x)~
exp 2x" 2 + 3 In x + d) (x > 0+) or y(x) ~ ¢, x**e** " (x - 0+), where ¢, = e”. This result
is precisely (3.4.4a). To obtain the other leading behavior (3.4.4b), one repeats the above argu-
ments starting with S(x) ~ —2x~ Y% (x »0+) in (3.4.11).

Example 2 (revisited) Discussion and numerical verification. Before continuing with our asymptot-
ic analysis of the local behavior of the solutions to (3.4.1), let us pause to examine empirically the
results that we have already obtained. If the reader has not encountered the kind of asymptotic
analysis just used to derive the leading behaviors in (3.4.4), he will find such an examination most
worthwhile. For this purpose it is convenient to set ¢’ = 1 + g(x), where £(x) -0 as x - 0+.

We have solved (3.4.1) numerically taking as initial values y(1) = 1, y’(1) = O to verify that
g(x) really does approach zero as x — 0+. The solution of this initial-value problem is a linear
combination of solutions, one decaying exponentially to 0 as x — 0+ [as in (3.4.4b)] and the other
growing exponentially to oo as x - 0+ [as in (3.4.4a)]. With the above initial conditions for our
numerical integration the coefficient of the growing solution is nonzero. Since the growing
solution overwhelms the decaying solution as x — 0+, the behavior of the growing solution
dominates the behavior of the solution to this initial-value problem.

We can test our prediction of the leading behavior

y(x) = e, x4 1 + e(x)] (3.4.17)

by fitting it to the numerical solution. To test the accuracy of this fit, we plot in Fig. 3.2 the
computed values of y(x)/(x**e2* ") versus x for 0 < x < 1. Observe that this ratio approaches
the limit ¢, =0.1432 as x — 0+. The distance between this limiting value and the plotted curve is
proportional to the function g(x). This graph illustrates the power of asymptotic analysis. For the
plotted values of x, the function y(x) varies by many orders of magnitude. Yet, the leading
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Figure 3.2 A plot of the ratio of y(x), the numerical solution of (3.4.1) with y(1)=1 and y'(1)=0,
to x¥*exp (2x~2)for 0 < x < 1. Asymptotic analysis [see (3.4.17)] shows that this ratio approaches a
constant ¢,. For these initial conditions, ¢, =0.1432. The difference between the plotted ratio and
¢, is cye(x).

behavior of y(x) is a good estimate of y(x) over the whole interval 0 < x < 1. Figure 3.2 shows
that the relative error ¢(x) is at most 15 percent over this interval. Observe that the leading
behavior becomes more accurate as x — 0 +. Figure 3.2 also shows that if we could estimate ¢(x),
we could improve the approximation to y(x).

Method of Dominant Balance

Before completing the analysis of Example 2 it is important to review the
approach we have been using in Example 2 to solve differential equations ap proxi-
mately; namely, the method of dominant balance. The method of dominant balance
is used to identify those terms in an equation that may be neglected in an asymp-
totic limit [in the way, for example, that we neglected $” in (3.4.8)]. The technique
of dominant balance consists of three steps:

1. We drop all terms that appear small and replace the exact equation by an
asymptotic relation.
2. We replace the asymptotic relation with an equation by exchanging the ~ sign



84 LOCAL ANALYSIS

for an = sign and solve the resulting equation exactly (the solution to this
equation automatically satisfies the asymptotic relation although it is certainly
not the only function that does so).

3. We check that the solution we have obtained is consistent with the approxima-
tion made in (1). If it is consistent, we must still show that the equation for the
function obtained by factoring off the dominant balance solution from the
exact solution itself has a solution that varies less rapidly than the dominant
balance solution. When this happens, we conclude that the controlling factor
(and not the leading behavior) obtained from the dominant balance relation is
the same as that of the exact solution.

The dominant balance argument that we have just outlined may appear circu-
lar, and indeed it is! Nevertheless, it is the most general and powerful procedure
available for finding approximate solutions to equations.

Example 2 (revisited) Corrections to the leading behavior near the origin. Our analysis of the
behavior of solutions to (3.4.1) is still incomplete because it is possible to find a sequence of
approximations which are better and better estimates of y(x) as x — 0+. Our plan of attack will
be to calculate successive approximations to g(x) in (3.4.17). We will first find the differential
equation that 1 + ¢(x) satisfies. Then, we will find a solution to this equation as a formal series of
powers of x,

L+e(x)=1+a,x*+ ay(x*)? + ay(x*)> + -, (3.4.18)

where a is a positive number. When the coefficients of this series are determined, the local analysis
of (3.4.1) as x » 0+ will be complete. We will have arrived at a representation of y(x) as a series
of elementary functions.

When the formal series (3.4.18) is substituted into (3.4.17), the resulting expansion is a
generalization of a Frobenius series in three respects. First, it contains an exponential function
which has an essential singularity. Second, it is not a series in integral powers of x (« will turn out
to be 1). Third, the series (3.4.18), like the series (3.4.3), is divergent for all x # 0. The interpreta-
tion of this divergent series is postponed to Sec. 3.5.

Let us now proceed to calculate the coefficients a, for n = 1, 2, ... and a. To do this, we first
find the equation satisfied by w(x) = 1 + ¢(x) by substituting (3.4.17) into (3.4.1). The result is

(3 2y 3
vt (2;-55)‘“ - ow=0. (3.4.19)

By replacing the dependent variable y by w we have divided or peeled off the leading
behavior. This technique of peeling off the most rapidly varying behavior is frequently used in
asymptotic analysis. The purpose of peeling off the leading behavior is to construct an equation
having one solution that behaves asymptotically like a constant. It would be naive to expect that
peeling off the leading behavior would eliminate the irregular singular point from the differential
equation. There will still be one solution of (3.4.19) whose leading behavior has an essential
singularity at x = 0, and (3.4.19) does indeed have an irregular singular point at x = 0. It follows
from (3.4.4) and (3.4.17) or by direct local analysis of (3.4.19) that the possible leading behaviors
of w(x) are proportional to 1 and e 7",

It is best to begin our calculation of ¢(x) by obtaining its leading behavior. We substitute
‘w(x) = 1 + ¢(x) into (3.4.19) and obtain

& + (3/2x — 2/x¥?)e’ — 3/16x2 — 3¢/16x* = 0.
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Following our usual procedure for finding leading behaviors, we replace this equation by a
simpler asymptotic differential equation by observing that ¢ « 1-as x — 0+, so

3e/16x2 « 3/16x?, x—0+.
Also,
3x712 «2x73?, X =0+.

This gives the three-term asymptotic differential equation

2 3
g — = ~—— x =0+, (3420)

PEANRETEY
which we must solve subject to the condition that ¢ > 0 as x - 0 +.

To solve this equation, we use the method of dominant balance. We argue that as x —» 0+,
any one term in this equation cannot be much larger than the others without violating the
conditions that (3.4.20) be an asymptotic relation. Therefore, there are four cases, which we
investigate in turn. We will see that only case (d)is mathematically consistent and that, as already
implied by (3.4.16), &(x) ~ —3x'?/16 as x - 0+

(@) &" ~3x7%/16 and 2x ™ ¥%’ « 3x ?/16 as x — 0+. Integrating the former asymptotic relation
twice gives &(x) ~ —3 In x/16 (x - 0+ ). This is inconsistent with the condition that &€ — 0 as
x =0+, and it also violates the assumption that 2x >’ « 3x~%/16 (x — 0+ ). Therefore,
possibility (a) is excluded.

(b) €"/e’ ~ 2x 732 and 3x~2/16 « 2x~*%¢' as x - 0+. The integral of the first asymptotic relation
islng ~ —4x™ Y2 (x —» 0+ ). This result violates the assumption that 3x~2/16 « 2x ™ 3% as
x = 0+. Therefore, possibility (b) is also excluded.

(c) None of the three terms of (3.4.20) is negligible compared with the other two as x — 0 +. Itis
left for the reader to show in Prob. 3.30 that possibility (c) is excluded.

(d) —2x7%g' ~3x72/16 and &" « 2x~*'%¢" as x - 0+. The integral of the first asymptotic rela-
tion is g(x) ~ —3x"%/16 (x - 0+), where we have excluded the constant of integration
because ¢ 0 as x — 0+. This result is consistent because & « 2x~ %%’ as x — 0+. Possibil-
ity (d) is the only consistent balance in (3.4.20).

We have determined that w(x) — 1 ~ —3x'/2/16 (x —» 0+), or that
w(x)=1-3x"2/16 + ¢,(x),

where ¢, « 3x'/2/16 as x - 0+.

Let us now return to the numerical results plotted in Fig. 3.2. You may have been surprised
to see that ¢ = 0 as x — 0+ with vertical slope. The reason for this behavior is now clear; the
slope of 3x'/2/16 is infinite at x = 0. Figure 3.3 shows that including the leading behavior of g(x)
improves the approximation to the numerical solution y(x) as x - 0+.

We could now determine the leading behavior of ¢,(x) by an argument like the one just
given. We would find that

£y(x) = —15x/512 + g,(x), £, < 15x/512,  x—>0+.

Evidently we can continue this process forever and generate a series representation for w(x).
However, since the formal structure of this series is now becoming apparent (it is a series in
powers of x'/2), it is much more efficient to substitute the full formal series representation (3.4.18)
with & = 4, w(x) = Y% a,x"? (ay = 1), directly into (3.4.19). We find that

£ o

nowresin_ 3w mi-2
5 GnX - > a,x"*"r=0.
2

u[\/]5

a
Zf MW2=2 _ 9
=2 On* -

Nl'vJ

n
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Figure 3.3 A plot of the ratio y(x), the exact solution to (3.4.1) with y(1)=1 and y'(1)=0, to

x¥*(1 — %5x"?) exp (2x7¥2)for 0 < x < 1. A comparison of the results plotted in this figure with those
of Fig. 3.2 shows that including the term —g5x!/ in w(x) improves the estimate of the numerical
solution y(x) as x = 0+.

Equating coefficients of powers of x!/2 gives the recursion relation

_(2n-1)2n+3)

= , =0,1,2.... 3421
Api1 16(n+ l) ap n ( )

Thus, ao = 1, a, = —%, a, = —33, and so on. The general formula for a, is
a, = —[[(n — 3 (n + 3)}/nd"n}, n=0,12...,

where we have used I'(3) = n'/? (see Prob. 2.6). This completes the local analysis of the solution
to (3.4.1) whose leading behavior is (3.4.4a):

2 In—3ln+3)

34 ,2x 112
x)~ —c, x%e
yix) ! Z n4"n!

X2 x-0+.  (34.22q)

A simple application of the ratio test using (3.4.21) shows that the radius of convergence R
of the series in (3.4.22a) is 0:

16(n + 1) B
n—1)2n+3)

R = lim

n—=o

[T



APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS 87

The series in (3.4.22a) diverges for all values of x! Nevertheless, this series is an asymptotic series
and it will provide an accurate approximation to y(x) as x — 0+.

A similar analysis of the solutions to (3.4.1) whose leading behavior is (3.4.4b) gives the
asymptotic series representation ‘

Yx) ~ —eyxtem B i (—1)-!-(";%

"2 N
P T x4 x>0+, (3.4.22b)

Now let us summarize the approach we have followed in this example. First, by means of
the exponential substitution y = 5 we determined the behavior of S(x) up to terms that vanish as
x — x,. This gave the leading behavior of y(x). Next we refined this approximation to y(x) by
peeling or factoring off the leading behavior and expanding what remains as a series of fractional
powers of (x — x,). This approach is very general and works for a wide class of differential
equations.

Now that we have explained the technique of local analysis at an irregular
singular point, let us review it by finding the local behavior of the solution to
(3.4.2) in Example 3 whose leading behavior is given in (3.4.5).

Example 3 (revisited) Determination of local behavior near an irregular singular point at 0. The
first step in determining the local behavior is finding the leading behavior. We do this by making
the exponential substitution y = % in (3.4.2); the result is

X28" + X3S+ (1 +3x)S' + 1=0. (34.23)

Again, we neglect xS” relative to x*(S’)*> and 3xS' relative to S’ as x — 0+, so we obtain the
asymptotic differential equation S’ + 1 ~ —x%(§')? (x = 0+). The two roots of this quadratic
equation for §’ are

S ~[=14 (1 —4x)?]2x2,  x-0+.
Since x is small, the two solutions are
§'~ -1, x—=0+, (3.4.24a)
§'~—-x"%  x-0+, (3.4.24b)

Integrating (3.4.24a) gives S ~ d (x — 0+ ), where d is some constant. This shows that the leading
behavior of this solution is y(x) ~ ¢, (x = 0+), where ¢, = ¢*. We have already obtained the
complete asymptotic expansion of this solution in Example 3; the result is given in (3.4.3).

Integrating (3.4.24b), we obtain S ~ x ™' (x — 0+). This gives the controlling factor e*”" in
the leading behavior (3.4.5). To find the full leading behavior, we substitute S(x) = x~ ! + C(x),
where C(x) « x™! as x — 0+, into (3.4.23) and obtain

X3 4+ x2C)P - (1-35)C' =x"'+ 1=0. (3.4.25)

Although there are six terms in this equation, it may be approximated as x — 0+ by the asymp-
totic differential equation

Clx)~—-x"', x-0+ (3.4.26)

(see Prob. 3.31). The solution to (3.4.26) is C(x) ~ —In x (x = 0+ ). As in the previous example
we have restricted the limit to be one sided to avoid complications resulting from imaginary
numbers. We have now fully accounted for the x-dependence of the leading behavior in (3.4.5).

To find the full local behavior of this solution, we peel off the leading behavior by substitut-
ing y(x) = c, x ™ 'e* 'w(x) into (3.4.2) with the intention of expanding w(x) in a series of powers of
x*(a > 0). However, this analysis is unnecessary because, as is easily verified, the leading behavior
(3.4.5) is already an exact solution to the differential equation!
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Example 5 Local behavior of solutions near an irregular singular point of a general nth-order
Schrodinger equation. In this example we derive an extremely simple and important formula for
the leading behavior of solutions to the nth-order Schrodinger equation
d"y
dx"

= 0(x)y (3.427)

near an irregular singular point at x,.

The exponential substitution y = 5 and the asymptotic approximations d*S/dx* « (S')* as
x> xo for k=2, 3, ..., n give the asymptotic differential equation (S')" ~ Q(x) (x = x,). Thus,
S(x) ~ w [* [Q))" dt (x - x,), where w is an nth root of unity. This result determines the n
possible controlling factors of y(x).

The leading behavior of y(x) is found in the usual way (see Prob. 3.27) to be

o)~ QU expfo | 1QOI ], x-vxn (3.428)

If xo # 00, (3.4.28) is valid if |(x — x,)'Q(x)| — o0 as x — x,. If x; = co, then (3.4.28) is valid if
|x"Q(x)| = oo as x — co. This important formula forms the basis of WKB theory and will be
rederived perturbatively and in much greater detail in Sec. 10.2. If Q(x) < 0, solutions to (3.4.27)
oscillate as x — oo; the nature of asymptotic relations between oscillatory functions is discussed
in Sec. 3.7.

Here are some examples of the application of (3.4.28):

(@) For y" = y/x%, y(x) ~ ex®*e* 23 (x > 04 ).
(b) For y” = xy, y(x) ~ cx™133*=**/% (x - +o0), where @® = 1.
(c) For d*y/dy* = (x* + sin x)y, y(x) ~ cx~*2e**12 (x - +c0), where w = %1, +i.

Concluding Remarks

We conclude this section with some philosophical commentary. You may recall
our promise that the style of mathematics would change, beginning with this
section. Let us now clarify what we meant. When we derive a local series about an
ordinary point or a regular singular point, we use equal signs because such a series
actually converges to a solution of the differential equation. And, if we truncate
this series, we obtain an accurate approximation to the solution. We have learned
in this section that the local behavior of a solution near an irregular singular point
may be relatively, but not approximately, equal to the exact solution because the
solution changes so rapidly near such a point. We have had to exchange equality
and approximate equality for relative (asymptotic) equality. However, we do not
begrudge this exchange. On the contrary, when a solution is changing rapidly, an
asymptotic relation may be far more informative than an approximate equality.
For example, discovering that f (x) is approximately equal to 0 when x — 3 is not
nearly as dramatic as discovering that f(x) ~ exp [~ (x — 3)7?] as x — 3. Most of
the approximations that will be derived in this book are asymptotic.

3.5 IRREGULAR SINGULAR POINT AT INFINITY

Many famous differential equations like the Bessel, Airy, and parabolic cylinder
equations, which are discussed below, have an irregular singular point at co. In
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most applications a knowledge of the local behavior of the solutions to these
equations for large |x| is crucial The development of the previous sections
suggests an indirect way to perform a local analysis of such equations at co. We
could map the singular point into the origin using the inversion transformation
x = 1/t and then evoke the methods of Sec. 3.4 to locally analyze the new differen-
tial equation at the origin. However, it is more efficient to derive and more
convenient to represent the local behavior of solutions to the original equation
directly in terms of asymptotic series valid at co. This section is mostly a collection
of examples which will help to illustrate the relevant methods, but before tackling
these examples we begin as we did in Sec. 3.4 with a small dose of formal theory,
this time on the topic of asymptotic power series.

Asymptotic Power Series

We have derived several asymptotic power series in the previous section and you
have probably arrived at a reasonably correct intuitive picture of what they are.
Since we are about to derive several more asymptotic power series, this is the
optimum moment to define them in precise terms and to summarize their math-
ematical properties. A more complete discussion is given in Sec. 3.8.

Definition The power series ) o a,(x — X, )" is said to be asymptotic to the
function y(x) as x—x, and we write y(x) ~ Yo ay(x — xo)* (x — xo) if
y(x) = Yn=o au(x — X} « (x — xo)" (x = x,) for every N.

Thus, a power series is asymptotic to a function if the remainder after N terms is
much smaller than the last retained term as x — x,. By this definition a series may
be asymptotic to a function without being convergent.

An equivalent definition is y(x) — Y N_ a,(x — xo)' ~ am(x — xo)* (x = x),
where ay is the first nonzero coefficient after ay. Thus, if there are an infinite
number of nonzero a,, an asymptotic power series is equivalent to an infinite
sequence of asymptotic relations, one for each nonzero coefficient.

We also encounter asymptotic series in nonintegral powers of x — xq. The
series Y 2o a,(x — xo)" (> 0) is asymptotic to the function y(x) if y(x)—
Yoo an(x — X" < (x — xo)™" (x = X,), for every N.

If xo = co the corresponding definition is y(x)~ Y20 a,x~* (x — o0) if
Y(x) = SN0 a,x™ " «x™* (x > o0) for every N.

Not all functions can be expanded in asymptotic power series. The function
y(x)=x""! grows as x — 0, so it cannot be asymptotic to a series of the form
Yoo @y x™ with & > 0. Similarly, y(x) = ¢* has no asymptotic power series expan-
sion of the form Y% a,x " as x - + 0o because €* grows as x — + 0.

If y(x) can be expanded in the asymptotic power series y(x)~
Yoeo @a(x — Xo)™ (x — X,), then the coefficients of this expansion are unique. This
is because the above definition provides a way to determine the coefficients a,
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uniquely:

ap = lim y(x),

X XxQ

a, = lim X(,x)___fg,
X x0 (x - xO)

and, in general,

N—-1
W)= T o = xo)”
ay = lim -
Y x—x0 (x - XO)HN

The condition for a function to have an asymptotic power series expansion is that
all these limits exist.

Most operations (addition, multiplication, division, differentiation, integra-

tion, and so on) can be performed on asymptotic power series term by term just as
if they were convergent series, with important exceptions to be explained in Sec.

38.

Let us now return to the derivation of asymptotic series.

Example 1 Behavior of a Taylor series for large x. Consider the function y(x) defined by the
Taylor series

(35.1)

This series converges for all x, so y(x) can, in principle, be calculated from it. However, while the
series converges very rapidly for x small, it converges slowly for x large. If x = 10 only 16 terms
are necessary to calculate y(x) to 10 significant digits, while if x = 10,000 about 150 terms are
required. (Why?) It would be nice to have a simple analytical formula for the sum of this series
when x is large which does not require the addition of hundreds of numbers.

A similar Taylor series which also converges slowly when x is large is Y 2., x"/n!. The sum
of this series is exactly e*.

Unfortunately, it is not possible to find an exact formula in terms of elementary functions
for the sum of the series (3.5.1). However, it is possible to express the local behavior of the function
y(x) as x = +co using elementary functions. .

To obtain the large-x behavior of y(x) using the methods developed in this chapter, we
construct a second-order differential equation satisfied by y(x). Observe that
V=25 x""Y[n! (n— 1)!) and that (xy') = ¥, x""}/[(n — 1)!]2 = y. Thus y(x) is a solution
to

xy'+y =y (3.52)

This equation has an irregular singular point at co.
As usual, we determine the leading behavior of y(x) as x — + co by substituting y = ¢*. The
resulting equation

XS" + x(SY + 8 =1 (3.53)

may be solved approximately if we first reduce it to the asymptotic differential equation
x(§')? ~ 1 = § (x - + o), where we assume that xS” « x(§')* as x = + c0. Solving for S’ gives

S(x)~[-1£ (L +4x)"*)2x, x- +o0.
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Thus, since x is large,

S'(x)~ +x"12 x> +o0.
Integrating this asymptotic relation gives

S(x)~ £2xV%, x> +oo,

(3.5.4)
or S(x) = +£2x? 4+ C(x),

where C(x) « 2x'/2as x » + oo. [In general,if S'(x) ~ x*as x > + oo, then: (a) S(x) ~ x**/(« + 1)
as x » +o0 when a > —1; (b) S(x) ~ c as x > + 00 when « < — 1, where ¢ is a constant; (c)
S(x)~ In x as x = + oo when @ = — 1. The reader should compare these results with the corre-
sponding ones for the integration of §'(x) ~ (x = x,)"®(x = x,) in Prob. 3.28]

Since the coefficients in the Taylor series (3.5.1) are all positive, y(x) is an increasin g function
of x. Thus, its leading behavior must be governed by the positive sign in (3.5.4): S(x) = 2x'/* +
C(x). Substituting this equation into (3.5.3) and combining terms gives an equation for C(x):

xC" + x(C') + (2% + 1)C" + fx" V2 = 0.

This equation may be approximated for large positive x using 1 « 2x'2, xC” « x ™'/ and
x(C')? « 2x2C" as x = + oo, where the last two relations follow from C' « x~ Y2 and C" «
x”¥? (x - +00). We obtain the asymptotic differential equation

C'~—3x"Y x5 4w,
whose solution is
C(x)~ —4lnx, x- +oo.
Hence the leading behavior of y(x) is given by

y(x) ~ex M2 x o 4o, (3.5.5)

The constant ¢ cannot be determined from a local analysis of (3.5.2) because it is homoge-
neous. However, ¢ can be determined by noticing that the Taylor series (3.5.1) for y(x) is the same
as that in (3.3.14) for the modified Bessel function /. Thus y(x) = I4(2x*/?). In Example 8 of Sec.
6.4, we derive the behavior of I4(x) as x » +co from an integral representation and show that
¢ = 4n~!/2. This value for ¢ may also be derived in another way using the Stirling formula for the
large-n behavior of n! (see Example 4 of Sec. 6.7).

How well does the leading asymptotic behavior (3.5.5) with ¢ = 4n~*/? approximate y(x)?
We have measured the accuracy of (3.5.5) by plotting the ratio

An 2T 18251 () (3.5.6a)

as a function of x (see Fig. 3.4). We know that this ratio must approach 1 as x = + o, but, in fact,
this ratio is also near 1 for small values of x. Thus, the leading behavior is particularly useful
because it is a good approximation over a large interval. We have also plotted in Fig. 3.4 the ratio

10 x"
zo M_‘F] / ¥(x). (3.5.6b)

Observe that the first 11 terms in the Taylor series are a good polynomial approximation to y(x)
for 0 < x < 50 while just the first term in the asymptotic series is a good approximation to y(x)
for x > 1. The truncated Taylor series and the leading asymptotic behavior give good approxima-
tions in overlapping regions; together, they constitute a uniformly valid approximation to y(x)
over the entire region 0 < x < co.

We could drastically improve the accuracy and the range of validity of the
asymptotic approximation by including more than just the leading term in the
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Figure 3.4 A comparison of the leading asymptotic approximation and an 1l-term Taylor series
approximation to the function y(x) defined by the sum (3.5.1). The ratios of these approximations to
y(x) are plotted for 0.001 < x < 10,000.

asymptotic series. In the next example we show how to compute the full asymp-
totic series for the modified Bessel function of arbitrary order v. We do not prove
here that the series that result are actually asymptotic to modified Bessel
functions.

Example 2 Behavior of modified Bessel functions for large x. The modified Bessel equation
x2y" 4+ xy’ — (x* + v*)y = 0 has an irregular singular point at co. The leading behaviors of the
solutions are [see Prob. 3.38(a)]

y(x)~ ¢, x" V2, x = + 00, (3.5.7a)
y(x)~e;x V2% x— +oo. (3.5.7b)

Notice that (3.5.7a) is consistent with (3.5.5) for I4(2x"/?). Notice, also, that while the leading
behaviors (3.5.7) do not depend on v, v will appear in the coefficients of the full asymptotic
expansion of the solutions [see (3.5.9)].
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We now derive the asymptotic expansion for the solution whose leading behavior is (3.5.7a).
To do this we peel off the leading behavior by substituting

y(x)=c,x e w(x) (3.5.84a)
into the modified Bessel equation. The equation satisfied by w(x) is
x2w" + 2x*w + (3 —v)w = 0.
We scek a solution to this equation of the form w(x) = 1 + ¢(x) with g(x) « 1 (x > + o0).
What is the leading behavior of £(x)? &(x) satisfies the equation
X%+ 2x% + (3 —v)e+3 -2 =0,
which may be simplified by the approximations
F—v)e«i~—v x2%" « x%, X~ + 0.
We make the second of these approximations because we anticipate that ¢ decays like a power
of x as x = + oo. The resulting asymptotic differential equation is
% (x)~vi -4  x- +oo.

Ordinarily the solution to this equation would be ¢(x) ~ ¢ as x - + o0, where c is an integration
constant. However, since ¢(x) « | as x - 4+ o we must set ¢ = 0. The leading behavior of &(x)
is then given by

ex)~@E -3, x— +oo.

This kind of analysis can be repeated to obtain all the terms in the asymptotic expansion of
w(x)as x —» + co. However, the leading behavior of ¢(x) suggests that w(x) has a series expansion
in inverse powers of x. Thus, to simplify the analysis, we assume at the outset that
w(x) ~ Yo ax ™" (x > +00; ao = 1). Substituting this expansion into the differential equation
for w gives

© © »
0~ Y nn+Dax™=2 Y nax'"+(3-v) Y ax™"  x- +.
n=0

n=0 n=0

You might think that this asymptotic relation is formulated poorly because in Sec. 3.4 we
warned that a function could not be asymptotic to 0. However, by the definition of an asymptotic
power series, the function 0 does have an asymptotic power series expansion whose coefficients
are all 0. Therefore, since the coefficients of any asymptotic power series are unique, we may
equate to 0 the coefficients of all powers of 1/x in the above relation:

X" [(n+3)?—v¥a, —2(n+ a,., =0, n=012,....
Solving this recursion relation and using a, = 1 we obtain

(42— 13) (47 - 1)@ -3
T 1rsx 21(8x)? -

w(x) ~ 1 v, x> oo, (3.5.9a)

From the ratio test we see that the radius of convergence R of (3.5.9a) is

R=tim | 2| < jim 20D
n—o | Gnt1 n—x ("+12') -

unless the series (3.5.9a) terminates, which it does when v = +4, +3, +3, .... When this happens,
the finite series (3.5.9a) when multiplied by e“/\/; gives an exact solution to the modified Bessel
equation.
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Similarly, the complete asymptotic series for the function whose leading behavior is given in
(3.5.7b) is

172

e *w(x), (3.5.8b)

yx) = epx”
where

(4v—12) (42— 13)(4v? -3} B

)~ 1+ ~
W) 11 8x 21 (8x)° o

X + . (3.5.9b)

The modified Bessel functions I,(x) and K (x) are special solutions of the modified Bessel
equation which were introduced in Sec. 3.4. The function I (x) grows exponentially as x — + c0;
its asymptotic series is given in (3.5.8a) and (3.5.9a) with ¢, = (2r)~ /2. The function K ,(x) decays
exponentially as x — + oo its asymptotic series is given in (3.5.85) and (3.5.9b) with ¢, = (n/2)"/2.
These values of the constants ¢, and ¢, will be derived in Sec. 6.4.

Until now, we have treated the derivation of an asymptotic series as a formal
exercise. However, in the next example we show how a divergent asymptotic series
can actually be used to approximate a function numerically.

Example 3 Numerical evaluation of the asymptotic series for I (x). In the last example we ob-
tained an asymptotic expansion for [ J(x) valid as x - + co. Let us use this expansion to compute
I5(x) for various values of x. Setting ¢, = (2z)"? and v = 5in (3.5.8a) and (3.5.9a), we obtain the
expansion for /4(x):

(100 —1) (100 — 1)(100-9)

. -Y2x -2 |y
Is(x) ~ (2m)~ Y2e*x 1 11 8 + 21 (80 s

xo +o0.  (3510)

Of course we have not proved it, but the series in (3.5.10) is asymptotic. From the definition
of an asymptotic power series given at the beginning of this section, we know that if we terminate
the series (3.5.10) after the x ¥ term, the remainder, which is the difference between the value of
the function and the sum of these (N + 1) terms, is asymptotically the (N + 2)th term in the
series as x — + co. The first neglected term is thus a measure of the error as x — + 00. If x is large
and held fixed (i.e, not allowed to tend to o), the first neglected term is only an estimate of the
error. With this in mind we can formulate a simple rule for obtaining good numerical results from
asymptotic series. We look over the individual terms in the asymptotic series; typically the terms
get successively smaller for a while, but eventually, because the series is known to diverge, they get
larger and larger and tend to infinity. For every given value of x we locate the smallest term. We
then add all the preceding terms in the asymptotic series up to but not including the smallest term.
This finite sum of terms usually gives the best estimate of the function because the next term,
which approximates the error, is the smallest term in the series. The approximation obtained in
this way is called the optimal asymptotic approximation.

We can compare this rule with the way we would evaluate the sum of the convergent power
series Y oo G,(x — Xo)" for a fixed value of x. For this series, there is no limit to the accuracy; we
can always improve the accuracy by taking more terms in the partial sum. However, for a
divergent asymptotic series, for each given value of x there is an upper limit to the accuracy and if
we take either more or less than the optimal number of terms in the partial sum according to our
rule, we usually decrease the accuracy. If we are not satisfied with this maximal accuracy, then to
improve it we must take x closer to x,, or in the case of the series in (3.5.10) we must take x closer
to +oo.

Table 3.1 demonstrates how this rule works. We have used the series in (3.5.10) to evaluate
e *I4(x) for x = 3.0, 4.0, 5.0, 6.0, 7.0. The entries in the columns are the partial sums truncated
after the x ™" term. The underlined partial sum is the optimal approximation to e ™I ;(x) accord-
ing to the rule. Observe that for each value of x the partial sums get closer for a while to the exact
value of e *I4(x) and then rapidly veer off after reaching the optimal number of terms.
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Table 3.1 Asymptotic approximations to e *]5(x) for five values of x using the

ser

Ent

ies in (3.5.10)

ries in the columns are the partial sums truncated after the x ™" term. Underlined partia | sums are

optimal asymptotic approximations. Notice that even when x = 7 the leading term in the asymptotic
expansion gives a very poor approximation while the optimal asymptotic truncation is very accurate.
The number in parentheses is the power of 10 multiplying the entry.

X

N 30 40 50 60 70

0 230324 (—1)  1.99471 (—1) 178412 (—1) 162868 (—1)  1.50786 (—1)
2 108147 (0) 459816 (— 1) 239128 (—1) 145372 (—=1) 100804 (—1)
4 201953 (—1) 474361 (-2 252641 (-2) 235810 (—2) 2.61284 (-2)
6 211127(-2) 114538 (- 2) 149262 (-2) 198302 (—2) 245412 (-2)
7 116597 (-=2) 103611 (=2) 147212( 2) 197870 (—2) 245248 (-2)
8 550542 (=3) 982749 (=3) 146411 (-2) 197700 (-2) 245202 (-2)
9 120401 (—4)  9.47732(-3) 145991 (—2) 197626 (—2) 245184 (—2)
10 —573580 (=3)  9.19172(=3) 145717 (-2) 197585 (—2) 245176 (—2)
11 —133001 (—2) 891505 (—3) 1.45504(-2) 197559 (—-2) 245172 (-2)
12 —245677(—2)  8.60595 (—3) 145314 (—2) 197540 (—2) 245169 (—2)
13 —435276 (=2) 821586 (—3) 145122 (-2) 1.97523(—7) 245167( 2)
14 —790210 (—2)  T.66817 (=3) 144907 (-2) 197508 (—2) 245166 (-2)
15 —152078 (—1) 682267 (—3) 144641 (—2) 197492 (=2) 245164 (—2)
20 —131437 (1) ~3.61663 (—2) 139178 (-2) 197329 (-2) 2.45155( 2)
35 —3.02759 (10) - 124079 (6) —4.90286 (2) —8.13340 (—1)  2.06197 (=2)

Exact value of e™*I5(x)

454000 (—3) 924435 (=3) 145403 (—2) 197519 (-2) 245164 (—2)

Relative error in optimal asymptotic approximation, %,

21.0 0.57 0.069 0.0024 0.000071

Observe that as x increases the optimal number of terms increases and so does the accuracy
of the corresponding partial sum. When x = 3 the relative error is 21 percent, when x = 5 it has
improved to 0.07 percent, and when x = 7 it is a whopping 7 x 10~ 3 percent. It is nice to know
that the asymptotic series which was derived by considering a small neighborhood of infinity is
dependable for values of x so far from oo.

In Fig. 3.5 we plot the optimal asymptotic approximation [obtained by truncating the
asymptotic series (3.5.10) according to our rule] to e ™I 5(x) for x between 2.0 and 10.0. The graph
shows that although e™*I5(x) is a continuous function the optimal approximation has discontinu-
ities at the points x where the optimal number of terms in the truncated series changes by one.
For x > 2.0, these points occur when two successive terms in the series are equal; these v alues of x
are x = 2.63, 3.26, 3.88, 4.47, 5.05, 5.62,.... When 2 < x < 2.63, we truncate after x ~7; when
2.63 < x < 3.26, we truncate after x~8; when 3.26 < x < 3.88, we truncate after x ~°; and so on.
These crossover points are given explicitly by the formula x = [(2k + 1)® — 100]/8(k + 1)
(k=18,9,10,...).

The optimal truncation of the asymptotic series gives a good numerical approxirnation to
1,(x) for all v. However, Fig. 3.6 shows that the smallest value of x at which the optimal
approximation is accurate increases approximately linearly with v.



96 LOCAL ANALYSIS

0.04 —

0.03

0.02 = Optimal asymptotic

approximation N=10

0.01 -

+

-0.01 |-

-0.02 -

Figure3.5 A plot of the optimal asymptotic approximationto e *Is(x) for 2 < x < 10. For comparison,
the exact numerical value of e™*I5(x) is also shown for 0 < x < 10. These two curves are indistinguish-
able when x > 4. The discontinuities in the optimal asymptotic approximation occur when the optimal
number of terms increases by one. Each segment of the optimal asymptotic approximation is labeled
by a number N which is the highest power of 1/x in the optimal truncation. [Note that we have
chosen to plot e~ *I5(x) instead of I5(x) itself because I5(x) rapidly runs off scale as x increases.]

Despite these wonderful results in Table 3.1 and Figs. 3.5 and 3.6, you may be distressed
about a rule for “summing” a divergent series which yields a maximal accuracy that cannot be
surpassed. Maybe you are disappointed that the rest of the terms in the series must stand idle,
unable to improve the optimal but relatively poor result for x = 3 obtained by adding up the first
nine terms. Why bother to compute the full asymptotic series if only nine terms are usable? In
fact, there are sophisticated rules for “summing” divergent series which make use of all the
information contained in the terms of the asymptotic series. In many cases these rules surpass the
limited accuracy of the optimal truncations and give arbitrarily accurate approximations
provided sufficiently many terms in the series are used. The existence of these more powerful
rules, which are discussed in Chap. 8, vastly increases the value of asymptotic series.

Example 4 Behavior of parabolic cylinder functions for large x. Let us examine the behavior of the
solutions y(x) to the parabolic cylinder equation
Y ++i-ixNy=0 (3.5.11)

as x —» +oo. In this equation v is a parameter.
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Figure 3.6 A plot of the optimal asymptotic approximation to I, (x) divided by I,(x) for v = 0,5,10.
Observe that as v increases, the smallest value of x at which the optimal asymptotic approximation
gives a good estimate of 1,(x) also increases (approximately linearly with v). The number N is the
highest power of x ! in the optimal asymptotic approximation.

Since (3.5.11) has an irregular singular point at co, we make the exponential substitution
y = ¢° as in Example 4 of Sec. 3.4 and obtain

S+ (S +v+i-—ixt=0
Making the approximations
S"« (S, vHi«dx? xo o,
gives the asymptotic differential equation (5')? ~ §x* (x — + c0) whose solutions are
S(x)~ +ix%, x> +oo.

We have now determined that the possible controlling factors of the leading behavior of y(x)
are e**'/4,
We leave as an exercise [Prob. 3.38(b)] the verification that the possible leading behaviors of
y(x) are
yx)~ e x e x ot (3.5.124)

or y(x) ~ cyxve ™4 X = +00. (3.5.12b)

It is conventional to define the parabolic cylinder function D (x) as that solution of the
parabolic cylinder equation (3.5.11) whose asymptotic behavior is given by (3.5.12b) with ¢, = 1.
This condition determines the function D,(x) uniquely because ¢, must be 0. (Why?) Like the
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Figure 3.7 A plot of the parabolic cylinder function D, s (x) and the optimal asymptotic approxima-

tion t,
good

0 D5 s(x)for0 < x < 10. The optimal asymptotic approximation is 0 for 0 < x < 0.68. Notice how
the optimal asymptotic approximation is for x > 0.69.

Bessel and Airy functions, D,(x) is an important mathematical function that appears frequently in
asymptotic analysis.
For further applications it will be necessary to know the complete asymptotic expansion of
D,(x) valid as x - +co. The expansion is obtained by substituting
D (x) = x"e™*"*w(x) (3.5.13)
into (3.5.11). We obtain
2w+ (2vx = X)W + v(v — I)w = 0.
It may be shown in the usual way that the solution w, which tends to 1 as x - +co, has an
asymptotic series in powers of 1/x:

©
W)~ Y axh xo o,
n=0

where a, = 1.
Substituting this expansion into the differential equation for w(x) and equating coefficients
of powers of x gives the following recursion relations:

a; =0,

X" (n+2a,,,=—-(n—-v)n—-v+1la, n=01,...
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Figure 3.8 A plot of the parabolic cylinder function D, 5 (x) and the optimal asymptotic approxima-
tionto Dy, s(x)for0 < x < 10. The optimal asymptotic approximationis 0for x < 1.37. The error in the
optimal approximation is less than the thickness of the curve for x > 1.38. [The cutoff point below
which the optimal asymptotic approximation is zero and above which the optimal approximation is
very accurate grows roughly as $v!/? as v — o (see Prob. 3.43).]

We conclude that a, = 0 for n odd and that

viv—1)  vy=1=2)v=-3) .

EOTRETR 2121 5 ,  x— +oco. (3.5.14)

w(x) ~ 1

If visnot0, 1,2, 3, ..., then the ratio test applied to successive nonzero terms implies that R,
the radius of convergence of (3.5.14), is 0:

n+2

A TR

n—w

R? = lim

n=x

=0.

Gni 2
However, if v is a nonnegative integer v =N =0, 1, 2, 3, ..., then the series (3.5.14) terminates
after (N + 1) terms if N is even and after (3N + 1) terms if N is odd. When the series terminates,
the parabolic cylinder function D,(x) takes the form of an Nth-degree polynomial He, (x), called
a Hermite polynomial, multiplied by a decaying exponential: Dy(x) = e */*x"w(x) =
e™** Hey (x). The first few Hermite polynomials determined from (3.5.14) are He, (x) = 1,
He, (x) = x, He, (x) = x? — I, Hey (x) = x> — 3x, He, (x) = x* — 6x? + 3.

For values of v other than 0, 1, 2, 3,..., (3.5.13) and the divergent series (3.5.14) give an
excellent approximation to D ,(x). In Figs. 3.7 and 3.8 we plot D,(x) for v = 3.5 and 11.5 along
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Table 3.2 Relative error in optimal asymptotic approximation to the parabolic
cylinder function D,(x) for v = 3.5, 11.5

v=35 v=115

Relative error Relative error

in optimal in optimal
x D ,(x) approximation, %, D,(x) approximation, %,
1.0 —2.0368 23 —~2.5726 x 10° 100
LS —1.8583 30 x 107! 5.3550 x 10° 2.7 x 1072
2.0 —1.8226 x 1071 33 x 107! 13327 x 10° 5.5 %1073
2.5 1.6604 2.6 x 1073 —5.7309 x 103 6.1 x 1073
3.0 2.5823 1.1 x107* —8.6290 x 10% 13 x107°
3.5 2.4320 52 x 1076 59345 x 10° 4.8 x 1078

with the optimal asymptotic approximations to these functions. Observe how closely the asymp-
totic approximations hug the true functions. The relative errors in the optimal approximations to
D, 4(x) and D,, s(x) are given in Table 3.2. It is necessary to augment the figures by this table
because when x is large the magnitude of the error is less than the thickness of the plotted curves.

Example 5 Behavior of Airy functions for large x. The Airy equation
y'=xy (3.5.15)

has an irregular singular point at co. The leading behaviors of solutions for large x are deter-
mined by (3.4.28) with n = 2 and Q(x) = x to be

yx) ~ ¢ x" Ve x5 4o, (3.5.16a)
or Y(x) ~ cpx T a2 x = +00. (3.5.16b)
The Airy function Ai (x) is the unique solution to (3.5.15) that satisfies (3.5.16a) with ¢, = 4z~ /%

A (x) ~dm~ H3gm Weem 283y 40, (3.5.17a)

Why does this one condition define Ai (x) uniquely?
The leading behavior of the other Airy function Bi (x) for large x is

Bi (x) ~ n~ V3x~l4g23 400, (3.5.17b)

This equation does not uniquely define Bi (x). Why?

The connection between the Taylor series for Ai (x)and Bi (x)in (3.2.1) and (3.2.2) and their
leading behaviors must await our discussion of integrals (see Probs. 6.75 and 6.76).

In Figs. 3.9 and 3.10 we compare the Airy functions Ai (x) and Bi (x) with their leading
asymptotic behaviors given in (3.5.17).

The full asymptotic expansion of Ai (x) or Bi (x)is found by peeling off the leading behavior
and seeking an expansion of the remaining factor as a series of powers of 1/x. To carry through
this procedure for the Airy function Ai (x) we first peel off the leading behavior by substituting

ylx) = x™ e 2 B y(x), (3.5.18)
It follows that w(x) is that solution to the differential equation

X" — (2x5% + Lx)w' + Fw =0 (3:5.19)
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Figure 3.9 A plot of the Airy function Ai (x) and its leading behavior (3.5.17a) for 0 < x < 5.

which approaches 1 as x — + 0. One way to analyze this solution is to: (a) write w(x) = 1 + &(x)
with g(x) « 1 as x = + co; (b) determine the leading behavior of ¢(x) as x — + c0; and (c) find the
full asymptotic series for &(x). Our past experience with this kind of analysis suggests that &(x)
behaves like x™* with « > 0 as x » + co and that ¢(x) has an asymptotic expansion in powers of
x7%

Instead of repeating this kind of analysis once more, let us use a slightly different but
equivalent approach to find the asymptotic expansion of w(x). We assume at the outset that
w(x) ~ Y25 a,x* (x = + o) with & < 0 and a, = 1. Substituting this expansion into (3.5.19), it
follows that

T’gao—Zaalx‘”/z-{— (uz—%a+‘—55)a,x‘—4aazxz”3’2+"“‘Ov X — + 0. (3,5.20)

In order that (3.5.20) be valid, it is necessary that the coefficient of each distinct power of x be
zero. Since a, = 1 and « < 0, it follows that « = —3 and a, = —35. More generally, equating
coefficients of (x~%2)" in (3.5.20) to zero gives the recursion relation

dnrdYn+y)

) n=0,1,.
4 n+1

Ay =

The solution of this recursion relation is

. _i(_é)"l‘(n-}-%)l’(n-ﬁ-%)
"2\ 4 n! ’
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Figure 3.10 A plot of the Airy function Bi (x) and its leading behavior (3.5.17b) for 0 < x < 2.5.

where we have used ay = 1 and I'($)['(2) = 2n (see Prob. 2.6). Thus,

Al (X) ~ 4m V2x T AT 2R3 _ ST 32 4 385y 7322 ] (3.5.21)
As usual, the ratio test applied to (3.5.20) gives a vanishing radius of convergence
4n+1)

= lim ————— =0.
e 31+ Bn+3)

. a
= lim "

n—=x

A+

Asymptotic methods also apply to higher-order equations, as we see in the
next example.

Example 6 “Hyperairy” equation. The hyperairy equation,
d*y
— =Xy, 3522
o ( )
which is the fourth-order generalization of the Airy equation, has an irregular singular point at
0. The four possible leading behaviors of its solution as x » + oo are determined by (3.4.28) to
be

y(x) ~ ex 3B x s 4o, (3.5.23)

where c is a constant and w = *+ 1, +1i.
By computer we have obtained the numerical solution y(x) of the hyperairy equation which
satisfies the initial conditions y(0) = 2.0, y'(0) = — 1.0, y"(0) = 0.0, y”(0) = 1.0. In Fig 3.11 we
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Figure 3.11 A plot of the ratio of the numerical solution of d*y/dx* = xy with y(0) =2, y'(0) = —1,
y"(0) = 0, y”(0) = 1 to its leading asymptotic behavior in (3.5.23) with w = + 1. As x —» + 00, the ratio
approaches the constant ¢ = 0.4047. The approach to this limit is oscillatory because the numerical
solution is an admixture of four components, which oscillate or grow and decay exponentially. The
exponentially growing solution dominates the leading behavior as x —» + co.

graph the ratio of this solution to the growing leading behavior [the solution for which w = +1
in (3.5.23)]. Note that the oscillating solutions (those for which w = +i) for small values of x are
gradually overwhelmed by the growing solution as the ratio approaches the constant ¢ = 0.4047.

3.6 LOCAL ANALYSIS OF INHOMOGENEOUS LINEAR
EQUATIONS

In this section we explore methods for determining the local behaviors of solu-
tions to an inhomogeneous differential equation. We emphasize that it suffices to
find the local behavior of one particular solution. The general local behavior can
then be produced by adding in the behaviors of solutions to the associated ho-
mogeneous equation which we may assume are already known.

There are many ways to find the local behavior of a particular solution. One
approach, which is rather indirect and can be complicated, relies on the method of
variation of parameters. Variation of parameters (see Sec. 1.5) allows us to express
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a particular solution as an integral over solutions to the homogeneous equation. A
local expansion of this integral, in which the integrand is approximated by replac-
ing the exact solutions to the homogeneous equation with their local behaviors, is
often sufficient to determine the behavior of a particular solution. We do not
pursue this approach here because we have postponed all discussion of the local
expansion of integrals until Chap. 6.

We prefer the more direct approach of applying the method of dominant
balance to the differential equation. There are several cases to consider. First, we
suppose that x, is an ordinary point of the associated homogeneous differential
equation and a point of analyticity of the inhomogeneity. In this case the general
solution has a Taylor series representation. (See Prob. 3.52.)

Example 1 Taylor series representation of the general solution. What is the local behavior of the
general solution to

Yy +xy=x® (3.6.1)
at x = 0? Since x = 0 is an ordinary point of the homogeneous equation y’ + xy = 0 and a point
at which x? is analytic, we may assume a Taylor series representation for y(x):

y(x) = io a,x". (3:62)

Substituting (3.6.2) into (3.6.1) and equating coefficients of like powers of x gives a recursion
relation for a,:
a, =0,

0, n>2n+#4,

na, +a,_, = 1 ne4

This recursion relation determines a, (n > 1) in terms of a,, which remains an arbitrary constant.
This completes our determination of the local behavior of y(x).

The Taylor series (3.6.2) has an infinite radius of convergence because neither the coefficient
x nor the inhomogeneity x* has any singularities in the finite x plane (see Prob. 3.52).

If x, is an ordinary point of the differential equation but x, is not a point of
analyticity of the inhomogeneity, then, although all solutions to the homogeneous
equation can be expanded in Taylor series, a particular solution to the inhomoge-
neous equation does not have a Taylor series expansion. In this case we use the
method of dominant balance to find the behavior of a particular solution.

Example 2 Local behavior of solutions at an ordinary point of the associated homogeneous equation
where the inhomogeneity is not analytic. Let us find the leading behavior of a particular solution
to

y + xy=1/x*

near x = 0. We use the method of dominant balance, which was introduced in Sec. 3.4, to
decide which terms in this equation are most important as x — 0. There are three dominant
balances to consider:

(@) y ~ —xy, x *«xy (x—0). The solution of this asymptotic differential equation is
y ~ ae™*/? ~ a (x - 0), which is not consistent with the condition that x~* « xy (x - 0).

(b) xy ~x7*% y' «x~* (x —0). This asymptotic relation implies that y ~ x~* (x —0), which
violates the condition that y’ « x~* (x — 0). This case is also inconsistent.
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4 4

(c) y ~x7% xy«x~* (x—>0). The solution to this asymptotic differential equation is
y ~ —1/3x* (x = 0), which is consistent with the condition that xy « x™* (x — 0).

Hence, the only consistent leading behavior of y(x) as x -0 is y(x) ~ —1/3x> (x - 0).
Note that this leading behavior contains no arbitrary constant and is thus independent of any
initial condition [such as y(5) = 3].

The next step is to find the corrections to this leading behavior. If we set y(x) = —1/3x3 +
C(x), where C(x) « x~3 (x —»0), we find that C(x) satisfies C' + xC = 1/3x2. If we proceed as
above using the method of dominant balance, we find that the leading behavior of C(x)as x — 0 is
C(x) ~ —1/3x (x - 0). Continuing in this fashion, we obtain the full local behavior of y(x):

1 1 1 r o,
——+ao+—x—§aox +-, x—0,

Y~ =35 75 3

where a, is arbitrary. The parameter a, is determined by the initial conditions on the solution
yx)

The method of dominant balance also works at singular points of the asso-
ciated homogeneous equation.

Example 3 Behavior of solutions to an inhomogeneous Airy equation at co. Let us consider all

possible solutions to
yr=xy-1 (3.6.3)

which satisfy y(+ c0) = 0. These solutions can be found by variation of parameters; the result is
¥x) = {Ai (x) [ Bi (¢) de + Bi (x) [ i) de] +cAi(x)
0 x

where ¢ is an arbitrary constant (see Prob. 3.51). One way to find the leading behavior of
y(x) as x — + oo is to study the asymptotic behavior of these integrals using the techniques of
Chap. 6 (see Prob. 3.51). Another way to find the leading behavior of y(x) as x — + o0 is to
use the method of dominant balance as shown below.

The balance y” ~ xy, I « xy (x > +0o0) gives the two solutions of the homogeneous Airy
equation Ai (x) and Bi (x). But we must exclude Ai (x) which violates 1 « xy (x — +00) and
Bi (x) which violates y(+ o) = 0. This balance is inconsistent.

The balance y” ~ —1, xy « 1 (x > +0) is also inconsistent. (Why?)

The only consistent balance is xy ~ 1, y” « 1 (x > + o0}, which gives

1
y~—, x— +o0. (3.64)
X

Note that this leading behavior is unique and independent of an initial condition given, for
example, at x = 0. For any value of y(0) there is a unique solution of the differential equation
(3.6.3) satisfying y(+ o) = 0; solutions for different y(0) differ by a multiple of Ai (x). The leading
behavior (3.6.4) does not depend on y(0) because the Airy function Ai (x) decays exponentially as
X — +00.

To determine the corrections to the leading behavior (3.6.4), we let y(x) = 1/x + C(x),
C(x) « 1/x (x » + ). C(x) satisfies the differential equation 2/x* + C” = xC. The method of
dominant balance gives C(x) ~ 2/x* (x » + ). By continuing in this manner we find the full
asymptotic power series expansion of y(x) (see Prob. 3.51):

(3n)!

TSR

1
~— o+ - + 0. 36.5
y(x) X T 3l x X © ( )
In Fig. 3.12 we compare the numerical solution to (3.6.3) which satisfies y(0) = 1 with the
leading term 1/x and also the first two terms 1/x + 2/x* in the asymptotic series (3.6.3).
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Figure 3.12 Comparison of the exact solution to y” = xy — 1, y(0) = 1, y(+ o) = O with the leading
term and first two terms in the asymptotic series for y(x) valid as x » + co.

There is a mildly interesting subtlety that one may encounter when using the
method of dominant balance. It may happen that all two-term balances are incon-
sistent. When this occurs, we must consider possible dominant balances among
three or more terms.

Example 4 Three-term dominant balance. A local analysis of the equation y' — y/x = (cos x)/x?
near x = 0 shows that all three pair-wise dominant balances are inconsistent:

(@) If x™2 cos x « x !y (x > 0), then y ~ cx (x — 0), where ¢ is an integration constant. This
result is inconsistent with the assumption that x~2 cos x <« x ™!y (x — 0).

(b) If x™ 'y « x~? cos x (x = 0), then y ~ —x~* (x - 0). (Why?) This result is inconsistent with
the assumption that x 'y « x~2 cos x (x — 0).

(c) If y «<x~ % cos x (x > 0), then y ~ —x~ ! cos x ~ —x~ ! (x - 0). This result is inconsistent
with y' « x7% cos x (x — 0).

We must therefore seek a three-term balance in the asymptotic differential equation
y 1

y - Mt x—0. (3.6.6)
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No further approximations to this cquation can be made, but an exact solution to (3.6.6) is easy
to find. A simple dimensional analysis suggests that (3.6.6) has a solution of the form y ~ cx !
(x —0); substituting this into (3.6.6) gives ¢ = —3. Thus, the leading behavior of y(x) is y(x) ~
—1/2x (x - 0), independent of any initial condition [like y(1) = a].

For further practice in finding the behavior of solutions to inhomogeneous
equations see Probs. 3.48 to 3.50.

3.7 ASYMPTOTIC RELATIONS

This section presents a detailed study of asymptotic relations. We discuss asymp-
totic relations for oscillatory functions, asymptotic relations for complex func-
tions, subdominance, Stokes lines, and the Stokes phenomenon.

Asymptotic Relations for Oscillatory Functions

To illustrate one of the subtle aspects of asymptotic relations, let us examine in
detail the leading behavior of the solutions to the Airy equation y” = xy for large
|x|. In Sec. 3.5 we saw that for large positive x, the leading behaviors of the Airy
functions Ai (x) and Bi (x), whose Taylor series are given in (3.2.1) and (3.2.2), are

Al (x) ~4r 7 3x T W8em 2023 x5 t oo, (3.7.1)
Bi (x) ~ ;™ 1/2x ™ 1/4g25203 xX— 400. (3.7.2)

To determine the leading behavior of the solutions to the Airy equation for
large negative x requires a bit of ingenuity. Let us see what happens if we proceed
naively. Using our technique of substituting y = % we obtain S” + (§')* = x. Ne-
glecting S” as usual, we get the asymptotic differential equation (S')* ~ x
(x > —o0). It follows that § ~ +3i(—x)¥? (x » — o). This gives the controlling
factor of the leading behavior of y as x — —oo, namely exp [+3i( —x)¥?].
Proceeding in the usual way, we obtain the leading behavior

y~c(—x)" " exp [+3i(—-x)*?], x-— —oc0. (3.73)

No single one of the behaviors (3.7.3) can describe the leading behaviors of
Ai (x) and Bi (x) as x - — oo because the Airy functions are real when x is real;
the Taylor series (3.2.1) and (3.2.2) for Ai (x) and Bi (x) have real coefficients. In
order to represent the leading behaviors of Ai (x) and Bi (x) as x - — 0o, we must
form a real linear combination of the two leading behaviors (3.7.3):

yx) ~ ey(=x)" " sin [§(=x)?] + ¢5(—x) " cos [3(=x)*?], x> —oo.

In fact, the graph of Ai (x) for large negative x (Fig. 3.13) very closely resembles the
graph of

A=) sin [3(—x)7 + 4,
and the graph of Bi (x) (Fig. 3.14) very closely resembles the graph of

" Y3 (—x)7 Y4 cos [$(—x)? + in].
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Figure 3.13 A plot of the Airy function Ai (x) and the function n~ ¥/3(—x)~ !# sin[$(—x)¥? + 4x] for
—10 < x < 0. Notice the good agreement between the graphs of these two functions for x < — 1.

However, it is wrong to write
Ai (x) ~ ™ 2 (=x)" " sin [3(—x)¥? + 4x], x— —o, (3.7.4)

and Bi (x) ~n Y3 (—x) "4 cos [(—x)** +4n], x- —oc0, (3.7.5)

because the zeros of the right and left sides of these relations do not quite coincide
for large negative x. Therefore, their ratios cannot approach the limit 1 as
x — —oo, and this violates the definition of an asymptotic relation in Sec. 3.4.
Nevertheless, it is clear from Figs. 3.13 and 3.14 that (3.7.4) and (3.7.5) want to be
valid asymptotic relations. After all the successful asymptotic analysis of the
previous three sections, it is surprising to encounter such a silly flaw in the
definition of an asymptotic relation.

The next two examples illustrate in an elementary way how to resolve this
problem with noncoincident zeros.

Example 1 Functions having noncoincident zeros. Consider the two functions sin x and
sin (x 4+ x~!). We would like to say that these two functions are asymptotic as x — co because
their graphs become identical in this limit. However, these functions are not asymptotic accord-
ing to the definition of an asymptotic relation because their zeros do not coincide for large x. This
is similar to the difficulty encountered above with Airy functions.

The problem is to express the close similarity in the behavior of sin x and sin (x + x~?')
without dividing by zero. One way to do this is to state that the arguments of the sine functions
are asymptotic as x —» o: x + x ! ~ x (x - o). This avoids the trouble with noncoinciding
Z€ros.
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Figure 3.14 A plot of the Airy function Bi (x) and the function n~ (- x)~'/* cos[3(—x)>'? + 4n] for
—10 < x < 0. Note the good agreement between the graphs of these two functions for x < —0.5.

Example 2 Functions having noncoincident zeros. A slightly different idea must be used to repre-
sent the similar behaviors of sin x and (1 + x™!)sin (x + x™!) as x —» 0. To do so, we write

(I+x7")sin (x + x7 ') = wy(x) sin x + wy(x) cos x,
where

wix)=(1+x"")cosx™' and  wy(x)=(1+x Ysinx".

The close relation to the function sin x is expressed by the conditions w,(x)~ ! and
wy(x) « 1 as x — oo.

In general, two functions cannot be asymptotic as x — x, if they have non-
coinciding zeros arbitrarily close to but not at x,. Nevertheless, it is often neces-
sary to represent the local behavior of very complicated, rapidly oscillatory
functions in terms of simpler oscillatory functions, such as sines and cosines.

Let us now return to the problem of expressing the asymptotic behavior of
Airy functions as x - —co. Example 2 suggests that we first represent solutions of
the Airy equation as

y(x) = wy(x)( = )"V sin [3(—x)2 + 4]
 wa(x)(—x) " cos [3(—x)2 + 4] (3.7.6)

and then seek the asymptotic behaviors of w,(x) and w,(x) as x > — co. The
notation w,(x) and w,(x) generalizes the notation w(x) used in the previous two
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sections to represent what is left over after peeling off the leading behavior.
Assuming that there is some truth in (3.7.4) and (3.7.5), we anticipate that the Airy
function Ai (x) can be represented by (3.7.6) with w(x) ~ ™ 1/2, w,(x) « wy(x)
(x > —o0), and the Airy function Bi (x) can be represented by (3.7.6) with
wo(x) ~ ™ Y2 wi(x) < wy(x) (x > — o). Of course, the constants =~ /2 in these
behaviors cannot be predicted by local analysis of the Airy equation.

Substituting (3.7.6) into the Airy equation )" = xy gives, after some
simplification,

[ = 5w+ 2= + w07 sim [3( )7 + 4]
+ [ws — x 7wy — 2(=x)Y2w, + Fx 7 2w,](—x) V4 cos [3(—x)¥? + in] = 0.
(3.7.7)

The definition of w,(x) and w,(x) in (3.7.6) provides only one constraint on these
two functions. Thus, w;(x) and w,(x) are not yet completely determined and we
are free to impose a second constraint in addition to (3.7.7). This freedom is very
similar to that encountered in the technique of variation of parameters. If we
choose the second constraint to be

wi — Ix7Iw, + 2(—x)"2w, + fex 2w, =0, (3.7.8)

then (3.7.7) implies that
wh —3x 7wy — 2(—x)12w) + &x 7 2w, = 0. (3.7.9)

Thus, we obtain a pair of coupled differential equations for w, and w, which, as
you can see, are explicitly free of the oscillatory terms in (3.7.6). In fact, a straight-
forward analysis of the leading behavior of solutions to (3.7.8) and (3.7.9) as
x — —oo shows that there are solutions that approach constants as x — — o0
(Prob. 3.59).

The full asymptotic expansions of w,(x) and w,(x) are series in powers of
(—x)~%? (see Prob. 3.59):

a,(—x)"3?%  x- —oo, (3.7.10)

by(—x)73"%,  x- —co. (3.7.11)

Substituting these series into (3.7.8) and (3.7.9), equating coefficients of powers of
(—x)*?, and solving the resulting recurrence relations gives

Ay, = ag(—1Y'cyy, n=0,1,...,
aans1=bo(=1)Czn4 1 n=0,1,...,
byn = bo(—1Y'c3,, n=0,1,...,

= +1 =
b2n+l‘-a0(—1y‘ Can+1> n_o; 1,”-’
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where

. _@n+D@2n+3)-(6n-1) 1 (3)" (n+2)(n+4)
n = =5 \a)l T r -

144™n! 2n n!

The asymptotic behavior of the Airy function Ai (x) as x —» — oo is represented in
this way if ap = =~ /> and by = 0. Then, (3.7.10) and (3.7.11) imply w,(x) ~ =~ !/
and w,(x) < wy(x) as x » —oo. Thus, Ai (x) is given by (3.7.6) with

wilx)~n VY cp,x T, x— —co, (3.7.12a)
n=0

wylx)~ ="V (=x)T¥ Y ey x7 x> —0. (3.7.12b)
n=0

On the other hand, Bi (x) is represented by (3.7.6) and (3.7.10) and (3.7.11) if

1/2

a,=0and by =n" "7 s0
wi(x)~ 2 (=x)7¥ Y g x7 x> —0,  (3.7.13q)
n=0
wy(x)~ Y ey x x— —oo.  (3.7.13b)

n=0

There are many other situations in which this kind of analysis must be used to
find asymptotic representations.

Example 3 Bessel functions for large positive x. The Bessel equation of order v,
xy" + xy + (x2 —v?)y =0,

has solutions which oscillate rapidly as x — + co. The same kind of asymptotic analysis that we
used to study the Airy equation for large negative x applies here. This analysis suggests a
convenient representation for the large-x behavior of y(x):

y(x) = wy(x)x "2 cos (x — 3vr — §n) + w,(x)x ™ Y2 sin (x — dvr — in). (3.7.14)

The phase angle —4vn — 4n has been introduced into (3.7.14) so that the asymptotic expansion
that results is a simple linear combination of the standard asymptotic expansions of the Bessel
functions J,(x) and Y,(x) (see Appendix). In general, w,(x) and w,(x) have the asymptotic series
representation (see Prob. 3.60):

wi(x)~ag Y (=1Ycyx " +by ¥ (—=1fcp x 2", x— 4o, (3.7.15a)
n=0 n=0

wy(x)~ by ¥, (—1)fepx™® —ag Y (=1fey . x77Y X = +00, (3.7.15b)

n=0 n=0
where a, and b, are arbitrary constants, ¢, = 1, and

(4v2 — 12)(4v? = 32)---[4v? — (2n — 1)7]
Cp = ET s n=12,....

Observe that both series in (3.7.15) terminate when v = n + 4, where n is an integer. In this
case the asymptotic series converges for x # 0 and ~ signs may be replaced by = signs.
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Figure 3.15 A plot of the Bessel function Js(x) and the optimal asymptotic approximation to J(x)
for 0 < x <20.

The Bessel function J (x) is represented in this way if a, = (2/m)"/?, by = 0, while the Bessel
function Y,(x) is so represented if a, = 0 and b, = (2/r)"/2. The computation of these constants a,
and b, must await our analysis of Bessel functions to be given in Sec. 6.4.

In Fig. 3.15 we plot J5(x) and the optimal asymptotic approximation to J ;(x) obtained by
truncating both series in (3.7.15) just prior to their smallest terms and substituting the result into
(3.7.14). Like the optimal asymptotic approximation to I(x), this approximation becomes very
accurate for x > 3. When x is larger than 3, it is no longer possible to distinguish the two curves in
Fig. 3.15; the numerical values are listed in Table 3.3.

This completes our generalization of asymptotic analysis to functions which
oscillate rapidly as x — x.

Asymptotic Relations in the Complex Plane

Until now, we have discussed asymptotic relations only on the real axis, but to
fully appreciate the structure of asymptotic relations, one must examine them in
the complex plane. It is not trivial to generalize the definition of asymptotic
relations to complex functions. We encounter serious difficulties if we naively try
to define f(z) ~ g(z) (z— zo) by lim,_,, f(z)/g(z) = 1, where the limit z— z, is
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Table 3.3 Relative error in optimal
asymptotic approximation to the Bessel
function J5(x)

Relative error
in optimal
asymptotic

X Js(x) approximation, %

30 43028(—2) 16

40 13209(—1) 018

50 26114(—1) 00034
60  3.6209(—1)  0.00057

taken along arbitrary paths approaching z, in the complex plane. We illustrate
these difficulties in the next few examples.

Example 4 Behavior of Airy functions for large |z|. The relation between the Airy function
Ai (x) and its leading behavior for large positive x is Ai (x) ~in™ 12x™ 8= 253 (x - + o).
Replacing x — + oo by the complex limit z — oo in this formula gives an immediate contradic-
tion. Ai (z) is an entire function; its Taylor series (3.2.1) converges for all finite |z |. However, the
function 47~ 12z~ 1/4¢~ 2213 is a multivalued function having branch points atz =0 and z = ©
Since the limit z — co includes all complex paths approaching complex oo, we can reach all
branches of the leading behavior. It does not make sense to say that an entire (single-valued)
function is asymptotic to all the branches of a multivalued function.

Example 5 Behavior of sinh (z™!) for small |z|. In the previous three sections we have been
careful to distinguish between the limits x — x, + and x — x, — because in some problems these
two limits give different asymptotic behaviors. However, if we allow x to approach x, along
arbitrary paths in the complex plane we can no longer maintain the distinction between these
special one-sided limits. For example, the relation sinh (x ') ~ 4¢*™' (x »0+) is not valid if
x — 0—. The correct relation for x - 0— is sinh (x7!) ~ —4¢™*™" (x - 0—). Since the complex
limit z — 0 includes both real paths z —» 0+ (Im z=0) and z - 0— (Im z = 0), sinh (z™') does
not have a unique asymptotic behavior as z — 0.

Example 6 Nonuniqueness of leading behavior in complex plane. Anether example of the one-
sidedness of asymptotic limits is provided by the Airy function. As we have seen, Ai (x) behaves
differently as |x| — oo along the positive or negative real axis. Thus, if we replace this real limit
by the complex limit z — co, we must conclude that the asymptetic behavior of Ai (z) for large
|z| is nonunique and depends on the particular choice of the complex path to co.

A satisfactory definition of a complex asymptotic relation must be path
independent and unique. But the previous three examples show that if we are to
extend the concept of an asymptotic relation into the complex plane, we must in
many cases be careful to exclude complex paths which rotate around zq as they
approach z,. Such paths may destroy the one-sided nature of asymptotic relations
and give nonunique limits. The simplest way to eliminate such paths is to insist
that all paths lie entirely inside a sector or wedge-shaped region of the complex
plane (see Fig. 3.16).
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Imz

Region of
validity
Complex-z plane

Figure 3.16 Sector of validity for an asymptotic relation.

If the boundaries of the sector are smooth curves in the neighborhood of z,,
they can be locally approximated by their tangent lines at z,. The angle 6, — 6,
between these tangent lines is called the opening angle of the sector (see Fig. 3.16).
The statement that two functions are asymptotic as z — z, in the complex plane
must always be accompanied by the constraint that z — z, along a path lying in
the sector of validity where the size of the opening angle depends on the functions
which are asymptotic. The necessity of introducing wedge-shaped regions is a
wonderful subtlety that one could not have immediately predicted upon first
reading the definition of an asymptotic relation in Sec. 3.4.

Here are some examples of complex asymptotic relations.

Example 7 Asymptotic behavior of sinh (z7') in the complex plane.
sinh (z7!) ~ 477, z2-0; |arg z| <37,
sinh (z7') ~ —4e™*7',  z-0;in<argz<im

The sectors of validity are the half planes shown in Fig. 3.17.

Imz
inh(z-1 1,z inh(z-1) ~ L 27!
sinh(z7*) ~ -3¢ sinh(z™%) ~ 3¢
(z—>0;%7r<argz<%1r) (Z"O:(ﬂl‘gll<%1{)
Re z
Complex-z
plane

Figure 3.17 Sectors of validity for the asymptotic behavior of sinh (z7') as 2 —0.
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Im z

Complex-z (z oo larg zl <@/3)
plane
120°

Re z

Figure 3.18 Sector of validity for the
leading asymptotic behavior (3.7.16) of
Bi (z).

Example 8 Asymptotic behavior of Bi (z) in the complex plane. Bi (z) is a solution of the Airy
equation y”(z) = zy(z) which grows exponentially as z — + oo (Im z = 0). Its leading behavior in
the complex plane is

n

; (3.7.16)

Bl (Z) ~n ”22_1/4622)’:/3, z— 00 Iarg zI <

This relation is valid in the 120° wedge shown in Fig. 3.18. We compute the opening angle of this
sector in Example 12.

Example 9 Asymptotic relation valid for all directions in the complex plane. The asymptotic rela-
tion sin z ~ z (z — 0) is valid as z — 0 along any path in the complex plane. Thus, the wedge is a
full disk about z = 0.

Example 10 Asymptotic relation valid in a cut plane. The leading behavior (3.4.4a) of a solution
to the differential equation x>y” = y that grows as x — 0+ is valid in the cut plane |arg z| < =
y(z) ~ ¢, 23*€**""* (z - 0; |arg z| < 7). The opening angle of the sector of validity, as shown in

Fig. 3.19, is 360°. The asymptotic relation is not valid when |arg z| = 7.

Stokes Phenomenon and Subdominance

Here is a brief explanation of how and why an asymptotic relation breaks down at
the edge of the wedge of its validity. If two functions f(z) and g(z) are asymptotic
as z— zp, the difference f(z) — g(z) is small compared with g(z) as z - z,:
lim__,, [f(z) — g(2)]/g(z) = 0. The difference f(z) — g(z) is what we neglect to
write down when we formulate an asymptotic relation; if we included this differ-
ence, we would have an equality: f(z) = g(z) + [ f(z) — g(z)]. When z lies in the
interior of the wedge, the difference f(z) — g(z) is said to be subdominant or reces-
sive as compared with f(z) or g(z) which are dominant.

Imz

Complex-z (z=>0: largzl <)

plane
\360o

Re z

Figure 3.19 Sector of validity for the asymptotic relation (3.4.4a).
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As z approaches the edge of the wedge of asymptoticity, the subdominant
term f— g grows in magnitude in comparison with the dominant term g. At the
edge of the wedge, called a Stokes line, it is no longer valid to use the words
dominant or subdominant because fand f — g have the same order of magnitude.
As z crosses the Stokes line, the dominant and subdominant terms exchange
identities: on the other side of the Stokes line f — g » g (z = z,). The exchange of
identities is called the Stokes phenomenon.

Example 11 Stokes phenomenon for sinh (z™'). Both sinh (z7!) and its asymptotic behavior
1,z-1

2¢° " grow exponentially as z— 0 in the right half plane Re z > 0. The difference between
sinh (z7') and 4¢*"" is —4e™*"", which is exponentially small in the half plane Re z > 0. If we
rotate z in the asymptotic relation sinh (z7') ~ 4¢*™' (z - 0) out of the right half plane, then this
asymptotic relation is no longer valid because the subdominant error term —4e™*"' is no longer
small.

In general, the opening angle of the sector in which any asymptotic relation is valid is
the largest angle for which the relative error between the left and right sides is small. The error
term here is no longer exponentially small when z lies on the imaginary axis. This accounts
for the wedge opening angle of 180°.

It is important to emphasize in the above example that the two possible
leading asymptotic behaviors of sinh (z~!) as z — 0, which are 4e*™* for Re z > 0
and —4e”*"' for Re z <0, are comparable in magnitude when they are purely
oscillatory (on the Stokes line). The leading behaviors are most unequal in magni-
tude when they are purely real (exponentially growing or falling). The line
along which the leading behaviors are most unequal is called an anti-Stokes line.

The Stokes phenomenon is a property of the exponential function.
If the subdominant term is smaller than the dominant term by a power of
Z — 2z as z— z, in all directions in the complex plane, then there is no Stokes
phenomenon. (Why?)

When Stokes lines do occur, their location is determined by the exponential
contribution to the leading behavior. For example, if the leading behaviors of
solutions to a second-order differential equation are 51 and %2 as z — z,, then
the Stokes lines are the asymptotes as z — z, of the curves

Re [S(z) - S,(z)] = 0.
The anti-Stokes lines are the asymptotes as z — z, of the curves
Im [S,(z) — S,(z)] = 0.

Observe that we have defined Stokes and anti-Stokes lines as asymptotes because
these asymptotes determine the opening angles of the wedges of validity of asymp-
totic relations. Note that Stokes and anti-Stokes lines are a local property of
functions; they are only meaningful in the immediate vicinity of z,.

Example 12 Stokes lines for the Airy equation. The controlling factors of the large-z behaviors of
solutions to the Airy equation y” = zy are given by e*2***3. Hence, Stokes lines occur at
Re z¥2 =0 or arg z = +in, 7 (|z] > o); anti-Stokes lines occur at Im z%? =0 or arg z =0,
tin (|z] - ).

The leading asymptotic behavior of Bi (z) in (3.7.16) is valid between the Stokes lines at
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arg z = +4m. On the other hand, the leading asymptotic behavior of Ai (z) is valid in a much
larger wedge:

Al (z) ~4r V227 W8 m 23 2 5 0 |arg z] < 1. (3.7.17)

Observe that the behavior (3.7.17) of Ai (z), which decays exponentially along the positive real
axis, is valid in a much larger sector than the behavior (3.7.16) of Bi (z), which grows exponen-
tially on the positive real axis. Despite the Stokes lines at arg z = +4=, (3.7.17) is valid until the
Stokes line at arg z = m. This inequality of opening angles is a nontrivial property of Airy
functions that we return to in Sec. 3.8.

Example 13 Stokes lines for the parabolic cylinder equation. The controlling factors of the leading
behaviors of solutions to the parabolic cylinder equation y” + (v + 1 — 1z2)y = 0 are e**¥* as
z — 0. Thus, Stokes lines occur at arg z = +4n, +3n (|z| - oo) and anti-Stokes lines occur at
arg z =0, +7/2,  (|z| > ).

The leading asymptotic behavior of the parabolic cylinder function D,(z) is

D(z) ~z'e”*  z- c0; |arg z| <3m. (3.7.18)

Again observe that the behavior of D (z) which decays exponentially along the positive real axis is
valid beyond the Stokes lines at arg z = +4n and breaks down at the Stokes lines arg z = +3n.

As a rule, that solution which decays most rapidly along the positive real axis
[Ai (z) or D,(z)] grows as z is rotated through the Stokes line nearest the positive
real axis. For this kind of solution, it is correct to continue analytically the
leading asymptotic behavior up to the Stokes lines beyond the ones nearest the
real axis. It is incorrect to continue analytically the leading asymptotic behavior of
solutions that grow along the positive real axis [Bi (z)] beyond the Stokes lines
nearest the real axis. In Sec. 3.8 we show how to continue the full asymptotic series
past Stokes lines, explain why some asymptotic relations are valid beyond Stokes
lines, and discuss the connection between one-sided asymptotic relations that
have different behaviors as x - xo+ and x — x—.

We conclude with some comments on the origin of the Stokes phenomenon.
As we have repeatedly said, the reason for using an asymptotic approximation is
to replace a complicated transcendental function like Ai (z) by simpler expres-
sions involving elementary functions like exponentials and powers of z. From a
practical point of view, much is gained by such approximations. However, one
pays for these advantages by having to deal with the complexities of the Stokes
phenomenon. The Stokes phenomenon is not an intrinsic property of a function
like Ai (z), but rather it is a property of the functions that are used to approximate
it. The Stokes phenomenon reflects the presence of exponential functions in the
asymptotic approximation. An asymptotic relation like Ai (z) ~ Ai (z) (z = )
does not exhibit the Stokes phenomenon; this relation is valid as z— co in all
directions. However, this relation contains no useful information. By contrast, the
relation
1 7 14p= 22323
2/n ’

represents progress, but at the same time it exhibits the Stokes phenomenon when
larg z| = .

Ai(z) ~ z— o0; |arg z| <=,
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3.8 ASYMPTOTIC SERIES

In previous sections we have developed a formal procedure for finding asymptotic
series representations of solutions to differential equations and have verified the
validity of our results numerically. However, the approach has been intuitive. In
this section, we outline the mathematical analysis necessary to justify the asymp-
totic methods we have used.

We begin by emphasizing the difference between convergent and asymptotic
series. Then, we follow with several examples which illustrate what is involved in
proving that a power series is asymptotic to a function and for these examples we
show why the asymptotic series give good numerical approximations. Next, we
review some of the mathematical properties of asymptotic series. We also show
how to prove a formal power series is asymptotic to a solution of a differential
equation. Finally, we consider asymptotic series in the complex plane and the
Stokes phenomenon.

Convergent and Divergent Power Series

In Sec. 3.5 we defined f(x) ~ Y% a,(x — Xo)' (x = X,) to mean that for every N
the remainder &y(x) after (N + 1) terms of the series is much smaller than the last
retained term as x — Xo: &y(X) = f(X) = Yoo a,(x — X0 < (x — Xo)" (x = xo).

Example 1 Taylor series as asymptotic series. If the power series Y o a,(x — X,)' converges for
|x — xo| < R to the function f(x), then the series is also asymptotic to f(x) as x — xo: f(x) ~
Yoo an(x — Xo)' (x = x,). Since a, = ")(x,)/n!, repeated application of 'Hopital’s rule gives

N

S(x) = X a,(x = xo)

n=0

lim W:awr

x—=xq

Thus, ey(x) = f(x) = YN_¢ a,(x — xo)" < (x — xo)}¥ (x = x,). We conclude that asymptotic series
are generalizations of Taylor series because they include Taylor series as special cases.

A series need not be convergent to be asymptotic. Indeed, most asymptotic
series are not convergent. Let us contrast convergent and asymptotic series. If
S(x) = Y,"-0 a(x — xo)' is a convergent series for |x — x| < R, then the remain-
der &y(x) goes to zero as N — oo for any fixed x, |x — x,| <R:

Convergent: ey(x)= Y a,(x—Xo)'=0, N oo;x fixed.

n=N+1

On the other hand, if the series is asymptotic to f(x), f(x) ~ Y20 au(x — Xo)'
(x — xo), then the remainder ey(x) goes to zero faster than (x — x)" as x = x,, but
need not go to zero as N — oo for fixed x:
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Asymptotic:  ey{x) < (x — xo)",  x— Xxo; N fixed.

Convergence is an absolute concept; it is an intrinsic property of the expan-
sion coefficients a,. One can prove that a series converges without knowing the
function to which it converges. However, asymptoticity is a relative property of
the expansion coefficients and the function f (x) to which the series is asymptotic.
To prove that a power series is asymptotic to f (x), one must consider both f (x)
and the expansion coefficients.

Let us clarify this distinction. Suppose you are given a power series and are
asked to determine whether it is an asymptotic series as x — xo. The correct
response is that you have been asked a stupid question! Why? Because every
power series is asymptotic to some continuous function f(x) as x — x, !

We present the construction of such a function as an example (see also Probs.
3.79 and 3.80).

Example 2 Construction of a continuous function asymptotic to a given power series. Given a
formal power series ) ., a,(x — X,)", we define the continuous function ¢(x; a), plotted in Fig.
3.20, as follows:

1 [x] <da,
d)(x;a):'Z(l—l%(]), e < x| <a,
0, a< x|
We also define a sequence of numbers a, =min (1/|a,|, 27"), where a, are the arbitrary
coefficients of the series ) = a,(x — Xo)". The function f(x) defined by

©

fx)= ¥ adlx — xo3,)(x ~ xo)'

n=0
is finite, continuous, and satisfies
®
)~ X alx —xo),  x—xo.
n=0

It is finite and continuous for any x # x, because the series defining f(x) truncates after at

most N terms, where N is the smallest integer satisfying 27% < |x — xo|. Also, if |x — xo| <

$min 27% 1/]a,}, ..., 1/]ay|) = Ry, then ¢(x — xo;,) = Lfor n =0, ..., N. Thus, if |x — x| <
N

f(x)=ao + ay(x — xo) + ~** + an(x — xo)¥ + i a,p(x — Xo; 0,)(x — Xo )™

n=N+1

/ Wa)
! |

-a -af2 0 «f2 o x

Figure 3.20 A plot of ¢(x; a) in Example 2.
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Also, the definitions of «, and ¢(x; «) imply that
lap(x — xo; aa)(x = xo)| <1 and  |o(x — xo; )| < 1

for all x and all n. Therefore, if [x — xo| < Ry, then

N

)= X anlx = xo)

n=0

Jen(x)] =

ay, 90 = Xo; ay, ) = %) T+ Y a,d(x — xo @)X — xo)
n=N+2

@
Saver] [x =%+ X [x—xo!
n=N+2

= |x = X[ layy | + (1= |x = xo]) T (x = xo)¥, x> x,.
Thus, Y4 a,(x — x,) is asymptotic to f(x) as x — x,.
Since every power series is an asymptotic power series, it is vacuous to ask
whether a given series is asymptotic. However, it is meaningful to ask whether a
power series is asymptotic to a given function f(x) as x — x,. This is the reason

why the definition given at the beginning of this section includes both a series and
a function.

Examples of Asymptotic Series
Example 3 Stieltjes series. The prototype of an asymptotic series is the so-called Stieltjes series

(—1yn!t x" (3.8.1)

ip8

We saw earlier that this series is a formal power series solution to the differential equation
(34.2). We will now prove that this series is really asymptotic to a solution of (3.4.2) by
“summing” the series and thereby reconstructing the exact solution to (3.4.2).

Of course, one cannot actually add up all the terms of a divergent series because the sum
does not exist. By “summing” we mean finding a function to which the series is asymptotic.
“Summation” is the inverse of expanding a function into an asymptotic series.

To sum the series (3.8.1) we invoke the integral identity n! = [§ e™'¢" dt:

©

i (—=x)nt— f (—x)"J‘ e~ 't"dt.

Next, we execute several sleazy maneuvers. We interchange the order of summation and
integration,

LY «© o0 @
y (—x)~j e~ 't dt — f dte™ Y (—xt),
n=0 ] ) n=0
and we sum the geometric series ) axo (—xt)" — 1/(1 + xt), even though the sum diverges for
those values of ¢ such that |xt| > L.
Despite these dubious manipulations, the resulting integral

-t

® e
Y(X)—fo Tt (3.82)
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which is called a Stieltjes integral, exists and defines an analytic function of x for all x > 0.
Moreover, y(x) exactly satisfies the differential equation (3.4.2):

© [ 2x2? (1 + 3x) 1
2y + (14 3x) + y = _ .
vt Wty L, (1+xt)  (1+xt)>  1+xt

® d t
[ 4t _etla=o, 0.
L dt[(l-{-xt)ze ] ! x>

Finally, we show that y(x) in (3.8.2) has an asymptotic power series expansion valid as
x — 0+ which is precisely the Stieltjes series in (3.8.1).
Integrating by parts, we obtain the identity

J' (1+xt)y e de=1- nxJ‘ (1 +xt)™""te™t dt.
o [

Repeated application of this formula gives

y(x) = { (14 xt)"te™" dt
K o
=1-x . (1 + xt)"2e™" dt
‘o

0

1—x+2x? J (1 +xt) e de
)

I=x+21x2 =30 x>+ + (= 1)¥N1xV + gy(x),

where

en(x) = (=" TN + 1)1 XN J' m(l +xt)™V" %" dt.

0

Finally, we use the inequality
J' (1+xt)'"‘2e"dzsj etdt=1 x—-0+,
0 0

which holds because 1 + xt > 1if x >0 and ¢ > 0, to show that
len()] < (N + 1) x¥* T« xV, x>0+,
This completes the demonstration that the Stieltjes series (3.8.1) is asymptotic to the Stieltjes

integral solution to the differential equation (3.4.2).
For the behavior of y(x) as x - + o, see Prob. 3.39(i).

Example 4 General Stieltjes series and integrals. A generalization of the Stieltjes integral (3.8.2) is
given by
°_pl1)
=| —dt, 383
=] T a (383)
where the weight function p(t) is nonnegative for t > 0 and approaches zero so rapidly as t - co
that the moment integrals

a,= [ t"p(t) dt (3.8.4)

0

exist for all positive integers n.
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Every Stieltjes integral has an asymptotic power series expansion whose coefficients are
(=1)a,

©

f)~ X (=1fa,x",  x—0+. (385)

n=0

To prove this assertion, we note that

eyx)=f(x) = ¥ (- 1)a,x"

n=0

0 1 N
= t - —xt)*| dt 38.6
o] - X 0 (86)

™ el) o

—Io 1+ xt xafttdr
for all N. Thus,

len(x)| < x¥*! J. pl)M* tdt=ay, X"« XN, x-0+, (3.8.7)

[

where we use 1+ xt >0 and p(t) > 0 for x > 0 and ¢t > 0. This completes the verification of
(3.8.5).

Example 5 Stieltjes series with weight function K y(t). If p(t) = K(t), the modified Bessel function
of order 0, then (3.8.6) becomes

[ Kl Y 2x)”[l‘(§n+%)]z (383)

o 1+ xt
(see Prob. 3.76).

Numerical Approximations Using Asymptotic Series: The Optimal
Truncation Rule

It is possible to improve our error estimates for Stieltjes series. Equation (3.8.7)
shows that the error between the Stieltjes integral (3.8.2) and the first N terms of
the Stieltjes series in (3.8.1) is smaller than the absolute value of the next term in
the series N'! x". Also, the sign of the error is the same as the sign of the next term.
The same is true for the general Stieltjes series (3.8.5); the error between the
Stieltjes integral (3.8.3) and N terms of the Stieltjes series (3.8.5) has the same sign
and is less than the (N + 1)th term of the series.

These error bounds imply that for any fixed x, truncating the Stieltjes series
(3.8.5) just before the smallest term will give a good numerical estimate of the
Stieltjes integral (3.8.4). It is more difficult to justify this optimal truncation rule
for asymptotic series that are not Stieltjes series. However, we have had remark-
able success with this rule for truncating asymptotic series (see Sec. 3.5). In fact,
even though the asymptotic series (3.5.8b) and (3.5.9b) for K,(x) and (3.7.14) and
(3.7.15) for J (x) are not Stieltjes series, it is still true that the error after N terms is
less than the (N + 1)th term provided that N is larger than some number depend-
ing on v but not on x (see Prob. 3.77).
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Of course, not every asymptotic series has the property that the error after N
terms is less than the (N + 1)th term. For example, the error after N terms in the
asymptotic series (3.5.8a) and (3.5.9a) for I,(x) is not similar in sign and smaller
than the (N + 1)th term. Nevertheless, our truncation procedure gave very good
results (see Figs. 3.5 and 3.6 and Table 3.1).

How well do these optimal asymptotic approximations really work? For
Stieltjes series, we can provide an accurate asymptotic estimate of the difference
between the exact value of the Stieltjes integral and the optimal truncation of the
Stieltjes series as x — 0+.

Example 6 Error estimate for an optimally truncated Stieltjes series. According to (3.8.6), the
error after N terms of the Stieltjes series (3.8.1) for which the weight function p(t)=e™"is

et

(=x)" fm N

dt
° 1+ xt

for any N. The optimal truncation of (3.8.1) is obtained by choosing N equal to the largest integer
less than or equal to 1/x; this is true because the ratio of the (n + 1)th term to the nth term of
(3.8.1) is —nx. If we approximate this integral representation for the error (see Probs. 5.25 and
6.37), we find that the optimal error & _,.,(x) satisfies

1/2
s ~ () e 50 (389)

We have checked the validity of (3.8.9) numerically. In Fig. 3.21 we plot the ratio of | &,pumai(X)|
determined numerically by optimally truncating the series (3.8.1) to its leading behavior given in
(3.8.9). Observe that this ratio approaches 1 as x — 0+.

Properties of Asymptotic Series

(a) Nonuniqueness We have given a successful prescription for obtaining good
numerical results from divergent asymptotic series. Strangely enough, one must
use this technique with caution because it produces a unigue numerical answer!
Actually, the “sum” of a divergent power series is not uniquely determined. For
example, if f(x) ~ Y0 aa(x — Xo)' (x = xo), then it is also true that f(x)+
e T LN a4, (x — Xo)" (x — xo) because e *T¥0)72 « (x — xo)" a5 X — X,
for all n. In fact, the series Y -¢ a,(x — xo)" is asymptotic as x - x, to any
function which differs from f(x) by a function g(x) so long as g(x) — 0 as x — x,
more rapidly than all powers of x — x,. Such a function g(x) is said to be sub-
dominant to the asymptotic power series; the asymptotic expansion of g(x) is

w

gx)~ 2 O(x —xo)f,  x—xo.
n=0
In short, an asymptotic series is asymptotic to a whole class of functions that
differ from each other by subdominant functions. We do not change the asymptot-
ic series by adding a subdominant function, even if the subdominant function is
multiplied by a huge numerical coefficient.
For example, e™** is subdominant with respect to the asymptotic expansion
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X

Figure 3.21 A computer plot of the ratio of |€,p;ma(X)|/[(n/2x)"/% exp (— 1/x)] for 0.05 < x < 1. Here
Eopuimal(X) 1S the error in the optimal asymptotic approximation to the Stieltjes integral
[& e7'(1+ xt)™*' dr in (3.8.2); that is, it is the difference between the Stieltjes integral and the
optimally truncated asymptotic series Y n=o (—1)n! x". Theoretically, the leading behavior of
[Eapumar(X)| is (m/2x)"/? exp(—1/x) as x -0+ [see (3.8.9)]. The graph clearly verifies this prediction.

(3.5.13) and (3.5.14) of D5 5(x) as x — + oo. Therefore, f(x) = D; 5(x) + 10*%~**
has the same asymptotic expansion as D; s(x) as x — + co. What happens now if
we compute the optimal asymptotic approximation to f(x)? We already know
from Fig. 3.7 and Table 3.2 that the optimal asymptotic approximation is very
close to Dj s(x) for x > 1. Therefore, since 10'%™** > | D5 5(x)| for 0 <x < 2.1,
the optimal asymptotic approximation to f(x) is not accurate for 1 <x <2.1.
Nevertheless, when x > 2.3 the optimal asymptotic approximation is very close to
£ ()

The above discussion shows that the value of x for which the optimal asymp-
totic approximation becomes useful cannot be predicted from the asymptotic
series itself. Rather, it depends on the admixture of subdominant functions. Thus,
for any given problem we can never really know a priori whether or not asymp-
totic analysis will give good numerical results at a fixed value of x. However,
experience has shown that asymptotic methods nearly always give spectacularly
good results.

(b) Uniqueness Although there are many different functions asymptotic to a given
power series, there is only one asymptotic power series for each function.
Specifically, if a function f(x) can be expanded as f(x)~ Y;%¢ du(x — Xo)'
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(x = xo), then the expansion coefficients are unique. The proof of uniqueness is
given in Sec. 3.5.

(c) Equating coefficients in asymptotic series It is not strictly correct to write
Yo @u(x — XoY' ~ Y520 balx — Xo)' (x = X,) because power series can only be
asymptotic to functions, and not to other power series. However, we will occa-
sionally use this notation; we define it to mean that the class of functions to which
Yo an(x — xo) and Y%, by(x — x, )" are asymptotic as x — X, are the same. It
follows from the uniqueness of asymptotic expansions that two power series are
asymptotic if and only if a, = b, for all n. Thus, we may equate coefficients of like
powers of x — x, in power series that are “asymptotic to each other.”

(d) Arithmetical operations on asymptotic series Arithmetical operations may be
performed term by term on asymptotic series. Specifically, suppose

o0

f(x)~"=0 an(x — xo ), X = Xg,

g(x) ~ "20 ba(x — xo ), X = Xq.

Then of (x) + Ba(x) i (uay + o)X — xofs x> xo,
Sl ~ i ax = oY, X,

[\/]8

W(x — )" X — Xg,
=0

where ¢, =Y _q a,,,b,,_,,,, and if by # 0, dy = ay /by and
d"___a,,—Z",,,;lod b,_ ’

bo
The proofs of these results are elementary. For example, let us prove that

asymptotic series can be multiplied term by term. Using the above expression for
¢,, we obtain

n> 1.

; cu(x — Xo)"

N

=f(x)g(x) = Y an(x — xo)" n; by_mx — xo)* ™™

m=0

= alo) | ) %, anls =0 |

+ % ane = o ol

N-m
- 2 bp(x_xo)p
p=0
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for all N. Since lim, ., g(x) = by, |g(x)| <2|by| for x sufficiently close to x,,
say |x — xo| < R. Hence, by the definition of asymptotic series,

If(x)g(x) — X calx — xo)"| < (2|bo] + |ao]

n=0

+|a1|+'“+|aN|)|x—x0|N, X — Xo,

for all N. Thus, asymptotic series can be multiplied term by term.

(e) Integration of asymptotic series Any asymptotic series f(x) ~ Y =% ¢ a,(x — xo)"
{x = x) can be integrated term by term if f(x) is integrable near x,:

x

[ feyae~ ¥

x0 n=0

(x —xo)"*Y,  x—x,.

aﬂ
n+1
To prove this result we begin with the definition of an asymptotic power
series: | f(x) = Ynoo aalx — xo)'| « (x — xo)" (x = X ). From this it follows that

for any ¢ > 0 there exists an interval about x,, say |x — xo| < R (where R of
course depends on ¢), in which

N
|f(x) - Zoa,,(x—xo)"|S£|x—x0|”, |x —xo] <R.
Therefore,
x N X N
j [f(t)— _ZO a,,(t—xo)!‘]dz sJ flt)— ZO a,(t — xo)'| dt
<e r |t — xo|" dt
S
Hence,
x N
| SO di= 3 afn+ D)= xop ™|
X0 n=0 < , IX—X I SR
(x — xo)¥ 1 N+1 0

But ¢ > 0 is arbitrary, so

X

N
J fl)yde =Y & (x=xo) P (x —x "L, x> x,
x0 n=0n + 1

for all N. Thus, asymptotic series can be integrated term by term.

If we wish to integrate an asymptotic series at infinity, there is a slight compli-
cation. The above argument can be extended to show that if f(x) ~ Y% a,x "
(x — o0), then

J [f(t)—ag—a,t™ '] dt ~ ton X — 0.

B S
Zon—1 ’
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(f) Differentiation of asymptotic series Asymptotic series cannot in general be
differentiated term by term. For example even if f(x )~ Yo anlx — xo)
(x = xo), it does not necessarily follow that f'(x) ~ 3% | na,(x — xo)" ™" (x = xo).
The problem with dlffercntlatxon is connected thh subdominance: the functions

f(x) and
g(x) = f(x) + e~ METx0 gin (o1 x0?)

differ by a subdominant function and thus have the same asymptotic series
expansion as x — xo. However, it is not necessarily true that f’(x) and

g'(x) =f"(x) = 2(x — xo) "> cos (e=TX0%) 4 2(x — x4)7 3™ Vix X0 i (e1/x7x0?)

have the same asymptotic power series expansion as x — x,. Therefore, term-by-
term differentiation of an asymptotic series may not be valid for both f(x) and
g(x); asymptotic series cannot be differentiated termwise without additional
restrictions.

Termwise integration of an asymptotic series, which we justified above, is an
example of an Abelian theorem. In an Abelian theorem, asymptotic information
about an average of a function (its integral) is deduced from asymptotic informa-
tion about the function itself. Differentiation of asymptotic series relates to the
converse process; namely, deducing asymptotic information about a derivative
from asymptotic information about a function. Converses to Abelian theorems are
called Tauberian theorems. Tauberian theorems require conditions supplemen-
tary to those of corresponding Abelian theorems to be valid. In the case of term-
wise differentiation of asymptotic series, there are several situations in which
Tauberian-like theorems provide justification for termwise differentiation.

One such result is as follows. Suppose f’(x) exists, is integrable, and
F(x) ~ Yoo an(x — xo)" (x = xo). Then it follows that

o0
Z A= x0T x> X

This result is an immediate consequence of the Abelian theorem for termwise
integration of an asymptotic series proved above. To see this, suppose that
S(x) ~ Yo balx — x0)" (x = xo). Then, integrating term by term gives

x

F)=flxo)+ | fle)ar

X0

0

~ n _ n+ 1 .
f(x0)+"‘_;0n+1(x X)), x-xg
But since f(x)~ Yo au(x — Xo)" (x —x,) and since asymptotic series are

unique, we ﬁnd that ag = f(xo), @+ = b,/(n + 1) (n =0, 1, ...). This proves the
theorem.

There are other more technical Tauberian-like results for differentiation of
asymptotic relations. A result of this kind is as follows. Suppose f (x)~ x?
(x = +0), where p > 1 and f”(x) is positive. Then (see Prob. 3.84)f"(x) ~ px?~!
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(x = +00). This result concerns only the leading behavior of f(x) and does not
Justify termwise differentiation of an asymptotic series (see Prob. 3.85).

Termwise differentiation of asymptotic series is much clearer in the complex
domain. For example, suppose that f(z) is analytic in the sector
0, <arg (z—20)<6,, 0< [z— 25| <R and f(z) ~ Y20 au(z — 20)" [z 205
0, < arg(z — zp) < 0,]. Then (see Prob. 3.72)

fi2)~ Y naz—zo)"" Y,  z-2z0;6, <arg(z—z) <0,

It should be clear enough from these three special cases that the variety and
complexity of Tauberian theorems for differentiation of asymptotic series is bewil-
dering. Fortunately, the whole situation is greatly simplified if a function is known
to satisfy a linear differential equation whose coefficients can be expanded in
asymptotic series.

Asymptotic Expansions of Solutions to Differential Equations

The formal procedures given in Secs. 3.4 to 3.7 for calculating asymptotic expan-
sions of solutions to differential equations require justification. There are several
possible difficulties. First, we have always assumed that after the leading-order
behavior is factored off, an asymptotic series expansion of the solution remains.
However, not all functions can be expanded in asymptotic series. For example,
consider the function y(t) = t2 + e **! 75" which has leading behavior t* as
t — 0. As t — o0, there are narrow regions that occur periodically in which sin ¢ is
near 1 and the term e™**!~%"9 {5 not negligible with respect to 1. The existence of
these regions implies that there does not exist any asymptotic power series rep-
resentation for y(t) as t —» +oco. We shall see that this difficulty does not afflict
solutions of differential equations whose coefficients themselves have asymptotic
power series expansions.

Second, asymptotic series cannot, in general, be differentiated termwise. Thus,
the formal differentiation of asymptotic series, which allowed us to determine the
coefficients in the expansions of solutions to differential equations, needs to be
justified.

The proof that our formal methods are correct has two parts. First, we argue
that if y(x) is the solution of y” + py’ + gy = 0 where p(x), p'(x), g(x) are expand-
able in asymptotic power series as x — x, and if we assume that y(x) is also
expandable in an asymptotic power series as x — X, then the derivatives of y(x)
are also expandable and their asymptotic power series are obtained by termwise
differentiation of the asymptotic power series representing y(x). The proof is
elementary. Consider the special case of the differential equation y”(x)+
q(x)y(x)= 0. If g(x) and y(x) possess asymptotic power series representations as
X — Xo, then the differential equation itself ensures that y”(x) does also (because
multiplication of asymptotic power series is permissible). Integrating the asymptot-
ic power series representing y”(x) shows that y'(x) also has an asymptotic series,
so termwise differentiation is justified. The argument for a general nth-order differ-
ential equation is left for an exercise (Prob. 3.81).



APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS 129

In summary, once it is known that y(x) is expandable in an asymptotic power
series, the differential equation itself ensures that derivatives of y(x) can also be
expanded; the uniqueness of asymptotic expansions ensures that formal calcula-
tion procedures yield correct answers. It remains only to prove that the solutions
have asymptotic series representations. The method of proof will be illustrated by
an example.

Example 7 Existence of an asymptotic expansion for K ,(x). The quickest way to prove that
(3.5.8b) and (3.5.9b) is the asymptotic expansion of K,(x) as x - + o is to expand an integral
representation of K,(x) (see Prob. 3.77). However, this approach requires that one have an
integral representation at hand. In fact, it is relatively rare to have an integral representation for a
function and relatively common to have the differential equation. The method we are about to
use proceeds directly from the differential equation and, as such, is very general

Recall that K,(x) is defined as that solution of the modified Bessel equation

2. n

X2y +xy — (x2+v2)y =0 (3.8.10)
which behaves as

a2\ 12
K, (x) ~ (5) e,  x- +o0. (3.8.11)

If we substitute (m/2x)"/?e™ *w(x) for y(x) in (3.8.10), we obtain the differential equation for
w(x):

A
W= 2w + 5w =0, (38.12)
X

where A = 4 — vZ. We want to prove that w(x) has an asymptotic expansion of the form w(x) ~
1+ a,/x + ay/x? + -+, valid as x —» +c0.

If there exists such a solution to (3.8.12), it is easy to verify that it must satisfy the integral
equation

| t
wx)=1+-1 j (270 — 1)&2)& (3.8.13)

2, t
In Prob. 3.82 it is shown that the integral equation (3.8.13) has a solution which is bounded

for x > a: |w(x)| < B, (x > a), where B,, and a are positive constants. This result is crucial. Once

this bound is proved, the inequality |e**™" — 1| < 1 for t > x gives
1~ w(t)| 1 B,
= 2(x—1) __ — _
lzajx (e Dorlg, 0 x>a

This and (3.8.13) imply that w(x) > 1 as x » + oo and that w(x) = 1 + wy(x), |w,(x)| < B,/x
(x > a), where B, = }|AB,| is a positive constant. Substituting this result into (3.8.13) gives

| 1 | S P w(f)
wl(x)=51j (e '>_1)Fd:+§x[ (270 — 1) =5t

x x
Integrating the first integral by parts gives

124 ).j‘” et

At d.
2x  4xr 2l 8

L™ 1
EAJ; (270 = 1) dt =

Hence, there is a positive constant B, such that w(x) =1 — 4/2x + w,(x), [wy(x)| < B,/x?
(x > a), which is equivalent to w(x) — 1 ~ —}/2x (x - + o).

If we continue the process of substituting into the integral equation, integrating by parts,
and bounding the remaining terms, we obtain all the ferms in the asymptotic series (3.5.9b) for
w(x). We have proved the existence of the asymptotic series for w(x) and constructed the series as
well.
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Asymptotic Power Series in the Complex Plane: Connection Between
Various Wedges of Validity

In Sec. 3.7 we saw that asyniptotic relations are valid in wedge-shaped regions in
the complex plane. Asymptotic power series are also valid in sectors: if a power
series is asymptotic to a single-valued function as z — z, in a full 360° disk about
7 and if z, is at worst an isolated singularity, then one can prove that the series is
a Taylor series (see Prob. 3.83). Thus, if an asymptotic power series is divergent, it
can only be valid in a sector whose opening angle is less than 360°.

Outside the sector in which a series is asymptotic to a function there are
usually other series asymptotic to the function having their own sectors of validity.
For example, we saw in Secs. 3.5 and 3.7 that the functions Ai (x)and Bi (x) have
different asymptotic expansions for large |x| depending on the sign of x. Let us
consider the problem of representing the functions Ai (z) and Bi (z) as z— co in
terms of asymptotic series. All the local asymptotic analysis we used when z was
real still applies when z is complex. Therefore, any solution to the Airy equation

" = zy has the general asymptotic representation

@

y(z)~ alz—1/4e—2z3/2/3 _1yucnz—-3n/2

(
n=0
o]
+ayz7 2PN g 27 25 a0, (3.8.14)
n=0

where a; and a, are constants. The asymptotic expansions of special solutions to
the Airy equation like Ai (z) and Bi (z) are determined by specifying the values of
a, and a,. The Stokes phenomenon is simply that the values of a, and a, for Ai (z)
or Bi (z) may be different in different sectors of the complex plane. We summarize
the values of a; and a, below. For Ai (z),

1
a; =§ﬁ’ a, =0’ 'argzl <7, (3815)
1 i n Sn
_ , - , = = 3.8.16
a, NG a, N 3<argz<3 ( )
1 —i Sn 1
= = _ - 3.8.17
a, 2/ a, N 3 <agz< —3 ( )
For Bi (z),
a, arbitrar a L |arg z| < (3.8.18)
1 Y, Z_ﬁ’ g 3 > o
i 1 n Sn
- = i e 3.3.19
a; 2\/;7 a; 2\/E’ 3<arg2< 3 ’ ( )
i 1 St n
“w=3 e @y T3 casr<oy (8%0)
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In (3.8.18) a, is arbitrary because it multiplies a function which is subdominant
(exponentially small) for |arg z| < m/3. Can you recover the asymptotic expan-
sions (3.7.12) and (3.7.13) for Ai (x) and Bi (x) as x » —c0?

Even though the Airy functions are entire, one may not analytically continue
their asymptotic expansions from one wedge of validity to another. What then is
the connection between these different asymptotic expansions for large |z|?

To answer this question we will use two linear functional relations (see Prob.
3.78):

Ai (z) = —w Al (w2) — 0? Al (0%z), (3.8.21a)
Bi (z) = iw Ai (wz) — iw? Al (w?z), (3.8.21b)

where w = e is a cube root of unity.

Linear functional relations of this sort must exist because the four functions
Ai (z), Bi (z), Ai (wz), and Ai (w?z) are all solutions of the Airy equation y” = zy.
Since only two of these functions can be linearly independent, it follows that there
must be a linear relation between any three. To verify these relations one need
only substitute the Taylor expansions for Ai (z) and Bi (z) from (3.2.1)and (3.2.2)
into (3.8.21).

Let us use the functional relations (3.8.21) to derive the connection between
(3.8.15) and the relations (3.8.16) and (3.8.19) valid for in <argz <3m. If
in < arg z < 3in, then —n/3 < arg (wz) < mand — = < arg (w?z) < 4= Therefore,
(3-8.14) with a, and a, in (3.8.15) gives valid asymptotic expansions of Ai (wz)and
Ai (w*z). Using (3.8.21), we obtain (3.8.16) and (3.8.19). Equations (3.8.214,b) have
allowed us to rotate the asymptotic expansions through an angle of 120°. The
asymptotic expansion of Ai (z) is given for all arg z by (3.8.14) with (3.8.15) and
(3.8.16). However, there is no overlap in the regions of validity of the as ymptotic
expansions for Bi (z) given by (3.8.14) with (3.8.18) to (3.8.20). Additional asymp-
totic expansions for Bi (z) valid for — < arg z < $mand —4r < arg z < n may be
similarly obtained (see Prob. 3.61). By deriving these different asymptotic expan-
sions we explain the connection between the exponential behavior of Ai (x) and
Bi (x) for large positive x and their oscillatory behavior for large negative x.

—2mi/3

Example 8 Parabolic cylinder function for large negative argument. The technique we have just
described can also be used to determine the behavior of the parabolic cylinder function D (x) as
x — —oo. We begin with the asymptotic expansion for D,(z) which was derived in Sec. 3.5:

_v(v—l) +v(v— (v —=2)(v—-13) L

D(z) ~ 2~ |1
e~z 272 24

B

z-0; |arg z| < 3m (3.8.22)

It is not immediately evident why this asymptotic expansion is valid beyond the Stokes lines
at arg z = + n/4; we assume this expansion for now and postpone a discussion of it u ntil the end
of this section. However, as discussed earlier in this section, the rule is very simple: D, is the
subdominant solution to the parabolic cylinder equation on the positive x axis, so its ful  asymptot-
ic expansion is valid beyond the Stokes line nearest the positive x axis; the asymptotic expansion
of D, only exhibits the Stokes phenomenon at subsequent Stokes lines.

We will now obtain the asymptotic expansion of D,(z) beyond the region of validity of
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(3.8.22). To do this we will use a functional relation between D,(z), D,(—z), and D_,_(—iz).
Since each of these functions satisfies the parabolic cylinder equation y” + (v + 3 — 4z%)y = 0,
there must be a linear relation between them,

D,(z) = aD,(~z) + bD_,_ ,(~iz)

valid for all z. We know that D,(—z) and D_,_(—iz) are linearly independent solutions because
(3.8.22) implies that their leading behaviors respectively are (—z)'e™*"* and (—iz)™ "~ 'e**/*
for z— co along the negative real axis. To determine the constants a and b we require more
information than that contained in the asymptotic expansion (3.8.22). For example, it may be
shown (see Prob. 6.84) that '

Dv(O) - "1/22\//2/1“(% - %V), D:,(O) = —7[”22("* 1)/21—( _11,‘,).

These equations fix the values of a and b and we obtain the functional relation

2m)?
(—Tl)_ P l)n/ZD_v_l(_iz) (3823)

D,(z) = ™D (—z) + (=)

valid for all z, where we have used the identity (see Prob. 2.6) I'(—v)=
—n'227*7 (4 = $v)/[T(1 + $v)sin §nv] to simplify the final expression. [Notice that a = e™* can
be determined by applying (3.8.22) to D,(ix) = aD (—ix) + bD_,_(x) for x - + oo through
positive real values. However, (3.8.22) does not determine the constant b.]

Let us now use the functional relation (3.8.23) to obtain an asymptotic expansion of D (z) as
|z] >0 with im<argz<im If 4n<argz<in, then z,=—z=e "z satisfies
—3n <arg z, < 4n while z, = —iz = ™™z satisfies —1in < arg z, < 3n. Therefore, (3.8.22)
gives valid asymptotic expansions of both D,(z,) and D,(z,) as z — co. Thus, (3.8.23) implies

v — 1) + vv = 1)(v = 2)(v = 3) .

D,(z) ~ z'e” "4 [1 -

272 2474
2
B (2n)Y —— (v+ 1)(v+2) + (v+ v+ 2)(v+3)(v+4) o]
I(—v) 272 2-4z¢
zo oo in<argz<3n.  (3.824)

Notice that the regions of validity of (3.8.22) and (3.8.24) overlap for in < arg z < 3r. In this
overlap region the two expansions differ by subdominant terms, so they are completely consistent
with each other. For 3n < arg z < $n, (3.8.22) is not valid but (3.8.24) shows that

(2m)'2 (v+1)(v+2) + v+ 1)y +2)v+3)v+4) + ]

- iva,—v= 1,224 | |
D)~ =5y e [ M 24zt

zow;In<argz<im.  (3.825)

The functional relation (3.8.23) can be applied again to find an asymptotic expansion of
D(z) valid for 3n < arg z < In because z, = e™ "z satisfies —4n < arg z, < 3ns0(3.8.22) applies,
while z, = e~ ™z satisfies in < arg z, < 3n so (3.8.24) applies. We find that

D,(2) ~ e™ vmzrem U4 [l - V(VZ; } + i\l l)gv.;j)(v =3
(2m)'2 r—v—1 2t (v+1)v+2) v+ )y+2)v+3)v+4)
_r(—v)e z e [1+ 272 + 2-4z* P

zow;dn<argz<in
Repeating this argument once more gives

_v(v— l)+v(v— 1)
222

=

, z-oooim<argz<im

. 2 - 2)(v—
D,(z) ~ e'z'""z”e‘z"‘[l d 4)(" 3)_ J

4z

N
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Notice that the asymptotic expansions of D,(z) and D [(ze?™) are identical, as they must be,
because D [z) is a single-valued function. The branch cut in the asymptotic expansion (3.8.22)
when v is nonintegral is only apparent and disappears when the expansions are properly con-
tinued through Stokes lines.

Example 9 Eigenvalues of the parabolic cylinder equation. The boundary-value problem
Yy +(v+3-4xY)y=0 (-0 <x<w), y»0as |x| > oo, is an eigenvalue problem for the
parameter v. (In physics this is the quantum harmonic oscillator problem.) In order for nonzero
solutions to exist, it is necessary that v assume special values. We can solve this eigenvalue
problem using the asymptotic series (3.8.22) and (3.8.24).

First we note that the most general solution to the parabolic cylinder differential equation of
index v may be written as y(x) = ¢, D(x) + ¢, D_,_,(—ix) because D (x) and D_,_ ,(—ix) are
linearly independent. However, (3.8.22) shows that D _, _,(—ix) grows exponentially as x — + oo
for all values of v. Thus, ¢, = 0. According to (3.8.22), D (x) - 0 as x = + o0 s0 y(x) = ¢, D (x)is
the most general solution satisfying the boundary condition at + co.

Next, we observe that (3.8.24) implies that D,(x) grows exponentially as x - — oo unless
1/T(—v), the coefficient of the growing component, is 0. However, I'(—v) = oo only if v is a
nonnegative integer v =0, 1, 2, 3, .... Thus, the eigenvalue spectrum of the parabolic cylinder
equation consists of the nonnegative integers.

An explicit demonstration that v = n is an eigenvalue was given in Example 4 of Sec. 3.5,
where we showed that the eigenfunctions have the form D,(x) = e~*** He, (x) where He, (x) is
the nth-degree Hermite polynomial. Thus, D,(x) -0 as |x| — oo as required. The argument of
the present example shows that there are no other eigenvalues.

Until now we have assumed without proof that the functions Ai (z)and D,(z),
which are the subdominant solutions to the Airy and parabolic cylinder equations
for large positive z, have asymptotic expansions which are valid beyond the Stokes
lines nearest the positive real axis. Specifically we have assumed that the expan-
sion (3.8.14) with (3.8.15) for Ai (z) is valid for |arg z| < =, and not just for
|arg z| < jm, and that the expansion (3.8.22) for D,(z) is valid for |arg z| < 3m,
and not just for |arg z| <4n. In the next two examples we argue that these
assumptions are correct.

Our approach will be a generalization of that used earlier in this section to
show that K,(x) has an asymptotic expansion as x — +o0. We will construct
integral equations satisfied by Ai (z) and D,(z) and use these equations to establish
the regions of validity of the asymptotic expansions. Some of the technical
questions that arise are reserved for exercises, but our presentation will make clear
the overall plan of attack.

Example 10 Asymptotic expansion of Ai (z) for |arg z| < n. The most direct way to establish the
Stokes behavior of Ai(z) is to utilize an integral representation (see Prob. 6.75). The phe-
nomenon we are examining is also exhibited by functions for which integral representations are
not known. The method of integral equations used here is more technical, but because it follows
directly from the differential equations it is far more general.

The Airy function Ai (z) satisfies the integral equation (see Prob. 3.62)

z

=

1
(z) = 3 2= 1ag=22223 [l + J K(z, t)y(t) dtJ, (3.8.26)

©
where K(z, t) = 5t~ ¥*[exp (31*'%) — exp (4z*/? — 4t*'?)]. The point at oo in (3.8.26) is real and
positive, and restrictions on the complex path of integration in (3.8.26) connecting cc and z are
given below.
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The crucial step is demonstrating that there is a solution to (3.8.26) satisfying
|¥(z)] < M|z|""* exp (=% Re z¥/?), |arg z| <=, (3.8.27)

for all sufficiently large |z| and some constant M (see Prob. 3.62). The key fact in this demonstra-
tion is that if |arg z| < =, then there is a complex path of integration I' from ¢t = + oo tot = zon
which Re ¢¥? > Re z*'? and on which t does not pass close to the origin (see Fig. 3.22). On sucha
path

|K(z, t)] <3|t]7%* exp & Re £*12). (3.8.28)

With these facts established it is straightforward to verify (3.8.15). Using (3.8.26) to (3.8.28),
taking |arg z| < m, and assuming |z| to be so large that (3.8.27) holds on the path I, we have

¥(z)

[
1 - 1/2.- 1/4,- 22333
3N z e

<[ 1K@ O] 1y0)] |de]
r
<FM [ (175 |di] = MR,
r

where r is the smallest value of || on the path I'. It is not hard to show that there is an acceptable
path T for which r = |z| if |arg z| < 2n/3and r = |Re z¥2[*?if2n/3 < |arg z| < = (see Prob.
3.62). This proves that

y(z) ~ (l/zﬁ)z‘”‘e‘“”’”, 20 argz| < 7.

Continuing the argument as in Example 7 we generate the full asymptotic expansion (3.8.14)
with (3.8.15) when |arg z| < n (see Prob. 3.62).

Example 11 Asymptotic expansion of D,(z) for |arg z| < 3n. The parabolic cylinder function
D,(z) satisfies the integral equation (see Prob. 3.63)

y(z) = e

L+ [ Kz om0 d:}, (3.8.29)
where *

K(z, )= v(v = 1)~ 2e™1 [ 5= 22 g, (3.8.30)
and the point at co is real and positive. The complex paths in (3.8.29) and (3.8.30) are described
below.

Again, the crucial step in the proof of (3.8.22) is showing that there is a solution to (3.8.29)
satisfying

|¥(z)] < M|z"| exp (=% Re 22), |arg z| < 3=, (3.8.31)

for all sufficiently large |z| and some constant M (see Prob. 3.63). The key facts for this proof
are:

(a) If |arg z| < 3n/4, then there is a complex path of integration I' from t = + o0 to t =z on
which Re t? > Re z? and on which t does not pass close to the origin (see Fig. 3.23).
(b) There is a constant C such that

v=2

1
|K(z 1)| <C |r“"3|exp(‘iRe 12) +

JEIE
for all sufficiently large || and |z|.

To complete the demonstration of (3.8.22) we proceed as in Examples 7 and 10. From
(3.8.31) and (3.8.32), we obtain

¥(z)

zve~:2/4

-1

<[ K@ 0l x0)] |de] < C,r2,
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-8 -4 =2 8

Figure 3.22 A graph of the complex-t plane for |Re t| < 5, |Im t| < 5. The contours of Re t¥2 = ¢
are shown for ¢ = +0.5, +1, £2, +4, +8 and are labeled by the value of c. This figure may be used
as a guide for determining allowable contours of integration in (3.8.26); on an allowable contour
Re 132 > Re z*/2. Two contours are indicated: on the “good” contour Re 3/ > Re z*2, while on the
“bad” contour this condition is not satisfied.

where r is the smallest value of |¢| on the allowable path " and C| is a constant. It is not hard to
show that there is an allowable path T for which r = |z| if |arg z| <n/2and r = | Re 2?|"? if
n/2 < |arg z| < 3n/4 (see Prob. 3.63). This proves that

—z2/4
B

yz) ~ z¥e z— o0; |arg z| < 37

Continuing in this way we may prove the validity of the full series (3.8.22) for |arg z| < 3m/4 (see
Prob. 3.63).

The techniques used in Examples 10 and 11 to establish the validity of asymp-
totic relations in the complex plane are admittedly complicated. It is easier to use
integral representations of Ai (z) and D ,(z) to get the same results (see Probs. 6.75
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argt=—%1r argr=-Lg

Figure 3.23 A graph of the complex-t plane for |Re t| < 5, |Im ¢| < 5. The contours of Re t* = ¢ are
shown for ¢ = +1, +2, +4, +8, +16 and are labeled by the value of c. This figure may be used as
a guide for determining allowable contours of integration in (3.8.29); on an allowable contour
Re t2 > Re z2. “Good” and “bad” contours are shown which meet and do not meet these conditions.

and 6.84). However, we chose the present more-difficult route because the
methods used here are very general. All linear differential equations can be con-
verted to integral equations, while integral representations are only known for a
small class of special functions.

PROBLEMS FOR CHAPTER 3

Section 3.1

3.1 We have used the transformation x = 1/t to classify x = co as an ordinary, regular singular, or
irregular singular point. Would the transformations x = ¢™", x = ¢t (@ > 0), x = 1/sinh ¢ also work?
Is there any advantage to x = 1/t?
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3.2 Itis not possible to solve the differential equation (x? + 2)y” + [(3x* — 4)/x]y’ + (2 — 4x?)y = Oin
closed form. However, it is known that the general solution is analytic at x = 0. Verify this by finding
an equivalent system of linear differential equations of the form (3.1.13) which is nonsingular at x = 0,
33 Classify all the singular points (finite and infinite) of the following differential equations:

(a) y” = xy (Airy equation);

(b) x2y" + xy' + (x2 — v?*)y = 0 (Bessel equation);

(c) (1 - x)y" + [c = (a + b + 1)x]y’ — aby = 0 (hypergeometric equation);

d) xy"+ (b— x)y — ay = 0 (Kummer’s confluent hypergeometric equation);

(e) x2y" + (— — u? + kx — x?/4)y = 0 (Whittaker’s confluent hypergeometric equation);

Ny + (v + 4 — 4x?)y = 0 (Parabolic cylinder equation);

(g) y"+ (h— 20 cos 2x)y = 0 (Mathieu equation);

(h) (1 = x2)y" — 2xy" + [A + 48(1 — x?) — p*(1 — x2)™ ']y = O (spheroidal wave equation).
34 Classify the points at 0 and oo of the following differential equations:

(a) x7 d*y/dx* = y';

(b) x%y" = s

(¢) y"=x%;

(d) x?y" = e'l7y;

() (tan x)y' = y;

(£)y"=(nx)y

Section 3.2

3.5 Find the Taylor expansion about x = 0 of the solution to the initial-value problem (x — 1) x
(x = 2)y" + (4x — 6)y' + 2y = 0 [y(0) = 2, y'(0) = 1]. Where might one expect the series to converge?
For which x does it actually converge?

3.6 Find the Taylor series about 0 of the solution to the initial-value problems:

(a) y" = 2xy' + 8y = 0 [y(0) = 4, y'(0) = 0];

(b) y" — 2xy' + 8y = 0 [y(0) = 0, y'(0) = 4];

(€) (1—x*)y" —2xy + 12y = 0 [y(0) =0, y'(0) = 3];

(d) y"=(x = 1)y [y(0)= 1, y(0)= 0] ,

3.7 Estimate the number of terms in the Taylor series (3.2.1) and (3.2.2) that are necessary to compute
Ai (x) and Bi (x) correct to three decimal places at x = +1, +100, +10,000.

3.8 How many terms in the Taylor series solution to y” = x3y [y(0) = 1, y'(0) = y"(0) = O] are needed
to evaluate [§ y(x) dx correct to three decimal places?

3.9 Show that if py(x), p,(x), ..., p,—,(x) are all analytic in the complex disk |x| < R, then any
solution y(x) to (3.1.1) is analytic for |x| <R.

Clues: (a) Use Cauchy’s integral formula to show that the coefficients of the Taylor series
expansions p,(x) = Y =_o p;nX™ (i=0,...,n — 1)satisfy |p,,| <cforalliandm, |p,,| < Ri™forall
iand m > N, for any R, < R; c and N are constants that depend on R,.

(b) Show that the coefficients a,, of the Taylor series y(x)= Y =_, a, x™ satisfy the recursion
relation m*a, = =3 720 K" Py i moi KT Pu 2okt Pomoi)

(¢) Use the above estimates to show by induction that |a,| < 4/RT for all m, where A may
depend on R, < R. Use this result to show that the Taylor series converges for all |x| <R.

3.10 Show that the power series representation for the series ) =, [x"(x — 1)*")/n! cannot have three
consecutive zero coefficients (Putnam Exam 1972).

J xﬁ
311 If u—l+;+a+ N
Cx o xt X
v—l—! +E+7!‘,+ N
xz XS Xs
w ot

BT
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prove that WP+ w = 3uww=1

(Putnam Exam 1939).
3.12 Show that

(Putnam Exam 1950).

Section 3.3

3.13 Use the method of Sec. 3.3 to find series expansions of all solutions to the fourth-order differential
equation x> d*y/dx* = y about the regular singular point x = 0. (Wu and Pwu discovered that the
general solution to this very difficult equation can be expressed as integrals of products of Bessel
functions.)
3.14 Show that if in the neighborhood of x, two linearly independent solutions to a second-order
linear homogeneous differential equation are (a) two Frobenius series, or (b) a Frobenius series and a
second solution of the form discovered under case I1(a) or case II(b), then x,, is a regular singular point
of the differential equation.

Clue: Reconstruct the differential equation from the solutions using the method of Prob. 1.6.
3.15 Develop the Fuchs-Frobenius theory for third-order differential equations in the neighborhood
of a regular singular point x,.

(a) Outline the form of the solutions for all values of the indices a,, a,, a;. Enumerate cases
according to whether a, — «, is a nonnegative integer, «, — «, is a nonnegative integer, and so on.

(b) Explain how to obtain series solutions for each of the above cases by differentiating, if
necessary, with respect to the index a.

(c) Conversely, show that if all the solutions of a third-order equation have series expansions
about x, as enumerated in the above cases, then x, is a regular singular point.

Clue: Use the method of the previous problem.

3.16 (a) A singular point x, of a homogeneous linear differential equation is said to be isolated if the
coefficient functions are singular at x, and are single-valued analytic functions in a punctured disk
about x,. Suppose it is known that (i) 0 is an isolated singular point of a second-order homogeneous
linear differential equation and (ii) the linearly independent solutions have the form y,(x) = x*[4(x) +
B(x) In x], y,(x) = x’[C(x) + D(x) In x], where A(x), B(x), C(x), and D(x) are analytic at x = 0. Show
that there is a nontrivial solution of the differential equation without logarithms: y;(x) = x*E(x),
where E(x) is analytic at 0.

Clue: Analytically continue the differential equation and its solutions y,(x) and y,(x) along a
small closed curve encircling x = 0. Since the singularity at 0 is isolated, the differential equation
recovers its original form after a full cycle. Therefore, y,(xe*™) and y,(xe*™) may be written as linear
combinations of y,(x) and y,(x). Also show that if B(x) or D(x) # 0, then a — B is an integer and B(x)
and x?~*D(x) are constant multiples of E(x). '

(b) Explain how to generalize part (a) to nth-order equations.

3.17 (a) Show that if the hypotheses (i) and (ii) of the preceding problem hold, then x = O1is a regular
singular point.

Clue: Suppose the differential equation is y” + p(x)y’ + g(x)y = 0. Use reduction of order. Set
y(x) = y;(x)w(x), where y; = x*E(x) is the solution found in Prob. 3.16. Show that w satisfies p(x) =
—2y3/y3 — w"/w. Thus, show that p(x) has at worst a first-order pole at x =0. Finally, using
q(x) = —(1/y3)[y5 + p(x)y3), show that g(x) has at worst a second-order pole at x = 0.

(b) Using induction on n, generalize the result of part (a) to nth-order homogeneous linear
differential equations. Thus, if x, is an isolated singular point and there are n linearly independent
solutions of the form y = x*[4,(x) + (In x)A,(x) + - + (In x)'"'A4,(x)], where A4,(x), A,(x),...,
A,(x) are analytic at x = 0, then x = 0 is a regular singular point of the differential equation.
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3.18 Two solutions of a second-order homogeneous linear differential equation are 1 and x In x. What
differential equation has these solutions? Show that x = 0 is not a regular singular point. Explain in
what way these solutions are not of the form (3.1.2) to (3.1.5). Also, discuss why this problem is not a
counterexample to Prob. 3.17(a).

3.19 Can a homogeneous linear differential equation have only one singular point which is a regular
singular point?

3.20 What is the general form of an nth-order differential equation that is known to have just two
regular singular points and no other singular points?

3.21 Show that the general second-order equation with three regular singular points at 0, 1, and co and
no other singular points can be transformed into the hypergeometric equation x(x — 1)y” +

[(a + b+ 1)x — c]y’ + aby = 0, where a, b, and ¢ are constants.

3.22 (a) One solution to x?y” = y has a Taylor series at co. Find the series. If y(c0) = 1, find y(1) to

three decimal places. Can you find the exact solution to this equation in terms of Bessel functions?

(b) The leading behavior of a particular solution to x®y” = y is y(x) ~ x (x = +00). What is the
next largest term in the expansion of y(x) for large positive x?
3.23 Modify the argument used in Prob. 3.9 to show that the radius of convergence of the Frobenius
series (3.3.1) is at least as large as the distance to the nearest complex singularity of the coefficient
functions.
3.24 Find series expansions of all the solutions to the following differential equations about x = 0. Try
to sum in closed form any infinite series that appear.

(@) x(x +2)y" +2(x + 1)y’ =2y =0;

(b) xy" +y =05

(c) y'+ (e = 1)y=0;

(d) x(I = x)y" = 3xy' =y =0;

(e) 2xy" =y +x?y =0;

(f) (sin x)y” — 2(cos x)y’ — (sin x)y = 0;

@y -xy=0;

(h) x(x +2)y" + (x + 1)y —4y =0;

() xy"+G-x)y —y=0.
3.25 Show that all solutions of the modified Bessel equation (3.3.5) with v = 4, 3,3, ... can be expanded
in Frobenius series (without logarithmic terms).
3.26 Perform a local analysis of solutions to (x — 1)y” — xy’ + y = 0 at x = 1. Use the results of this
analysis to prove that a Taylor series expansion of any solution about x = 0 has an infinite radius of
convergence.

Section 3.4

3.27 Derive (3.4.28).
3.28 (a) Show that if f(x) ~ a(x — x,)® as x — x, +, then

(i) [*fdx ~ [a/(1 = b))(x — x0)" ~®(x — xo +)if b > land the path of integration does not pass
through x,;

(ii) J*fdx ~ ¢ (x = xo +), where ¢ is a constant if b < 1; if ¢ = 0, then [* fdx ~ [a/(1 — b)] x
(x = x0)' ™ (x = xo +);

(iii) J% fdx ~ [a/(1 = b))(x — xo)' ™* (x > xo +) if b < I

(iv) Ffdx~aln (x = xp) (x> xo +)if b= L

Clue: Use I'Hopital’s rule.

(b) Show that if f(x) ~ g(x) as x — x, and g(x) is one-signed in a neighborhood of x,, then
* f(x) dx ~ [* g(x) dx + ¢ (x = Xo), where ¢ is some integration constant.
3.29 Repeat the analysis of Example 2 of Sec. 3.4 to derive the leading behavior of the solution to
(3.4.1) whose controlling factor is e™2* " as x = 0+.
3.30 Referring to (3.4.20), show that if &” — 2x~¥2¢' ~ 3x 7 %/16 (x - 0+ ), then it is not possible for all
three terms to be of comparable magnitude as x — 0+.
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Clue: Express the solution in terms of integrals and use integration by parts (see Sec. 6.3 if
necessary).
3.31 Show that (3.4.25) can be approximated by (3.4.26) as x — 0 +.
332 The differential equation y” + x~ 2e!/* sin (e!/*)y = 0 has an irregular singular point at x = 0.
Show that if we make the exponential substitution y = €5, it is not correct to assume S” « (§')* as
x —0+. What is the leading behavior of y(x)?
3.33 Find the leading behaviors as x — 0+ of the following equations:

(@) x*y" =y;

(b) x*y" = 3x%y +2y=0;

(©) v =/x;

(d) x°y" = e'y;

(e) x°y" —2xy' +y=0;

(f)xty" = xy +3y=0;

(@) y" = (cot x)*y.
334 (a) Give an example of an asymptotic relation f(x) ~ g(x) (x — o) that cannot be exponen-
tiated; that is, e/ ~ &% (x — o0) is false.

(b) Show that if f(x) — g(x) « 1 (x = o), then &/® ~ e#* (x - c0).
3.35 Obtain the full asymptotic behaviors for small x of solutions to the equation
x2y” + (2x + 1)y — x*[e** + 1]y = 0.

Section 3.5

3.36 Consider the function y defined by the differential equation y” = (x + ax)y and the initial
conditions y(0) = 1, y'(0) = 0. Show that the zeros of y are bounded above but unbounded below
(Putnam Exam 1955).

3.37 Show that all solutions of the differential equation y” + ¢y = 0 remain bounded as x — + o0
(Putnam Exam 1966).

3.38 (a) Show that the leading behaviors of the solutions to the modified Bessel equation of order v
are given by (3.5.7).

(b) Show that the leading behaviors of the solutions to the parabolic cylinder equation (3.5.11)
are given by (3.5.12).

3.39 Find the leading asymptotic behaviors as x — + oo of the following equations:
(@) x3 dSy/dxS = y;

(b) xy" =y
(c) d°y/dx® = x d*y/dx* + x?y" + x3y;
(d) y'=xy:

(e) y" = (cosh x)y’;

(f)y" =x"Py + x¥y + xy";

(9) " = (In x)’y;

(h) y" = ey,

(i) xy" + (14 3x)y' + y =0 [see (3.4.2)).
3.40 Show that the leading behaviors of solutions to y” = (x + x*)y as x — +co are the same as the
leading behaviors of solutions to the Airy equation y” = xy as x -+ + 0 if Re a < —3.
3.41 Find the leading asymptotic behaviors as x - +co of the solutions to the coupled pair of
differential equations x?y”(x) = (x + 1)y(x) + xz(x), x2z"(x)= —(x + 1)z(x) — xy(x). For this
particular system of equations it is incorrect to approximate (x + 1) by x, even when x is large. Why?
3.42 Extend the investigation of Example 1 of Sec. 3.5 in two ways:

(a) Obtain the next few corrections to the leading behavior (3.5.5). Then see how including these
terms improves the numerical approximation to y(x) in (3.5.1).

(b) Find the leading behavior of y(x) = 3=, x"/(n!y as x > + o0 forj =3, 4,5, ...
3.43 Using the results of Prob. 5.26 that the optimal asymptotic approximation to D (x)is accurate for
x larger than roughly 4v!/2, show that the optimal asymptotic approximation to D (x) gives an
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accurate approximation to an asymptotically finite fraction of the real zeros of D,(x) as v — + o0 (see
Fig. 3.8). Using crude estimates show that roughly 1 — 1/m = 0.682 of the real positive zeros are given
accurately as v — 0.

Clue: See Prob. 6.85.
3.44 The differential equation x*y" — (2x* — x2)y’ + (x®> — x* — 1)y = 0 has an irregular singular
point at co. Find the leading behaviors of the solutions as x — +oo. Explain the appearance of a
logarithm in one of these leading behaviors.
3.45 A good way to ascertain the asymptotic behavior of certain integrals is to find differential
equations that they satisfy and then to perform a local analysis of the differential equation. Use this
technique to study the behavior of the following integrals:

(a) y(x) =[5 ¢ dt as x > +o0;

(b) y(x)=f5 e " dras x>0+ and x > +0;

(c) y(x)=Jz e = 1 dr as x » 0+ and x — + 0.
3.46 (a) What is the leading behavior of solutions to y” + x 732y’ — x 2y = 0 as x — + o0 ? Show that
it is inconsistent to assume that §” « §'2 (x — + o). However, show that the approximate equation
$” 4+ (§')* ~x~? (x > 4+ o0) can be solved exactly by assuming a solution of the form S’ = ¢/x.

(b) Analyze the leading behavior of solutions to y” + y/(x In x) = y/x* for large positive x.
Show that it is not valid to assume that §” « (S')? (x = + o). Does it help to make the substitution
t=Inx?

.

Section 3.6
3.47 Show that

+2 3_‘_(2)(4) 5+(2 (4)(6) - arc sin x
< <2 M2 7y 2EE
SRR EY AT AR EY AT AT fT=x

(Putnam Exam 1948).
Clue: What differential equation does this Taylor series satisfy?

3.48 Find the first three terms in the local behavior as x — 0+ of a particular solution y(x) to

(a) y' + xy = cos x;

(b) y +xy=x%

(€) X’y +y=x"%

(d) xy" =2y + y =cos x;

(e) x*y” — (cosh x)y = x71;

(f) x*y" — 6(cos x)y = x>.

3.49 Find the leading behavior as x — + oo of the general solution to each of the following equations:

(a) y" + x%y = sin x;

(b) y" + x*y' + xy = 2x*e”

() ¥y +xy=x%

(d) y" +y/x*=x;

(e) d*y/dx* + y/(1 + x*) = x;

(f)y" + x%y = sinh x;

@y —y(l+x)=x
3.50 Find the leading behavior of solutions to y’ — y/x = cos x as x —0+. Show that the leading
behavior is determined by a three-term dominant balance. Compare this leading behavior with the
exact solution.

3.51 (a) Derive (3.6.5).

(b) Use variation of parameters to show that the most general solution to y” =xy—1,
y(+ ) =0is y(x) = n[Bi (x) [£ Ai (f) dt + Ai (x) [§ Bi (¢) dr] + ¢ Ai (x), where ¢ is an arbitrary
constant.

(c) Rederive the leading behavior of y(x) valid as x — + oo in (3.6.4) by performing a local
expansion of the above integral.

x2.
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Clue: Replace Ai (t) and Bi (t) by their leading asymptotic behaviors as x — + o0 wherever
possible and integrate by parts (see Sec. 6.3 if necessary).

3.52 (a) Show that the Taylor series solution to y' + xy = x* in (3.6.1) has an infinite radius of
convergence.

(b) Show that, in general, if x4 is an ordinary point of the homogeneous equation Ly = 0 and if x,
is a point of analyticity of h(x), then the general solution to Ly = h is analytic at x, with a radius of
convergence at least as large as the distance to the nearest singular point of the homogeneous equation
Ly = 0 or the nearest singularity of h(x) in the complex plane.

Section 3.7

3.53 Suppose f'(x) -0 as x = + 0. Does it follow that f ~ ¢ as x — + o0, where c is a constant?
3.54 Show that although [x/(1 + x)] cos x ~cos x (x— o), it does not follow that
5 [t/(1 + )] cos t dt ~ [ cos t dt (x — o0).
3.55 Find the locations of the Stokes lines as z — oo for the following differential equations. Do not
confuse branch cuts of the coefficient functions with Stokes lines. The differential equations have
single-valued solutions on suitable Riemann surfaces determined by the coefficient functions. The
problem is to find the locations of the Stokes lines on such Riemann surfaces.

(@) y"+ (1 +2z712)y + 3y =0;

(b) y"=z'"y;

(c) y" = —zy;

(d) yu = Zsel/zy;

(e) d*y/dz* = z?y.
3.56 The asymptotic relation sinh sinh z ~ 4 exp (¢*) (]z| — o0) is certainly valid for z — oo along
the positive real axis. What is the opening angle of the wedge of validity of this relation?
3.57 Show that if f(x) « 1 and f(x) —f‘(%x) « xas x — 0, then f(x) « x as x — 0 (Putnam Exam 1954).
3.58 Suppose f(x) ~ x~'*# (x = + o0), where B s real. Show that the integrated relation [* f(x) dx ~
x"*/iB + ¢ (x > + co) is not necessarily valid for any integration constant c.

Clue: Observe that f(x) + (x In x)™! ~ x 71+ (x » 4+ 0).
3.59 Show that there are solutions to (3.7.8) and (3.7.9) that approach constants as x — — co.
3.60 Verify (3.7.15).

Section 3.8

3.61 Using the functional relations (3.8.21) derive asymptotic series expansions for Bi (z) for large |z|
valid in the following two sectors:

(a) —dn<argz<m;

(b) —m<argz<in
3.62 (a) Prove that Ai (z) satisfies the integral equation in (3.8.26). The constant 1/2\/; follows
from a global analysis of an integral representation of Ai (z) and cannot be determined by the local
analysis methods of this chapter.

(b) Verify that there is a solution of this equation satisfying the bound (3.8.27).

Clue: Generalize the approach of Prob. 3.82.

(c) Show that there is an integration contour I' in the complex-t plane connecting z and + 0o
along which Re t¥? > Re z*/? and r = miny. |t| satisfies r = |z] if |arg z| <%mand r = |Re z¥2|?3
ifin < |arg z| <=

Clue: If3n < |arg z| < m, choose T to satisfy Re t*/2 = Re z*/2 for $n < |arg t| < |arg z|.

(d) Using the method of Example 10 of Sec. 3.8, generate the first three terms of the asymptotic
expansion of Ai (z) as z— oo with |arg z| < = and bound the error.

3.63 (a) Prove that D,(z) satisfies the integral equation in (3.8.29) and (3.8.30).

(b) Use integration by parts (see Sec. 6.3) to establish the bound (3.8.32) for K(z, t).

(c) Verify that there is a solution of (3.8.29) and (3.8.30) satisfying the bound (3.8.31).

(d) Show that there is an integration contour I' in the complex-t plane connecting z and + co
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along which Re? > Re z2 and r = miny [t| satisfies r = |z| if |argz| < n/2 and r = |Re z?|'? if
n/2 < |arg z| < 3n/4.
Clue: 1f n/2 < |arg z| < 3m/4, choose T to satisfy Re t* = Re z? for n/2 < |argt] < |arg z|.
(e) Generate the first three terms of the asymptotic expansion D (z) for |arg z| < 3n/4 and

bound the error.
3.64 Prove that

o e-l dt X
J e Z —1)y(2n)! x", x—-0+.
o =

Problems 3.65 to 3.68 are a sequence of problems that investigate the Stokes phenomenon for Bessel
functions.

3.65 One solution to the modified Bessel equation (3.3.5) is I,(z), which is defined by the Frobenius
series (3.3.8). We define a second solution K,(z) to the modified Bessel equation, which is linearly
independent of I (z), by K,(z) = n{[/ _(z) — I,(2)]/(2 sin vr)}, where the right side of this ex pression is
defined by its limiting value if v is an integer. Show that this definition of K (z) is consistent with the
series expansions of Ky(z) in (3.3.15) and K,(z) in (3.3.21).

3.66 Show that the asymptotic expansion (3.5.8b) and (3.5.9b) of the modified Bessel function K (z),
which is

k@~ (X

z,

vz - 12 (47— 12)(4v? - 32)
e 7|1 z—0; |arg z| <3

1182 21 (82)° ol

is valid beyond the Stokes lines at |arg z| =4n and only breaks down at the Stokes lines
|arg z| = 3n. Note that K,(z) is the subdominant solution of the modified Bessel equation on the
positive real axis. This is why one should expect that, like Ai (z) and D,(z), K (z) has an asymptotic
expansion valid past the Stokes lines nearest the positive real axis. It is interesting that the next Stokes
lines are located at arg z = +3r which does not lie on the principal sheet of the Riemann surface of
K (z). Thus, the asymptotic expansion of K (z) as z — oo is valid on the entire principal sheet together
with portions of the two adjacent sheets. Observe that these results do not contradict Prob. 3.83
because K (z) is not a single-valued function of z.

3.67 Obtain asymptotic expansions of [ (z) as z— oo that are valid for —3n <arg z <3in and
—4n < arg z < 3n. To do this, first use the Frobenius series (3.3.8) to show that I (ze*'™) = e*™] (z2),
and then use Prob. 3.65 to show that

tive

I(z)= +- K(’e"")+wn K,(2).

3.68 (a) Show that J (z) defined by
z) v o (_ 22/4):-

) = (E Eonl T +nt1)

is a solution to the Bessel equation z?y” + zy' + (z2 — v?)y = 0.

(b) Show that J (z) = e~ "2 (ze'™'?).

(c) Show that the asymptotic expansions (3.7.14) and (3.7.15) of J (z) as z — co may be continued
off the real-z axis and, in fact, are valid for z — o0, |arg z| < .

(d) Obtain an asymptotic expansion of J,(z) valid for z — o0, 0 < arg z < 2.
3.69 The subdominant solution as x -0+ of the differential equation x>y” = y has the asymptotic
expansion (3.4.22b). What is the largest sector in the complex plane in which this expansion remains
valid? Explain how the opening angle of this sector can be greater than 2.
3.70 The subdominant solution as x — 0+ of the differential equation x?y” + (1 + 3x)y’ + y=01is
given exactly by y(x) = ¢, x~'e”*"". Discuss what happens at the Stokes lines at arg x = +4n, +3n.Is
there a Stokes phenomenon?
3.71 (a) Find the locations of the Stokes lines for the hyperairy equation d*y/dz* = zy as z— co.

(b) The leading behavior of the solution to the hyperairy equation which is subdomin ant on the
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positive real axis is y ~ c¢x ™ ¥%e™#***/5 (x » + o0). What is the opening angle of the largest sector in the
complex plane in which this asymptotic relation is valid?
3.72 Show that if f(z) is analytic for « < arg z < fand iff(z) ~ Y24 @,2" (z = 0; < arg z < ) with
a < B, then f'(z) ~ Yy na,z"" ' (z>0; x <arg z < ). :
Clue: Use the analyticity of f(z) and the Cauchy integral formula to write
EAL)]
16 =54
Cc

= = d,
2ni

t—z
where C is a circle of radius K |z| which lies entirely within the wedge « < arg z < § (K depends only
on arg z but not on |z|). Differentiate this integral and use the assumed asymptotic expansion of f(z)
to uniformly approximate the resulting integral for f'(z).
3.73 Consider a function f(z) which satisfies the criteria of Prob. 3.72 and suppose that the sector of
validity of the asymptotic expansion f(z) ~ Y. a,2" (z— 0) includes the positive real axis. Now
construct a new function ¢(z): g(z)=/(z) + e"* ' sin (¢*™'). It is no longer true that g'(z)~
Y o na,z" "' (z—0). Is this a counterexample to the theorem in Prob. 3.72?
3.74 Show that the integral [§ e™!/(1 + xe) dt does not have an asymptotic expansion of the form
I(x) ~ Y0 a,x" (x = 0+). What is the full asymptotic behavior of I(x) as x - 0+ ?
3.75 Find a function to which the series Y 2., (— 1)'x"I[(n + 1)/p] is asymptotic as x — 0+, where
p>0.
3.76 Use the integral representation Ko(x)= [7 e™*(t? — 1)"¥/? dt to derive the asymptotic series
(3.8.8).

Clue: Use the duplication formula and other properties of the gamma function I'(x) to show that
§E (22 = )72 dr =20 T (dn 4 b)Yt
3.77 The asymptotic series for the modified Bessel function K (x) as x — + oo is given by (3.5.8b) and
(3.5.9b) with ¢, = (m/2)"/%. Show that the remainder after the x ™" term of this series has the same sign
and is smaller than the x ™~ ! term, provided that N > v — 3 and v > 0 and x > 0.

Clue: Use the integral representation

_ nl/l(x/z)v

- * - xt 2_1v—1/11
K,(x) r(v+§)[, e (it — 1) V2 gt

and generate the asymptotic series using Taylor’s theorem with an error term. (See Prob. 6.38.)
3.78 Verify the linear functional relations (3.8.21) between Ai (z), Bi (z), Ai (wz), and Ai (w?z).
Clue: Use the Taylor series in (3.2.1) and (3.2.2).
3.79 Given the arbitrary power series ) =, a,X", show that there is a function analytic in a sector
containing the positive real axis to which this series is asymptotic.
Clue: Modify the construction in Example 2 of Sec. 3.8 by redefining ¢(x; a) as an analytic
function.

3.80 We define a general asymptotic expansion as follows. Let ¢,(x) be a sequence of functions
satisfying ¢, ., < ¢, (x - x,) for all n. Then we write y(x) ~ Y., a, d,(x) (x = x,) and say that the
series is asymptotic to y(x) as x — xqif y(x) = Y'N_ | a, d,(x) « Py(x) (x = x,) for all N. When ¢,(x) =
(x — xo)™, the definition of an asymptotic power series as given in Sec. 3.5 is recovered.

(a) Show that if y ~ ) a,¢, and z~ Y b, ¢, as x = xo, then ¢,y + ¢, 2~ Y (¢, a, + ¢, b,)p,
(x = xo)-

(b) Show that if y,(x) = [, @,(t) dt exists for each n and if all the functions ¢,(x) are positive for
Xo < x < x, for some x,, then y ~ Y a, ¢, as x — x, implies f5 y(t) dt ~ Y2, a,¥,(x) (x > xp +).

(¢) Generalize the result of Example 2 of Sec. 3.8 by showing that every series ). a, ¢,(x) with
finite a, is asymptotic to some finite function as x — x,. Show that if each ¢,(x) is continuous, then
there is a continuous function to which the series is asymptotic as x — x,.

3.81 (a) Show that if y(x), p(x), p'(x), g(x) are expandable in asymptotic power series as x — x, and il y
satisfies y” + p(x)y’ + g(x)y = 0, then y’ and y” are also expandable in asymptotic series which may be
obtained by differentiating the series for y termwise.

(b) Generalize this result to nth-order equations.
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3.82 Show that the integral equation (3.8.13) has a solution which is bounded for all x larger than
some constant a.

Clue: Repeatedly iterate the integral equation to obtain a formal series expansion for the solution
whose nth term /,(x) has the form of the n-fold integral

L \">® ® © K(x, t,) K(ty, ;) K(tp—ys tn
I(x) = (E'l) [ dn | an-] dt, = S S
x 1 2 n

s
n “ta-a

where K(x, t) = ¢**~" — 1. Show that |K(x, t)| <1 for ¢ > x. From this deduce that the series ). I,
converges absolutely and that

® 1
Y L(x) Sexp(— |l|x“)
n=0 2

for x > 0. Argue that since the series converges it is a solution of the integral equation.

3.83 Show that if f(z) is single valued and analytic for 0 < |z — z,| < R for some R > 0 and if
S(2) ~ Yoo a,fz — zo)' (z— z,) for all values of arg (z — z,), then the asymptotic series Y a,(z — z,)'
is convergent in a neighborhood of z,.

Clue: Show that f(z) is analytic at z,.
3.84 (a) Show that if f(x)~ x? (x - +00) with p > 1 and f”“(x) > O for sufficiently large x, then
S(x)~px?~! (x > +00)

Clue: First show that f(x + h) — f(x) = hf'(x) = f(x) — f (x — h) for any x > 0, h > O provided
that x — h is sufficiently large. Then use the asymptotic property of f(x) to prove the result.

(b) Show that if p > 1 the hypotheses f” > 0 of part (a) can be weakened to f"(x) > —cx?™? for
sufficiently large x, where ¢ is an arbitrary constant.
3.85 Give an example of a function f(x) satisfying f (x) — x? ~ ax?~! (x - +o0) for p > 1 and some
constant a and f“(x) > 0 for all sufficiently large x but such that f'(x) — px?~' ~ a(p — 1)x?~?
(x = +o00) is not true.
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APPROXIMATE SOLUTION OF
NONLINEAR DIFFERENTIAL EQUATIONS

It is quite a three pipe problem, and I beg that you won’t
speak to me for fifty minutes.

—Sherlock Holmes, The Red-Headed League
Sir Arthur Conan Doyle

4.1 SPONTANEOUS SINGULARITIES

One cannot hope to obtain exact solutions to most nonlinear differential equa-
tions. As we saw in Chap. 1, there are only a limited number of systematic
procedures for solving them, and these apply to a very restricted class of equa-
tions. Moreover, even when a closed-form solution is known, it may be so com-
plicated that its qualitative properties are obscured. Thus, for most nonlinear
equations it is necessary to have reliable techniques to determine the approximate
behavior of the solutions.

The solutions of differential equations encountered in practice are regular at
almost every point; in the neighborhood of ordinary points Taylor series provide
an adequate description of the solution. However, the distinguishing features of
the solution are its singularities. Determining the location and nature of these
singularities, without actually solving the differential equation, requires the
techniques of local analysis.

Solutions of nonlinear differential equations possess a richer spectrum of
singular behaviors than solutions of linear differential equations. A solution of a
linear equation can only be singular at points where the coefficient functions are
singular, and at no other points. Since the locations of these singular points are
independent of the choice of initial or boundary conditions, they are called fixed
singularities. In contrast, solutions of nonlinear equations, in addition to having
fixed singularities, may also exhibit new kinds of singularities which move around
in the complex plane as the initial or boundary conditions vary. Such singularities
are called spontaneous or movable singularities.

146
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Example 1 Appearance of a spontaneous singularity. The linear differential equation
V' + y/(x = 1) = 0[y(0) = 1] has a regular singular point at x = 1. The solution y(x) = 1/(1 — x)
has a pole at x = 1. The location of this pole does not change as the initial condition varies; if
we replace y(0) = 1 with y(0) = 2, the new solution y(x) = 2/(1 — x) still has a pole at x = 1.

The nonlinear differential equation y' = y* [y(0) = 1] also has the solution y(x) = 1/(1 — x).
Even though the equation is not singular at x = 1, a pole has spontaneously appeared. If we
replace the initial condition with y(0) = 2, the new solution is y(x) = 2/(1 — 2x). The pole has
moved.

In general, the solution y(x) of the first-order differential equation y'(x)=
F(x, y) [y(a) = b] is guaranteed to exist and be analytic in some neighborhood of
x = a as long as F is an analytic function of its two arguments at x = a, y = b (see
Prob. 4.4). However, when F is a nonlinear function of y, the extent of the region
of analyticity and the radius of convergence of the Taylor series of y(x) about
x = a may be difficult to predict because spontaneous singularities may appear.

Example 2 Determination of the radius of convergence. Let us perform a local analysis of

y2
= . o) =1 (4.1.1)
1 —xy

¥
at x = 0. We seek a solution in the form of the Taylor series
yx)= 3 ax"  ap=1 (4.1.2)
n=0

As argued above, this series is guaranteed to have a nonzero radius of convergence.

Although it happens rarely with nonlinear equations, there is a lovely closed-form expres-
sion for the coefficients (Prob. 4.1):

n+ 1) b
o= T (4.13)

" n!

The radius of convergence R of the series (4.1.2) is given by the ratio test as

. 1\ 1
= lim {1 - =-.
noo n+2 e

Thus, y(x) has a spontaneous singularity at a distance 1/e from the origin, a number which could
not have been predicted by a cursory inspection of the differential equation. This singularity lies
on the positive real-x axis because the coefficients a, are all positive.

To verify that the radius of convergence does indeed have the value 1/e, we note that the
solution to the differential equation (4.1.1) satisfies the implicit functional relation

R = lim

n— o

[

y=e. 4.14)

This is easily checked by substituting back into the differential equation. The solution to (4.1.4) is
" plotted in Fig. 4.1.
Equation (4.1.4) may be solved iteratively for y as a limit of nested exponentials :

) = lim 3, (x), @.13)
where y,,;=exp (xy,); to wit, we choose y,=y0)=1 so y,=1 y, =exp(x)

y2=exp [x exp (x)}, y5 = exp {x exp [x exp (x)]}, y, = exp (x exp {x exp [x exp (x)}}). and s0
on. The limit exists when —e < x < 1/e and ceases to exist when x > 1/e (see Prob. 4.2).
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Figure 4.1 A graph of the solution to y = exp (xy). The series (4.1.2) converges to the solid portion of
the curve. The spontaneous singularity at x = 1/e appears as a point of infinite slope.

These examples illustrate how unpredictable the behavior of solutions to
nonlinear differential equations may be. The rest of this chapter provides a collec-
tion of additional interesting examples which survey the range of techniques useful
for local analysis.

(E) 4.2 APPROXIMATE SOLUTIONS OF FIRST-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

Even simple-looking first-order nonlinear differential equations can have com-
plicated solutions. This section contains two illustrative examples. The first is a
numerical calculation and the second is a leading-order asymptotic analysis.
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Figure 4.2 Tangent field for the equation ' = 1 — xy® The line segments indicate the slope of y(x)
for integer and half-integer values of x and y. The solution curve passing through (x =0, y = 1)
is drawn; y(x) reaches —co when x = —2.12.

Example 1 Spontaneous singularities in the complex plane. As shown in Sec. 4.1, nonlinear equa-
tions can generate spontaneous singularities. For example, the solution of the Riccati equation
y' =1 — xy? [y(0) = 1] becomes singular at a finite negative value of x. The presence of this
singularity can be understood from the graph of the tangent field given in Fig. 4.2. The tangent
field indicates that the solution which satisfies the initial condition y(0) = 1 becomes large and
negative for negative x. When y is sufficiently large and negative, 1 becomes negligible compared
with —xy?. The resulting approximate differential equation is

'

Vo~ —xy? y— — .

The solutions to y = —xy?, y(x) = (x*/2 + C)7 !, that are negative somewhere have C <0, so
they become infinite for some finite negative x.

To find the location of this singularity numerically, we let w(x) = 1/y(x). w(x) satisfies the
differential equation w' = x — w? [w(0) = 1]. Numerical integration of this differential equation
gives a zero of w near x = —2.12. Thus, y becomes singular at x = —2.12.

From this result one might expect the Taylor series solution about x = 0, y(x) = Y =, a,x",
to have a radius of convergence of 2.12. However, a numerical evaluation of the Taylor
coefficients a, indicates that the true radius of convergence R is close to 1.228:

an

R = lim = 1.228.

n—x

Ayt 1

R has this much smaller value because y(x) also has complex spontaneous singularities.
Further numerical integration shows that w(x) has a zero in the complex plane at x5 =0.313 +
1.188i. This is the zero of w(x) which is nearest to the origin in the complex-x plane. Its distance to
the origin is |xo| = 1.228. Therefore, it is this singularity and not the one at x = —2.12 that
determines the radius of convergence of the Taylor series for y(x).
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Figure 43 A computer plot of the solution to y' = y? + x [y(0) = 0] for 0 < x < 10.

Example 2 Infinite number of spontaneous singularities. In this example we study the leading
behavior of the solution to the Riccati equation

y=y"+x (4.2.1)

as x = + 0.

The previous example shows that the solution to a nonlinear differential equation may
exhibit several spontaneous singularities. We will see that the solution to (4.2.1) has an infinite
number of singularities along the positive real axis! Figure 4.3 is a computer plot of the solution
to (4.2.1) satisfying the initial condition y(0) = 0. Note that the graph of y(x) resembles that of the
function tan x.

The ultimate goal of our analysis is to construct a function which closely approximates y(x)
as x — +o0o. However, we begin with a more modest investigation: let us try to determine the
nature of the singularities of y(x).

Can the singularities of y(x) be poles? We know that in the neighborhood of a pole the
leading behavior is given by y(x) ~ A/(x — a)’ (x — a), where a is the location and b is the order
of the pole. Substituting this asymptotic relation into the differential equation (4.2.1) and compar-
ing leading terms gives 4 = —1, b = 1. Thus, solutions of the differential equation probably have
simple poles. But to prove this conjecture we must show that in some neighborhood of x = a
there is a solution in the form of a (convergent) Laurent series

1

X —a

©

W)= ——— + ¥ afx—a) (422)
n=0

It is left as an exercise (see Prob. 4.10) to compute the coefficients a, directly from the differential

equation and to verify that the series (4.2.2) converges in a neighborhood of x = a. Unfortunately,

this series expression is only valid in a disk which does not contain any other singularity of y. It
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would be much more desirable to have a uniform description valid for large x which exhibits the
multiple singularity structure of y(x) (see Fig. 4.3).

To obtain such an expression it is necessary to approximate the differential equation by one
that has an analytical solution. However, in this case an approximation which reveals the nature
of the nonlinear differential equation is not easy to find! It would certainly be nice if one could
neglect x in favor of y? or y? in favor of x in the differential equation. Unfortunately, a glance at
Fig. 4.3 shows that as x — + 00, sometimes y* > x and sometimes x > y*; we need a more subtle
approximation which is uniformly valid as x tends to + oo,

An ingenious trick is to substitute

y(x) = x"?u(x).

The equation for u(x) is then
u' = (1 +u?)x'? - u/2x.
Now the term u/2x is uniformly negligible for large x because

u<l+u?
for all u and
x L« xl? X = +00.

The resulting asymptotic differential equation

u~(L+u?)x'?  x—= +oo,
is easily solved because it is separable:

y(x) = x"2u(x) = x'/? tan $(x), (4.2.3a)
where d(x)~3x¥  x—- +o0. (4.2.3b)

This result suggests that for large x the solution of the Riccati equation (4.2.1) has an infinite
sequence of first-order poles having an accumulation point at x = 00.

Equation (4.2.3) could have been derived in another way. In Chap. 1 we showed that a
Riccati equation is equivalent to a linear second-order equation. For equation (4.2.1) the appro-
priate transformation is y(x) = —u'(x)/v(x) and the resulting second-order linear equation for
v(x) is v” = —xv. Except for the minus sign, this is an Airy equation. The solutions to this
equation are Ai (—x) and Bi (—x). From our analysis in Sec. 3.7 of the behavior of solutions to
linear differential equations for large x, we know that

v(x)=ax""*cos ¢(x),  where ¢(x) ~3x¥%  x- +oo.
Differentiating this result and retaining the largest term gives an approximate expression for y(x):
y(x) = —v'(x)/v(x) = \/; tan ¢(x).

We have thus reproduced (4.2.3).

The accuracy of (4.2.3) may be tested in several ways. We could plot the function
/x tan (3x%2) for large x and compare the result with Fig. 4.3. However, a better test of (4.2.3) is
to compute y(x) numerically and to plot [arc tan (x~!2y)]/3x*2 and verify that this ratio
approaches 1 as x —» + o0. In Fig. 4.4 we plot this ratio for several choices of the initial value y(0).
Observe that our local analysis at + oo is independent of the initial conditions.

It is even more impressive to use (4.2.3) to compute the pole spacing for large x. Let A be the
distance between consecutive poles and let x and x + A be the locations of two consecu tive poles.
Then the leading asymptotic approximation in (4.2.3) implies that 4(x + A)*? — $x¥*~n
(x = +o0). If we expand (x + A)*? using the binomial theorem, we find that the spacing of the
poles is approximately

T
Xl_ﬁ )

A~ X + 0. (424)
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Figure 4.4 Three graphs of [arc tan (x ~'/2y)]/3x*2, where y is the solution of (4.2.1) and y(0) = — 1, 0,
and 1. Observe that all three curves rapidly approach 1 as x gets large, thus verifying the formula
for the leading behavior of y(x) in (4.2.3).

To test this result we have computed the locations of the poles numerically. We denote the
location of the nth pole on the positive real axis by x, and define A, to be A, = x, — x,_ . In
Table 4.1 we list values of x2/2A,, where X, = 4(x, + x,_,), the average location of two consecu-
tive poles. We certainly would expect that as n — + o0, X./?A, approaches =, but the rapidity of
this convergence is astonishing (see Prob. 4.5).

(I) 4.3 APPROXIMATE SOLUTIONS TO HIGHER-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

This section is a collection of eight examples which illustrate techniques for
determining the approximate behavior of solutions to higher-order nonlinear
differential equations.

Asymptotic analysis of nonlinear differential equations is particularly difficult
because it is hard to know when all possible behaviors have been found. There is
no such difficulty with linear equations; we know that we have a complete descrip-
tion of the asymptotic behavior of an nth-order linear differential equation when n
linearly independent behaviors have been found. Unfortunately, even if we have
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Table 4.1 Locations of poles in the solution of y' = y* + x
[¥(0) =0] for 0 < x <20

Asymptotic analysis predicts that (x, — x,- )[(x, + x,-1)/2]"* > 7 as n - c0.
Observe that the convergence to = is extremely rapid

. X, 4 X,- 1\ 12
Pole number n Location of nth pole x,  (x, — x,_,) (%)
1 1.986 35
2 3.825 34 3.134 84
3 5.295 62 3.139 83
4 6.584 31 3.140 80
5 7.757 33 3.141 15
6 8.847 53 3.141 31
7 9.874 28 3.141 40
8 10.850 2 3.141 45
9 11.784 0 3.141 49
10 12.682 2 3.141 51
11 13.549 6 3.141 53
12 14.390 2 3.141 55
13 15.206 8 3.141 56
14 16.002 1 3.141 56
15 16.778 1 3.141 57
16 17.536 5 3.141 58
17 18.278 9 3.141 58
18 19.006 5 3.141 58
19 19.720 4 3.141 58

found an n-parameter asymptotic approximation to the solution of an rth-order
. nonlinear differential equation, there may still be special solutions of the equation
whose asymptotic behaviors are not obtained for any choice of the n parameters.

The origin of this difficulty does not lie in asymptotic analysis; rather, itis a
characteristic property of nonlinear equations. It often happens that among the
exact solutions to a nonlinear differential equation there are special solutions
which cannot be obtained from the general solution for any choice of the con-
stants of integration. For example, the general solution of the first-order nonlinear
equation

Or+y=1 43.1)
is y(x) = sin (x + ¢;), (43.2)

where ¢, is a constant of integration. There are also two additional s olutions,
y = *1; the general solution (4.3.2) does not reduce to these special solutions for
any choice of c;.

As another example, let us reexamine the differential equation in (1.1.9):

Yy =yy/x @.33)
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The general solution to this equation is
y(x)=2c, tan (¢; In x + ¢,) — 1. 4.3.4)

But there is also a special one-parameter family of solutions, y = c5, which are not
contained in (4.3.4) for any values of ¢, and c,.

In the next two examples we determine the asymptotic behaviors of all solu-
tions to two higher-order differential equations. In both examples we will see that,
in addition to an n-parameter general asymptotic behavior, there are also special
asymptotic behaviors. For these examples the special asymptotic behaviors are
associated with singular limits of the parameters in the general asymptotic
behavior.

Example 1 Behavior of solutions to y*y” = —1 as x — +oo. In this example we study the behav-
ior of solutions to

vy =-1 (4.3.5)

as x — +co. Our objective is to find a complete description of the asymptotic behavior of y as
x — +00; that is, we will find the asymptotic behaviors of all solutions to (4.3.5).

There are no general procedures for finding the asymptotic behavior of solutions to a
nonlinear equation. We have seen that in the case of homogeneous linear equations we are often
led to an exponential behavior at an irregular singular point and to an algebraic and sometimes
logarithmic behavior at an ordinary point or a regular singular point. The equation in (4.3.5), like
most nonlinear equations, is not equidimensional in y and therefore does not admit an exponen-
tial asymptotic behavior. (An exponential behavior here would be inconsistent because the
exponential factor does not cancel as it would in a linear equation. See Prob. 4.31.) But algebraic
and logarithmic behaviors are not excluded, and it is a good rule to examine a nonlinear equation
to see if it exhibits any of these behaviors before searching for something more complicated.

We quickly check that (4.3.5) does indeed admit an algebraic asymptotic behavior as
x — +00. Substituting y(x) ~ Ax* (x— +o0) into (4.3.5) gives A%a(a — 1)x*?
(x = +00). We conclude that a« = 4 and that 4 = iﬁ. Notice that the multiplicative constant
A is determined; in the case of linear equations the overall multiplicative constant of the leading
behavior is arbitrary. '

The behavior y(x) ~ +./2x (x = +c0) contains no free parameters. However, we note that
(4.3.5) is translation invariant (autonomous); it is invariant under the translation x — x + a.
Therefore, we may generalize the above asymptotic behavior to the one-parameter family of
behaviors

~=1

yx)~ £/2(x +a),  x— +oo. (4.3.6)

The result in (4.3.6) is still not the most general asymptotic behavior of solutions to (4.3.5)
because it does not contain two arbitrary constants. Moreover, it may not be generalized to
include a second parameter (by arguing, for example, that it is the first term of a series in which
there is another free parameter) because it is already an exact solution of (4.3.5)!

It is interesting that the missing asymptotic behaviors also behave algebraically and yet they
were not found by substituting y ~ Ax® The reason for this is that we did not consider leading
behaviors which are linear in x and which therefore vanish after two differentiations. If such
behaviors are possible, they must have the form

y(x) ~ bx + ¢ + &(x), X = +o00,

where ¢(x) — 0 as x = + oo. Substituting this relation into (4.3.5) gives an asymptotic differential
equation for g(x),

b3x3%"(x)~ —1, x— +oo,
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whose solution
g(x)~ —(2b%)7', x— 400,

is consistent with the requirement that g(x) — 0 as x — + co.

More accurate approximations to ¢(x) take the form of a series in inverse powers of x.
Therefore, we attempt to represent the full asymptotic behavior of y(x) as a formal Laurent series
at 00

yx)~bx +c+d/x+e/x*+ -, x— +o0.
Substituting this series into (4.3.5) gives

(2d/x® + 6e/x* + - )(b3x> + 3b%ex? + -+ ) = 2db> + 6(b%e + bled)/x + - ~ — 1,

X = + 0.
Comparing like powers of x gives an infinite sequence of equations for d, e, ...: d = —1/2b3,
e = ¢/2b*, .... Note that the two parameters b and ¢ remain undetermined except for the require-

ment that b # 0. Thus, we have found the general two-parameter asymptotic behavior which does
not reduce to (4.3.6) for any values of b # 0 and c:

(4

1
% +‘2‘b‘“xi"‘, X — + 0. (4.3.7)

y(x) ~bx +c—

If we were to compute all of the coefficients in this series, we would find 'that (4.3.7) is just a
binomial series whose sum has the form

(cyx + )2 =1

€y

ylx) = t[ ]m, ¢, #0, (4.3.8)

which is an exact solution to (4.3.5) (see Prob. 4.35). The result in (4.3.6) may be regarded as the
singular limit of (4.3.8) in which ¢, -0 and ¢3 — 1 in such a way that the ratio (c; — 1)/2c, = a
remains fixed.

The differential equation in (4.3.5) is a warm-up for the more difficult asymp-
totic analysis in later examples, but the equation is so simple that asymptotic
analysis is not really necessary. Indeed, it would have been easier to solve the
equation first and to study the behavior of the solutions instead of the differential
equation. To demonstrate the power of asymptotic analysis, we consider next a
differential equation whose exact solutions are not obtainable in closed form.

In this and the remaining examples of this section, we will often differentiate
asymptotic relations without supplying any justification for doing so. If the reader
feels so inclined, he will not find it difficult to prove rigorously that the final results
we obtain are correct.

Example 2 Behavior of solutions to y*y" = —4 as x - + co. The differential equation
Yy =4 (439)

affords a clear comparison of exact methods versus approximate methods. We will analyze this
equation in two ways. First, in a glorious tour de force, we use the methods of Chap. 1 to reduce
the differential equation to a soluble first-order equation! Unfortunately, we find that the exact
solution is an implicit function of such complexity that it is of no value. Next, we use the methods
of local analysis to obtain a complete and simple description of the behavior of y(x) for large x.
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The exact solution. Here we use the methods of Sec. 1.7 to solve (4.3.9) exactly. Noting that (4.3.9)
is autonomous, we reduce its order by treating y as a new independent variable and introducing

dy

A=A(y)= (4.3.10)
dx
as a new dependent variable. The new second-order differential equation is
d*A dA\? 1
IAZ_.__.'_A( _) = ——. 43.11
VAT Y% 3 ( )

This equation is equidimensional in y because it is invariant under the scale change y — ay. Thus,
the substitution

y=¢,  A(ly)=B() (43.12)
converts (4.3.11) to a second-order autonomous equation:
d*B  dB dB\? 1
B |— - =) + B|—) = --. 43.13
(dtz dt) * (dt) 3 ( )
We reduce this equation to one that is first order by letting

_dB

C=C(B)—E

(43.14)

The result is
B? (Cdc C)+BCZ— !
dB T3

At first glance, this equation looks so complicated that one might expect no further
progress. However, the substitution

C(B)= @ (4.3.15)
gives a pleasing simplification:
Di—’;—DB= —%. (4.3.16)
The further substitution
D(B)=1B* + E(B), (4.3.17)

which is motivated by first finding the large-B behavior of D in (4.3.16), gives a Riccati equation if
we treat E as the independent variable and B as the dependent variable: dB/dE + 3B* + 3E = 0.

The attainment of a Riccati equation represents major progress because all Riccati equa-
tions may be linearized. The appropriate substitution is

2 dF(E)
BE)=—— ——. 4.3.18
(E) 3F(E) dE ¢ )
The result is
d*F 9
— +=-EF =0, 4.3.19
dE? T 2 (43.19)

which we immediately recognize as an Airy equation! Its solution is a linear combination of
Ai [~ ()] and Bi [~ (§)"E}
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Now we must work backward, undoing all the substitutions that led to the exact answer in
terms of Airy functions. Substituting F(E) into (4.3.18) gives

4y“qmw—@wm+mm—®“a

)= -5 e AL [~ @)E] + Bi [~ Q) PE]

(4.3.20)

where ¢, is an integration constant.

Next we must find D(B) in (4.3.17), but at this point we are thoroughly stymied; to find D
requires that we solve (4.3.20) for E as a function of B, and this is hopeless. Although (4.3.20) is the
exact solution to (4.3.9), we have achieved a Pyrrhic victory!

The asymptotic solution. The asymptotic solutions to (4.3.9) are similar in form to those for
(4.3.5). The existence of a three-derivative term suggests that we might look for a solution of the
form

y(x)~ax? + bx + c +e(x), x— +oo,

where g(x) — 0 as x — + co. Substituting this expression into (4.3.9) gives an asymptotic equation
for g(x),

a*x4” ~ -4 X = +00,
whose solution
g(x) ~ 1/18ax, X - 400,

does indeed vanish as x — + co.
Higher-order approximations to g(x) indicate that ¢(x) may be represented as a series in
powers of 1/x. Thus, the asymptotic behavior of y(x) takes the form of a Laurent series at co:

f

d e
y(x)~ax2+bx+c+; tata (4.3.21)

If we substitute (4.3.21) into (4.3.9) and compare like powers of x, we obtain an infinite sequence
of equations for d, e, f,... whose solutions are d=1/18a% e= —b/36a>, f= (3b> —
2ac)/180a®, .... Apart from the restriction that a # 0, the three parameters a, b, and ¢ remain
undetermined. Thus, we have found the general asymptotic behavior of y(x) for large x:

b 3b% — 2ac

~ax:+b - __ 9 |20 Tk ..
Yox) ~ axt + X+c+18azx 36a°x? + 180a*x3 ’

x— +oo. (4322)

The convergence of this series is investigated in Prob. 4.36.

The asymptotic behavior in (4.3.22) becomes singular when a = 0. This suggests that in
addition to (4.3.22) there is a special asymptotic behavior which is not contained in y(x) for any
values of a, b, and c. Is this behavior algebraic? If we substitute y(x) ~ Ax* (x — + oo ) into (4.3.9),
we get Ada(a — 1)(a — 2)x**7* ~ —4 (x > + ). Comparing powers of x gives 3¢ — 3 = 0, or
a = 1; but this result is inconsistent because « = 1 makes the left side of the equation vanish. The
trouble is that the third derivative of x is 0 and not 1/x2 In any event we already know from
(4.3.22) that y(x) cannot grow like x for large x.

The remedy here is to introduce factors of In x. We try a solution whose leading behavior is

y(x) ~ Ax(In x), x> +oo.
Three derivatives of this expression are

(In xy~! . Aa(ex = 1)(e = 2)(In x)*~3

XZ xl ’

y'(x)~ — A X — + o0.

Neglecting (In x)*~* compared with (In x)*~! as x — + oo and substituting into the differential
equation (4.3.9) gives —A>a(ln x)>*"! ~ —4 (x = + 00) whose solution is « = $ and 4 = 1. We
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have thus discovered a new possible leading behavior for solutions to (4.3.9):
y(x) ~ x(In x)'3, x> +oo. (4.3.23)

What is the full asymptotic behavior of solutions whose leading behavior is given in
(4.3.23)? The leading behavior is the first term in an infinite series which represents the
asymptotic behavior. In this case the series is a power series in (In x)~!:

y(x) ~ x(In x)*3[1 + A/(In x) + B/(In x)* + C/(In x)* + ).

It is not easy to discover such a series; some trial and error and intelligent fiddling are
required. But given the form of this series, it is easy to substitute it into the differential

equation (4.3.9) and compute the coefficients. We find that A is arbitrary, B = —4§ — A%,
C =394 + 343, .... We have therefore found a special one-parameter family of asymptotic

behaviors of y(x) for large x:

A AT+3% 343 +3%4
y(x) ~ x(In x)*3 1+m—ﬁ+l~(ﬂl—x—?—+m ., x— +oo. (4324)
One might think that since (4.3.9) is autonomous, we may replace x in (4.3.24) by x + o,
where a is a free parameter, thereby generalizing (4.3.24) to a two-parameter family of behaviors.
However, if we reexpand the resulting expression as a series in inverse powers of In x, we learn
that (see Prob. 4.37) terms containing the parameter « are not multiplied by x. In the limit
X — + o0 such terms are subdominant with respect to all terms in the series (4.3.24) and should
not be included in the formula for the asymptotic behavior of y(x).
The series in (4.3.22) and (4.3.24) constitute a complete description of the asymptotic behav-
ior of solutions to (4.3.9). In Figs. 4.5 and 4.6 we compare our predictions in (4.3.22) and (4.3.24)
with numerical solutions to the differential equation.

Example 3 Behavior of the first Painleve transcendent as x —» +00. What is the behavior of the
solution to

Y=y 4x (43.25)

for large positive x?

This differential equation is the first of a set of six equations whose solutions are called the
Painlevé transcendents. These equations were discovered by Painlevé in the course of classifying
nonlinear differential equations. He considered all equations of the form

w’ = R(z, w)(w')? + S(z, w)w + T(z, w)

having the properties (a) that R, S, and T are rational functions of w, but have arbitrary
dependence on z, and (b) that the solutions may have various kinds of fixed singularities (poles,
branch points, essential singularities), but may not have any movable singularities except for
poles. There are 50 distinct types of equations having these properties. Of these, 44 types are
soluble in terms of elementary transcendents (sines, cosines, exponentials), functions defined by
linear second-order equations (Bessel functions, Legendre functions, and so on), or elliptic func-
tions. The remaining six equations define the six Painlevé transcendents, one of which is (4.3.25).

Let us return now to the behavior of the differential equation (4.3.25). This differential
equation is similar in form to the first-order equation in (4.2.1) and its asymptotic properties are
also similar in some respects. However, because this is a second-order equation, a more sophis-
ticated analysis is required.

We begin by arguing that y(x) exhibits movable singularities. Since the curvature of y(x) is
positive (y” > x > 0), it is likely that an arbitrary set of .initial conditions will give rise to a
solution which becomes singular at a finite value of x. To discover the leading behavior of such a
singularity, we substitute

V)~ Af(x—af,  x-—a
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Figure 4.5 Four plots of y(x)/x?, where y(x) is the solution to y"y> = —4%, y(0)=1, y'(0)=1, and
y”(0) takes on the four values 0.5, 1, 2, 4. Note that all four curves approach a constant for large x.
This verifies the prediction in (4.3.22) that the leading term in the general asymptotic behavior of
y(x)as x —» + o0 is ax? (a is a constant which depends in a complicated way on the initial conditions).

into the differential equation (4.3.25). Comparing powers of x — a gives A = 6 and b = 2. This
suggests that y(x) has movable second-order poles.

However, this does not prove that the movable singularities are poles (although they really
are). To verify such a conjecture it is necessary to establish that a Laurent series solution of the
form

6 @
s+ Y a,(x—a) (4.3.26)

n=-1

y(x) = “—a)
exists in the neighborhood of x = a (see Prob. 4.34).

Actually, y(x) has an infinite number of second-order poles along the positive real axis and
not just one! We have solved the differential equation (4.3.25) numerically, taking as initial
conditions y(0) = y'(0) = 0, and have plotted the result in Fig. 47. Observe that there is a
sequence of poles along the positive real axis (see Prob. 4.15).

A comparison of Figs. 4.3 and 4.7 shows that the solution to (4.2.1) is very similar to the
solution of (4.3.5) with simple poles replaced by second-order poles. You may recall that we were
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y(x)
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Figure 4.6 A plot of y(x)/[x(In x)'*], where y(x) is that solution to y”y* = —} for which y(0) =0,
y'(0) = 1, and y”(0) = 0.280 376 460 87. As x — + oo the leading asymptotic behavior of most solutions
to y”y? = —4is ax? (see Fig. 4.5), but these special initial conditions give a solution whose leading
behavior is x(In x)"/? as x — + oo, as this graph clearly shows. The full asymptotic behavior of y(x)
is given in (4.3.24).

able to predict the spacing of the simple poles for (4.2.1) for large x from the leading asymptotic
behavior of the solution. Can we predict the spacing of the second-order poles?
To answer this question we make the same transformation as in Example 2 of Sec. 4.2:

y = /x u(x).
We find that u(x) satisfies
u' = \/; (u? + 1) — u'/x + u/dx>.

Next we transform the independent variable x to remove the \/; that multiplies the (u® + 1)
term. The appropriate transformation is x = s*°. The new equation satisfied by u(s) is

dzu_16(z+1) 1du 4
BT %

u
ds? s ds 2’

4327)
s

The last two terms on the right side of this equation are negligible as s = + 00 (x — + o) (see
Prob. 4.16). The resulting approximate differential equation

d*ujds* ~ 16(u* + 1)/25, s— +00,

is autonomous and can now be solved in terms of elliptic functions. Multiplying the equation
by «’ and integrating gives

Hduyds)* ~ 16(u/3 + u + c)/25, s +o0.

Thus, fdu(du® +2u+2c)" V2 ~ £3s, s +o0.
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15—

-5

Figure 4.7 A computer plot of the solution to the initial-value problem y” = y* + x [y(0) = y'(0) = 0].
The solution has an infinite number of second-order poles on the positive real axis. (See Prob. 4.15.)

This integral defines u = u(s) as an inverse function; u(s) is an elliptic function (it is expres-
siblein terms of the Weierstrass-2 function). The only property of elliptic functions relevant to the
discussion here is that they are periodic functions. In particular, the poles of u(s) are se parated by
the constant period P. Therefore, in terms of the original independent variable x, the se paration A
of consecutive poles satisfies the following asymptotic relation: (x + A)** — x3* ~ P (x —» +o0).
Thus, using the binomial expansion,

A~3PxU x40

We conclude that y(x) has an infinite sequence of second-order poles which bunch up as
x — co. We have now arrived at an impressively detailed approximate description of y(x) for large
positive x. We know both the nature and the separation of the poles. We have analyzed both the
trees and the forest.

To test our predictions of the pole separation, we have determined the locations of the poles
numerically and have listed our results in Table 4.2. As in Table 4.1, we denote the location of the
nth pole by x, and define A, by A,=x,,, —x,. We then list values of x}*A,, where
%, = 4(x, + X, ), the average location of two consecutive poles. If our asymptotic analysis is
valid, then the quantity X}/*A, must approach the constant 4P/5 as n — co. In fact, the conver-
gence is so rapid that, by the sixth pole, X}/*A, is changing by only one part in 7 x 10*!

Example 4 Behavior of the first Painlevé transcendent as x — — oo. The question of how solutions
to (43.25) y" = y* + x behave as x » — o is particularly interesting because it involves a discus-
sion of stability.
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Table 4.2 Locations of some of the second-order poles in the
solution of y” = y* + x [y(0) = y'(0) = 0] for 0 < x < 404

Asymptotic analysis predicts that (x, — x,_,)[(x, + x,_,)2]"/* should
approach a constant K as n — co; we observe rapid convergence to the value
K =17276727

. X,. + Xpoy 1/4
Pole number n Location of pole x, (xp = Xp—1) (—2—-)
1 3.742 8
2 83758 7.268 83
3 12426 5 7.274 58
4 16.168 2 7275 75
5 19.703 9 7.276 17
6 20.087 1 7.276 37
7 26350 5 7.276 47
8 29.515 6 7.276 54
9 32598 0 7.276 58
10 35.609 1 7.276 61
40 110.893 5 7.276 720 7
41 113.130 3 7276 721 0
42 115.356 0 7.276 7212
43 117.571 1 7.276 721 S
44 119.775 8 7276 721 7
45 121.970 4 7.276 722 0
46 124.155 1 7.276 7122 2
47 126330 3 7.276 722 4
48 128.496 2 7276 722 6
49 130.653 0 7276 722 7
100 2320353 7.276 725 8
101 233.897 9 7.276 71259
102 235.756 7 7.276 7259
103 237.612 0 7.276 7259
104 239463 6 7.276 7259
105 241311 6 7.276 7259
106 243.156 1 7.276 71259
107 244997 1 7.276 726 0
108 246.834 6 7.276 726 0
109 248.668 8 7.276 726 0
190 388399 8 7.276 726 5
191 390.038 1 7.276 726 5
192 391.674 7 7.276 726 5
193 393.309 5 7.276 726 5
194 394.942 7 7.276 726 5
195 396.574 2 7.276 726 5
196 398204 0 7.276 726 5
197 399.832 1 7.276 726 5
198 401.458 6 7.276 726 5

199 403.083 4 7.276 726 5
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When x is large and negative, it is reasonable to assume that there are solutions with the
property that y* ~ —x (x - — o). To demonstrate the consistency of this assumption, we solve
for y,

y~ £(=x)"? x— -0, (4.3.28)

differentiate twice, y" ~ F4(—x)"¥? (x> — o), and observe that y” is indeed negligible
compared with y* and x (see Prob. 4.27).

Of course, there are still solutions y(x) having second-order poles on the negative real axis
for which y”(x) is not negligible compared with y? or x. However, when x is negative, it appears
that a new kind of solution (4.3.28) may appear which does not have poles. When x is positive,
(4.3.28) is complex, so it does not occur for real initial conditions.

Stability considerations arise in the study of the solutions (4.3.28) when we ask the following
question. If we fix the initial conditions y(0) and y’'(0) so that y(x) does not have poles for negative
x, which of the two functions, +./—x or —,/—x, does y(x) approach as x - — o0 ?

To answer this question we examine the corrections to the leading behavior of y(x) in
(4.3.28). We set

y(x)= £ /=x + e(x), (4329)
where, by assumption,
ex) < /=x, x— —o0. (4.3.30)
Substituting (4.3.29) into (4.3.25) gives the equation for &(x):
FH=x)"" 4" = £2e(—x)"? + &%
This equation may be replaced by the asymptotic differential equation
Fi=x)" 4"~ £2e(—x)'%,  x— —o0, 43.31)

because ¢ is negligible compared with ¢(—x)"/? according to (4.3.30).
Notice that if it is valid to differentiate (4.3.30) twice, we obtain &”(x) <« (—x) 2
(x = — o), which allows a further simplification of (4.3.31):

FH—x)"¥2~ £2e(—x)"?, x> —oc0. (4.3.32)

[As we will see, there are some solutions of (4.3.31) for which it is not valid to differentiate (4.3.30)!
However, we differentiate anyway with the intention of checking that any solutions we find satisfy
the constraint (4.3.30).] The solution to this equation is

gx)~ —§(=x)"% x> ~oo, (4.333)

which satisfies the constraint (4.3.30).

The result in (4.3.33) is not a complete solution of (4.3.31) because there are no free pa-
rameters. Equation (4.3.31) is a linear inhomogeneous asymptotic equation so its general solution
is a linear combination of solutions to the associated homogeneous asymptotic equation, plus a
particular solution to the inhomogeneous asymptotic equation. The solution (4.3.33) is a particu-
lar solution.

We next examine the solutions of the homogeneous equation. For the lower choice of sign
in (4.3.31) the techniques of Sec. 3.7 give (see Prob. 4.17)

glx) = c,(~x)7"® cos ¢(x) (43.34a)
or e(x) = c,(—x)" V8 sin @(x), (4.3.34b)

where ¢ ~ £,/2 (—x)** (x » — o). Note that both leading behaviors in (4.3.34) are acceptable
because they satisfy the constraint (4.3.30). Yet, they are not solutions of (4.3.32) because their
derivatives do not satisfy &” « (—x)™¥? (x » —oo). For the upper choice of sign in (4.3.31)
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we have
e(x) ~ ¢, (—x)" V8 exp [4/2 (- x)**], X — — o0, (4.3.34c)
or e(x) ~ c(—x) V8 exp [-4/2 (=x)**],  x— —co. (4.3.34d)

Now we can answer the question of which function, + (—x)"? or —(—x)"?2, is asymptotic
to y(x) if y(x) has no poles as x — —co. It is highly probable that y(x) approaches —(—x)"?
because &, the correction to this leading behavior, consists of two oscillatory parts with very
slowly decaying amplitudes [see (4.3.34a,b)] and the negligible contribution in (4.3.33). Any
combination of these three functions satisfies the condition in (4.3.30). We thus expect that any
solution to (4.3.25) which approaches —(—x)"? does so in an oscillatory fashion. Indeed, the
solution to (4.3.25) in Fig. 4.7, if plotted for negative x, approaches —(—x)"? as x - — oo (see
Fig. 4.8).

We argue that the approach to —(—x)"? is stable because if the initial conditions y(0) and
y'(0) are varied slightly, the relative amounts of (4.3.34a,b) in ¢(x) change accordingly, but the
main qualitative feature of y(x), namely, its oscillatory approach to —(—x)"'2, does not change.

By contrast, it is highly improbable that y(x) approaches +(—x)'/? because ¢(x) would
almost certainly contain the exponentially growing component in (4.3.34c), which is inconsistent
with the condition that g(x) « (—x)"? (x - —o0). Nevertheless, it is possible to find special
initial conditions, y(0) and y'(0), for which the growing exponential in (4.3.34c) does not appear
(see Fig. 4.9); for such initial conditions y(x) does approach +(—x)"? and ¢(x)~ —4x~2 as
x — —co. However, if these initial conditions are even minutely changed, the growing solution in
(4.3.34c) appears and y(x) rapidly veers away from + (—x)'/? (see Fig. 4.9). Thus, the approach
to +(—x)"2 is unstable.

Example 5 Beyond Painlevé transcendents. What is the nature of the movable singularities of the
solution to
Yy =yt +e? (4.3.35)

This equation is a modification of the Painlevé equation (4.3.25) y” = y? + x whose movable
singularities are second-order poles. Equation (4.3.35) is a relatively simple example of a differen-

Figure 4.8 A computer plot of the solution to the initial-value problem y” = y* + x [y(0) = y'(0) = 0]
for —16 < x <2.Asx — — oo, thesolution oscillates about — (— x)*/? with an amplitude that gradually
decreases like (—x)~ V8.
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»'(0)=0.2319
14
»'(0) = 0.231 954 709 030
— 2 y
v'(0) = 0.2320
=x)'?
) 'r —+ f + 0
-10 -8 / -6 -4 -2
X

Figure 4.9 A computer plot of three solutions to the differential equation y” = y* + x [y(0) = 1] and
with slightly different values of y'(0). The solution having y'(0) = 0231 954 709 030 is apparently
asymptotic to the curve y = (—x)"? as x = — 0. The other two solutions rapidly veer away from
y=(=x).

tial equation whose leading singular behavior is that of a second-order pole but whose singularity
is not a pole. [Thus, (4.3.35) is not a Painlevé equation!]

Local analysis shows that the leading singular behavior of a solution y(x) to (4.3.35) which
becomes infinite at x = x, is y(x) ~ 6/(x — x,)* (x = x,). However, this leading behavior does
not mean that y(x) has a pole at x = x,. If there is a pole at x = x,, then y = t~2z(t), where
t=x — x, and z(t) is analytic in a neighborhood of ¢ = 0. We will demonstrate that z(t) is not
analytic at ¢t = 0 by showing that the assumption that

y(¢) = (1/e2)6 + at + bt* + ct> + dt* + et® + fi® + )

leads to a contradiction. (It is remarkable that we need this many terms to see the contradiction!)
In terms of t = x — x,, the differential equation (4.3.35) is

dryjdt? = y* + A(L +t + 132 + /6 + ),
where 4 = ¢*. Substituting the series for y(t), we find that

36 2 1
2+ t—f +2d 4 et + 12fEF 4+ = (36 + 12at + (126 + @) + (12¢ + 2ab)°
+ (b* + 2ac + 12d)t* + (12e + 2ad + 2bc)’

At?
+(cz+2bd+2ae+12f)t6+-~']+A+At+—2—'+“n

Equating coefficients of t™* gives 36 = 36. This verifies that the leading behavior of y(t ) is indeed
y~6t"2 (t->0)
Next, we equate the coefficients of higher powers of t:

=3 2a=12a, soa=0;

=2 126 +a*=0, sob=0;
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[ 12¢ + 2ab = 0, so ¢ =0;

10 2d = b* + 2ac + 12d + A, sod = —A/10;
th: 6e = 12e + 2ad + 2bc + A, so e= —A/6;
t2: 12f = ¢* + 2bd + 2ae + 12f + 34, so A=0. (!)

This last result is false; we have found a contradiction in sixth order in the series for z(t), so z(t) is
not analytic near t = 0 and the singularity is not a pole.

What is the nature of the singularity at x = x,? The impossible equation $4 = 0 is reminis-
cent of the kind of equations one encounters in Frobenius theory when two indices differ by an
integer. Thus, since the problem arises in sixth order when the ft® term formally cancels, we are
led to try instead the combination of terms ft® + f, t° In .

Now, separately equating coefficients of t? and * In ¢ gives

12/ + 7fy = c? + 2bd + 2ae + 12f + 14

for t? so f, = A/14; and
12f; = 12f;

for t% In ¢ so fis an arbitrary constant. (There are now two arbitrary constants, xo and f.)
Now there is no contradiction, but the term t°In ¢ induces a branch point at x = x,. In
fact, the correction term f¢® In ¢ is not all that is required. The presence of the nonlinear term y*
in the differential equation causes terms like (¢° In t)? to appear in twelfth order in the series for
z(t). Ultimately, all powers of t° In t must be included in the series for z(t). It is likely that the
structure of the resulting singularity is extremely complicated. Singularities of this complexity can
occur in differential equations of the type y” = y* + f(x) if f(x) is not a linear function of x.

Example 6 Approximate determination of radius of convergence. Let us examine the equation
y" =y + ¢ near x = — 0. To do this we let t = ¢* and investigate the resulting differential

equation
d d
t—e—)y=y>+1t 4.3.36
(d:)( dt)y Y (4336)

near t = 0. What is the radius of convergence of that solution y(t) which is analytic at ¢t = 0 and
which vanishes at t = 0?

First we must ascertain the leading local behavior of y(t) near t = 0. There are three possible
dominant balances. If y* « ¢ (t - 0), then

(¢d/dt)?y ~t, soy~t,  t—0.
If t <« y? (t > 0), then
(td/dt)y ~y2,  soy~6/(Int)? t—0,
which is not analytic at t = 0 and must be rejected. The third possibility is that
yi~—t,  soy~(=t)"3 -0
But then t « (¢ d/dt)*y (t — 0), so this possibility is inconsistent.
Hence, the Taylor series about t = 0 takes the form

=13 ar, o =1 (4.337)

Substituting this series in the differential equation and equating coefficients of powers of ¢ gives
the recurrence relation

n—1

1
4= aa,_ ;, nz=2 (4.3.38)
1

i=
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Thus, a, = 4, a; = 75 and so on. Since the coefficients a, are all positive, the nearest singular
point of y(t) lies on the real axis.

Using (4.3.38) we can estimate that the radius of convergence R lies between 6 and Sf =
7.35 (see Prob. 4.19). The upper bound may be sharpened somewhat to 7.1 (see Prob. 4.20).
Numerical solution of the differential equation indicates that R = 6.8.

Example 7 Thomas-Fermi equation. The Thomas-Fermi equation
y'=y¥x7U2 p0) =1, y(+o0) =0, 4.3.39)

provides a semiclassical description of the charge density in atoms of high atomic number. What
is the leading behavior of the solution for large positive x?

Here, we are not trying to find a complete description of the asymptotic behaviors of all
solutions to y” = y*2x~ Y% as x — + c0; we want to study only those solutions which approach 0
as x — + 00. Observe that it is consistent for y(x) to fall off algebraically for large x. To check this,
we substitute y(x) ~ A/x? (x » + o) into the differential equation:

Ab(b+1) 432

IR RN T RS T X = +o0.

x
Comparing powers of x on each side gives b = 3 and 4 = 144. Thus, it is reasonable to expect
that

y(x) ~ 144/x3, x> + 0.

In fact, the function y(x)= 144x~> happens to be an exact solution of the differential
equation. However, it does not satisfy the boundary condition at x = 0. If 144x 3 is also the
leading behavior of the solution which does satisfy the boundary conditions, then we should be
able to find the higher-order corrections to this behavior. Suppose that as x = + co the correc-
tions take the form y(x) = (144/x*)[1 + ¢(x)], where &(x) < 1 (x » + o). When x is large and
positive, £(x) satisfies an asymptotic Euler equation: ¢” — 6¢'/x ~ 6¢/x* (x — + o). The solu-
tions to this equation have the form x’, where r = (7 + ﬁ)/Z ~7772andr= (7 - \/ﬁ)/Z >
—0.772; only the second is consistent with the assumption that ¢ — 0 as x — + co. Thus, we
expect y(x) to behave like

144 C
'V(X) ~ ? (1 + me), X — + 00, (4340)

where C is a constant which cannot be determined by the methods of local analysis. Unfor-
tunately, the estimate y(x) ~ 144x™3 (x » +o0) has a relative error of Cx %77 where C is
unknown, so there is no way to predict how large x must be before this estimate becomes
accurate.

To check the leading behavior y ~ 144x~3 we have plotted in Fig. 4.10 the numerical
solution to the Thomas-Fermi equation along with the predicted leading behavior. Observe that
the agreement is terrible! When x = 15 the leading behavior is three times larger than the exact
solution. In Table 4.3 we compare the solution to the Thomas-Fermi equation with its leading
behavior for large values of x. Again we observe very poor agreement.

Apparently, the leading behavior is such a poor approximation to the solution of the
Thomas-Fermi equation because by sheer perversity the value of C in (4.3.40) is not small. If we
fit (4.3.40) to the numbers in Table 4.3, we find that C = —13.2709738 (see Prob. 4.23). Thus,
even when x = 100, the term Cx~ %772 is not small compared with 1 and the leading asymptotic
behavior is not very useful. The leading asymptotic behavior does not attain a relative error of 10
percent until x is about 550 and the first four terms in the asymptotic series do not attain a
relative error of 10 percent until x is about 35.

Here, we have finally seen an example where local asymptotic analysis is not impressive.
Nevertheless, it is easy to predict the qualitative features of the solution y(x) for x > 0. First, we
know that y(x) > 0; otherwise the solution is complex. Second, y(x) has positive curvature
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Table 4.3 A comparison of the numerical solution to the Thomas-Fermi equation y" = y*2x 72 [)(0) = 1, y(c0) = 0] with its
leading behavior 144x ~3 for various values of x

Here we see an example in which local analysis is unimpressive. The poor agreement is caused by the large magnitude of the error term Cx~°772 in (4.3.2).
Also listed are the values of the first four terms in the expansion of y(x) for large x. In this expansion r = (7 — . /73)/2 = —0.772 001 873, C = —13.270973 8,
D = 110197059, E = —732.467 106. This series does not attain an accuracy of 1 percent until x > 70 because the coefficients are so large

Predicted leading behavior

of y(x) for large x

Exact solution y(x)

First four terms in asymptotic
series for y(x) for large x

~

Relative
(144/x3)(1 + Cx" + Dx*" + Ex*") error, %

0.1
0.2
03

0.5
0.6
0.7
0.8
09

to Thomas-Fermi Relative

equation 144x 3 error, %

1.000 0 o¢)

0.881 7 144,000

0.793 1 18,000

0.720 6 5,333

0.659 5 2,250

0.607 0 1,152

0.5612 666.7

0.520 8 419.8

04849 2813

04529 197.5

0424 0 144.0

0.243 0 18.00
0.156 6 5.333
0.108 4 2.250
0.788 1 (—1) 1.152
0.5942 (—1) 0.666 7
04610 (—1) 04198
03659 (—1) 0.2813
02959(—1) 0.1975
0.243 1 (—1) 0.1440
05785( 2) 0.1800 (—1)
0.225 6 (—2) 0.533 3 (—2)
0.1114 (=2) 02250 (—2)
0.6323 (—3) 0.1152 (—3)
0.3939 (—3) 0.666 7 (—3) 69
0.2623 (= 3) 0419 8 (—3) 60
0.183 5 (=3) 0.281 3 (- 3) 53
0.1335(-3) 0.197 5 (—3) 48
0.1002 (—3) 0.144 0 (—3) 44
0.145018 0 (—4) 0.180 0 (—4) 24
0.454 8572 (- 5) 0.5333 (—5) 17
0.197973 3 (—5) 0.2250 (—5) 14
0.103 407 7 (—5) 0.1152 (=5) 11
0.606 868 8 (—6) 0.666 7 (—6) 9.9
0.386 176 5 (—6) 0.419 8 (—6) 8.7
0.260 813 7 (—6) 0.2813 (—6) 7.8
0.184 3724 (—6) 0.197 5 (—6) 7.1
0.1351275(—6) 0.144 0 (—6) 6.6

—91,374
—2,089
-2239
—4530
—~1298
—4.632
—1.921
—0.886 8
04433
—0.2350
0.100 1 (—2)
0.180 8 (—2) -20
0.103 1 (=2) -74
0.6102 (—3) -35
0.386 4 (—3) —-19
02593 (=3) —11
01821 (-3) —0.73
0.1329 (=3) —0.50
0.998 9 (—4) —0.35
0.144 962 8 (—4) 038 (—1)
0.454 809 4 (—5) —0.11 (—1)
0.197 964 9 (—5) —042(-2)
0.103 405 5 (—5) 021 (-2)
0.606 861 6 (—6) —0.12 (-2)
0.386 173 9 (- 6) —0.73 (-3)
0.260 812 5 (—6) —048 (—3)
0.184 371 8 (—6) —0.34 (—3)
0.135 1272 (—6) —0.24 (-3)

691
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»'(0)=-1.56 »'(0)=-1.586

vy 0.50R ) ]
Exact solution
to Thomas-
Fermi equation: 3 } ]
1(0)=-1.588 071 0 144/x  leading asymptotic
approximation to solution of
"(0)=-1.61 Thomas-Fermi equation
025 0 |
»'(0)=-1.59
0 2 4 6 8 10 12 14

Figure 4.10 A computer plot of the solution to the Thomas-Fermi equation y” = y*2x~ V2 [y(0) = 1,
y(o0) = 0], along with its leading asymptotic behavior 144x 3. Observe that the leading behavior
is a poor estimate of y(x) even when x = 15. Also shown are four functions satisfying the differential
equation y” = y32x~'/2 and y(0) = 1, but having initial slopes which are slightly different from the
initial slope needed to give y(+ c0) = 0. Two of these functions cross the x axis and become complex;
the other two become infinite before x = 15.

(y" > 0), so the slope must increase with x. Consequently, y'(x) < 0; otherwise y(x) could not
satisfy the boundary condition y(co) = 0. Thus, y(x) has no local minima or maxima; y(x)
smoothly decreases from y =1 to y =0 as x — co. The initial slope y'(0) must be chosen very
precisely. If y'(0) is too negative, then y(x) crosses 0 at a finite value of x. if y'(0) is not sufficiently
negative, then y(x) reaches a minimum, turns around, and rapidly becomes singular at some finite
value of x (see Fig. 4.10). The leading behavior at this singularity is that of a fourth-order pole (see
Probs. 4.24 and 4.25):

400a
y(x) ~ Coaf x—=a. (4.3.41)
The graph of the solution to the Thomas-Fermi equation in Fig. 4.10 exhibits all of these
qualitative characteristics.

Example 8 Boundary-value problem on a finite interval. In this final example we apply local
analysis to study the properties of the solution to a nonlinear boundary-value problem near the
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boundaries. Let us examine the leading behavior of the solution to
y'=-1 y0)=y(1)=0, (4.342)

as x - 0+. (Note that this differential equation would not be consistent with the boundary
conditions if —1 were replaced by 1. See Prob. 4.26.)

The simplest guess is that y(x) approaches 0 algebraically as x —» 0+. If we assume that
y(x) ~ Ax® (x > 0+) and substitute into the differential equation, we obtain

A(b— 1x® "2~ —1,  x0+.

It follows that b = 1. But this value is inconsistent because the left side of the equation vanishes.
Unfortunately, the second derivative of x is zero and not 1/x!

This argument shows that the behavior of y(x) as x -0+ is not algebraic. Can it be
logarithmic? We try a solution whose leading behavior is

y(x)~ Ax(—=Inxp, x—->0+.
Thus, y'(x)~ —Ab(—In x)"Yx + Ab(b — 1)(=In x}’"%/x, x—0+.

Neglecting the second term on the right side of this equation because it is smaller by a factor
of (—In x)™! as x » 0+ and substituting the first term into the differential equation gives
—1~ —A%(=1n x)®"! (x>0+). It follows that b=4 and 4 = +./2. Hence the leading
behavior of y(x) as x - 0+ is

yx)~ tx/=2Inx, x->0+. (4.3.43)

Also, by a similar argument we have

yx)~t(1-x)/-2Ih(1-x), x->1-. (4.3.44)

The two asymptotic behaviors (4.3.43) and (4.3.44) may be verified by comparing them with
the exact solution to (4.3.42). This comparison is given in Fig. 4.11.

(I) 4.4 NONLINEAR AUTONOMOUS SYSTEMS

Autonomous systems of equations, when they are interpreted as describing the
motion of a point in phase space, are particularly susceptible to some very beauti-
ful techniques of local analysis. By performing a local analysis of the system near
what are known as critical points, one can make remarkably accurate predictions
about the global properties of the solution.

Phase-Space Interpretation of Autonomous Equations

Differential equations which do not contain the independent variable explicitly
are said to be autonomous. Any differential equation is equivalent to an autono-
mous equation of one higher order; to remove the explicit reference to the
independent variable x one simply solves for x in terms of y and its derivatives and
then differentiates the resulting equation once.

As we will see, it is convenient to study the approximate behavior of an
autonomous equation of order n when it is in the form of a system of n coupled
first-order equations. Also, by convention we will think of the independ ent vari-
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0.5 T 1 T N R T T T
Leading asymptotic Leading asymptotic
approximation to approximation to
vix)asx >0+ y(x)asx—~>1-—
041 —
Exact

solution y(x)

0.3} _

0.2 —

0.1 i

0 | | ] J ] | ] 1 ]
0 0.1 02 03 04 05 06 07 08 09 1.0
x
Figure 4.11 Comparison of an exact solution y(x) to yy” = —1 [y(0) = y(1) = 0], with its leading

asymptotic approximations y(x) ~ x,/ —2In x (x > 0+)and y(x) ~ (1 = x}/ =2In(l —x) (x> 1-)

in (4.3.43) and (4.3.44). See Prob. 4.26(b).

able of the system as time ¢t and the dependent variables y,, y,, ..., y, as position
coordinates. The general form of such a system is

Y1=0100 Y25 s Yah
V2=01 Y2, -5 Va) (4.4.1)

j)n =j;.(y1, Y2, -0 yn)’

where the dots indicate differentiation with respect to .

The solution of the system (4.4.1) is a curve or trajectory in an n-dimensional
space called phase space. The trajectory is parametrized in terms of t: y, = y,(¢),
Y2 = yl(t)’ s Yn = yn(t)'

We will assume that f, f5, ..., f, are continuously differentiable with respect
to each of their arguments. Thus, by the existence and uniqueness theorem of
differential equations (see Sec. 1.2), any initial condition y,(0) = a,, y,(0)=
ay, ..., ¥2(0) = a, gives rise to a unique trajectory through the point (a,, a,, ..., a,).
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Yo

fan
)T

Figure 4.12 A plot of the trajectories
in phase space for the two-dimensional
system y, = y,, y, = —y,. Note that
individual trajectories, which are cir-
cles, never intersect. The arrows in-
dicate the direction of motion of the
vector [y,(t), y2(2)] for increasing .

To understand this uniqueness property geometrically, note that at every
point on the trajectory [y;(t), y2(t), ..., ya(t)] the system (4.4.1) assigns a unique
velocity vector [(t), ¥2(t), ---, ya(t)] which is tangent to the trajectory at that
point. It immediately follows that two trajectories cannot cross; otherwise, the
tangent vector at the crossing point would not be unique.

Example 1 Phase plane for y + y = 0. The equation y + y = 0 describes a particle undergoing
harmonic motion (sinusoidal oscillation). To represent this motion in the phase plane we convert
this equation into a first-order system; to wit, we let y,(t) = y(z), the position of the particle, and
y,(t) = »(t), the velocity of the particle. Then y, = y,, y, = —y,, is an equivalent first-order
system. In phase space the trajectories are concentric circles (see Fig. 4.12).

Critical Points in Phase Space

If there are any solutions to the set of simultaneous algebraic equations

[iy1s Y2, -5 ) =0,
fZ(yl’ Y250t ,Vn) = O,

ﬂ.(Y1,Y2,~~~,yn)=0,

then there are special degenerate trajectories in phase space which are just points.
(The velocity at these points is zero so the position vector does not move.) Such
points are called critical points.

Note that while a trajectory can approach a critical point as t — oo, it cannot
reach such a point in a finite time. The proof is simple. Suppose it were possible for
a trajectory to reach a critical point in time T. Then the time-reversed system of
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equations (the equations obtained by replacing f; with —f;) would exhibit an
impossible behavior: the position vector [y,(t), y,(2), ..., ya(t)] would rest mo-
tionless at the critical point and then suddenly begin to move at time 7. (Recall
that in an autonomous system f}, f5, ..., f,, the components of the velocity vector,
depend only on the position of the particle and not on the time.)

We will now see how a local analysis of solutions in the vicinity of the critical
points actually enables one to deduce the global behavior of the solutions!

One-Dimensional Phase Space

One-dimensional phase space, which we call the phase line, is used to study
solutions to the first-order autonomous system j = f(y). There are only three
possibilities for the global behavior of a trajectory on a phase line:

1. The trajectory may approach a critical point as t — + 0.
2. The trajectory may approach +co as t — + 0.
3. The trajectory may remain motionless at a critical point for all t.

In the neighborhood of a critical point there are three possibilities for the
local behavior:

1. All trajectories may approach the critical point as t — +o0. We call such a
critical point a stable node (see Fig. 4.13). The point y = 0 is a stable node for
the equation y = —y.

2. All trajectories may move away from the critical point as t — +oo. We call
such a critical point an unstable node (see Fig. 4.13). The point y = 0 is an
unstable node for the equation y = y>.

3. Trajectories on one side of the critical point may move toward it while trajec-
tories on the other side of the critical point move away from it as t > + 0. We
call such a point a saddle point (see Fig. 4.13). The point y = 01is a saddle point
for the equation y = y2.

Because there are only three kinds of global behaviors, it is easy to deduce the
global time dependence of a one-dimensional system from a local analysis of the
critical points.

® y

Stable node

Figure 4.13 Phase line (one-dimen-
sional phase space) showing the
three kinds of critical points that
Unstable node may occur. Arrows indicate the
motion of y(t) as t > +c0. On a
phase line the local behavior near
critical points determines the global
Saddle point behavior of solutions.

*~— — y

PHASE LINES

. 4 > y
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Example 2 Critical-point analysis of a one-dimensional system. The equation j = y* — y repre-
sents a population y having a quadratic birthrate (y?) and a linear deathrate (- y). It is easy to
find the exact time dependence of y(t) by solving the differential equation because the equation is
separable (see Prob. 4.39). However, it is even easier to obtain a rough picture of the global
behavior using critical-point analysis.

The critical points for y = y* — y solve the algebraic equation y* — y = 0. Thus, there are
critical points at y, = 0 and at y, = 1. Next, we classify these critical points by finding the local
behavior of y(t) near y, and y,. To do this we linearize the differential equation near these points.
For example, when y is near O we let y(t) = ¢(t) and approximate the exact differential equation
by &(t) ~ —&(t) (¢ — 0). The solutions to this equation decay exponentially, so y = 0 is a stable
node. Similarly, when y is near 1 we let y(t) = 1 + ¢(t) and approximate the exact differential
equation by &(t) ~ &(t) (¢ — 0). Since the solutions to this equation grow exponentially with time,
we identify y = 1 as an unstable node.

Now we can infer the behavior of y(t) for any initial value y(0). Any trajectory on the phase
line to the left of y =0 must move to the right and approach y = 0 as t —» + oo because, by
continuity, trajectories sufficiently near y = 0 move toward y = 0. If some trajectories were to
move leftward toward y = — oo as t — + oo, then the dividing point between left-moving and
right-moving trajectories would be a critical point. But there is no critical point to the left of
y = 0. Similarly, all trajectories to the right of y = 1 move rightward toward y = cc as t —» + o0
and all trajectories between y = 0 and y = 1 move leftward toward y =0 as t » + 0. (Why?)

This completes our critical-point analysis of the differential equation and our conclusions
about the structure of the phase line are depicted in Fig. 4.14. From this diagram we can predict
the behavior of y(t) as t - +co for any y(0):

if y(0) < 0, then y(t) > 0 as ¢t - + oo,

if y(0) = 0, then y(t) = O for all ¢,

if 0 < y(0) < 1, then y(t) >0 as t > + oo,
if y(0) = 1, then y(¢) = 1 for all ¢,

if y(0) > 1, then y(t) = + o0 as t » +oc0.

These conclusions are verified by the plots of y(t) given in Fig. 4.14.

Observe that critical-point analysis does not predict how fast y(t) approaches 0 or + co; that
requires further local analysis. Rather, it answers the global question of how the mmal condition
y(0) affects the behavior of y(t) as t — + co.

Two-Dimensional Phase Space

Two-dimensional phase space (the phase plane) is used to study a system of two
coupled first-order equations. The phase plane is more complicated than the
phase line, but, as we will see, it is still possible to make elegant global analyses of
systems of two coupled differential equations. First, we enumerate the possible
global behaviors of a trajectory in a two-dimensional system:

N AW =

. The trajectory may approach a critical point as t — + co.

. The trajectory may approach co as t — + 0.

. The trajectory may remain motionless at a critical point for all ¢.

. The trajectory may describe a closed orbit or cycle (see Fig. 4.12).

. The trajectory may approach a closed orbit (by spiraling inward or outward

toward the orbit) as t - + oo.

Note that the first three possibilities also occur in one-dimensional systerns, but
the fourth and fifth are new configurations which cannot occur in a phase s pace of
less than two dimensions.
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Figure 4.14 Phase-line analysis of the equation y = y* — y (see Example 2). To the left is the phase
line for this equation on which the critical points at y = 0 and y = 1 are indicated. To the right is a
plot of y(¢t) for various initial values y(0). Phase-line analysis enables us to predict the qualitative
large-t behavior of y(t) for any value of y(0).

Next, we enumerate the possible local behaviors for trajectories near a critical

point:

L

2.

All trajectories may approach the critical point along curves which are asymp-
totically straight lines as t - + oco. We call such a critical point a stable node.
All trajectories may approach the critical point along spiral curves as t - + o0.
Such a critical point is called a stable spiral point. [It is also possible for
trajectories to approach the critical point along curves which are neither spirals
nor asymptotic to straight lines (see Probs. 4.44 to 4.46).]

. All time-reversed trajectories [that is, y(t) with ¢ decreasing] may move toward

the critical point along paths which are asymptotically straight lines as
t —» —oo. Such a critical point is an unstable node. As t increases, all trajectories
that start near an unstable node move away from the node along paths that are
approximately straight lines, at least until the trajectory gets far from the node.

. All time-reversed trajectories may move toward the critical point along spiral
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curves as t » — co. Such a critical point is called an unstable spiral point. As ¢
increases, all trajectories move away from an unstable spiral point along trajec-
tories that are, at least initially, spiral shaped.
5. Some trajectories may approach the critical point while others move away
from the critical point as t - +co. Such a critical point is called a saddle point.
6. All trajectories may form closed orbits about the critical point. Such a critical
point is called a center. In Fig. 4.12 we see an example of a center.

Note that while nodes and saddle points occur in one-dimensional phase
space, spiral points and centers cannot exist in less than two dimensions.

Linear Autonomous Systems

Since two-dimensional linear autonomous systems can exhibit any of the critical
point behaviors that we have described above, it is appropriate to study linear
systems before going on to nonlinear systems. With this in mind we introduce an
easy method for solving linear autonomous systems.

The method uses elementary matrix algebra (see Prob. 4.41 for a review of the
necessary theory). A two-dimensional linear autonomous system y, = ay, + by,,
y2 = ¢y, + dy, may be rewritten in matrix form as

Y = MY, (4.42)

where Y=(yl) and M:(a b).
V2 c d

It is easy to verify that if the eigenvalues A, and 4, of the matrix M are distinct and

V, and V, are eigenvectors of M associated with the eigenvalues 4, and 4,, then

the general solution to (4.4.2) has the form

Y(t)= ¢,V e" + ¢, V,e™, (4.4.3)

where ¢, and ¢, are constants of integration which are determined by the initial
position Y(0). For the general solution to (4.4.2) when 4, = 4, see Prob. 4.42.

The linear system (4.4.2) has a critical point at the origin (0, 0). It is easy to
classify this critical point once A, and A, are known. Note that A, and A, satisfy the
eigenvalue condition

d— 24
=1 -Aa+d)+ad—bc=0. (4.44)

If 4, and 1, are real and negative, then all trajectories approach the origin as
t > 400 and (0, 0) is a stable node. Conversely, if 4, and A, are real and positive,
then all trajectories move away from (0, 0) as ¢t > + oo and (0, 0) is an unstable
node. Also, if 1, and 1, are real but 1, is positive and 1, is negative, then (0, 0)isa
saddle point; trajectories approach the origin in the direction V, and move away
from the origin in the direction V.

ww—m=wrj b]
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Solutions 4, and 1, of (4.4.4) may be complex. However, when the matrix M is
real, then 4, and 1, must be a complex conjugate pair. If 4, and 1, are pure
imaginary, then the vector Y(t) represents a closed orbit for any ¢, and ¢, and the
critical point at (0, 0) is a center. If 1, and A, are complex with nonzero real part,
then the critical point at (0, 0)is a spiral point. When Re 1, , < 0, then Y(¢) > O as
t— +oo and (0, 0) is a stable spiral point; conversely, when Re 4, , > 0, (0, 0) is
an unstable spiral point.

It is important to determine the directions of rotation of the trajectories in the
vicinity of a spiral point or a center. To determine whether the rotation is clock-
wise or counterclockwise we simply let y, =0, y, > 0, and see whether y, is
negative or positive.

Example 3 Identification of critical points for linear autonomous systems.

(a)‘ The system y, = —y,, y, = —3y, has a stable node at the origin because the eigenvalues of

-1 0
M=% )
0 -3
are —1 and —3 which are both negative.
(b) The system y, =y, y,= —2y, —2y, has a stable spiral point at (0, 0) because the

eigenvalues of
M= ( 1)
-2 =2

are 4, , = —1 £ i which have negative real parts. All orbits approach (0, 0) following spirals
in’a clockwise direction. (Why?)
(c) The system y, = y,, y, = y, has an unstable node at (0, 0). (Why?)
(d) The system y, =y, + 2y,,y, = —y, + y, has an unstable spiral point at the origin. (Why?)
(e) The system y, =y, + 2y,, y, =y, + y, has a saddle point at (0, 0). (Why?)
(f) The system y, = y,, ¥, = —y, has a center at the origin because the eigenvalues of the matrix

M=)

are 4, , = *i which are pure imaginary.

Critical-Point Analysis of Two-Dimensional Nonlinear Systems

To illustrate the power of critical-point analysis, we use it to deduce the global
features of some nonlinear systems of equations. The approach we take in the
following examples is the same as in Example 2. We first identify the critical
points. Then, we perform a local analysis of the system very near these critical
points. As in Example 2, the exact system can usually be approximated by a linear
autonomous system near a critical point. Using matrix methods we identify the
nature of the critical points of the linear systems. Finally, we assemble the results
of our local analysis and synthesize a qualitative global picture of the solution to
the nonlinear system.
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Example 4 Nonlinear system having two critical points. The nonlinear system
Yi=p1— Ve
e (4.4.5)
Y2=—Ya2+y1ya

known as the Volterra equations, is a simple model of a predator-prey relation between two
populations like that of rabbits and foxes: y, (the rabbit population) will grow out of boundsif y,
(the fox population) is 0; however, if y, is O then y, will decay to 0 because of starvation. What
happens if y, and y, are initially positive?

There are two critical points, (0, 0) and (1, 1). Near (0, 0) we let (y,, y,) = (£,, &,) and
approximate the exact differential equation by &, ~ &,, £, ~ —¢, (€,, &, — 0). The solution to this
system exhibits saddle-point behavior; trajectories near (0, 0) approach the origin vertically
and move away from the origin horizontally as t — co.

Near (1,1) we let (y,, y,)=(1 +¢,, 1+¢,) and approximate the exact equation by
£, ~ —&,, £, ~ & (€, &, = 0). The eigenvalues of the matrix M for this linear system are *i.
Therefore, the critical point at (1, 1) is a center having closed orbits going counterclockwise as
t — + 00. The counterclockwise rotation about (1, 1) is consistent with the directions of incoming
and outgoing trajectories near the saddle point at (0, 0).

What can we infer about the global behavior? Suppose the initial condition were y,(0) =
y,(0)=a (0 < a < 1). Then as ¢ increases from 0, the vector [y,(t), y,(t)] would move counter-
clockwise around the point (1, 1). [If it moved clockwise we would have discontinuous behavior
because for a sufficiently near 1 we know that the rotation is counterclockwise. Check directly
from (4.4.5) that the rotation really is counterclockwise.] As t increases, the vector must continue
to rotate around (1, 1). It cannot cross the y, or y, axes because they are themselves trajectories.
A deeper analysis (see Example 9 and Prob. 4.49) shows that this trajectory cannot approach co.
Therefore, for some t, the vector must encircle the point (1, 1) and eventually recross the line
connecting (0, 0) and (1, 1). Moreover, it must cross at the initial point (a, a) (see again Example
9 and Prob. 4.49).

In summary, all trajectories of (4.4.5) with y,(0) > 0, y,(0) > 0 are closed and encircle the
point (1, 1) regardless of the initial condition at ¢ = 0. Thus, the populations y, and y, oscillate
with time [see Fig. 4.15 for a numerical solution to (4.4.5)]. However, it is important to note that
while the conclusion that trajectories are exactly closed is correct, it cannot be justified by local
analysis alone. Although it is often possible to infer global behavior from local analysis of stable
and unstable critical points, in this example local analysis gives an incomplete description of the
nature of phase-space trajectories.

Example 5 Nonlinear system having three critical points. Let us try to predict the global behavior
of the system

Vi=y1B =y, =y
. (4.4.6)
Y2=yalr: - 1),

in the positive quadrant. We first locate the critical points by solving the simultaneous equations
y1(3 = y1 — y2) =0, ya(y, — 1) = 0. There are three solutions: (0, 0), (1, 2), (3, 0). Next, we in-
vestigate the local behavior of y,(t) and y,(t) in the vicinity of each of these critical points by
linearizing (4.4.2) in the vicinity of each point as we did in Example 2.

Near the critical point at (0, 0) we let (y,, y,) = (¢,, ¢,) and approximate the exact differen-
tial equation by ¢, ~ 3¢, £, ~ —¢, (&, £; = 0). The solution to this system exhibits saddle-
point behavior; trajectories near (0, 0) approach the origin vertically and move away from the
origin horizontally as ¢t — co.

Near the critical point at (1,2) we let (y,,y,)=(1+¢,, 2 + ¢,) and approximate the
differential equation by the linear system &, ~ —¢&, — &,,&, ~ 2¢, (g, &; — 0). The solution to this
linear system has a stable spiral point with counterclockwise rotation. (Why?)
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Figure 4.15 Numerical solution to the nonlinear system y, = y, — y,y2, V2, = —y, + y1), in (4.4.5).

The curves are trajectories in the phase plane and the arrows indicate the motion of the vector

[y

t), y2(t)] for increasing t. There are critical points at (0,0) (a saddle point) and at (1,1) (a center).

Near the critical point at (3, 0) we let (y,, y,) = (3 + ¢,, ;). The resulting approximate
linear system, &, ~ — 3¢, — 3¢,, &, ~ 2¢, (¢, &, — 0), is associated with the matrix

%
M= .
0 2

The eigenvalues of M are —3 and 2 and their eigenvectors are respectively (1, 0) and (-3, 5).
Thus the general solution to the linear system is

€ I -3
(82) =c, (O)e 3’+c2( 5) e,

We conclude that (3, 0) is a saddle point with ingoing trajectories lying parallel to the y, axis and
outgoing trajectories having an asymptotic slope of —3 as t » + 0.

If we assemble the results of our local analysis, we deduce that as t — o, all trajectories,
regardless of the initial condition [y,(0), y,(0)], spiral into the point (1, 2) in a counterclock wise
direction. For example, we argue that (@) an initial condition for which y, is large and y, is small
gives a trajectory which moves down along the y, axis until it reaches the saddle point at (3, 0),
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Figure 4.16 Numerical solution to the nonlinear system y, = y,(3 — y;, — y,), y2=y.(y, — 1) in
(4.4.6). The curves are trajectories in the phase plane. Critical points lie at (0,0) and (3,0) (saddle
points) and at (1,2) (a stable spiral point).

veers off at a slope of about —3, and gets trapped by the stable spiral point at (1, 2), and (b) an
initial condition for which y, is large and y, is small gives a trajectory which moves d own along
the y, axis until it reaches the saddle point at (0, 0), makes a 90-degree turn and moves toward the
saddle point at (3, 0), makes another turn, and moves off toward the spiral point at (1, 2). These
qualitative arguments are verified by the plot of the exact trajectories in Fig. 4.16.

Example 6 Nonlinear system having four critical points. The system

IR N TS TRl 78
. 3 (4.4.7)
Va=yrt i ya—

is a more complicated version of the predator-prey equations (4.4.5) in Example 4 because it
contains linear deathrate and quadratic birthrate terms. This system does not predict oscillating
populations of rabbits y, and foxes y,. Rather it predicts an unstable situation in which either the
rabbits or the foxes grow out of bounds or else both species become extinct.

There are four critical points. It is good practice to verify that (0, 0) is a stablc node; (3, 4) is
an unstable spiral point having a counterclockwise rotation; (1, 0) is a saddle point in whose
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neighborhood the general behavior of a solution has the form

y 1 1 _
)~ elofe e fo)

so that trajectories of slope 2 move inward and trajectories of slope 0 move outward; (0, 2) is a
saddle point in whose neighborhood the general solution has the form

y 5\ _ 0 ,,
(y:) ~cl(_2)e "+c2(l)el,

so that trajectories of slope —% move inward and vertical trajectories move outward.

From our local analysis we can predict that there is an approximate trapezoid of initial
values bounded by the four critical points at (0, 0), (1, 0), (3, 4), and (0, 2) for which trajectories
all approach the origin and both populations y,(t) and y,(t) die out as t = + co. Outside this
trapezoid the initial conditions are unstable with either the fox or the rabbit populations becom-
ing infinite as ¢ — + co. These predictions are consistent with the exact solution in Fig 4.17. Is it
possible for both y,(t) and y,(t) to become infinite as t — +co or must one of y, or y, always
vanish? (See Prob. 4.50.)

3.0 H 1

Y2

]

| I |

0 1.0 2.0 3.0 4.0
Y1

Figure 4.17 Numerical solution to the nonlinear system y, = y2 — y,y; — yy, y2 = ¥3 + Y1¥2 — 2)2
in (4.4.7). The curves are trajectories in the phase plane. There are four critical points: (0,0) is a
stable node, (0,2) and (1,0) are saddle points, and (3, 1) is an unstable spiral point.
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Example 7 Nonlinear system having a limit cycle. The nonlinear system

V=91 + v = y04 +3),
) (4.4.8)
V2= =yi+ 2= 001 +¥3)

has a critical point at (0, 0). An analysis of the approximate linear system near (0, 0),&, ~ &, + ¢,
&y~ —&, + &, (¢, &, = 0), shows that (0, 0) is an unstable spiral point having clockwise rotation.

Next, we examine (4.4.8) at co. If y, and y, are large, then y, ~ —y, z, y, ~ —y,z (y,,
y, = ), where z = y? + y3, which implies that distant trajectories move toward the origin as
t— +o00.

How can it be that all trajectories near the origin spiral outward and that all distant
trajectories move inward? By continuity, there must be at least one trajectory at a moderate
distance from the origin that neither moves inward nor outward. Such a trajectory must be a
closed orbit which encircles the origin. Trajectories outside or inside this orbit may approach but
not cross it. We have thus inferred the existence of a limit cycle from pure local analysis.

By local analysis alone we cannot say how many limit cycles there are. (There might be
several concentric closed orbits.) However, it is easy to solve (4.4.8) exactly and show that there is
just one. We multiply the first and second equations of (4.4.8) by y, and y, and add the resulting
equations. Setting z = y} + y3 we obtain z = 2z — 2z% This equation is similar to that analyzed
in Example 2. It is thus clear that there is a circular limit cycle having a radius of z = y? + y3 = 1.
The exact solution to the system (4.4.8) is plotted in Fig. 4.18. It exhibits all of the qualitative
features that we have deduced from local analysis.

Difficulties with Linear Critical-Point Analysis

The analysis in Examples 4 to 7 is called linear critical-point analysis because
there is a linear approximation to the nonlinear system in the neighborhood of
each critical point. Unfortunately, it is not always possible to find a linear approx-
imation to a nonlinear system. For example, the system

yi=yi+yi+8 yy=sin(yt + %)

has a critical point at (0, 0), but in the vicinity of this critical point the equa-
tions have the approximate form

. . 4
éy~el+el,  E~et+el  g,6—0,

which is still nonlinear.

The structure of nonlinear critical points can be much more complicated than
that of linear critical points (see Probs. 4.44 to 4.46). There can be saddle points
having many in and out directions and nodes for which the trajectories are not
asymptotic to straight lines as t — co. No simple matrix methods exist for identify-
ing the structure of such nonlinear critical points. Extemporaneous analysis is
often required.

There is a more subtle difficulty with linear critical-point analysis when
matrix methods suggest that the critical point is a center. When the system is
linear, then we can be sure that if the eigenvalues are imaginary the critical point is
a center. However, if a linear approximation to a nonlinear system has a center, it
is still not correct to conclude that the nonlinear system also has a center. A center
is a very special kind of critical point for which the orbits exactly close. Any
distortion or perturbation of a closed orbit, no matter how small, can give an open
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Figure 4.18 Numerical solution to the system y, =y, +y, —y(y? +y3), V2= =y + )2
— y2(y? + y})in (4.4.8). Curves are trajectories in the phase plane. The point (0,0) is an unstable spiral
point and there is a circular limit cycle of radius 1. All trajectories approach the limit cycle as t —» + oo.

orbit. (Small distortions of nodes, spiral points, and saddle points do not change
the qualitative features of these critical points.) Therefore, even though a linear
approximation to a nonlinear system may have a center, the nonlinear system may
actually have a spiral point.

Example 8 Nonlinear system having a spurious center. The system

V1= =y + 007 +53) (4.49)

V2= yi+ 201 + )
has a critical point at (0, 0). A linear approximation (4.4.9) in the vicinity of (0, 0) is &, ~ —¢,,
&y ~ & (6, £, 2 0)

This linear system has a center. However, the exact nonlinear system has a spiral point and
not a center! To see this we multiply the first and second equations of (4.4.9) by y, and y, and add
the resulting equations. We obtain y, j, + y, y, = (y3 + y3)*. In polar coordinates this becomes

1d

o (r})=r. (4.4.10)
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Thus, the radius r increases with increasing t and we have an unstable spiral point. In fact, since
the exact solution to (4.4.10) is r(t) = r(0)/y/1 — 2r*(0)t, we see that r(t) reaches oo in the finite
time ¢ = [2r2(0)] "

To prove that a critical point is really a center one must demonstrate the
existence of closed orbits. No approximate methods may be used in the proof.
The usual technique consists of integrating the system of differential equations
once to construct a time-independent quantity which is often called an energy
integral. Of course, an energy integral for the system will be very difficult to find
when the appropriate integrating factors are not obvious. In the following example
we show how to construct energy integrals.

Example 9 Proofs of the existence of closed orbits using energy integrals.

(a) The system y, = —y,, y, = y, is linear, so matrix methods are sufficient to prove that (0, 0)is
a center. However, for illustrative purposes we use an energy integral. The trick consists of
observing that (y,, y,) are integrating factors for the system. Multiplying the first equation by
y, and the second by y, and adding the resulting equations gives an exact derivative:
3(d/dt)(y? + y3) = 0. Thus, y} + y3 = ¢, where c is a constant. But this is the equation for a
family of concentric circles about (0, 0). (See Fig. 4.12.) This proves that (0, 0) is a center.
If we linearize the nonlinear system j, = —y, — y3, y, = y, about the critical point at (0, 0),
we find a center. To prove that (0, 0) is a center we note that this system has the same
integrating factors as in (a). Multiplying by (y,, y,) and adding the equations gives

®

Vv Y= =iyl = —yiv,

where we have used the second equation of the system. Again we have found an exact
derivative which gives a time-independent quantity

Vi+yi+iyi=c

This expression represents a family of concentric closed curves about the point (0, 0).
Hence (0, 0) is a center.

(¢) The nonliriear system (4.4.5) in Example 4, y, = y, — y, y,, ¥, = —y, + y, ¥, has a critical
point at (1, 1) which we claimed (using matrix analysis) was a center. To prove this assertion
we multiply the equations by the integrating factors [(1 — y,)/y,, (1 — y,)/y,] and add the
resulting equations together. The new equation is in the form of a total derivative. Integrating
with respect to ¢ gives

Yty —Inlyy)=c (44.11)

which represents a family of concentric closed curves containing the point (1, 1) (see Prob.
4.49). We have thus proved that (1, 1) is a center.

Further discussion of energy integrals is given in Sec. 11.1.

(I) 4.5 HIGHER-ORDER NONLINEAR AUTONOMOUS SYSTEMS

While the behavior of first- and second-order autonomous systems of differential
equations is simple and easy to analyze in the phase plane, solutions to autono-
mous systems of order three or more can be very complicated. The pro perties of
solutions to higher-order systems are the subject of much current research interest
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and our discussion of them here is limited to a brief nontechnical survey. The
interested reader should consult the references.

Solutions to first- and second-order systems are simple because trajectories
cannot cross in phase space. In three or more dimensions, the restriction that
trajectories may not cross does not constrain the solutions to be simple; when
orbits are not constrained to lie in a two-dimensional surface, they can twist, turn,
and tangle themselves into fantastic knots as they develop in time ¢t. Our intention
here is to illustrate the richness of this very difficult subject.

Behavior Near a Stable Critical Point

A critical point is stable if the eigenvalues of the system of equations obtained by
linearizing the nonlinear system in the neighborhood of the critical point have
negative real parts. This is by far the simplest case. It can be proved that all
trajectories of the full nonlinear equations that originate sufficiently close to a
stable critical point always decay toward that critical point as t — +o0. The
nonlinear effects do not change the qualitative (or even the quantitative) behavior
of a system near a stable critical point.

Example 1 Behavior of a third-order system near a stable critical point. The pointx =y =2z=0
is a stable critical point of the system

dx
= —x 4 x3? — xlys,

dt

y 3 dZ 4 4
—=—y+ 2, —=—z+x" -7z
dt ’ dt

because the linearized system has three negative eigenvalues. The linearized system is just
¥ = —x,y= —y, i= —z, so the linearized behavior is just

x(t)=e"'x(0),  y(e)=e7'y(0)  z(t)=e""z(0)
This behavior persists in the nonlinear system. There, we can show that when ¢ is large and
|x(0)], | ¥(0)], and |z(0)] are sufficiently small,

@©

)~ Y g™ y)~ Y be™™  z()~ Y e, to 4o (451)
n=1

n=1 n=1
In fact,a, = b, = ¢, = a; = ¢y = 0, by = —4c?, and s0 on (see Prob. 4.52). To test these conclu-
sions, we plot in Fig. 4.19 the ratios x(t)/z(t) and y(t)/z(t) for x(0) = y(0) = z(0) = 1. Equation
(4.5.1) predicts that these ratios should approach the constants a, /c, and b /c,, respectively, as
t — +oo. Figure 4.19 verifies this prediction.

Behavior Near a Center

A simple center is a critical point at which all the eigenvalues of the linearized
system are pure imaginary and distinct. This case is perhaps the most difficult. To
begin with, the solution to the linearized system need not be periodic because the
eigenfrequencies may not be commensurate. For example, a real fourth-order
linear system could have eigenvalues =i, ii\/i. Can you see that there are
solutions that are not periodic? However, all solutions to a linear system at a
simple center are almost periodic in the sense that there exist arbitrarily large time
periods T over which the solution repeats itself to any prespecified tolerance.
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Figure 4.19 We infer from a local analysis of the system of equations in Example 1 that x(t)/z(t)
and y(t)/z(t) approach constants as t — -+ co. This graph verifies that prediction.

Mathematically speaking, for any ¢ > 0, there exists an unbounded sequence of
time periods Ty, T;, T, ... such that, for each T, |y(t + T;) — y(t)| < & for all ¢.

The behavior of a nonlinear system in the vicinity of a simple center can be
even more complicated. As we have seen in Example 8 of Sec. 4.4, the existence of
a nonlinear term may disrupt the orbits of the linear system entirely. The orbits
may no longer be almost periodic; they may exhibit very complicated random
behavior.

Example 2 The Toda lattice: a simple center with almost periodic orbits. The systerm

dg;

—=p, 452

it 452)

dp;

2 =P @~ 4) —exp (45— 450) (453)
where j=1,2,..., m, m> 1, and gy =q,,, 4+, = 4, is known as the equations of the Toda
lattice. The point p, =p, = -=p, =0, q,=q,=""=gq, =0 is a simple center (see Prob.

4.53). Despite the nonlinearity of this system, it can be proved that the solutions to these equa-
tions are almost periodic for all m. To illustrate this almost periodic behavior, we have solved
(4.5.2) and (4.5.3) numerically for the case m = 3. In Fig. 4.20 we have plotted g (t) versus t. The
repetitive structure of the curve suggests that the solution is almost periodic.
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Figure 4.20 A plot of q,(t) versus t for the Toda lattice (4.5.2) and (4.5.3) with m =3 and the
initial conditions p,(0) = — 1, p,(0) = 0.7, p5(0) = 0.3, ¢,(0) = — 1, g,(0) = 0, and q4(0) = 1. Observe

the almost periodic behavior of g, (t).

Example 3 A simple center with complicated orbits. The system (investigated by Hénon and
Heiles)

dqj

Z=p. j=1,2, 454
il S (454)
dp

T:‘ = —q,-24,42 (455)
dp

=it (4.56)

has a simple center at p; = g;=0 (j = 1, 2). (Why?) The orbits in the vicinity of this center are
almost periodic; others exhibit random behavior. To illustrate the almost periodic and the
random behaviors, we have constructed two Poincaré plots in Figs. 4.21 and 4.22. A Poincaré
plot is a graph of p,(t) versus g,(t) at those discrete times ¢ at which g,(t) = 0 and p,(t) > 0. That
is, every time the trajectory passes through q, = 0 while g, is increasing, we plot a dot in the
py — q, plane. We observe two distinct behaviors. The initial condition I:

P =% p(0)=01293144,  4,(0)=4% g (0)=1%
gives rise to an almost periodic orbit while the initial condition 11:
p:i(0)=0.1,  p,(0)=10467618, 4,(0)=0.1, g,(0)=0.1

gives rise to random behavior. In the Poincaré plot the initial condition I gives rise to a
sequence of points that gradually fill out a number of closed curves which are called islands.
The trajectory is almost periodic because the dots progress sequentially and regularly from
island to island and nearly repeat themselves every so often. On the other hand, the initial



[

APPROXIMATE SOLUTION OF NONLINEAR DIFFERENTIAL EQUATIONS 189

0.1 -

| ] | 1 | 1 | J

-1.0

-08 -06 -04 -02 0 02 04 06 08 1.0
py ()

Figure 4.21 Poincaré plot showing an almost periodic solution to the system (4.5.4) to (4.5.6). The
plot is constructed by graphing the points [p,(t), q,(¢)] for those discrete times ¢ at which g,(t) =0
and p,(t) > 0. For this plot we took p,(0) =4, p,(0) = 0.129 314 4, q,(0) = &, ¢,(0) = 4, and plotted

point

sfor 0 <t < 1,000. The trajectory is almost periodic because the dots alternate regularly between

the islands, and the sequence of dots nearly repeats itself every so often.

condition II gives rise to a sequence of points in the Poincaré plot that jump around
apparently at random in the region outside the islands. There is an interesting connection
between the :nitial conditions [ and II. (See Prob. 4.59.)

Notice from Fig. 4.22 that while the trajectory Il is random it nevertheless does not move far
away from the center at 0. The reason for this is that the system (4.5.4) to (4.5.6) satisfies the
conditions of a profound theorem in analysis called the Arnold-Moser theorem. Loosely speak-
ing, this theorem implies that trajectories of (4.5.4) to (4.5.6) that originate sufficiently close to the
center remain close to the center for all time.

Hamiltonian Systems

The

systems considered in Examples 2 and 3 are Hamiltonian systems. A Hamil-
tonian system has the form
dq; _oH (4.5.7)
dt  0p;
dp; _ _oH (4.5.8)

e~ 9g;°
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Figure 4.22 Poincaré plot showing a solution to the system (4.5.4) to (4.5.6) which exhibits random
behavior. For this plot we took p,(0) = 0.1, p,(0) = 0.467 618, q,(0) = 0.1, g,(0) = 0.1, and plotted
points for 0 <t < 2,000. It is remarkable that the plots in Figs. 4.21 and 4.22 represent solutions to
the same system of equations.

where j=1,2,..., mand H= H(py, ps, -, Pm> 41> 92> ---» dm) 18 called the
Hamiltonian. For the Toda lattice (4.5.2) and (4.5.3),

H=

D=
™3

P+ ¥ e
j=1

1 Jj

J

and for the system (4.5.4) to (4.5.6), H = 3(p? + p?) + $(¢? + 43 + 291 ¢, — 343)-
Hamiltonian systems have two important properties. First, the Hamiltonian
is an energy integral of the motion. This means that H[p(¢), q(¢)] = H[p(0), q(0)):

dH _ <« [0H dp;  0OH dq;\
dt [p(t), q(t)] - ;(apl dr + aqj dt =0

Second, Hamiltonian systems conserve volumes in phase space. This means that if
we draw the trajectories that originate from all of the points inside a region of
volume V in phase space at t = 0, then the endpoints of these trajectories at time ¢
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fill a region with the same volume V for all t. Mathematically, this condition is
that the Jacobian

_ p(t), q(t)]
o[p(0). q(0)]

satisfies J(¢) = 1 for all ¢ (see Prob. 4.55).

Because Hamiltonian systems preserve volumes in phase space, stable critical
points must be centers. A Hamiltonian system cannot exhibit the kind of stable
critical point illustrated in Example 1. (Why?)

The Arnold-Moser theorem that we cited in Example 3 applies to Hamilto-
nian systems whose Hamiltonians are analytic functions of p and gq.

J(t)

LANLNL L N N O N N B

Vo
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Figure 4.23 Plot of y,(t) versus y,(t) for a single trajectory of (4.5.9) for 0 <t < 3,000. The initial
conditions, y,(0) = 0.540 323, y,(0) = — 1.543 569, y;(0) = —0.680 421, y,(0) = —1.185 361, y5(0) =
—0.676307, satisfy [y;(0))* + - + [5(0)]* = 5. Thus, the projection of the trajectory onto the (y,, y,)
plane lies inside a circle of radius \/3 The disordered wandering of the curve in the plot suggests
that the solution does not have a simple asymptotic behavior as ¢t — oo, but rather that the behavior
is random.
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15

-5

Figure 4.24 A plot of y(t) versus ¢ in the Lorenz model (4.5.10) to (4.5.12) for r =17 and the
initial conditions x(0) = z(0) = 0, y(0) = 1. Note the slow and regular oscillatory approach to the
stable critical point at x = —4, y = —4, z = 16.

Systems That Exhibit Random Behavior

One class of equations known as C-systems exhibits random behavior. Roughly
speaking, a C-system is one for which:

1. There exists an energy integral which confines the trajectory to a finite volume
in phase space.

2. There are no critical points.

3. For each trajectory I' in phase space there exist nearby trajectories, some of
which move away from and some of which approach the trajectory I' with
increasing t.

There are no C-systems in less than three dimensions (see Prob. 4.56).
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Figure 4.25 A plot of y(t) versus z(t) (1 <t < 50) in the Lorenz model for r = 17 and the same initial
conditions as in Fig. 4.24. Note the slow spiral approach to the critical point at x = —4, y = —4,
z=16.

There are systems of differential equations which are not C-systems (because
they have critical points) which also exhibit random behavior. We give two
examples.

Example 4 A fifth-order system with an energy integral. The fifth-order system

%=J’i+1}’f+z+)’.‘—1}’i~z_2}’i+1}’i-1~ i=12..5 (4.59)
yi = yiss for all i, has the energy integral (d/dt) Y'?_, y? =0, so orbits are confined to the
surface of a ball in five-dimensional phase space. This system has critical points and they are all
unstable (see Prob. 4.57). In Fig. 4.23 we plot y,(t) versus y,(t) for a single trajectory for0 <t <
3,000. A glance at this figure suggests two conclusions. First, it is unlikely that there is a closed-
form analytical expression for the trajectory. Second, the behavior is probably random.
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Figure 4.26 A plot of x(t) versus y(t) (1 < ¢t < 50) in the Lorenz model for r = 17 and the same initial
conditions as in Fig. 4.24.

Example 5 Lorenz model. The Lorenz model is the third-order system

dx
X 3(x—y), 4.5.10
= -3x-) (4.5.10)
d—‘:: —xz+rx—y, (4511)
d
If:xy —z 45.12)

where r is a constant parameter.

If r < 1, the only critical point is at x = y = z = 0 and this point is stable. Thus, if r < 1, the
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Figure 4.27 A plot of y(t) versus ¢ in the Lorenz model (4.5.10) to (4.5.12) for r =26 and the
initial conditions x(0) = z(0) = 0, y(0) = 1. This system exhibits random behavior which presents itself
here as intermittent and irregular oscillation in contrast with the regular oscillation in Fig. 4.24.

system cannot exhibit random behavior if x(0), y(0), z(0) are small (see Prob. 4.58). If r > 1, the
origin is an unstable critical point.

However, if r > 1, there appear critical pointsat x = y = i\/r——l, z = r — 1. These critical
points are stable if 1 < r < 21 (see Prob. 4.58). To illustrate the behavior of trajectories near these
stable critical points, we take r = 17 and x(0) = z(0) = 0, y(0) = 1, and plot y(t) versus t in Fig.
4.24. Observe that y(t) - —4 as t — co. (What is special about y = —4?) In Fig. 4.25 we plot y(t)
versus z(t) and in Fig. 426 we plot x(t) versus y(t). There is a lovely oscillatory approach to the
stable critical point at (—4, —4, 16).

If r > 21, the critical points at x=y= +./r—1,z=r—land at x=y=z=0 are all
unstable. In Fig. 4.27 we plot y(t) versus ¢ for the trajectory starting at x(0) = z(0) = O, y(0) = 1
with r = 26. It has been proved that this system exhibits random behavior which is illustrated by
the intermittent and irregular oscillation shown in Fig. 4.28. In Figs. 4.28 and 4.29 we plot y(t)
versus z(t) and x(t) versus y(t), respectively, for the same conditions as in Fig. 4.27. The ran-
domness of the trajectory consists of haphazard jumping back and forth from neighborhoods of
the critical points at x =y =15,z=25and x=y= —5,z=25.



(D)
(D)

(E)

(1)

196 LOCAL ANALYSIS

50—

z(t) Ar

I S U SN SR SN W AN S TR AN WU NN W I NS BN S
-20 -16 -12 -8 -4 0 4 8 12 16 20

(1)

Figure 4.28 A plot of z(t) versus y(t) (2.5 <t < 30) in the Lorenz model for r = 26 and the same
initial conditions as in Fig. 4.27. The randomness of the trajectory presents itself as haphazard
jumping back and forth from neighborhoods of the unstable critical points at x =y =35, z =25
and x = y = — 5, z = 25. The segmented character of the outer portion of this plot and that of Fig. 4.29
reflect the discrete nature of the computer output.

PROBLEMS FOR CHAPTER 4

Section 4.1

4.1 Verify equation (4.1.3).

4.2 Prove that when —e < x < 1/e, the sequence {y,(x)} in (4.1.5) converges to the solution of the
initial-value problem (4.1.1). Show that when x < —e, the sequence has two limiting functions, neither
of which is the solution to y = ¢*. Which equation do these two limiting functions satisfy?

4.3 Perform a local analysis of the algebraic equation y = ¢*’ near x = 1/e by substituting y = e +
d(x), where 6 -+ 0 as x — 1/e. Solve approximately for 5(x) to show that near x = /e, y(x) has a
square-root singularity.

4.4 Extend the argument given in Prob. 1.3 of Chap. 1 to show that if F(x, y) is an analytic function of
both its arguments in some neighborhood of x = a, y = b, then the solution y(x) of the differential
equation y' = F(x, y), y(a) = b, exists and is analytic in some neighborhood of x = a.
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Figure 4.29 A plot of y(t) versus x(t) (2.5 < ¢t < 30)in the Lorenz model for r = 26 and the same initial
conditions as in Fig. 4.27.

Section 4.2

4.5 Explain why X1/2A, — = very rapidly as n — co (see Table 4.1). Specifically, show that the approach
is not so rapid if X, is defined as x, or x,,,. Why does the averaging decrease the error so much?
4.6 Does the solution to the initial-value problem y'(x) = /x* + y* [y(0) = a] remain finite for all x?
4.7 Can the solution to y' = y? + 1/x* [y(—10) = a] become infinite at x = 0 if a is real? Solve the
equation exactly.
4.8 Let y(x) be a function such that y(1)=1 and for x > 1, y'(x) = [x* + y*(x)]"". Prove that
lim, ., y(x) exists and is less than 1 + n/4 (Putnam Exam, 1947).
4.9 Find several terms in the asymptotic series for y(x) valid as x — + oo, where y(x) satisfies dy/dx =
x =13y, y~ 1/3x (x > +00)
4.10 Compute the coefficients a, in (4.2.2) and prove that the series converges for sufficiently small
|x—a| #0.
4.11 (a) Investigate the behavior of solutions to y' = y* + x for large negative x.

(b) Find the leading behaviors of solutions to y’ = 1 — xy? as x » + co. Find the first corrections
to the leading behaviors.
4.12 Prove that if the general solution to the differential equation dy/dx = N(x, y)/D(x, y), where N
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3.0

Figure 4.30 Solutions to y' = cos (nxy) for the initial values y(0) = 0, 0.2, 0.4, 0.6, ..., 2.8. Observe
that as x increases, solutions bunch together. In Prob. 4.13 you are asked to explain this bunching
phenomenon using asymptotic analysis.

and D are polynomials in y but arbitrary analytic functions of x, has no movable branch points, then
the differential equation is a Riccati equation.

Clues:

(a) First, show that D is a function of x alone: D = D(x). To do this argue that, by the fundamen-
tal theorem of algebra, if D depends on y, then it has a root y = y,(x). Perform a local analysis near
[xo0, ¥o(xo)] for any x4 and show that y(x) has a branch point at x, which contradicts the statement of
the problem.

(b) Make the transformation z = 1/y and repeat step (a) to show that N(x, y)is at most quadratic

in y.
4.13 The differential equation y’ = cos (nxy) s too difficult to solve analytically. However, in Fig. 4.30
we have plotted the solutions to this equation for various values of y(0). Note that the solutions bunch
together as x increases. Could you have predicted this bunching phenomenon using asymptotic
analysis? Find the possible leading behaviors of solutions as x - + co. What are the corrections to
these leading behaviors?

4.14 Show that if (y')* + y* -0 as x — +oo, then y and y' — 0 as x — +oo (Putnam Exam, 1974).

Section 4.3

4.15 There is a transformation which greatly facilitates the numerical solution of y” = y? + x plotted
in Fig. 4.7. It is difficult to integrate numerically through the second-order poles of y(x). However, as



U]
(E)
O

(E)
U]

o

(T

M

APPROXIMATE SOLUTION OF NONLINEAR DIFFERENTIAL EQUATIONS 199

we approach a pole we let

y(x)=0v7%(x),
y(x)= _\/3%3(.\:) - %\/3 xv(x) — 3v(x) + v (x)u(x).

Show that this gives the new system of equations

’ 1 \/3 4 3 5 1 6

V=—z+——X0 +-0 —-uv,

J6 4 2 2

3 9 15 3
u’=Zx2u+Z 6 xv* + (9 — /6 ux)? —-Z—uv“ +Eu2u5,

with initial conditions

1 3 Sy 2

v=——x u=- +

\/; ’ v 207 v} \/3 e’

and that these new equations may be used to integrate past the location of a pole of y(x).

4.16 Show that to leading order the last two terms in (4.3.27) may be neglected as s — + co.

4.17 Verify (4.3.34).

4.18 Consider the initial-value problem y?y” = —4, y(0) = a > 0, y'(0) = b, y"(0) = 0. Show that y(x)
reaches y = 0 for some finite x > 0.

4.19 Prove by induction on (4.3.38) that a, satisfies a, < 6n/6" (all n) and a, > 27n/4(3\/3)" (n>3).
This shows that the radius of convergence of the series (4.3.37) lies between 6 and 3\/3 = 735.

4.20 Obtain a sharper upper bound on the radius of convergence of (4.3.37) than 3\/5 as follows:

(@) When t>0 replace the exact differential equation [t(d/dt)]*y = y* +t by
(e(d/dr)][e(d/dt)]y > y2.

(b) y(¢) is an increasing function because its Taylor series has positive coefficients so y' > 0.
Multiply by t(dy/dt), integrate from O to ¢, and obtain y' > /% y*?/t.

(c) Separate the dependences on y and ¢ in this differential relation, integrate from a (0 <a <t)
to ¢, and obtain a exp \/6/y(a) > t exp \/6/y(t).

(d) Let t — t,, the radius of convergence of the series [note that since a, > 0, y(to) = + 0], and
obtain t, < a exp \/6/y(a). Now, the goal is to find the value of a which minimizes the right side of the
above inequality on t,.

(e) First, use a one-term Taylor approximation to y(a): y(a) ~ a (a — 0). Show that a exp \/m
has a minimum at @ =3 and the value of the upper bound is 3e* = 11.1. This bound is terrible
compared with the bound t, < 7.35 of Prob. 4.19.

(f) Next, use a four-term Taylor approximation to y(a) and approximate the rest of the series
with the 6n/6" approximate series of Prob. 4.19. Show that this procedure gives t, < 7.1.

4.21 For the equation y” = y* + ¢*, make the substitutions y = e”2u, s = ¢”* and obtain an equation
whose solutions, asymptotically for large x, behave like elliptic functions of s. Deduce that the singular-
ities of y(x) are separated by a distance proportional to e ™** as x — co.

4.22 The second Painlevé transcendent is defined by the differential equation y” = 2y + xy + a.

(a) Discuss the behavior of y(x) near a movable singularity and as x — 0.

(b) If y(x) has infinitely many movable singularities along the real axis, show that A(x), the
separation between successive singularities, satisfies A(x) ~ c/\/)—c (x = +o0), where c is a constant.

Clue: Let z(t) = y(x)/\/x where ¢t = x*2. Approximate the resulting equation for z(t) by an
elliptic differential equation.

4.23 The next correction ¢,(x) to the asymptotic relation in (4.3.40) takes the form y(x)=
144[1 + Cx =772 4 ¢,(x)]/x>. Determine the leading behavior of the function ¢, (x) for large positive
x. Then fit the resulting formula to the data in Table 4.3 and determine the value of C.
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4.24 Show that the leading behavior of an explosive singularity of the Thomas-Fermi equation
y" = y¥*x~ V2 s correctly given in (4.3.41) as y(x) ~ 400a/(x — a)* (x — a).
4.25 Show that there exist solutions to the Thomas-Fermi equation which exhibit an infinite sequence
of fourth-order poles along the real axis as x — + oo.

Clue: Let y = xu and approximate the resulting equation by

l‘ du

M _iic,
SRR -,

Argue that this integral defines u as a periodic function of x having fourth-order poles.
4.26 (a) Use integration by parts to show that yy” = 1 [y(0) = y(1) = 0] has no real solution.

(b) Show that the equation yy” = —1 [y(0) = y(1) = 0] has precisely two solutions that are
nonsingular for 0 < x < 1. (See Fig. 4.11.)
427 Find the first three terms in the asymptotic expansion of the two particular solutions to the
Painlevé equation y” = y* + x whose leading behaviors are y ~ +(—x)"? as x — —co. That is,
expand ¢(x) in (4.3.29).
428 Let y d*y/dx* =1 [y(0)=y"(0)= y(1) = y"(1) = 0]. Find the asymptotic behavior of y(x) as
x — 0+. Try several terms involving combinations of logs and powers.
429 Find the general asymptotic behavior of solutions to y” + yy” =0 (Blasius equation) as
X — +00.
4.30 Show that there exists a solution to y“ = (2y* — x)y (a > 0) for which

y(x) ~ (x/2)" 1+ (1 —a)oudx> +],  x— 400,

and y(x) ~ k(o) Ai (—x) (x = — o) (de Boer and Ludford). (Note that this differential equation is a
generalization of the second Painlevé transcendent in Prob. 4.22.)
431 Find the leading asymptotic behaviors of solutions to the following differential equations as
X — 4+ 0!

(@) yy" +x2y? + xyy' = 0;

(b) y"y = x*yy";

() yy"=xy2
Note that these equations are equidimensional in y and therefore they admit exponential asymptotic
behaviors. Also note that a constant is a solution to all these equations.
4.32 Find the general asymptotic behavior as x - + oo of solutions to

(@) yy"+y +xy=x? (Levinson);

(b) b=y +y  (Bellman);

(¢) y*»"=1+x  (Strodt);

(d) y" = xy/(x* + y?)
433 Find several terms in the asymptotic series for y(x) valid as x — 0+, where y(x) satisfies
y' = y/x +y*=1[y(0)= 0, y"(0)> 0]
4.34 Prove that the Laurent series (4.3.26) converges in a sufficiently small neighborhood of x = a.
4.35 Use the methods of Sec. 1.7to solve y*y” = — 1 in closed form. Derive the general two-parameter
solution in (4.3.8) and the one-parameter special solution in (4.3.6).

4.36 Does the series in (4.3.22) converge for sufficiently large x?

4.37 Show that if we replace x by x + ain (4.3.24) and reexpand the result as a series in inverse powers
of In x, the terms containing « are not multiplied by x. Conclude that in the limit x — + 0o terms which
contain a are subdominant.

4.38 Find a complete description of the large-x behaviors of solutions to y”y* = — 1. Show that there
is a two-parameter general asymptotic behavior whose leading term is ax. What is the form of the rest
of the series? There is also an algebraic behavior; find it.

Section 4.4

4.39 Solve j = y* — y analytically and use your result to verify the discussion in Example 2 of Sec. 4.4
and the plot in Fig. 4.14.
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4.40 Describe the phase-line structure of the following equations:

(@) y =sin y;
(b) y=sin® y;
(c) y=tany.

4.41 Find the eigenvalues and eigenvectors of the following matrices:

I
3.4 Yo —-1)7 \c df
For all three matrices show that the product of the eigenvalues is the determinant of the matrix and

that the sum of eigenvalues is the trace (sum of the diagonal entries) of the matrix.
4.42 In this problem we show how to solve the linear system

Y=MY *)

where M is a constant matrix having repeated eigenvalues.
(a) Show that the matrices

3 —4 1 -1
M=( ) and M=( )
1 -1 1 3

have just one eigenvalue 1,. Find 1,. One solution to (*) is Y = Ve*'. Obtain a second linearly
independent solution of the form Y = V ¢* + V, te**". Solve for V, and V, and show that the answer
is not unique.

(b) Show that

1 2 -3
M=|1 1 2
1 -1 4

has one distinct eigenvalue 1,. Find A,. One solution to (*) has the form Y = Ve*''. Obtain a second
solution of the form Y = V, e** 4+ V, te'* and a third of the form Y = Ve + V te* + V2t
4.43 In this problem we show how to solve the inhomogeneous linear system

Y = M(£)Y + H(t), *)

when the solutions to the homogeneous system are known.
(a) Let Y,(t), Y,(t), ..., Y,(t) be a complete set of linearly independent solutions to Y = MY.
Construct the matrix W(t) whose columns are the vectors Y ,(t), ..., Y,(t). Show that Y = Wec, where

is a constant vector, is the most general solution to Y = MY.

(b) Variation of parameters for matrix differential equations consists of looking for a general
solution to (*) of the form Y = We(t). Substitute this expression for Y into (*) and obtain a formal
expression for the vector ¢(z).

(c) Use variation of parameters to solve (*) in which

2 3 t
M= (_1 _2) ‘ and H= (e‘),
2 1 t
M=(_5 _2) and H=(t2)’_
(12 Y
M"(3 4) and H"(:)'
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4.44 Explain how to transform the system 7 = f(r, 8), § = g(r, 0) to Cartesian coordinates. Show that
the system 7 = sin 6, & = 0 has a critical point at the origin with a critical line passing through it. What
are the qualitative features of trajectories near the origin? Transform the system to Cartesian
coordinates.
4.45 Find a system of equations in polar coordinates having a node-like critical point at the origin
which trajectories approach in a wiggly fashion. (For example, r = e, § = 2 sin? t.) What is the form
of the system in Cartesian coordinates?
4.46 The system y, = y,, y, = —y, has a simple saddle point at y, = y, = 0 because there are only
two “in” directions and two “out” directions for trajectories. Construct a system of equations which
has a saddle point at y, = y, = 0 which exhibits three “in” and three “out” directions.
4.47 Examine the behavior of the trajectories in the phase plane for the following systems of equations:

@ yi=y1 =y = y1y2. V2 =4y, — 1] — 190

(b) ¥, =3, ¥2 = +a*(1 — y2)y, — y, (Van der Pol’s equation);

©) 1=+ + Y2 Fa=y1 =202 = N1y

(d) y1 = y3, ¥, = (siny,) — y, (show that this system has an infinite number of limit cycles which
are alternately stable and unstable);

(€) 31 =y; +2y,(1 — yi — y3), y» = —y, (Putnam Exam, 1960).
4.48 Discuss the nature and stability of the critical points at y, = y, = 0 for the following equations:

(a) y1=—yi + 293, 32 = =291y%;

() 3= =y1 = 3yiya Ja =y, + y; sin yy;

(€) y1=yi—8y3 y2=4y,53 + dyiy, + 893

(d) y, =y, sinh y, — y, cos yy, j, =y, cosh y, + y, sin y,.
4.49 Show thaty, + y, — In (y, y,) = c represents a family of concentric closed curves about the point
(1, 1). This proves that the critical point at (1, 1) in Example 4 of Sec. 4.4 is a center. [See (4.4.11)]
4.50 Perform a local analysis to determine whether there is a solution to (4.4.7) for which y(t) and
y,(t) both become infinite as t - + co. See Fig. 4.17.

4.51 Prof. A. Toomre has suggested a problem on the autonomous system
X =yz,
= —2xz, *)
z=xy,

whose solution can be experimemally veriﬁed!

(a) Show that for this system x? + y* + z? = constant. If we choose this constant to be 1, then
the autonomous system describes trajectories on the surface of a sphere of a radius 1.

(b) Locate, classify, and examine the stability of the six critical points of the system at (+ 1, 0, 0)
0, £1,0), (0,0, £1).

(c) Infer that the trajectories in Fig. 4.31 (by A. Toomre) are correctly drawn.

(d) Show that the system (*) describes the rotational motion of a book tossed into the air. The
angular-momentum vector for a freely rotating object is fixed in space because there is no external
torque. This vector L(t), observed by someone sitting on the rotating object, appears to be spinning
around in space. Its motion is governed by Euler’s equation 0 = dL/dt + ® x L, where @ is the angular
velocity. Since L, = I, o,,L, = I,0,,L, = I,w,, where I, I, I, are the moments of inertia about the
x, y, and z axes, we have

. 1
0=L,+L,L,(— -

~
-
——

. 1 1
O0=L +LL\|-—--—)
7 xz(lx 11)
. 1 1
O0=L +LLJ{—-——]
N
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Figure 4.31 Trajectories on the surface of a phase sphere representing the free rotation of a rigid body.
There are six critical points: (+1, 0, 0) and (0, 0, +1) are centers and (0, +1, 0) are saddle points
(see Prob. 4.51).

If we now assume that the moments of inertia of a book about its x, y, and z axes are I, = 1,
I,=1%, 1, =} (see Fig. 4.32), we recover the autonomous system (*)if welet x=L,,y=L, z=1L,.

(e) Experimentally verify the phase sphere diagram in Fig. 4.31 as follows. Argue from the
diagram that a book tossed into the air, initially rotating about its x or z axes, will continue to do so in
a stable fashion. (Try it!) Now argue that rotation about the y axis is unstable and predict that a book
initially rotating about the y axis will somersault, no matter how carefully it is tossed into the air. (Try
it!) This instability is called Eulerian wobble.

Section 4.5
4.52 Find the first three coefficients in each of the series in (4.5.1).
4.53 Show that the point p, =p,=--=p,=0, q,=¢9,=""=4, =0 is a simple center of the

equations (4.5.2) and (4.5.3) which define the Toda lattice.

4.54 Show that when m = 2 the orbits of (4.5.2) and (4.5.3) are periodic. Are the orbits still periodic
when m = 3?
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Figure 4.32 A book such as this, when tossed into the air, undergoes stable rotation about the x
and z axes but wobbles and somersaults rather than rotating stably about the y axis. This motion is
described by the trajectories on the phase sphere in Fig. 431 (see Prob. 4.51).

4.55 (a) Show that the Jacobian
_ et} )]
a[p(0). q(0)]
satisfies J(¢) = 1 for all ¢ if p and q satisfy the Hamiltonian system in (4.5.7) and (4.5.8).
(b) Show that volumes are conserved in phase space if J(t) = 1.
4.56 Show that there are no C-systems in less than three dimensions.
4.57 Show that the critical points of the system (4.5.9) are all unstable.
4.58 (a) Prove that when r < 1 the only critical point of the Lorenz model (4.5.10) to (4.5.12) is at
x = y =z = 0and it is stable. Show also that when r > 1 the origin becomes an unstable critical point.
What happens when r = 1?
(b) Show that when r > 1 there are critical points at x = y = +./r — 1, z =r — 1. Prove that
these critical points are stable if 1 < r < 21 and unstable if r > 21.
459 (a) Find the Hamiltonian for the system (4.5.4) to (4.5.6).

(b) Show that the trajectories in Figs. 4.21 and 4.22 have the same energy E; specifically, show
that E =}

J(t)
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FIVE

APPROXIMATE SOLUTION OF
DIFFERENCE EQUATIONS

What ineffable twaddle! I never read such rubbish in my life.

—Dr. Watson, A Study in Scarlet
Sir Arthur Conan Doyle

(E) 5.1 INTRODUCTORY COMMENTS

Difference equations (recursion relations) occur so frequently in applied math-
ematics that we allot a full chapter to a discussion of the behavior of their solu-
tions. We will study the problem of determining the behavior of a,, the solution to
a difference equation, as n — co. This is the most common kind of asymptotics
problem involving difference equations.

Difference equations often arise in the course of a recursive or iterative solu-
tion to a problem. For example, the coefficients a, of a Taylor series solution
y(x) =Y a,x" to a differential equation satisfy a difference equation. In this exam-
ple, although the large-n asymptotic behavior of a, is only an approximate
concept, the ratio
R = lim n

n—+o

Qn +1

is exactly equal to the radius of convergence of the Taylor series. Thus, it is not
necessary to solve the difference equation exactly to determine the region of
analyticity of y(x); a local analysis of the difference equation near n = co is
sufficient. :

As we have already emphasized in Chap. 2, linear difference equations and
linear differential equations have a very similar mathematical structure. For both
kinds of equations the techniques for finding exact solutions, such as reduction of
order and variation of parameters, are alike. This similarity extends to the
techniques of local asymptotic analysis. For a linear difference equation, the point
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at n = o0 may be classified as an ordinary, regular singular, or irregular singular
point. The procedure for constructing the appropriate Taylor, Frobenius, or
asymptotic series valid near the point n = oo is in close analogy with the corre-
sponding procedure for differential equations.

The parallel between nonlinear difference and differential equations is not so
strong. For example, the differential equation )" = 1/y is easy to solve exactly
while its simplest discrete analog a,, ; — a, = 1/a, has not been solved in closed
form. Unlike differential equations, even the simplest-looking nonlinear dlfference
equations are rarely exactly solvable.

Nonlinear difference equations are distinctly different from nonlinear differen-
tial equations in another respect. They do not exhibit movable or spontaneous
singularities. Consider the nonlinear differential equation y' = y* — y [y(0) = 2].
The solution to this equation, y(x) = 2/(2 — ¢*), has an explosive singularity at a
finite value of x; namely, at x = In 2. The solution a, to the corresponding differ-
ence equation a,, ; — a, = a? — a, (a, = 2) is a, = 2", which remains finite for all
values of n. [As explained in Chap. 2, the solution to this difference equation is
obtained by taking the logarithm of the equation: b, = log, (a,) satisfies
b, = 2b,.] Observe that a, becomes very strongly singular as n — co, while y(x)
approaches 0 as x — co. Thus, one must be cautious about forecasting the behav-
ior of a difference equation from a study of the properties of the corresponding
differential equation.

5.2 ORDINARY AND REGULAR SINGULAR POINTS OF
LINEAR DIFFERENCE EQUATIONS

Techniques similar to those in Chap. 3 may be used to study the local behavior of
solutions to linear difference equations as n — 0. Accordingly, in this section we
show how to classify n = oo as an ordinary point, a regular singular point, or an
irregular singular point of a linear difference equation. Then we investigate the
leading behavior of solutions in the neighborhood of ordinary points and regular
singular points. Finally, we develop expansions analogous to Taylor and Fro-
benius series to describe the full local behavior near ordinary points and regular
singular points. The large-n behavior of solutions when oo is an irregular singular
point is discussed in Secs. 5.3 to 5.5.

Classification of Linear Difference Equations at n = o
We consider the kth-order homogeneous linear difference equation
Auiic + Pim1(M)ansic—1 + Pu—2(n)an k-2 + - + po(n)a, =0, (52.1)

where p;(n) (=0, ..., k — 1) are given functions of the integer n. To classify this
difference equation at n = oo we appeal to the differential-equation analog of
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(5.2.1). Recall from Chap. 2 that in this formal analogy n plays the role of the
independent variable x, a, is the dependent variable y(x), and we have the follow-
ing correspondences:

nex,
a, < y(x),
Dan =qpyy — anHy!(x)»

D*a, = D(Da,) = a,,, — 2a,,, + a,+> y"(x),

I

Da,

é:o (=1 (I;) Qi Y9 (x).

These correspondences give a unique differential-equation analog of the difference
equation (5.2.1) and the point n = oo is classified as an ordinary point, regular
singular point, or irregular singular point of (5.2.1) if the point x = co in the
corresponding differential equation is so classified.

Example 1 Classification of difference equations at n = .

(a) a,,, = a, The differential-equation analog of this difference equation is just y'(x) = 0. Since
x = oo is an ordinary point of the differential equation, n = oo is an ordinary point of the
difference equation. Notice that the general solutions of the difference and differential equa-
tions are the same, a, = ¢ and y(x) = ¢, where ¢ is a constant.

(b) a,,, = —a,. The differential-equation analog is y’ = —2y. The point x = o is an irregular
singular point, so n = co is also an irregular singular point. Notice that the general solution of
the difference equation is a, = (— 1)'c while the general solution of the differential equation is
y(x) = ce”**. These solutions behave very differently as n — oo and x — co. The oscillation of
the solution to the difference equation as n — oo is exponentially rapid (a, = ce'™); typically,
one expects solutions to vary rapidly near an irregular singular point.

(¢) ay4, =na, Since a,,,—a,=(n—1)a, the corresponding differential equation is
y' = (x — 1)y which has an irregular singular point at x = co. Thus, n = co is an irregular
singular point of the difference equation. Again, the solutions of the difference and differential
equations, a, = c(n — 1)! and y(x) = ce!™ ~*2 behave very differently as n = x — co.

(d) a,. = a,/n. The corresponding differential equation is y’ = (x ! — 1)y, so x = oo and thus
n = oo are irregular singular points. The solutions to the difference and differential equations
a, = ¢/(n — 1)! and y(x) = cxe™* behave in radically different ways as n = x — co.

(€) a,+, = (1 + 1/n)a,. The corresponding differential equation y' = x~'y has a regular singu-
lar point at co0, 0 n = oo is also a regular singular point. The solutions to the difference and
differential equations, a, = cn and y(x) = cx, behave identically as n = x — co.

(f) @ps1 = (1 + 1/n*)a,, n = oo is an ordinary point. Solutions to the difference equation and
corresponding differential equation approach constants as n = x — co.

(9) a,., = a,. Since a,,,—2a,,, +a,= —2(a,,, — a,), the corresponding differential equa-
tion is y” = —2)' and x = oo and n = oo are irregular singular points. The general solution of
the difference equation is a, = ¢, + (—1)'c,, while the general solution of the differential
equation is y(x) = ¢, + ¢, e~ 2*. The slowly varying solutions c, are identical, but the rapidly
varying solutions (—1)'c, and c, e~ ?* differ markedly as x = n — o0.
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Leading Behavior as n —» «©

In the preceding example we saw that when the point at co is an ordinary point or
a regular singular point, then the leading behaviors of solutions to the difference
equation and its differential-equation analog are the same. In general, if n = o0 is
an ordinary or a regular singular point then, for any solution a, of the difference
equation, there is a solution y(x) of the corresponding differential equation that
satisfies

a,~yn), n-oo

(see Example 3). However, the higher-order behaviors of a, and y(n) as n — o
are usually different. At an irregular singular point even the leading behaviors of
a, and y(n) may be radically different, as we have illustrated. Here are some more
examples.

Example 2 Comparison between leading behaviors of difference and differential equations.
(a) The differential equation which corresponds with the difference equation
o
Ay = (1 + —) a, (5.2.2)
n

is y'=ax "'y, so o is a regular singular point. Since the general solution to the differential
equation is y(x) = cx*, we expect the leading behavior of solutions to the difference equation
to be

a, ~ cn?, n— oo, (5.2.3)

for some constant c. This behavior may be checked from the exact solution to (5.2.2) which is
In (a,/a,) = Y52} In (1 + «fj). Exponentiating the relation
n-1
In(1+of)—alnn~k, n— oo,
j=1
where k is a constant (see Prob. 5.2), we obtain (5.2.3) with ¢ = a, ¢*.
The result (5.2.3) can also be verified from the exact solution of (5.2.2) written as

T(n + o)

= Mm@+ 1)

where I is the gamma function (see Prob. 5.4).

We warn the reader that while the method of dominant balance is often very useful for
difference equations, the leading behavior of solutions to (5.2.2) may not be obtained by
neglecting a/n with respect to | as n— oo because this gives the asymptotic difference
equation

Anyy ~ Gy n-— oo, (5.24)

which is true but not useful. It is true because cn® satisfies (5.2.4). It is not useful because cn™ is
not the only function which satisfies this relation; cn’(In n)’e™” satisfies (5.2.4) for any c, B,7, 6
and any p < 1! If we try to solve the asymptotic difference equation (5.2.4) by replacing the
asymptotic sign by an equal sign, the solution, which is a constant, does not approximate the
solution to (5.2.2) as n — o.

It is often very helpful to rewrite difference equations in terms of discrete derivatives
before terms are dropped. That is, (5.2.2) should be rewritten as a,,, , — a, = aa,/n, and in this



APPROXIMATE SOLUTION OF DIFFERENCE EQUATIONS 209

form it is not productive to neglect aa,/n with respect to a,, , — a, because it is wrong to
neglect ax ™'y with respect to ' in the differential equation y' = ax!y.
(b) The leading behavior of solutions to

P (1 +; +%) a, (52.5)

is also given by (5.2.3). Using discrete derivatives this difference equation takes the form
a,., — a, = (a/n + p/n*)a,, whose differential-equation analog is y = (¢/x + f/x?)y. The
general solution to this differential equation is y(x) = cx*e™#* whose leading behavior is
y(x) ~ ex* (x = + 20); the solutions to the difference and differential equations have the same
leading behaviors as n = x — .
Note that the controlling factor n* of the leading behavior cn* can be found easily using

a dominant-balance argument. Since fn~ % « an~! (n — o0), it is valid to replace (5.2.5) by the
asymptotic difference equation a,,, — a, ~ aa,/n (n — o). The controlling factor of the
solutions to this asymptotic difference equation is n*. Correspondingly, neglecting the term
Bx~%y as x — oo in the differential equation y' = (ax ! + Bx~2)y (assuming that a # 0) and
solving the resulting asymptotic differential equation gives the correct controlling factor x* of
y(x) as x —» + c0.

(c) The difference equation a,,, = (2 — 1/n)a,,, — (1 — 1/n)a, has the differential-equation
analog xy” + y' =0 so oo is a regular singular point. Since the general solution of the
differential equation is y(x) = ¢, + ¢, In x, we expect that

a,~c¢, +c,Inn, n— 0.

This prediction may be checked as follows. One solution of the difference equation is ex-
plicitly a, = ¢,. The other solution can be found by setting b, = a,., — a, and thereby
reducing the equation to first order. It follows that

buvy = by = —ba/n.

The general solution of this difference equation is b, = ¢,/(n — 1). Thus,

net
a,—ay=y by~c,lnn, n— oo,
K=2

which verifies the predicted behavior of a, as n — c0.

Equality of Leading Behaviors of Solutions to Difference and
Differential Equations at Ordinary and Regular Singular Points

We asserted above that if the corresponding differential equation has an ordinary
point or a regular singular point at o, then the leading behaviors of a, and y(x) as
n = x — + 00 must agree. It is relatively easy to prove this assertion for the first-
order difference equation

ays1 = [1+ pln)la,, (5.2.6)
whose differential-equation analog is
y(x) = p(x)ylx). (52.7)

If x = oo is an ordinary or a regular singular point, then p(x) may be expressed as
the series

plx) = a/x + B/x* + /x> + -,
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which converges for sufficiently large |x|. The leading behaviors of the solu-
tions to the differential equation (5.2.7) are

y(x)~ext, x> +oo,
where c¢ is a constant.

The simplest way to show that the solutions to the difference equation have
the same leading behaviors is to solve the difference equation exactly and to
examine the asymptotic behavior of the solution as n — co. The exact solution to
(5.2.6) is given by (see Chap. 2)

n—1

a,=a, exp{ Z In [1 + p(k)] n>=2

’

Since
o
In [l +p(k)]=%+—k2—'
for large k, we obtain

n—1

Y In[1+pk)]—alnn~C, n-oo,
k=1

for some constant C. Therefore,
C,,a
a,~ a;en’, n— oo,

which agrees with the asymptotic behavior of the solution to the differential
equation (5.2.7) if ¢ = a, €.

The proof of the equality of leading behaviors of solutions to higher-order
difference and differential equations at ordinary and regular singular points is
developed in Prob. 5.5.

Taylor and Frobenius-like Series Expansions

The higher-order behavior of a solution to a linear difference equation at an
ordinary or regular singular point may be obtained by expanding the solution in a
Taylor or Frobenius-like series about n = co. We present two different kinds of
expansions which may be useful to approximate the solution of difference equa-
tions for large n. The first tends to be a bit clumsy when the difference equation
has coefficients which are simple rational functions of n. [However, it may be
much more appropriate to use this first version when the coefficients are not
rational functions of n (see Prob. 5.7).]

Example 3 Taylor series expansion (clumsy version). The difference equation
1
aes=(1+53)a, (529)

has an ordinary point at co. Therefore, one should try to expand the solution as a Taylor series.
One possible form for such a series,

A
X A, #0, (5.29)

k
o

™Ms

a,=

k
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turns out to be clumsy because, as we shall see, it leads to a complicated recursion relation for the
expansion coefficients A4,. Substituting this expansion into (5.2.8) we obtain

aoA -k © 4 © 4
k(1)= k+zk

k= o” k= o" n*2
Since
Nt = k+p—1)1
1+-| = -
( n) ,,go( Y Pl k= 1)l n’

it follows that

k=1 1 q=1 n ptk=q (k“l)
0<p<gq
Therefore, A, = — A, and
A= (g - 1) Q‘Z( 1ypta S 2,3 (5.2.10)
=(g-1)! — N - q=23,.... 2.
! 1 T+t a-p-1)! ¢

This recurrence relation (5.2.10) is unnecessarily complicated.

The analysis of the behavior near n = oo can be simplified drastically if we
recall from Example 3 of Sec. 2.1 that it is natural to replace n™* by I'(n)/T'(n + k)
when analyzing difference equations. [Note that I'(n)/T'(n + k) = [(n + k — 1) x
(m+k—=2)(n+1)n)] ' ~n*(n> 00)] Now the first discrete derivative of
C(n)T(n + k) is

[(n) _ Fh+1)  T(n)
IFn+k) Tm+k+1) T(n+k)
__,_ T
= kF(n+k+ 0 (5.2.11)

This formula is analogous to (d/dx)x * = —kx~*~*. Since ['(n)/T'(n + k) ~n~*
(n — o), these simple differentiation properties suggest that replacing the Taylor
series expansion (5.2.9) by the modified expansion
- I'(n)
a,= B, ——— 5212

k;o k F(n + k) ( )
will yield much simpler recurrence relations than those satisfied by 4, in (5.2.9) if
the difference equation has polynomial coefficients.

Example 4 Taylor series expansion (improved version). To determine the coefficients B, in
(5.2.12) for the differencé equation (5.2.8), we rewrite (5.2.8) as an equation in terms of discrete
derivatives with polynomial coefficients:

n’Da, = a,. (5.2.13)
Next, we substitute the general expansion (5.2.12) and use (5.2.11) to obtain
o r 2 r
~F B _ 3 op L) (5.2.14)
K=o Fn+k+1) S5 "Tn+k)
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Now we use the fact that the coefficients of (5.2.13) are polynomials in n. Specifically, any
term of the form n?T'(n)/T(n + q) where p, q are positive integers can be expressed as a finite sum
of terms of the form I'(n)/T'(n + r) with coefficients that do not depend on a. In the present
example, we use the formula n? = (n + k)(n + k — 1) — (2k — 1)(n + k) + k* to obtain

5 I'(n) ['(n) [(n) ) (n)

"Tmik+1) Tntk-1) —(2k_l)l‘(n+k) K rkED)

Substituting this result into (5.2.14) and shifting summation indices so that all sums contain the
factor I'(n)/T'(n + k) gives

> T(n) 2 r(n)
= L Lk DBy = K2k = DB+ (k= VBl = L B O
where we take B_, = 0.

We find the recursion relation for B, by equating coefficients of ['(n)/T'(n + k) fork =0, 1,
2, ... in (5.2.15). The justification for this step is given in Prob. 5.10. The result is

—(k+1)B,,, +k(2k — 1)B,— (k- 1)°B,_,=B,, k=012..  (5216)

Thus, B, = —B,, B, =0, By = 1B,, B, = 1B,, and so on.

Observe that the equation (5.2.16) for the coefficients B, is significantly simpler than that in
(5.2.10) for the coefficients A,. While this equation for B, does not have a simple analytic solution,
it can be readily used to compute enough coefficients in the expansion (5.2.12) to obtain a very
accurate description of a, for large n.

Using the techniques of Sec. 5.3, the recursion relation (5.2.16) for B, can be solved approxi-
mately for large k (k = oo is an irregular singular point):

Bi~colk—1)k"'E, k> 400,

(see Prob. 5.38). This estimate shows that (5.2.9) converges for all n in the interval 0 < n < co.

This series in (5.2.12) is not adequate to describe the behavior of solutions to
difference equations if n = co is a regular singular point because the leading
behavior of the first nonzero term is B,n~?asn — o forsome p=0,1,2,3, ... If
n = oo is a regular singular point, at least one solution behaves like cn® as n —»
(and remaining solutions may behave like cn* multiplied by factors of In n).

One way to modify the series in (5.2.12) is simply to multiply it by n* to allow
for algebraic behavior at n = co. However, we generally obtain a much simpler
recursion relation for the expansion coefficients if we seek instead a series solution
of the form

T(n)
- "Fn+k—oc)

Ms

(5.2.17)

where « is determined by the requirement that 4, # 0. Since
D[T(n)T'(n + k — a)] = (¢ — k)['(n)/T(n + k —a + 1)
and Fa)yIn+k—a)~n""% n-oo

(see Sec. 5.4), we expect that I'(n)/T'(n + k — ) will be an appropriate choice as
a discrete analog of the term x*~* in the usual Frobenius series about x = 0.
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Example S Frobenius series expansion. Consider the difference equation
(n + Q)a,+, — a,) = Pa, (5.2.18)

where P and Q are noninteger constants such that P + Q is not a negative integer. The leading
behavior of a, is easily shown to be cn”. Therefore, we must choose « = P in (5.2.17). Substituting
this value of « into the difference equation, we find that
- I'(n) - T(n)
+ — = PA b —.
(n+Q) Z k=P 1) Eo “Tn+ k- P)
Writingn + Q= (n + k — P) + (Q + P — k), we obtain

C(n)

o o0 r(n)
Eo (P—k)A,‘r(+—kP)+ 2 +P—k)P - k)Akl_

(m+k—-P+1)
=¥ pa—
x=0 [(n+k—P)
Equating coefficients of I'(n)/T'(n + k — P) for k =0, 1, 2, ... gives
kdy=(k-P—-Q—-1)k—-P—-1)A4,_,, k=0,1,2,...,
where A_; = 0. Thus, A4, is arbitrary and the solution to this difference equation for 4, is
'k —P—Q)I'(k —
44, [E=P= QK= P)
[(=P - Q)I(— P!
Thus, the solution to (5.2.18) is

_ i [k =P —=Q)T(k - P)[(n)
T S T(—P - QN(—PK!T(n+k—P)’

(5.2.19)

Since the difference equation (5.2.18) also happens to be exactly soluble, we can calculate 4, in
terms of a, by rewriting (5.2.18) in the form a,,, = a,(n + P + Q)/(n + Q). We then have

_ T(n+P+Q)r(o)
a, = aom. (5220)

Thus, comparing the asymptotic behavior as n — oo of the expressions in (5.2.19) and (5.2.20)
gives Ay = ao'(Q)/T(P + Q). However, the formula for A4, is a result of global not local
analysis; we have used the exact solution (5.2.20) to obtain the connection between the initial
value a, and the asymptotic behavior of a, as n — co.

Our discussion of Frobenius series must be further generalized when two
indices are equal or differ by an integer to allow for the possibility of logarithmic
terms. It is, of course, possible to multiply the generalized Frobenius series by In n
when these special cases occur. However, In n has complicated properties with
respect to the discrete difference operations:

1 il I'(n)
Inn= “)=3 40—t .
Dinn ln(1+n) k=oAkF(n+k+1)

In this expression 4, = 1 but the higher coefficients 4, (k =1, 2, ...) are very
complicated. Instead of In n, it is often simpler to use the digamma function
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¥ (n) = I"(n)/T'(n) which satisfies
Dy(n) = (5221)

and y(n) ~ In n (n - o). Since (d/dx)(In x) = 1/x, y(n)is the appropriate discrete
analog of In x (see Prob. 5.8).

53 LOCAL BEHAVIOR NEAR AN IRREGULAR SINGULAR
POINT AT INFINITY: DETERMINATION OF CONTROLLING
FACTORS

We have argued in Sec. 5.2 that the first step in the analysis of the behavior of
solutions to a linear difference equation as n— oo should be to determine the
nature of the point at co of the corresponding differential equation. If the point at
co is an ordinary or a regular singular point, then, as we saw in Sec. 5.2, (1) the
leading behaviors of solutions to the differential equation are the same as the
leading behaviors of solutions to the difference equation, and (2) the higher cor-
rections to this leading behavior of a, take the form of a convergent series whose
kth term is proportional to either ['(n)/['(n + k + ) or n™** (where « is an
integer at an ordinary point).

The situation is more complicated if co is an irregular singular point. In this
case local analysis begins by determining the controlling factor (the most rapidly
varying component) of the leading behavior. As in Chap. 3, the next step is to
divide or peel off this controlling factor and to determine the next most rapidly
varying component of the leading behavior. This process is repeated until the full
leading behavior is found. The last stage of the local analysis consists of finding
higher corrections to the leading behavior in the form of an infinite series.

In this section we discuss methods for finding the controlling factors of the
behaviors of solutions as n— oo. In Secs. 54 and 5.5 we use the techniques
developed here to obtain a complete description of the asymptotic behavior near
the irregular singular point at n = co. There are three principal techniques for
finding controlling factors:

MetHOD [ If the controlling factor of a solution y(x) to the corresponding
differential equation varies logarithmically or algebraically or even as rapidly
as e*’ with 0 < b < 1 as x —» + o, then there is a solution to the difference
equation with the same controlling factor as n — .

MetHoD 11 If the controlling factor of a, varies rapidly (exponentially or
faster) as n — oo, the substitution a, = €%, like the substitution y(x) = ¢°* for
differential equations (see Sec. 3.4), usually reduces the problem of finding the
controlling factor to that of solving a simple first-order difference equation.

MEetHOD III The method of dominant balance is often useful by itself
(especially if methods I and II fail) or in conjunction with methods I and IIL
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Discussion of method I Method I works because if a function y(x) varies logarith-
mically, algebraically, or no more rapidly than e’ with b < 1 as x - +co, then

Dy(x) = y{x + 1) — y(x) ~ y'(x), X > 400, (53.1)
dk
and D*y(x) ~ oF X = +00, (53.2)

for all k (see Prob. 5.11).
Example 1 Functions satisfying Dy ~ y'(x) (x = + o).

(a) If y(x) = In x, then Dy(x) = In (1 + 1/x) ~ 1/x = y'(x) (x = +00).
(b) If y(x) = x3, then Dy(x) =3x + 3x + 1 ~ 3x? = y/(x) (x = + o).
(¢) If y(x) = exp (\/;) then

Dy(x) = exp (/x + 1) - exp (/%)
=exp (Vx)fexp (Vx + 1 - /%)~ 1]

=exp (/%) [exp(%—ﬁ +) ~ l]

exp (Vx) _
~'—2\7)—(— =y(x),

(d) Itis not true that Dy ~ y' (x — +o0) if y(x) = ¢* or . (Why?)

X — + 0.

If y(x) satisfies (5.3.1) and (5.3.2) and solves a linear homogeneous differential
equation, then there is a solution to the corresponding difference equation whose
controlling factor for large n is the same as that of y(x). This is because the
controlling factor of y(x) is determined by a dominant balance in the differential
equation; when (5.3.1) and (5.3.2) are satisfied, the same dominant balance deter-
mines the controlling factor of a solution to the corresponding difference
equation.

Example 2 Use of method I to find controlling factors.

(a) The conrrolling factor of the solution to y' = y/\/.; + y/x is determined by the d ominant
balance y’ ~ y/\/; (x = +00) to be exp (2\/;) as x — + oo. Similarly, the controlling factor
of the solution to Da, =a,,, — a, = a,,/ﬁ + a,/n is determined by the dominant balance
Da, ~ a,,/\/r_! (n = o) to be exp (2\/;1) as n— o0,

(b) The controlling factors of the solutions to xy” = y are exp (12\/;) as x — + oo [see (3.4.28)],
so that the controlling factors for the corresponding difference equation
n(a,,, — 2a,,, + a,) = a, are exp (12\/F) as n— .

(¢) One solution to the differential equation 2xy” — (2x + 1)y’ + y = 0 has controlling factor
/x as x - +oco. (Verify this!) The corresponding difference equation

2nD*a, — (2n + 1)Da, + a, =0 (5.3.3)

also has a solution whose controlling factor is \/; as n — o0. Note that the differential equa-
tion has a second solution whose controlling factor is e* as x —» + 0. (In fact, ¢* is an exact
solution.) However, the corresponding difference equation does not have any solution whose
controlling factor is ¢". In fact, we use method ITin Example 3 to show that there is a solution
of the difference equation whose controlling factor is 2" as n — co.
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Discussion of method II Method II is particularly useful for finding controlling
factors which vary rapidly with n as n — co. It begins with the substitution

a, = é",

from which we have
Da, = a,(e”" — 1),
D?a, = a,[(e®5" — 1)* + &2P5(eP*Sh — 1)],
and so on. If DS satisfies the two asymptotic relations
D*S,« 1, D?S,«(DS,}, n- oo,
then we may disregard the second term in (5.3.56) and obtain
D*a, ~ a,(e”" — 1%, n- co.
Using a,,, = a, + Da, and a,,, = a, + 2Da, + D*a,, we also have
An+ 1 =aneDS"’ n— oo,
Ayyy~ a,e?P5 n— 0.
More generally, if we assume that
D'S,«1, D'S,«(DS,), n- oo,
fork=2,3,..., p, then

Auip~ a,eP>n n— 0.

(53.4)

(5.3.5a)
(5.3.5b)

(5.3.6)

(5.3.7)

(5.3.8a)
(53.8b)

(5.3.9)

(5.3.10)

Even if the asymptotic conditions (5.3.6) or (5.3.9) are violated, the asymptotic

relations (5.3.8b) and (5.3.10) may still be valid (see Prob. 5.15).

Method 1I is a powerful technique because the above exponential substitu-
tions can reduce an exact nth-order linear difference equatlon for a, to an approxi-

mate first-order nonlinear equation for S,
Example 3 Use of method 11 to find controlling factors.

(a) The difference equation

a, 41 = N4,

(5.3.11)

whose exact solution is a, = a,(n — 1)!, has an irregular singular point at n = oo the solu-
tions to the correspondmg differential equation y' = (x — 1)yare y = c exp (4x? — x) which
vary exponentially fast as x — + co. If we make the substitution a, = €™, we obtain the exact

(not just asymptotic) equation

DS,=1Inn.

(53.12)

The solution to this equation is S, — S, = Y2} In j. Approximating the sum on the right by

an integral, we obtain

n

S,,~J Intdt~ninn, n— oo

(see Prob. 5.3). Thus, the controlling factor of (n — 1)! for large n is """ = n".

(53.13)
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(b) The difference equation
a,,,=3na,,, —2n%a, (53.14)

has an irregular singular point at n = oo. The substitution a, = €5 together with (5.3.8) gives
the asymptotic relation

(€S)* ~ 3ne®S- — 2n?,  n—oo.

The solutions to this quadratic relation for 5+ are

ePS ~n, n— o, or eD% ~ 2, n— oo.
Equivalently,
DS, ~1Inn, n— o, (5.3.15a)
or DS, ~In (2n), n- co. (5.3.15b)

At this point, we observe that DS, ~ 1/n (n — o) for both behaviors so that (5.3.6) is
satisfied. Both solutions to (5.3.15) satisfy S, ~ Y% _, In k (n — o0) (see Prob. 5.3). Approxi-
mating the sum on the right by an integral as in (5.3.13), we obtain S, ~ n In n (n - o0 ). Thus,
the controlling factor of all solutions to (5.3.14) is n" as n — co.

(c) The controlling factors e of solutions to a,, ; = na, satisfy e*”* ~n (n — o). Therefore,
DS,—4Inn~Inw (n— o), where * = 1. Thus, S, ~ 4n In n (n > o). Thus, the control-
ling factor of a, as n — co is n"3. We can verify this result by examining the exact solution to
a,, 3 = na, which is a linear combination of the three expressions 3"I'(n/3)w", where @ = 1,
etll'n/B'

(d) The controlling factors e of solutions to na,,, — (4n — 2)a, ., + (n — 1)a, = 0 satisfy
ne*PS» — (4n — 2)ePS ~1—-n, n- oo.
This may be replaced by the even simpler asymptotic relation
€205 — 4¢P~ —1,  n- oo,

by neglecting a constant compared with n in each term. Using the quadratic formula, the
solutions for e”5 are

e"s~~21\/§, n— 0.

Therefore, the possible controlling factors of a, are (2 + \/g)f‘.

Recall that method I fails to determine the controlling factor of the rapidly varying solution
to the difference equation (5.3.3) in Example 2(c). However, the controlling factor is easily
found using method II. Substituting (5.3.54) and (5.3.7) into (5.3.3) gives

(e

-~

2n(ePSh — 1) ~ (2n + 1)(ePS — 1) — L.
Solving this quadratic equation for ¢S — 1 gives
e’ — 1~ 1, n— 0, (53.16a)

and S —1~ i, n—oo. (5.3.16b)
2n

From (5.3.16a) we have DS, ~ In 2 or S, ~ n In 2 (n - o). Thus, a possible controlling
factor is 2"

From (5.3.16b) we see that DS, — 0 as n — c0. Thus, expanding the exponent in (5.3.16b)
gives DS, ~ 1/2n (n - o). If we integrate this relation with respect to n, we obtain S, ~ § In n
(n— o) and thereby recover the controlling factor \/r; which we found in Example 2(c).
However, S, ~ } In n does not satisfy the conditions in (5.3.6) which justify using (5.3.7)in the
first place. Why then did we obtain the correct answer? (See Prob. 5.15.)
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Method 111

Example 4 Use of method 111 to find controlling factors. Let us determine the controlling factors
of solutions to
a,,,—na,,+a,=0. (5.3.17)

There are three possible dominant balances to consider: (a) g, < a,,, (1 = ©); (b) a,,, < a,
(n— o0); and (c) na,, , < a, (n - o0). Only the first two cases are discussed here, as the third may
easily be shown to be inconsistent.

(a) a,«<a,,, (n— ) In this case (53.17) yields the asymptotic difference equation
a,,,~na,,, (n— ). Thus, the controlling factor of a,,, is the same as that of (n — 1)!;
namely, n" [see Example 3(a)).

(b) a,,, < a, {n— o). In this case we obtain the asymptotic difference equation a,, , ~ a,/n

n

(n > ). Thus, the controiling factor of a, is the same as that of 1/(n — 1)!; namely, n™".

Once the controlling factor of a solution a, to a difference equation is found,
we can then peel off this controlling factor and study the resulting difference
equation. By applying the techniques of peeling off and asymptotic analysis of the
controlling factor discussed above, we can find the full leading behavior of a,,. This
procedure is developed further in Secs. 54 and 5.5.

5.4 ASYMPTOTIC BEHAVIOR OF n! AS n— c: THE
STIRLING SERIES

The Stirling series is one of the oldest and most venerable of asymptotic series. It
expresses the asymptotic behavior of the factorial function n! for large values of n:

27\ Y2 (n\" A, A, A
I"(n)=(n—~l)!~(—n£) (3) (1+—n—‘+n—j+;§+-~), n—o, (54.1)

e

where the first eight Stirling coefficients are

1
A; = — =0.08333333,

2
Ay = 552 200034722,

A, = - 5_11%0 = —0.00268133,
A= — %ﬁ = —0.00022947,
= '2%3’188?8286 = 0.00078404,

2296819 (00006973,

6 = 75,246,796,800
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534,703,531

4,483,131259
As= - 86,684,309,913,600 —0.00005172.

Although the coefficients 4; appear to be getting smaller as j increases, they
eventually grow rapidly as j— oo. For example, A;5=—29 < 1072,
Azs =22 x 10%, A3s = — 1.1 x 10'°. In fact, it may be shown (see Probs. 5.18 to
5.20) that

@i-2) .
A2j~ (_l)l+l(6(Tn)22_" Jj— 0, (542(1)
o 22! .
Agjuy ~ (—I)J(ZT()Z(’)J'_“’ j— o0. (5.4.2b)

Thus, the series (5.4.1) diverges for all values of 1/n.

In this section we show how to derive the Stirling series directly from a local
analysis of the difference equation a, , , = na, satisfied by a, = (n — 1)!. Itis more
conventional to derive the Stirling series by performing an asymptotic expansion
of the integral representation (2.2.2) of I'(n); we will show how to do that in Sec.
6.4. Our real purpose here is to strengthen our faith in the power of local analysis.

But before deriving the Stirling series, let us step back a moment and savor the
properties of this marvelous old series. At first, it may be difficult to believe that a
reasonable person would prefer the complexity of the Stirling series to the simplic-
ity of the factorial function, even when n is large. It is often sensible to replace a
complicated function by its asymptotic expansion because the latter usually con-
sists of sums and products of elementary functions (exponentials, powers, logs,
sines, cosines). Even though it is only approximate, an asymptotic series has
a much more tractable form for further analysis; it is easy to evaluate, integrate,
multiply, and so on. However, the factorial function is so simple that replacing the
left side of (5.4.1) by its right side is not a sure sign of progress.

The reason why the Stirling series (5.4.1) is such an important result of applied
mathematics is that if we replace the letter n by z, it becomes the full asymptotic
expansion of the gamma function I'(z) for complex argument z. Specifically,

() - (27”)”2 (g) (1 + ,i Ajz—j) « (g)’z—uz-N,

z-o0; |argz| <m  (543)

Observe that the jth term in the Stirling series is proportional to 1/z/ rather
than to I'(z)/T'(z + j). This is contrary to our suggestion in Sec. 5.2 that series
expansions of solutions to difference equations have simpler expansion
coefficients in the latter form. There are two reasons for choosing the form (5.4.3)
for the Stirling series. The first is obviously that an asymptotic expansion of I'(z)
should not depend on I'(z) itself (see Prob. 5.21). More importantly, z is a contin-



220 LOCAL ANALYSIS

uous and not a discrete variable, so the Stirling series in the form (5.4.3)is easier to
manipulate mathematically; it is much easier to integrate z =/ than I'(z)/T'(z + j).
I['(z) has simple poles at z=0, —1, —2, —3, ... (see Fig. 2.1). These poles
prevent the Stirling series from being valid on the negative real axes. This explains
why the Stirling series is only valid in the sector |arg z| < 7.
I'(z) has no zeros, so 1/I'(z) is an entire function; its Taylor series about z = 0
has an infinite radius of convergence. The Taylor series for 1/I'(z) has the form

ﬁ _ ji ¢, (5.4.4)

where the first 15 coefficients C; are (see Prob. 6.30)

C, = 100000000, C, =0.57721566, Cy = —0.65587807,
Cq = —0.042002 64, Cs =0.166 538 61, Ce = —0.04219773,
C, = —0.00962197, Cy =0.00721894, Co = —0.00116517,

Cyo = —0.00021524, C,; =0.000 12805, Cyy = —0.000020 13,

Cys = —0.00000125, Cya =0.000001 13, Cys = —0.00000021.

Since the radius of convergence of the Taylor series is infinite, we know that
for any value of |z|, no matter how large, it must approximate I'(z) to within any
prescribed error if we include enough terms. However, convergence alone does not
make a series useful. A lovely way to illustrate this point is to hold a convergence
race between the convergent Taylor and the divergent Stirling series. The Taylor
series, like the tortoise, ultimately wins the race, but its rate of convergence is
agonizingly slow. The Stirling series, like the hare, is doomed to lose the race, but
it begins with an enormous burst of enthusiasm, and in just a few terms gives an
extraordinarily accurate approximation to the actual value of I'(z). In Table 5.1
we evaluate both series at z = 1, z= 2, and z = 4; remember that I'(1) = 0! = 1,
[(2)=1!=1, and I'(4) = 3! = 6. After eight terms, the Stirling series for z = 1,
z=2, and z=4 are correct to within relative errors of 0.03, 1 x 10”4, and
2 x 1077 percent, respectively, while the Taylor series have hardly begun to
converge. The Stirling series is asymptotic, so if we continue to increase n it will
eventually reach optimal accuracy and then diverge. Meanwhile, the Taylor series
must eventually converge. But how soon? Partial sums of more terms in the
Taylor series for z = 1, 2, and 4 are given in Table 5.2. The Taylor series for 1/T'(2)
and 1/T'(4) do eventually converge, but an accuracy of 1 percent requires 15 terms
when z = 2 and 30 terms when z = 4.

Why is the Taylor series so sluggish? Since the Taylor series converges every-
where in the complex plane, it must approximate two very different kinds of
behavior: T'(z) blows up very rapidly as z— + oo while along the negative z axis
I'(z) has poles at every integer. Apparently, when a Taylor series must represent
two such different kinds of behavior and converge for all z, the series becomes
cranky and takes its revenge in the form of slow convergence. The Stirling series,
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Table 5.2 A continuation of Table 5.1 showing the
eventual convergence of the Taylor series for 1/T°(z)
for z=1,2, and 4

Because of severe roundoff error we have retained only three
digits past the decimal point in the Taylor series for 1/I'(4)

vo(Zer)t (fe)” (fe)

=0

8 099872281 0611690 53 0.004
10 1.000 107 61 122273258  —0.004
12099999969 100239078  —0.017
14 099999980 0944 100 61 0.006
16 100000000 100040315  —0.031
18 100000000 100005703  —0.036
20 100000000 0999 994 16 0.105
22 100000000  0.999 999 77 0.455
24 100000000  1.00000003  —1320
26 100000000  1.000 000 00 10.912
28 100000000  1.000 000 00 4.656
30 100000000  1.000 000 00 5950
©x T)=1 re)=1 r@4)=6

on the other hand, only represents one of these two kinds of behavior, the diver-
gence of I'(z) as z — co. Moreover, we do not even require the Stirling series to
converge. The Stirling series generously responds by giving very accurate approxi-
mations to I'(z), even for small values of z, though it is only expected to be valid in
the limit |z| — oo. _

The optimal asymptotic approximation to I'(z) is obtained as in Chap. 3 by
truncating the Stirling series just before the smallest term A,z ¥ in (5.4.3). In Fig.
5.1 we plot a graph of the optimal asymptotic approximation to I'(z) and I'(z) for
0 < z < 2. Numerical values of the optimal asymptotic approximation are listed
in Table 5.3. Notice that the optimal truncation of the Stirling series provides an
approximation to I'(z) that is accurate to better than 1 percent for z > 0.5. The
accuracy of the Stirling series for such small z is fortuitous and is due to the small
size of the Stirling coefficients 4; for small j.

Example 1 Positive minimum of I'(z). I'(z) has a single minimum for 0 < z < c0. Suppose we
approximate I'(z) by the first term in the Stirling series (5.4.1), I'(z) ~ (z/e)*(2n/z)"/%. The positive
minimum of this approximation occurs when z = 1.422. If I['(z) is approximated by the two-term
Stirling series (z/e)*(2m/z)"*(1 + 1/12z), the location of the minimum is determined to be
z = 1.461. The actual minimum of I'(z) is at z = 1.462. The location of this minimum is deter-
mined accurately to five significant figures if I'(z) is represented by the optimal asymptotic
approximation.

We presume that our demonstration of the marvels of the Stirling series has
generated an appetite for its derivation. We propose to derive the Stirling series
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S0—T T T T 7 T T T T T T T T T

4.0

Optimal asymptotic approximation to I'(z)

3.0#

Leading term in the Stirling series for I'(z)

0 1.0 2.0 3.0

Figure 5.1 A comparison of the leading asymptotic approximation (first term in the Stirling series),
the optimal asymptotic approximation to I'(z), and I'(z) for 0.2 < z < 3.0. The relative error in the
optimal truncation of the Stirling series is less than 1 percent when z > 0.5. The optimal asymptotic
approximation is discontinuous at values of z for which the number of terms in the truncation changes.
However, the discontinuities in the above graph are too small to be seen because the Stirling co-
efficients 4, are so small. The curve is divided into segments labeled by the number N which stands
for the highest power of 1/z in the optimal asymptotic approximation.

(5.4.1) from a local analysis for large n of the difference equation
Ay 4y = Na,, (5.4.5)

whose solution is a, = (n — 1)!.

We begin by determining the controlling factor of the leading beha vior of
solutions to (5.4.5). As in Example 3(a) of Sec. 5.3, substituting a, = ¢ into (5.4.5)
gives DS, = In n. Thus, the controlling factor of q, is n".

The next step is to peel off the controlling factor of a, by writing

a, = b,n" (5.4.6)

and then to compute the controlling factor of b, (which should vary less rapidly
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than n"). If we substitute (5.4.6) into (5.4.5), we get the equation for b,:

1\ "~ 1
b, =b, (" * ) . (4.7)
For large n we may approximate the right side of (5.4.7) using the identity
-n—-1
lim (1 + 1) = l (54.8)
n—o n €

which we will examine carefully in the discussion following (5.4.11). Thus, when n
is large, b, satisfies the asymptotic difference equation b, ., ~ b, /e (1 — o0). Thus,
the controlling factor of b, is e™". Note that e™" varies less rapidly than n" as
il — 0.
The next step is to peel off the exponential behavior e™" by setting b, = ¢, e ™",
or
a, = (n/e)c,. (5.4.9)
We will find that the behavior of ¢, for large n is algebraic: ¢, ~ kn* as n — oo,
where k is a constant. The equation for c, is found by substituting (5.4.9) into

(54.5):
n4 1)1
- )

Cpr1 = Cpe ( (5.4.10)

To determine the behavior of ¢, we must carefully approximate the right side of
this equation for large n. The simplest way to estimate

Q=e(n+ l)‘""1

n

(54.11)
is to expand its logarithm:

an=lne—(n+1)ln(1+%)

1 1 1 1 ‘
=“("+1)(r5,rz+§?‘z;+‘“)

S NS SR B
T 2n  6n? 120 ’

To solve for Q we exponentiate this series and continue to retain terms of order
-3
n”>3:

1 1 1
Q-e"p(‘ﬂ o T )
- 1 1 1 1 i
—j;o].—!(-ﬂ +6-nz_ _12?13 + )

RNV A T TR T
2n  6n?  12n3)  2\4n®* 6n®] 6\ 8n®

I
2n ' 24n*  16n®

|
—
+
—
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Thus, c, satisfies the equation

1 7 3
cm”"(“i; o 1o T )
The leading behaviors of solutions to (5.4.12) may be found by using method I
of Sec. 5.3. The corresponding differential equation is y'(x) = y(x)(—1/2x + --*).
Thus, the leading behavior of y(x) is y(x) ~ k//x (x — +c0), where k is a
constant, and the leading behavior of ¢, is therefore

c,,~k/ﬂ, n— oo.

Hence, the leading behavior of a,, is

(5.4.12)

a, ~ knne—nn— 1/2’ n— oo,

and we have derived the first term of the Stirling series!
The rest of the Stirling series comes smoothly. Following the same kind of
reasoning that we used for linear differential equations near irregular singular

points, we treat n” /2 as the first term of a formal Frobenius series for large n:
¢, = kn~1%d,, (5.4.13)
where
dy~14+An '+ A4,n 2+ A3n" 3+, n- 0. (5.4.14)

The coefficients 4,, A,, ... will be determined by substituting the above expansion
for ¢, into the difference equation (5.4.12) for c,. But first let us examine the
equation for d,:

1\ 2 1 ., 7 -, 3 5
d,,+1—d,,(1+;) (l—in +ﬁn 16" +

= 1o b5

= d,, (1 — 'i—z- n + E n + )
Observe that the n™! term has disappeared from the right side. We interpret this
as a verification of the algebraic behavior ¢, ~ kn™*? (n — o0). As we determine
more and more of the coefficients 4; in the series for d,, the n™2, n™3, ... terms in
the above difference equation will also disappear one by one.

For example, let us determine the first Stirling coefficient A4, in the series for

d,. [A glance at (5.4.1) shows that A, has the value 5] We substitute
d,= (1 + A;n"')e, into the above difference equation and demand that the n~2
term disappear from the resulting equation satisfied by e,:

_ A\t Ay | R S
e,,+1—e,,(1+n+l) (1+n)(1 " +12n +

Thus, if 4, = 5, the n~2 term vanishes.

=e’I
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Next, let us determine the first two Stirling coefficients 4, and A4, in the series
for d,. [A glance at (5.4.1) shows that A, has the value 745 We substitute
d,=(1+A,n"' + 4,n" %)e, into the equation for d, and demand that the n~?
and n™? terms disappear from the resulting equation satisfied by e,:

A, A, }1( A, A,

1+ + 14— + /1 L B S
n+1  (n+ 1) n nzk 12

€n+1 = €n

1+ (Al-—)n'2+ (% — A, — A} +2A2)n'3+“' )
Thus, if A, = 15 and 4, = 745, the n™% and n~3 terms vanish.

If the above process is continued forever, all of the Stirling coefficients will be
determined. Each time a Stirling coefficient A4, is determined, the resulting differ-
ence equation for e, predicts a gentler and more slowly varying behavior for e, as
n— co. Ultimately, all the coefficients A; in (5.4.14) may be determined. Summa-
rizing the results of this analysis, we have shown that as n— oo the solution a,
to the difference equation q,, ,; = na, behaves like

a,,~kn"’”2e""(1 + Y Ajn‘j), n— o, (54.15)

=1 .
where A, = 15 and A4, = 35 Thus, using local analysis, we have determined the
Stirling series up to a multiplicative constant k.

Without further information k cannot be determined. The difference equation
that we have solved is linear and homogeneous, so any arbitrary multiple of a
solution is still a solution. However, the Stirling series (5.4.1) is the asymptotic
expansion of the special solution a, = (n — 1)! of the difference equation satisfying
the initial condition a, = 1. For this particular solution we know from (5.4.1) that
k=/2z.

Unfortunately, the nature of local analysis precludes the use of information
from values of n far from oo to determine the value of k. If we could analyze the
difference equation simultaneously at n = 1 and n = co, we would be doin g global
and not local analysis. The advantage of the integral representation (2.2.2) s that
it is equivalent to both the difference equation and the initial condition a, = 1. In
Chap. 6, where we explain how to perform a local expansion of this integral for
large |z| and |arg z| < =, we will be able to rederive the Stirling series with the
correct multiplicative constant /2.

55 LOCAL BEHAVIOR NEAR AN IRREGULAR SINGULAR
POINT AT INFINITY: FULL ASYMPTOTIC SERIES

In the previous section we showed how to determine the leading behavior of the
solution I'(n) to the difference equation a, ., = na,. In this section we show how
to determine the leading behaviors of solutions to more complicated linear differ-
ence equations. We give three examples: the first two involve only local analysis
while the third is a novel application of local analysis to an eigenvalue problem.
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Example 1 Behavior of Bessel functions for large order. When the argument x is held fixed and
the order n is allowed to tend to oo, the Bessel functions J,(x) and Y,(x) exhibit the following
asymptotic behaviors:

7 (x) ~ (xﬁ)". n— o, (5.5.1)

Y,(x) ~ —;c(n - 1) (2/x), n-oo. (5.5.2)

We will derive these behaviors from the recursion relation

2(n+1)

ey — a,,,+a,=0, (5.5.3)

which J,(x) and Y,(x) both satisfy for all n (see Prob. 5.29). Note that n = oo is an irregular
singular point of (5.5.3).

To analyze (5.5.3), we use method 111 of Sec. 5.3, the method of dominant balance. There are
three cases to consider:

(@) a,«<a,., (n—c0) In this case (5.5.3) yields the asymptotic difference equation
@y~ 2(n + 1)a,,,/x (n— c0). The solution to this relation (with the ~ sign replaced by
an = sign)is C(n —~ 1)! (2/x)', where C is a constant. Since this expression satisfies a, « a, , ,
(n — o), the dominant balance approximation is self-consistent. Therefore, we know that the
controlling factor of a, is the same as that of (n — 1)!; namely, n". In fact, the dominant
balance argument has, in this case, yielded the full leading behavior of a, as n — 0. To verify
this, we set

,=C ("——;1")—!—2-"b,, (5.54)
and substitute a, into (5.5.3). The resulting equation for b, is
xl
by = by = > (5.5.5)

To show that the leading behavior of a, as n — oo is given correctly in (5.5.4) (with b,
replaced by 1), we must show that there is a solution to (5.5.5) satisfying b, —» 1 as n — 0. In
fact, we will show that b, may be represented as an asymptotic series of the form

3 A (5.5.6)

o T+ k)

where 4, = 1.
Substituting (5.5.6) into (5.5.5), multiplying by n(n + 1), noting the relations

Dr(n+ 1)/T(n+k + 1) = —kn['(n)/T'(n+ k + 2)
and

nn+1)=(n+k+Dn+k)n+k—1)— 3k —1)(n+k+ 1)(n+k)
+ k(3k + 1)(n + k + 1) — k(k + 1)%,

and equating the coefficients of I'(n)/I'(n + k) (see Prob. 5.10), we have
—(k+ DA, , +k(Bk — DA, — (k — 1)’ Bk — 2)4,_, + (k — 1)*(k — 2)*4,_, = — x4,
(5.5.7)
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fork=0,1,2,...,inwhich A_, = A_, =0and 4, = . Thus, 4, = $x*, 4, = $5x2(x2 + 8),

and so on. As k — o0, A, ~ A(x)(k — 1)}, where A(x) is a function of x alone (see Prob. 5.30).

Nevertheless, we have the surprising result that the series (5.5.6) converges for all 7 > 1 (see

Prob. 5.30). Because we can consistently calculate all the coefficients A, in the series (5.5.6),

we conclude that the full leading behavior of a, is given by the convergent series
c (n=1)2 x? x*(x? +8)

a,=C—2" 114

- 5.
" x" 4n  32n(n + 1) (5:5:8)

The Bessel function Y,(x) behaves in this way as n— co. For this function, global
analysis (see Prob. 6.25) shows that C = — 1/n. The asymptotic expansion in (5.5.8) may be
used to obtain accurate numerical approximations to Y,(5) for large n. Results of numerical
calculations are given in Table 5.4.

a,,,«a, (n— o) In this case we obtain the asymptotic difference equation
8,,, ~ ¥x(n+1)"'a, (n > o). Following the above procedure we find that a, ~ C(3x)"/n!
(n— o), where C is a constant. This behavior is consistent with the assumption that
a,,, < a, as n— co. Higher corrections to this leading behavior in the form of an asymptotic
series may be found as in case (a) above. Finally, we remark that the Bessel function J,(x)
exhibits this behavior as n — co with fixed x; J,(x) is defined so that C = 1 [see (5.5.1) and
Prob. 6.25].

2(n + 1)a,+,/x « a, (n — o). This assumption is inconsistent. The only possible behaviors
of a, are those governed by cases (a) and (b) treated above.

(b

~

(c

~

Example 2 Behavior of Legendre polynomials of large degree. The Legendre polynomials P,(x) (n
is the degree) satisfy the recursion relation

(n+2)a,,,— (2n+3)xa,,, +(n+1)a,=0, n=-101,..., (5.5.9)

for all x. To generate the Legendre polynomials we take as initial conditions ao = Py(x) =1,
a, = P ,(x) = x. Thus, P,(x) = §(3x? — 1), P4(x) = §(5x® — 3x), and so on. The behavior of P,(x)
as n — oo for fixed x may be studied by considering the possible behaviors of solutions to (5.5.9)
as n — 0.

As n— o0, (5.5.9) can be approximated by the constant-coefficient asymptotic difference
equation

a,,,~ 2xa,,., —a, n— o, (5.5.10)

obtained by approximating n + 2 by n, 2n + 3 by 2n, and n + 1 by n. The difference equation
(5.5.10) has solutions that behave exponentially at the irregular singular point n = co. Thus, the
controlling factor of the behavior of a, has the form ", where r satisfies r* — 2xr + 1 = 0. There
are two solutions r=r,_ and r=r_:

re=x+./x* -1 (5.5.11)

Note that if |x| < 1 then r, is complex.
To determine the full leading behavior of a, for large n we substitute a, = b, % into (5.5.9)
For either r, or r_, b, satisfies the difference equation

(2xr —1)(n + 2)b, ., — 2n + 3)xrb,,, + (n + 1)b, = 0. (5.5.12)

Since we have already peeled off the exponential behavior of a,, we seek a solution to (5.5.12) that
behaves less singularly as n — oo; method 1 of Sec. 5.3 therefore applies. We find the controlling
factor of b, to be n™ /% as n — oo (see Prob. 5.33).

The next step is to peel off the controlling factor n™*/? of b,. However, this will introduce
square roots into the resulting difference equation. Therefore, we resort to the trick of factoring
off I'(n)/['(n + %), whose large-n behavior is also n™ /2 (see Prob. 5.4). We write

b, = c,I(n)/T(n + 3)
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and substitute into (5.5.12). We find that

1 1 1
(2xr — 1)(1 +m) c,,+z—xr(2+ oy l)c"” + (1 +5)0n=0~ (5.5.13)

Finally, we can use method I of Sec. 5.3 to verify that there is a solution of (5.5.13) satisfying
¢, ~ C(x) as n —» oo, where C(x) depends only on x (see Prob. 5.34). Thus, the leading behavior of
a,is
T(n)
" I(h+3)

[Colx)t + C_(x)r.],  n—oo. (5.5.14)

We can also develop the full asymptotic expansion of ¢, for large n by substituting

G~ T AT K, 1o,

k=0

into (5.5.13) and deriving equations for the coefficients 4,(x). In this way, we find 4,(x) = C(x)
and

1 1
Ax)= [—‘—‘ + m} C(x) (5.5.15)

(see Prob. 5.34).
Using global analysis (see Prob. 6.29), it may be shown that the leading behavior of P,(x)for
large n has the form (5.5.14) for all x. Specifically,

P,(x) ~ 2mn)~ Y3 (x2 — 1) V4 (x + /x? = 1YY n—o0;x>1, (5.5.16a)
P,(x)~ (—1yQmn)" "2 (x2 = 1) ¥ (=x + /x* = 1", noowo;x< -1, (5.5.16b)

while for |x| < I,

P, (cos ) = (mn sin 8)™'/*[C,(0) cos (n + 3)0 + S,(6) sin (n + 1)0], (5.5.17)
where C,(0) ~ 1 and §,(0) ~ 1 as n — co. Using (5.5.15) it may be shown that
112 60— 3 3
C0)—1~- —_‘/— COS‘( ) 3 , n— o, (5.5.184)
n 8 sin 0 8
1[/2sin (6 -3 3
and S,0)— 1~ —- [LM + -}, n— o0 (5.5.18b)
n 8 sin 6 8

(see Prob. 5.35).

The asymptotic formula in (5.5.17) with C, =S, =1 provides an accurate numerical
approximation to the zeros of P,(x) as n — co0. According to (5.5.17), the zeros of P,(x) ( which all
lie within |x| < 1) satisfy the asymptotic equation tan (n + 3)0 ~ —1 (n — o) or

4m — 1

"'4n—+21'[, n—-o;l<m<n (5519)

X = cos 6, 0

A more accurate determination of the zeros of P,(x) is obtained by using the more accurate
expressions for C, and S, in (5.5.18).

In Table 5.5 we compare the exact zeros of P,,(x) with the zeros determined approximately
in the two ways described above. The relative error in the roots using (5.5.19) is roughly 1 partin
3,000. Using the first two terms in the expansions of C, and S, decreases the relative error to
about 1 part in 50,000.

Example 3 Difference-equation eigenvalue problem. Eigenvalues are global properties of the solu-
tion to a boundary-value problem. Nevertheless, we will see in this example that local analysis
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Table 5.5 Comparison of the exact zeros of the Legendre polynomial P,(x)
of degree 20 with the zeros of the asymptotic approximation (5.5.17)

The second column lists the zeros (5.5.19) of the leading asymptotic approximation in (5.5.17)
with C, = S, = 1. The third column lists the zeros of the two-term asymptotic approximation
(5.5.17) obtained by using C, and S, as given in (5.5.18). Observe that the error in the final
column is roughly 20 times smaller than the error in the second column. This is consistent with
the fact that the asymptotic expansions of C, and S, are series in powers of 1/n, the degree of the

polynomial
Zeros of leading asymptotic Zeros of two-term asymptotic
Exact zeros of P,o(x)  approximation to P,4(x) approximation to P,o(x)
+0.076 527 +0.076 549 +0.076 526
+0.227 786 +0.227 854 +0.227 783
+0.373 706 +0.373 817 +0.373 702
+0.510 867 +0.511 019 +0.510 861
+0.636 054 +0.636 242 +0.636 046
+0.746 332 +0.746 553 +0.746 323
+0.839 117 +0.839 366 +0.839 106
+0.912 234 +0.912 504 +0.912 222
+0.963 972 +0.964 253 +0.963 957
+0.993 129 +0.993 402 +0.993 099

can greatly facilitate the solution of an eigenvalue problem. We are given the difference equation
a,,, — Bna, + na,_, = Ea,, (5.5.20)

where E is the eigenvalue and B > 1 is a positive constant. a, is required to exist (be finite) when
n = —1 and to satisfy the boundary condition lim,_, , a, = 0.

Setting n = 0 in (5.5.20) and noting that a, and a_, are finite, we obtain a, = Ea,. Once a,
is so determined the difference equation (5.5.20) may be used to generate a,, ay, a,, ... in terms of
a,. For example, a, = (E? + BE — 1)a,. Note that a, appears as an overall multiplicative factor
in the expressions for a,. Since the difference equation and boundary conditions are homoge-
neous, we are free to choose a, = 1.

There is a second, linearly independent solution of (5.5.20) for which a, # Ea,. However,
this solution must be rejected because it violates the finiteness of a_,. Thus, we have uniquely
determined a, (n =0, 1, 2, ...) as functions of E and B.

Does this solution for a, satisfy the boundary condition that a, = 0 as n —» 0 ? To answer
this question we must perform a local analysis of the irregular singular point of (5.5.20) at n = co.
To find the possible controlling factors of a, as n — oo, we replace (5.5.20) by the asymptotic
difference equation

a,,,+na,_,~Bna,, n- o, (5.5.21)

and use the method of dominant balance to study pairs of terms. There are three cases to
consider:

(a) a,,, ~ Bna, (n —» o). The solution to this equation (with ~ replaced by =) is proportional
to (n — 1)! B". This balance is consistent because for this solution na,_, < a,,, (n = o). To
find the full leading behavior of a, we let a, = (n — 1)! B"b,. Then b, satisfies

1 E
byyy = b, +

———b,-,=—b,. 5.5.22
n Bz(n_l) n=1 B'l n { )
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Using method I of Sec. 5.3 we find that the solution to (5.5.22) which varies less ra pidly than
B is b, ~ Cn'E8~ W8 (4 o), where C is a constant, so the leading behavior of g, is

a,~ C(n— 1)t BnEE-VB 0. (5.5.23)

(b) na,_, ~ Bna, (n — o). The solution to this equation (with ~ replaced by =)is proportional
to B~". This balance is consistent because for this solution a,, , « na, _, (n = o). To find the
full leading behavior of a, we let a, = B™"b,. Then b, satisfies

B~ 'b,,, — Bnb, + Bnb,_, = Eb,. (5.5.24)

Using method I of Sec. 5.3, we find that the solution to (5.5.24) which varies less rapidly than
B "is b, ~ Cn'' “EBVE ( , o), where C is a constant, so the leading behavior of a, is

a,~ CB ™1 "EBVE .y 0 (5.5.25)

(¢) ay4+, ~ —na,_, (n— o). This balance is inconsistent. (Why?)

This local analysis shows that in general a, is a linear combination of growing and decaying
solutions (5.5.23) and (5.5.25). An eigenvalue is a special value of E for which only the decaying
solution occurs.

Although the results in (5.5.23) and (5.5.25) are only approximate, they may be translated
into an exact condition for the existence of an eigenvalue. We define the function f(z) by

Sflz)= i =2 (5.5.26)

f(z)is a generating function. If the boundary condition a, — 0 as n — oo is satisfied, we know from
(5.5.25) that f(z) will be entire (it will converge for all complex z). If the boundary condition is
violated, we know from (5.5.23) that f(z) will have a singularity in the complex plane at |z| =
1/B. A leading local analysis is all that is required to determine the radius of convergence of f(z).

Next, we multiply (5.5.20) by z'/n! and sum from n = 0 to n = co. This converts the differ-
ence equation for a, into a differential equation for f(z):

(1= zB)f'(z) = (E — 2)f(2). (5.5.27)
This equation is easy to solve because it is separable:
f(z) = e?5(1 — Bz) L -EBVE,
The solution is normalized so that f(0) = ao = 1.
As expected, f(z) has a branch point or pole singularity at |z| = 1/B, except for special

values of E for which the growing solution in (5.5.23) is absent; the eigenvalue condition is thus
(1-EB)B*=0,1,2,3,...,0r

1
E=2 kB k=0123, ., (5.5.28)

which is the solution to the problem. When (5.5.28) is satisfied, f(z) is entire because it is a
polynomial multiplied by an exponential.

(E) 5.6 LOCAL BEHAVIOR OF NONLINEAR DIFFERENCE
EQUATIONS

Nonlinear difference equations, like nonlinear differential equations, are so varied
that it is not possible to formulate a general program for determining the local
behavior of any given equation. Thus, in this section we parallel our approach to
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nonlinear differential equations by showing how to analyze a few examples. These
examples have been selected because they allow us to explain and demonstrate the
most broadly applicable difference-equation techniques. The first example,
Newton’s iteration method for finding the roots of an equation, illustrates
techniques for examining the rate of convergence of a sequence {a,} as n — oo.

Example 1 Rate of convergence of Newton’s method. In applied mathematics it is standard prac-
tice to solve problems by inventing an appropriate iteration procedure. In general, an iteration
procedure is a repetitive calculation generating a sequence of approximations which rapidly
approach a limit, the limit being the exact solution to the problem (see Example 2, Sec. 4.1).
Newton’s method is an efficient iteration procedure for finding the roots of the equation

flx)=0. (5.6.1)
The appropriate sequence of approximations is defined by the difference equation
f(a,)
4, =a,— —. (5.6.2)
" [(a)

(For a justification of this equation see Prob. 5.42.) If one chooses an initial value a, which is
reasonably close to the desired root x, one can show that the sequence {a,} does approach x (see
Prob. 5.43). However, once this has been verified, the question that is of most concern for the
applied mathematician is whether the solution to (5.6.2) converges rapidly. Usually, one estimates
the rate of convergence by studying the magnitude of ¢,, the difference between the terms in the
sequence and the limit x:

a,=x+¢, (5.6.3)
Substituting (5.6.3) into (5.6.2) gives an equation for ¢,:
Baer = 60— [(x + e (x +5,)
Assuming that ¢, is sufficiently small, we can Taylor expand the right side of this equation:
flx+e) e f () +3e () +-
fle+e)  f)+e/(x)+
B PYC)
27 f(x)

Thus, ¢, satisfies the approximate equation

-

1 f"(x)
Ene1 ™5 70 eZ, n—oo. (5.6.4)

This equation shows that the convergence of a, to x is extremely rapid because the error
€,+ Is proportional to the square of the error ¢,. This means that if one has already achieved
three-decimal-place accuracy, then after the next iteration one will have about six-place accuracy,
and then twelve, and so on. This is called quadratic convergence. Of course, the proof of quadratic
convergence requires that f’(x) in (5.6.4) not vanish. Thus, Newton’s method is only useful for
determining the simple zeros of f(x); that is, values of x for which f(x) =0 but f'(x) # 0 (see
Prob. 5.48). If /'(x) # 0 but f"(x) = 0, then the convergence is at least cubic.

Example 2 Newton’s method for computing square roots. To illustrate how fast the sequence {a,}
does converge, let us use Newton’s method to compute square roots. We may compute /Q by
finding the roots of the function f(x) = x> — Q. For this choice of f(x) the iteration formula



APPROXIMATE SOLUTION OF DIFFERENCE EQUATIONS 235

(5.6.2) becomes

ST 509

Let us use (5.6.5) to compute the square root of 4. We take Q = 4 and for fun we take as our first
approximation a,=10. The sequence of approximations is a, = 10.000000 000000,
a, = 5200000000000, a, =2.984615384615, a,=2.162410785091, a, = 2.006099 040778,
ag = 2.000009 271302, ag = 2:000000000022. The convergence is rapid even though the initial
approximation a, is poor.

There are many other iteration schemes, such as

- i(an N Z_Q), (5.66)

+1
" 3 a,

which also generate sequences {a,} whose limits are ./Q. However, (5.6.6) is inferior to Newton’s
method (5.6.5) because its convergence is linear rather than quadratic (Prob. 5.46). A recomputa-
tion of \/Z using (5.6.6) with Q =4 and a, =10 gives a, = 10.000000, a, = 3.600000,
a, = 1.940741, a; = 2020959, a, = 1.993158, as = 2.002296, ag = 1.999236, a, = 2.000255,
ag = 1999915, ag = 2.000028, a,, = 1.999991, a,, = 2.000003. Observe here that the accuracy
is linearly proportional to the number of iterations. We are gaining about one decimal place of
accuracy for every two iterations.

One way to demonstrate the convergence of Newton’s method for computing square roots
is to construct an exact analytical solution to (5.6.5). This difference equation is one of the few
nonlinear difference equations whose solution may be expressed in closed form. To solve (5.6.5)
we substitute

a, = \/é coth b,,.

The resulting equation for b, is linear: b,, , = 2b,.
Thus, b, = 2"K, and

a, = /0 coth (2'K), (5.6.7)

where K is an arbitrary constant determined by the initial condition a,. We can see that a,
approaches the roots i\/a of x>~ Q=0 as n— oo because coth (2"K)— +1 as n— oo,
depending on the sign of K.

Let us now examine the behaviors of solutions of other nonlinear first-order
difference equations as n tends to + co.

Example 3 Failure of dominant balance. If we modify Newton’s iteration for computin g square
roots (5.6.5) only slightly by eliminating the factor of 4, we obtain the equation

1
Apyy = an+ > (568)
a’l
which we can no longer solve in closed form. If the initial condition a, is chosen to be positive,
then the solution a, grows monotonically as n — co. The solution cannot approach a finite limit
as n— oo because this limit would have to satisfy the equation

x=x+ 1/x,

whose only solution is x = co.

How do we determine the asymptotic behavior of a, as n —» o0 ? In general, to perform a
local analysis of a difference equation when it is known that a, — co as n — oo, one should neglect
those terms in the difference equation that become small in this limit. One hopes that the
resulting dominant balance is then simple enough to solve in closed form. For the present
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equation it is surely true that a, >» l/a, as n — co. However, we cannot neglect the term 1/a,
because the solution of the difference equation a,, , = a, is a constant, which violates the condi-
tion that a, = oo (n — o). Thus, naive application of the method of dominant balance is bootless.

To approximate the difference equation correctly when n is large we must first rewrite it in a
more suitable form. The simplest approach is to square the equation (!):

a2, =a+2+a; (5.6.9)

Now, when n is large it is valid to neglect a;? compared with 2. The resulting asymptotic

difference equation becomes linear if we let b, = a?: b,, , — b, ~ 2 (n — o). The solution to this
asymptotic equation is b, ~ 2n (n — o) [see Prob. 5.3(c)]. Thus,

a,=b,~/2n, n-ow. (5.6.10)

This is the leading asymptotic behavior of a, as n — co.
To determine the next-order correction to the leading behavior for large n, we let

a,=./2n +¢,,

where we assume that ¢, is much smaller than 2n as n — co. Substituting this expression into
(5.6.9) gives

M4+ 246 =2n+¢,+2+1/(2n +¢,)

If we approximate the denominator of the fraction by 2n under the assumption that ¢, « 2n,
we get

Enty — &~ 1/2n, n— 0.
Thus, we find
ea~%Inn,  noow

[see Prob. 5.3(c)]. This result is consistent with our initial assumption that ¢, « 2n as n— co.
Hence, for large n the higher-order corrections to the leading behavior (5.6.10) are

a,—\/2_~\/§;+e,,/2\/2——\/2/n

so that

|
a,—\/2_~ nn n— oo. (5.6.11)

4/’

This result may be somewhat surprising because one might have expected the higher-order
corrections to take the form of a Frobenius series in powers of 1/n: a, ~ \/ﬁ Y. a;n74. One can
conclude only that it is not easy to predict the formal structure of an approximate solution to a
nonlinear equation.

In Table 5.6 we verify the predictions in (5.6.10) and (5.6.11) by comparing them with the
exact values of a, obtained on a computer by solving (5.6.8) with a, = 1. When n = 10°, the
prediction in (5.6.10) is accurate to 2 parts in 10° while the prediction in (5.6.11) is accurate to 1
part in 107.

In this example the leading large-n behavior of a, could have been determined very quickly
by solving the corresponding differential equation. The differential-equation analog of
a,,, —a,=1/a,is y' = 1/y. The solution to this differential equation is y(x) = \/2x + C, where
C is a constant. Note that when x = n is large, the leading behavior of y(x) agrees with that of a,.

You will recall that dropping 1/a, in (5.6.8) to give the asymptotic difference equation
a,,, ~ a, (n— o) was fruitless. In terms of the differential equation, this would be equivalent to
dropping 1/y and obtaining y' ~ 0 (x » + c0); it is wrong to neglect 1/y in comparison with 0.

This example is interesting because the naive use of dominant balance [discarding the term
1/a, in (5.6.8)] is a dead end. However, it is important to point out that neglecting 1/a, is not really
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Table 5.6 Comparison of the exact solution to
G, 41 = a, + 1/a, (a; = 1), with the asymptotic predic-
tions in (5.6.10) and (5.6.11)

Observe that the error in (5.6.11) is only about 20 times smaller than
that in (5.6.10) when n = 10° (see Prob. 5.52)

\/2_n+ Inn

N, N s/

1 1.0 1414 213 6 1414 213 6
10 4.569 884 2 4472 136 0 4.600 854 4
10% 14.213 709 14.142 136 14.223 544
10° 44.756 873 44.721 360 44.759 975
10* 141.436 66 141.421 36 141.437 63
10° 447219 72 447213 60 447220 03
108 1,414.2159 1414213 6 1,414.216 0

wrong; indeed, the resulting asymptotic relation a, ., ~ a, (n — o) is satisfied by the leading
behavior \/Z_n of a,. However, many other functions, such as n*/3, In n, exp (\/r_l), also satisfy
a,,,~ a, (n— o) [see the discussion following (5.2.4)]. The solution a, = C, a constant, of the
equation obtained by replacing ~ by = is not consistent with the original approximation
1/a, < a, (n — oo); this is why the method of dominant balance does not work here.

Example 4 Use of differential equation to obtain leading behavior. As in Example 3, dominant
balance fails to yield the correct behavior as n — oo of the solution to

1
a,,,=a,+ na (5.6.12)
However, the failure is on a much more subtle level. If we were to neglect the term 1/na, and solve
a,,, = a,, we would conclude that a, = C, a constant. This solution is consistent with dropping
1/na, compared with a, as n —» oo (in Example 3 dropping 1/a, was not consistent). Nevertheless,
a, does not approach a constant as n — co. To show this, we let a, = C + ¢,, where ¢, - 0 if
a, ~ C (n— o). ¢, satisfies ¢,,, = ¢, + 1/n(C + ¢,). If &, > 0 (n — o0) then this equation can be
approximated by ¢,,, — &, ~ 1/nC (n — o0). The solution to this equation grows like (In n)/C (see
Prob. 5.3), which contradicts the assumption that ¢, — 0 as n — co. Therefore, a, ~ C (n - o) is
wrong.
The behavior of solutions to (5.6.12) as n — oo can be found by examining the correspond-
ing differential equation y’ = 1/xy. The exact solution to y’ = 1/xyis y(x) = \/2 In x + ¢, where ¢
is a constant. Thus, we expect that

a,~/2Inn, n— oo.

This result can also be obtained by squaring the equation (5.6.12) and then using dominant
balance.

Example 5 Random behavior. Sometimes the solution to a difference equation does not have a
well-defined asymptotic behavior as n — oo, but rather jumps around in a random fashion. To
construct such an equation we attempt to compute the square root of —3 using Newton’s
iteration:

l(a,, - 3). (5.6.13)

Appy =<
n+ 2 a"
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Of course, if we choose a, real then a, cannot approach \/_—-3 as n — oo because a, will be real for
all n. Thus, what is the asymptotic behavior of a, as n — 0 ?

To begin with, we observe that there are “cycles” such as a, = (— 1)". However, these cycles
are unstable: ifa, ~ 1 + ¢, then a,,, ~ —1 + 2¢, a,,, ~ 1 + 4¢, and so on. Thus, the sequence
cannot approach such a cycle as n — oo. Second, one of the most powerful techniques for analyz-
ing the structure of difference equations, namely, computing the first 50 terms numerically, seems
to show nothing; the sequence {a,} jumps around apparently at random. These results indicate
that a, has no asymptotic behavior in the usual sense as n — co. That is, a, does not approach a
limit or a simple function of n. We have already encountered random behavior of differential
equations in Sec. 4.5.

Assuming that a, does not have a well-defined asymptotic limit as n — oo, our approach will
be to determine whether the sequence {a,} defines a probability distribution function P(y) as
n— co. We interpret P(y) as a probability distribution in the sense that P(y) dy is the relative
number of terms in the sequence {a,} that licin the interval [y, y + dy]. If we can show that such a
limiting distribution as n — co exists independently of the initial condition a, for almost all
choices of a,, then we will have performed a local analysis of the difference equation valid as
n— co.

If such a limiting distribution of the a, exists independently of a,, it must be stable under the
action of the transformation

y=T(x) = 3{x - 3/x),

because T just shifts the starting value from a, to a,. It follows that the relative number of a,
in the interval [y, y + dy] must equal the relative number of a, in the interval [x, x + dx],
where y = T(x). However, there are two intervals [x, x + dx] that map into the one interval
[y, y + dy] because there are two solutions

xe=yxy+3
to the equation y = T(x). Hence,
P(y)dy = P(x,)dx, + P(x_)dx_, (5.6.14)
where we assume that the intervals dx , and dx _ are sufficiently small that they do not overlap.
We compute

dx, = (1 + (5.6.15)

y
=]
Vy+ 3)
substitute (5.6.15) into (5.6.14), and divide out a common factor dy. We conclude that the
distribution function P(y), if it exists, must satisfy the following three-term functional equation:

Py) =Py — /¥ +3)1 = y/\/¥* +3) + P(y + /y* + 3)(1 + y//¥* + 3).

This monstrous-looking equation has a simple exact solution! If we multiply through by
y* + 3 and set f(y) = P(y)(y* + 3), then the functional equation for f simplifies to

TOY=4 (=Y +3)+ 4y + /¥ +3) (5.6.16)

Observe that one solution to this equation is the linear function f (y) = ay + b. (We disregard the
other more complicated solutions. See Probs. 5.53 and 5.54.) However, since P(y)is a probability
density, it must be positive for all y. Thus, a = 0 and b > 0. Hence, if the sequence generates an
invariant probability distribution for arbitrary initial condition a,, we predict that it may have
the shape

1

P(y) ;24-_—3 (5.6.17)
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This result was checked numerically. We used a computer to calculate the first 20,000 terms
in the sequence {a,} and to sort these terms into four bins of equal area (equal probability ) under
P(y). The results for four separate runs are given in Table 5.7. The fluctuations in the nummerical
results are within expected statistical limits.

Until now we have treated the difference equation (5.6.13) as an asymptotics problem; we
have performed a local analysis at n = co. However, we have ignored the fact that (5.6.13), like
(5.6.5), is exactly soluble. In particular, the substitution a, = \/3 cot 6, converts the difference
equation into cot (6,) = cot (26,_,). Hence 6, = 2"6, and

a,= \/i cot (2"0,). (5.6.18)

We may use this formula to verify that the difference equation does indeed generate the
distribution function P(y)in (5.6.17). The result in (5.6.18) shows that a small interval of 6 values
in 6 space (such an interval would exist if a, were defined, say, to 15 decimal places by the fixed
bit length of computer words) gets expanded by a factor of 2" into a much larger interval of 6,
values. When n is very large, this interval of 6, is large compared with =, the periodicity of the
cotangent function. Consequently, neglecting “end” effects, the distribution of a, must approach
that of uniform @ for 0 < 6 < =; namely, P(y) dy = df/n, where y = \/5 cot 6, so that

P(y) = /3/n(y* +3).

This elementary proof of randomness depends on the measure-doubling character of the
recurrence 6, = 20,_,. By contrast, problems of randomness in statistical mechanics involve
measure-preserving transformations and are nontrivial.

The properties of some higher-order nonlinear difference equations are ex-
amined in the Problems.

Table 5.7 Results of a numerical experiment to test frequency distribution of the
sequence a, generated by the difference equation a,, , = 4(a, — 3/a,)

For each of four choices of a,, a, for n =1, 2, ..., 20,000 was calculated and sorted into four bins
—w<y<—3binl), —/3<y<0(bin2),0<y<./3(bin3), /3 <y< oo (bin4). These bins
were chosen so that the area under the curve P(y) given by (5.6.17) is the same for each bin. If our
predictions are correct, the four bins should be equally populated. The results are consistent with
equal population to within the expected statistical fluctuations

Run Number in  Number in  Number in  Number in  Total
number  a, bin 1 bin 2 bin 3 bin 4 samples
1 1.234 567 4,855 4,988 4,988 5,169 20,000
2 10.0 4,961 4,961 4,962 5,116 20,000
3 100.0 5,025 4,990 4,991 4,994 20,000
4 -z 4,964 5,007 5,006 5,023 20,000

Total over all runs 19,805 19,946 19,947 20,302
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PROBLEMS FOR CHAPTER 5

Sections 5.1 and 5.2

5.1 Find the possible leading behaviors as n — oo of solutions to the following difference equations:

(@) @,y =a,+n%a,;

(b) @,y = ea,;

(€) ayry=a,+lnn;

(@) apey = (1 +2/n)a, + 1;

(€) ayr2 = 28,4y +a,=0;

(f) @iz = 2854, +a,=n;

(g) iy + (3/" - 2)an+l + (2/”2 - 3/'1 + l)an =0;

(k) @yrz = 201+ Un)aysy + (1 +2/n — 1/n)a, = 0;

() Grrz —2ay.y + (1 + 1/4n?)a, = 0;

() @nez + (1/n = 2)aysq + (1/n* = 1n + 1)a, = 0.

5.2 Show that if p is an integer and p > |«|, then }"'_, In (1 + «/j) — « In n ~ k (n — o), where k is
a constant.

53 (a) For which functions f(n)>0 is it true that a,,, —a,~f(n) (n—co) implies that
a,~ 2321 f(k) (n > o0)?

(b) For which functions f(n)>0 is it true that a,,, —a,~f(n) (n— o) implies that
a,~ " f(k) dk (n —» o0)?

(¢) For each of the following asymptotic relations determine whether the leading asymptotic
behaviors of a, as n— + oo are determined by the given information and, if so, find the leading
behavior of a,: a,,, —a,~ 1 (n—> w);a,,, —a,~ 1/n (n>x); a,,, —a,~n* (n—x).

5.4 Prove that the leading behavior of a, = I'(n + a)/T'(n + ) is Cn®~# as n - co.

Clue: Show that a, satisfies the difference equation (n + f)a, ., = (n + a)a,. (See also Prob. 5.23.)
5.5 Show that if co is an ordinary point or a regular singular point of a corresponding pair of difference
and differential equations, then the leading behaviors of the corresponding solutions as n = x — oo are
the same.

Clue: If the solutions to the differential equation satisfy y(x) ~ ¢x% y' ~ cax®* ™! (x - +0), then
Dy ~ cax*~! (x » + ).

5.6 Find Taylor or Frobenius series solutions about the point at n = oo for:

1
@ o= 1 )
1

(b) an+z—20n+x+[1—m}a"=0;

[ 1 2] [ 1 1 1] —o
T ey R KXl ey T Rl Rl Kl

1 2 2 1
(d) Apy2 — (2+;)an'&l+ [l+;+n(n+ 1)+n(n+l)(n+2)}a"=0;
1

(€) @43 —3a,,2+3a,,, — [1 +m]an=0;

(f) verify (2.3.21).

5.7 Find the first three terms in the asymptotic expansion of a, valid as n - + oo for the following
equations:

(@) @y3 — 2a,,, +a,e"" =0;

(b) a,+y — a,[1 + sin (1/n)/n] = 0;

(€) Quez + Bysre"/n + ae*™/n? = 0.



m

m

(T

(E)
(E)

(E)

(E)

(E)
M

APPROXIMATE SOLUTION OF DIFFERENCE EQUATIONS 241

5.8 (a) Using the relation I'(z + 1) = zI'(z), verify the difference equation (5.2.21) satisfied by the
digamma function ¥(z): ¢(z + 1) = y(z) + 1/z.

(b) Show that ys(n) ~ In n (n — ). (See Prob. 5.18.)

(¢) Find series expansions valid as n — co for the solutions of

1 1 1
o2 Lt Iiile =0
ezt (n )a"” * [n(n+ 1)(n +2) PR

Clue: It is convenient to use the digamma function instead of In n in one of these expansions.
5.9 (a) Find the leading behaviors of all solutions to
(i) (4n> + 4)a,,, — (8n% = 2)(n — l)a,,, + (n — 2)(4n% — 1)a, =0;
(ii) na,,, — (2n + 1)a,,, + na, = 0.
(b) Find full series expansions of all solutions to the difference equations in part (a).
5.10 (a) Show that if >, B,I(n)/T'(n + k) =0 for all sufficiently large n, then B,=0 for all k.
(b) Explain what is meant by the notation a, ~ Y %o B[(n)/T'(n + k) (n - o).
(c) Show that if a, = 0, then the definition introduced in part (b) implies B, = 0 for all k.

Section 5.3

5.11 Verify (5.3.1) and (5.3.2).
5.12 (a) Show that if § < B < 1, then the leading behavior of solutions to a,,, = (1 + an#)a, is
a, ~ c exp [n' “%a/(1 — B)] (n - ). Note that this behavior is the same as that of solutions to the
corresponding differential equation.

(b) Show that if 0 < B < 4, then the leading behavior of a, is different from the leading behaviors
of the solutions to the corresponding differential equations.

(c) For which values of a and B does the general solution to a,,, — 2a,,, + (1 + an ~%)a, =0
behave like ¢, + ¢,nas n— 0?
5.13 Show that oo is an irregular singular point of the difference equations:

(a) (n+3)a,,, + (2= na,,, +6a,=0;

() @42+ (3 —n)a,.y + (3 +n)a, =0

Then show that there exists a solution to each of these equations that has the same controlling
factor for n — oo as a solution to the corresponding differential equations.

5.14 Bernoulli’s method for finding the roots of the polynomial
P(x)=x*+p_ X+ pix 4 po
consists of computing the sequence a, determined by

Qnix = ~Pk-1Gn+x-1 " Pk-20n+x-2 — "~ P1Gn+1 ~ PoGn

forn=0, 1,.... Show that for typical initial values ay, ay, ..., a,—,, im,_, a,/a,_, = r,, where r,
is that root of P(x) of largest absolute value. (If there are two roots with absolute value ry, then
lim,., a,/a,-, does not exist for typical starting values.)

Clue: Suppose first that the roots of P(x) are ry, ry, ..., r, with |r| > |r;| for j# 1 and that
these roots are all distinct. Show that a, = Y"*_, ¢, for some constants c,. Use this to show that
lim,., a,/a,., =ryifc, #0.

5.15 Show that if a, = n* then (5.3.6) and (5.3.9) do not hold but that the asymptotic relations in
(5.3.8b) and (5.3.10) are still valid.
5.16 Find the controlling factors of the leading behaviors to:

(a) a2 — na,,, + (2"2 —4)a, = 0;

(b) (n +3)a,,; — (n +3)a, .y — 2na, =0;

(¢) @ysy — nay,y —na,=0;

(d) a2 —(n+ Da,,, —(n+ l)an =0;

(e) a,12 —nay,y — n*a, = 0;

(f) @yer = @yyy —n?a, = 0;
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@) na,,, —(n-2)a,,, —a,=0;

(h) n*D*a, — 2nDa, + 2a, = n?;

(i) @y42—2na,,, +n(n— )a, =n';

(/) Gysz — 28,4y +n(n — 1)a, = nl.
5.17 (a) Use the methods of Sec. 5.3 to verify the Poincaré-Perron theorems: If lim,_, p(n) = p,,
lim, ., q(n) = q,, there are solutions to the difference equation a,., + p(n)a,,, + q(n)a, = 0 that
satisfy lim, ., a,,,/a,=4, and lim,.,a,,,/a,=4,, where 1, and A, are the roots of
2+ pod+qe=0.

(b) Generalize the above theorem to nth-order difference equations.

Section 5.4

5.18 (a) Using the difference equation y(z + 1) = y(z) + 1/z satisfied by the digamma function
Y(z) = I"(z)/T(z), show that the asymptotic expansion of Y(z) as z— +w is Y(z)~Inz+
C+ Y%, b,z7" (z> +0). Global analysis gives C = 0. Show that the expansion coefficients b,
satisfy

) (-1r ,

P
b=t-D Y i ey "2t

Thus, by = =3, b, = —75,b; =0,b, = +135, bs =0, bg = — 555

(b) We define the Bernoulli numbers B, by B, =1 and B, = (—1)y'*'nb, (n > 1). Thus, B,
satisfies Y 5o By/k! (1 + 1 —k)! =0 (n > 1). Show that Y., B,t"/n! = t/(¢ — 1).

Clue: Multiply the recursion relation for B, by ¢" and sum from n = 1 to co.

(c) Show that B,,,,=0forn> 1.
5.19 Using Prob. 5.18 show that In I'(z) has the asymptotic expansion In I'(z) ~ (z = %) Inz — z +
C' + Y2, byz™" (z > +o0). Stirling's formula implies that C’' = 4 In (2n). Find the relation between
b, and b,.
5.20 (a) What is the relation between the Stirling numbers A4, and the Bernoulli numbers B,? Here
the numbers A, are defined by the asymptotic series (5.4.1) and the numbers B, are defined in
Prob. 5.18.

(b) In Prob. 6.79 it is established that B,, ~ 2(—1)*'(2n)! (2n)~?". Show that this result is
consistent with the series given in Prob. 5.18(b).

(c) Using the result of (b) and those of Probs. 5.18 and 5.19, verify (5.4.2).

5.21 Compute the coefficients Ay, A', and A, for a modified Stirling series of the form I'(z) ~
V2n/z (zle) Yoy A5T(2)/T(z +j) (z = o).
5.22 (a) As you can observe from Fig. 5.1, the points at which the numbers of terms in the optimal
asymptotic approximation to the Stirling series (5.4.3) for I'(z) increases by 2 appear to be evenly
spaced. Demonstrate this fact by showing that the number of terms in the optimal asymptotic approxi-
mation to I'(z) is asymptotic to 2nz as z — + 0. (It follows that the spacing between points where the
optimal number of terms changes approaches 1/n as z » + 0.)

(b) Use (a), (5.4.2), and Stirling’s approximation to n! to show that the error in the optimal
asymptotic approximation to I'(x) can be approximated by e‘“"/2n\/; as x — + 0.
5.23 Use the Stirling approximation to show that I'(n + a)/T'(n + B) ~ n* % (n —» ) (see Prob. 5.4).
5.24 Find the leading behaviors of:

(@) (@n)Y/(n)?;

(b) (kn)/(nY:

(c) @n+ D =(2n+ 1)2n - 1)2n - 3)-- 5)B)1);

(d) (3n — 1)3n — 2)(3n — 4)(3n = 5) - (5)4)(2)(1);

(e) In [(n1)1);

(f)In T(In n).
5.25 The error in the optimal asymptotic truncation of the asymptotic expansion Y ., n! (—x)" of the
Stieltjes integral [§ e*/(1 + xt) dt as x —» 0+ is asymptotic to half the smallest term in the series as
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x -0+ (see Example 6 of Sec. 3.8 and Prob. 6.37). Use Stirling’s approximation and this result to
establish (3.8.9).

5.26 (a) Find an approximation to the error in the optimal asymptotic truncation of the asymptotic
expansion (3.5.13) and (3.5.14) of the parabolic cylinder function D (x) as x — + co.

Clue: Even though this asymptotic series is not a series of Stieltjes (why?), assume that the
optimal error is less than the smallest term in the series. As a difficult exercise, you may try justifying
this assumption for sufficiently large x. Show that the optimal asymptotic approximation to D (x) is
accurate for x larger than roughly v'/2/2.

(b) Asin part (a), find an approximation to the error in the optimal truncation of the asymptotic
series (3.5.21) for the Airy function Ai (x) as x —» +co.

(c) Do the same for the asymptotic series (3.5.8) and (3.5.9) of the modified Bessel functions I (x)
and K,(x) as x = + 0.

5.27 Test the following series for convergence:

(@) Zln(k.

(b) i k—(k+ l)/k;

® 1
(€) X sreime—sin
k=1

= 1
@ X srvmaeevine
k=1

5.28 (a) The function /1 + x has a Taylor series expansion about x = 0: /1 + x = Y., a,x". Find
the leading behavior of a, as n — co. Express your answer in terms of elementary functions.

(b) What is the radius of convergence of the Taylor series ) ., a,n”2"x", where a, s atisfies
=n’a,?

Ay

Section 5.5

5.29 Show that if a,(x) and a, , ,(x) satisfy the Bessel differential equation x?y” + xy’ + (x> — v2)y =0
with v =n and v = n + 1, respectively, then a,, ,(x) defined by the recursion relation (5.5.3) satisfies
this differential equation with v=n + 2.
530 (a) Show that the leading behavior 4, in (5.5.7) is given by 4, ~ A(x)(k — 1)! as k — 0.

(b) Show that (5.5.7) converges for all n > 1.
5.31 Relate the series for Y,(x) given by (5.5.8) with C = —1/n (here n— co with x fixed) to the
Frobenius series for Y,(x) about x = 0 given in the Appendix.
5.32 The Legendre polynomial P,(x) is the solution of the differential equation

d
dx
satisfying P,(+£1) = (£ 1) Show that P,(x) satisfies (5.5.9).

5.33 Using method I of Sec. 5.3 show that there is a solution b, of (5.5.12) whose controlling factor is
n~ Y% as n— co.

dP,
(1=x*)—"+n(n+1)P,=0
dx

5.34 (a) Use method I of Sec. 5.3 to verify that there is a solution of (5.5.13) satisfying c, ~ C(x) as
n— oo, where C(x) is a function of x alone.

(b) Show that ¢, — C(x) ~ [~4 + 1/8(xr — 1)]C(x)/n (n — o) as stated in (5.5.15).

(c) Show that the asymptotic expansion C, ~ Yo A, L'(n)/T'(n + k) (n — co) diverges for all n.
5.35 Derive (5.5.17) and (5.5.18).

Clue: The Stirling series for I'(n) can be used to show that I'(n)/['(n + %) ~ n"Y(1 + 1/8n + )
(n— o).
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5.36 Find the possible leading behaviors as n — oo of the solutions a, to the difference equations:

(@) ay,, — 3na,., +2n%a, =0;

(b) a,,3 = na,;

(¢) M+ ay,; — QRn+ a,ey + (n+ 1)a, =0;

(d) a,,, — 2¢"a,,, +e*a,=0;

(€) @,y —3e"a,, +2¢*a, = 0;

(f)auss — 5€a,y +4€*a, =0;

(9) ues— (B3 + Una,o o + (3 - 1/"2)an+1 -1+ l/na)an =0

(h) @yiy +na, + n’a, = 0;

(i) @yyp—4na,.; + 4"2‘1:- =0;

(.1) Qpiy = Qpyq = NA,;

(k) Qpyy = Qyyy =Na, + n*;

() a,,,—3na,., +2n%a, =n>

(m)a,,, — @,y = na, +n;

(n) a,,, — 3€e"a,,, +2e*a, =n!;

(0) @,z — 2¢"a, ., +€¥a, = 2"
5.37 Find full asymptotic series descriptions as n— oo of the solutions to each of the difference
equations in Prob. 5.36.
5.38 Find the leading behaviors of the solutions to the recursion relation in (5.2.16) valid as k — + co.
Show that B, ~ C, k! k™'*' (k > +o0). From this estimate, show that (5.2.12) converges for all n in
the interval 1 <n < co.

539 Leta,,, =f(n)a, — g(n), where

_ 2n(n+1)(4n +7)
T (n+2)dn +3)2n +3)

_In— 1)@n + 5)dn +7)
and 0= )t

Assume that a, is finite and therefore that a, = —g(0). Show that 4, ~ 21~ %%/ /7 (n > + o).
5.40 Laguerre polynomials L,(x) of degree n satisfy the difference equation

(n+ 1)L,41(x) = 2n + 1 = x)L,(x) + nL,_,(x) = 0.

f(n)

Show that there is a solution to this difference equation satisfying L,(x) ~ [F(x)/n/*] cos (2\/nx — in)
(n— o0), and thus infer the leading asymptotic behavior as n — o of the zeros of Laguerre poly-
nomials. The constant n/4 is not determined by local analysis.

5.41 Hermite polynomials He, (x) of degree n satisfy the difference equation
He,,, (x) — x He, (x) + n He,_, (x)=0.

Use this difference equation to obtain the leading asymptotic behavior of He, (x) as n = co and the
leading asymptotic behavior of the zeros of He, (x) as n — oo (see Prob. 6.85).

Section 5.6

5.42 Use a graphical argument to derive (5.6.2).

Clue: Define a, , , as the point at which the tangent to the curve y = f(x) at x = a, crosses the x
axis.
5.43 Show that if x is a simple zero of f(x) and if a, is sufficiently close to x, then the sequence of
approximations defined in (5.6.2) converges to x as n — co.

Clue: Show that |a,,, — x| < K|a, ~ x| for some K < 1 and all nif a, is sufficiently close to x.
You may assume that f” is continuous. .
5.44 Find an iteration scheme that converges quadratically to a double root of f (x) = 0. How does the
scheme behave near a simple root? a cubic root?

m
U]
n
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M
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5.45 Can you invent an iteration scheme for finding simple zeros of f(x) which exhibits cubic
convergence?

5.46 Show that although the solution to a,,, = }(a, + 2Q/a,) may approach \/—Q-, this iteration
scheme is not as efficient as that in (5.5.5) because the convergence is linear.

5.47 Use Newton'’s method to find an iteration scheme which converges quadratically to the cube root
of Q. Solve the difference equation exactly.

5.48 Investigate the rate of convergence of Newton's method to double roots of f(x) = 0.

5.49 Assuming that a4 > 0, find the leading large-n behaviors of solutions to the following diffe rence
equations:

(a) a4y = a, +n/ay;

(b) Gyry = (sin a,)%

(c) anvy =exp(-a,);

@) gy =In(1+a,)
5.50 Show that the first two terms in the asymptotic expansion of the solution to a, ., = sin a, are
a, ~ /3/n = 3%%In n/10n*? (n > + o).
5.51 Consider the difference equation a,, , = a? + ¢ (a, = 0).

(a) Show that when & > 4, a, does not approach a limit as n — + 00. What is the behavior of a, for
large n?

(b) Show that when —2 < ¢ < 4, a, does approach a limit as n — + co. What is the rate at which
a, approaches this limit?
5.52 Find the asymptotic behavior of the first correction to the result given in (5.6.11). Does this
correction explain the behavior of the errors of the results given in Table 5.6?
5.53 Show that the functional equation (5.6.16) has solutions that are not linear functions of y.

Clue: Choose f(y) arbitrarily for y < 0 and use (5.6.16) to determine f (y) for y > 0.
5.54 Is f(y) = ay + b the most general entire solution to the functional relation (5.5.16)?
555 (a) Leta,,, =a,(2 —aa,) for n =0, 1, ... where « is a real positive number. For what range of
real values of a, does a, — 1/x as n — oo (Putnam Exam, 1957)?

(b) Let 0 < ay < 1and a,,, = a,(1 — a,). Show that a, ~ 1/n (n —» o) (Putnam Exam, 1966).

5.56 Let a, be any real number. If a, , , = cos a, prove that lim exists and is independent of a,

(Putnam Exam, 1952).
5.57 Show that there is a solution to the functional difference equation f[x + f(x)] = f(x) + 1 whose
leading behavior is f(x) ~ \/2x (x —» +o0). What are the corrections to this leading behavior?

n-+ o an

5.58 Show that the sequence \/7, \/7 - \/7 7-J71+ \/7, ... converges and evaluate the limit
(Putnam Exam, 1953).

5.59 Justify the statement that

3= J1+2 /143 /1+4/145/1 ¢

5.60 For what range of values of a, does the solution to a,,, = a, + In (k — a,) approach k — 1 as
n—o0?

(Putnam Exam, 1966).

5.61 If a,.,(2 — a,) = 1forn=1,2,... prove that lim, ., a, exists and is equal to 1 (Putnam Exam,
1947).

5.62 The sequence xo, Xy, X, ... is defined by Xo = @, x;{ = b, X,4; = [X,=; + (2n — 1)x,]/2n, where a
and b are given numbers. Express lim,_, x, concisely in terms of a and b (Putnam Exam, 1950).
5.63 a,, b,, c, are positive numbers whose sum is 1 and forn = 1,2, ... we define a, ., = a2 + 2b,c,,
byyy = b2 +2a,c,, c,,, = c +2a,b, Show that a,, b,, c, approach limits as n — co and find those
limits (Putnam Exam, 1947).
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5.64 The infinite sequence 1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8, ... is characterized by the
conditions that its nth term a(n) is a positive integer, a(n + 1) > a(n), and a(r) is the number of times
that n appears in the sequence.

(a) Show that a(n) satisfies the functional difference equation a{n + a[a(n)]} = a(n) + 1.

(b) Use this functional difference equation to find the leading behavior of a(n) as n — co.
5.65 Leta,., =a,+ -0 a;4,_; (ap = 1). Show that a, ~ ¢" (n — +0c0) where ¢ =5.8.

Clue: Introduce the generatmg function f (x Z, 0 Ay X"
5.66 Let d, = (4n)!/[n! (2n)! 4”]. Define c, by d,, =1/nynit jc d ;ln=2,3,...;¢, = 3). Show
that ¢,/d, ~ 1 + a/n + b/nZ +-- (1o o), wherea= —F, b= 1%, ...
5.67 Consider the nonlinear difference equation a,,, = (an + ) Y7o a;a,_; (n =0, 1, 2, ...), with

=1 and a # 0. Find the controlling factor of the large-n behavior of a,.

Clue: The largest contribution tc the convolution sum when a # 0 comes from the endpoints
j =0 and j = n. What happens if the largest terms are kept? and the next largest also?
5.68 For the case a = f =1 in Prob. 5.67 show that the leading behavior of a, is a, ~ (2n)!/2"n!e
(n— o0). (It is easy to check this answer on a computer but the proof is difficult.)
5.69 Let a, be a sequence of numbers having the property that a, ~ (—3)'I'(n + %) (n — o). Define b,
by

. a,6""'T(n +j/2 — %)
"0 TG = =) ‘

Show that the ratio a, /b, approaches the constant ¢ as n — cc.

Clue: Use Stirling’s formula.
5.70 Consider the difference equation a, ., = da,(1 — a,) (0 < a, < 1). Show that:

(a) There is some number 4 > 1, > 0 such that for0 <1< 4,,q,—»0o0ra,~»1- l/iasn—»oo

(b) There is a number 4 > 4, > A, such that a,,,/a,— 1 as n — oo, but that a,,,/a, # 1 as
n - co. (This indicates that a, approaches a two-cycle. In an N-cycle, a,, 4 = a, for all n.)

(c) Can there be four-cycles? eight-cycles?

(d) Investigate on a computer what happens when 4 approaches 4 from below.

(e) What happens when A > 4?

5.71 The function ¢ can be expanded in the Taylor series e =Y =, a,x".

(a) What is the radius of convergence of this series?

(b) Find a difference equation satisfied by a,.

Clue: Find a first-order differential equation satisfied by ¢** and substitute the Taylor series into
it. The resulting difference equation for a, contains a convolution sum.

(¢) Use the difference equation found in (b) to find the controlling factor of the leading behavior
of a, as n — co.

Clue: The answer has the form exp [~ n*(In n)*(In In n)'(In In In n)’). You are to find a, B, 3, 6.
a, — 0 much slower than 1/n! as n — co. Assume that a,,,/a, ~ [f(n)]* as n — oo with k fixed, where
J(n) is some function of n. For an alternative derivation of the asymptotic behavior of a, as n — oo, see
Prob. 6.78.

5.72 There is an elegant algorithm discovered by E. Salamin for computing 7 which involves generat-
ing sequences of arithmetic and geometr:c means. Leta, = 1, by = 1/\/— and define the sequences a,,
4a,b,

b, by a,,, = 3a, + b,), bysy = /a,b,. If we set

¢y =,
1=y 2*Yal - b})
i=1

then lim,_, ¢, = (The derivation of this result is difficult and requires knowledge of elliptic
integrals.)

(a) Show that lim, ., a, and lim,_,, b, exist and are equal.

(b) Show that if ¢, — m as n — oo, then the error |c,,, — ] is roughly proportional to |¢, — = |*.
Therefore, the number of decimal places of accuracy of c,., is roughly double that of ¢,. In 1977,

this algorithm was used to calculate n to 2 x 107 decimal places.



(E)

CHAPTER

SIX
ASYMPTOTIC EXPANSION OF INTEGRALS

In five minutes you will say that it is all so absurdly simple.

—Sherlock Holmes, The Adventure of the Dancing Men
Sir Arthur Conan Doyle

6.1 INTRODUCTION

The analysis of differential and difference equations in Chaps. 3 to 5 is pure local
analysis; there we predict the behavior of solutions near one point, but we do not
incorporate initial-value or boundary-value data at other points. As a result, our
predictions of the local behavior usually contain unknown constants. However,
when the differential or difference equation is soluble, we can use the boundary
and initial data to make parameter-free predictions of local behavior.

Example 1 Effect of initial data upon asymptotic behavior. The solution to the initial-value prob-
lem y” = y [y(0) = 1, y'(0) = 0] is y(x) = cosh x. Local analysis of the differential equation y” = y
at the irregular singular point at x = oo gives two kinds of possible behaviors for y(x) as
X — 400 y(x) ~ Ae* (x > + o), where 4 is some nonzero constant, or, if 4 =0, y(x) ~ Be™*
(x = +c0), where B is some constant. Since the equation is soluble in closed form, we know from
the initial conditions that A = 4. Similarly, if the initial conditions were y(0) = 1, y'(0) = —1, we
would find that 4 =0 and B= 1.

In very rare cases, it is possible to solve a differential equation in closed form.
There, as we have seen in Example 1, it is easy to incorporate initial or boundary
conditions. Among those equations that are not soluble in terms of elementary
functions, it is sometimes possible (though still very rare) to find a represen tation
for the solution of the equation as an integral in which the independent variable x
appears as a parameter. Typically, this integral representation of the solution
contains all of the initial-value or boundary-value data. In this chapter we will
show how to perform a local analysis of integral représentations containing x as a
parameter. We will see that the local behavior of the solution y(x) is completely
determined by this analysis of the integral and contains no arbitrary constants.

Example 2 Integral representation of a solution to an initial-value problem. The solution to the
initial-value problem y =xy+1 [y(0)=0] can be expressed as the integral y(x)=

247
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€2 [¢ e”*2 dr. This integral representation implies that y(x) ~ /7/2 €/? (x » + a0) because
lim, ., f5e 2 dt = [ e™** dt = /n/2. Note that a direct local analysis of the differential
equation y' = xy + 1 predicts only that y(x) ~ A4e*”2 (x - + o) (where A is unknown) because it
does not utilize the initial condition y(0) = 0.

Here is a more striking example of the usefulness of integral representations.

Example 3 Integral representation of a solution to a boundary-value problem. Consider the
boundary-value problem

xy" +2y=0, y0)=1  y(+o)=0. (6-1.1)

The problem is to find the behavior of y(x) as x - +co. Using the techniques of Chap. 3, local
analysis gives three possible behaviors of y(x) for large positive x: y(x) ~ Ax!/3e= 302>
(x — +00), where w is one of the cube roots of unity: 1, (—1 + iﬁ)/z. The condition y(+c0) =0
implies that we must choose w = 1 to avoid the exponentially growing solutions. Therefore, the
solution to (6.1.1) satisfies

Yx) ~ Ax!Be 3V x4 o0, (6.1.2)

Here A is a constant that cannot be determined by the methods of Chap. 3.
However, this problem is rigged; there is a delightful integral representation for the solution
of the boundary-value problem (6.1.1):

) = f: exp ( ~t- %) dt. (6.13)

Notice that this integral satisfies the boundary conditions y(0) = 1 (set x = 0 and evaluate the
integral) and y(+ o) = 0. (Why?) To prove that (6.1.3) satisfies the differential equation when
x > 0, we differentiate three times under the integral sign and integrate the result by parts once
(see Prob. 6.1).

The integral representation (6.1.3) can be used to evaluate the constant 4 in the asymptotic
behavior (6.1.2) of the solution y(x). Laplace’s method (see Sec. 6.4 and Prob. 6.31) gives
A= "1/222/33—”2.

Example 4 Integral representation for n!. The factorial function a, = (n — 1)! satisfies the first-
order difference equation a, , , = na, (a, = 1). The direct local analysis of this difference equation
in Sec. 5.4 gives the large-n behavior of a, (the Stirling formula) apart from an overall multi-
plicative constant: a, ~ Cn"e™"n" Y2 (n - o0). The constant C is determined by the initial condi-
tion a, = 1 which cannot be used in the analysis of the difference equation at n = co.

The integral representation (2.2.2) for a,, a, = [§ "~ 'e™" dt, is equivalent to both the differ-
ence equation and the initial condition. When n is large, the asymptotic behavior of this
integral may be found using Laplace’s method (see Example 10 in Sec. 6.4). The result is
C=2n

Example 5 Integral representation for the solution of a difference equation. The solution of the
initial-value problem
(n+1)a,,,=2na,—na,_,, ay=1a,=0, (6.1.4)

may be expressed as an integral which is equivalent to the difference equation together with the
initial conditions:

a,= i' [ eyt dr, (6.1.5)
nldy

where J, is the Bessel function of order zero (see Prob. 6.2).
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Local analysis of the difference equation gives two possible behaviors for large n,
a,~ A, exp (iZiﬁ)n“ % (n — + o), where the constants 4 , cannot be determined. However,
an analysis of the integral representation (6.1.5) using Laplace’s method (see Prob. 6.32) shows

that

a,~ \/e/mn~1*

cos (2\/n—13n), n- +oo. (6.1.6)

The asymptotic expansion of integral representations is an extremely impor-
tant technique because all of the special (Bessel, Airy, gamma, parabolic cylinder,
hypergeometric) functions commonly used in mathematical physics and applied
mathematics have integral representations. The asymptotic properties of these
special functions are derived from their integral representations. Many of these
properties are used in Part IV to obtain the global behavior of general classes of
differential equations whose solutions are not expressible as integrals.

Sometimes, an integral representation of the solution to a differential equa-
tion is derived by following the systematic procedure of taking an integral (Fou-
rier, Laplace, Hankel) transform of the equation. However, many integral
representations are the product of imaginative guesswork. Unfortunately, apart
from a small number of equations, one cannot hope to find integral representa-
tions for the solutions. This chapter is concerned only with the local analysis of
integrals and not with the construction of integral representations. After all,
discovering an integral representation is the same as solving the equation in closed
form in terms of known functions, and this book is primarily concerned with those
equations which cannot be solved exactly. Thus, the construction and subsequent
expansion of integral representations is not a general method of global analysis.
That is why, although the examples in this chapter provide a first glimpse of how
to obtain global information about the solutions to differential and difference
equations, we include this chapter in Part II, Local Analysis, rather than in Part
IV, Global Analysis. This chapter concerns the local analysis of integrals rather
than the global analysis of differential and difference equations.

6.2 ELEMENTARY EXAMPLES

It is sometimes possible to determine the behavior of an integral without using
any techniques beyond those introduced in our first exposure to asymptotic
analysis in Chap. 3. Consider, for example, the integral
2
I(x) = [ cos [(xt* + x)*] dr.
0
It is hard to evaluate this integral in closed form when x is nonzero. However, to
determine the leading behavior of I(x) as x -0, we simply set x =0 in the
integral and do the trivial integration. The result is I(x) ~ 2 (x —0).
More generally, suppose we are asked to find the leading behavior of the

integral
b

I(x)=J fx,t)dr  as x— x,.

a
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If it is given that
[, x)~folt)  x—xo,

uniformly for a <t < b [that is, lim, ., f(t, x)/fo(t) = 1 uniformly in t], then the
leading behavior of I(x) as x — x, is just

b b
I0)=] flex)de~ [ foltyde,  x—xo (6.2.1)
provided that the right side of this relation is finite and nonzero. (See Prob. 6.3 for
the details of the argument.)

This simple idea may be easily extended to give the full asymptotic expansion
of I(x) as x — x,. If (¢, x) possesses the asymptotic expansion

fe)~ T Ak o,

for some a > 0, uniformly for a <t < b, then

b ©
[ fex)de~ Y
‘a n=0
provided that all the terms on the right are finite (see Prob. 6.3). In the following
examples we illustrate the use of formulas (6.2.1) and (6.2.2) and introduce some
new twists that extend the applicability of these elementary ideas.

(x — xo)™ jbf"(z)dz, Xoxo  (622)

Example 1 } [(sin tx)/t] dt as x —0. Since the Taylor expansion (sin tx)/t = x — x*t?/6 +

xt4/120 — -+~ converges uniformly for 0 <t < 1, |x| < 1, it follows that
! sin tx 1 1
dt~x——x>+—x—- x-0.
JO ' 8" Te00"

The series on the right converges for all x.

Example 2 {5 t™'2¢”" dt as x — 0+. The expansion
[-”28—' = t—lll _ tl/l + %tJ/Z — %tSIZ RPN
converges for all ¢ # 0 but does not converge at t = 0. However, this series is asymptotic

uniformly for 0 <t < x as x —» 0+. Thus, term-by-term integration gives

x
£Vt dp DX = 22 S22 o x5 04, (6.2.3)
"o

This result can be rederived by substituting s = t*/? in the integral:
o X vx
J TVt de =2 J e ds.
0 0

The Taylor expansion of e does converge uniformly for 0 <s <1, so
VX Jx
| eds= ( 1—s? 4+ 4s* — 4%+ ds
"o ‘o
=[s—3P+55° — "+ I
which reproduces (6.2.3).
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Example 3 {? e™" dt as x — 0. Term-by-term integration of the convergent Taylor series
e™ =1—1*+48 — L'? 4 - gives a divergent result. The proper way to apply (6.2.2) is to
write

@ @© x
j e"“dt=j e dt — [ e " dt
x [} ‘o
and then to substitute the Taylor series only in the second term on the right. The result is

| eTdt =T(F) - x + 4% — fgx® + Fgx! — o, (6.2.4)

x
where we have used the substitution s = t* to obtain
@ @
J e dr=1% j s ds = 4T (3) =T(3)
o 0

The series (6.2.4) converges for all x, although it is not very useful if |x| is large (see
Example 2 of Sec. 6.3).

Example 4 Incomplete gamma function T'(a, x) as x - 0+. The incomplete gamma function
I'(a, x) is defined by I'(a, x)= [ t*"'e™"dt (x > 0). To discuss the behavior of I'(a, x) as
x — 0+, we distinguish three cases: (@) a > 0; (b) a < 0 but nonintegral; and (c)a=0, —1, -2,
—3,.... Only cases (b) and (c) present new difficulties.

(a) a> 0. As in Example 3, we find that

I, x)= | et dt — ' M=+ 4 =33 ) de
‘o ‘o

a+n

- — 6.2.5
M- 3 (-1 e, (625)
where the series converges for all x.
(b) a < 0 but nonintegral. In this case we write
L®© tN x N (—ty'
_ a-1 — . — 1V = - “lemt SR
l"(a,x)—Jx e — o 4 (=1) N!]dt .[0 # [e ‘ Eo | de
© No(_y
+[ et {e"'— Yy ( )"}dt, (6.2.6)
o n=o n!

where N is the largest integer less than —a. Notice that all three integrals on the right side of
(6.2.6) converge. The first two integrals may be performed term by term and the third may be
done by repeated integration by parts (see Prob. 6.4):

[

]

e ! — i (;—’t)"} dt = I'(a). (6.2.7)

n=0

We conclude that the series in (6.2.5) is still valid for this case.
There is a slightly simpler derivation of (6.2.5) for case (b) which uses the relation

dI(a, x)/0x = —x“~!e™* Integrating the series expansion of x°~'e™* gives
I'(a, > 1" -0+,
(@x)~C- Z = n! (a +n)’ * *

for some constant C. The value C = I'(a) is determined by evaluating an integral like that
in (6.2.7).
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() a=0, -1, =2, .... For simplicity, we consider the case a = 0:
© ot
E,(x)= { —t,
which is the exponential integral. Since
dE (x)/dx = —e ™ %/x = —1/x + | = $x + §x? — -+,

we have

E(x)~C—-Inx+x—52+33 -, x-0+, (6.2.8)
where C is a constant. Note the appearance of the function In x in this series.

Next, we compute C. From (6.2.8) we see that E,(x) + In x ~ C (x > 0+), so
C= xlirgx* ([‘w eT"dt +In x)
= -, (6:2.9)

where y < 0.5772 is Euler’s constant [see Prob. 6.5(a)].
The expansion of E,(x) may be obtained more directly by writing

® 1 ® 1 1 * 1 1
E = —d T — | ~dt - e ——) —dt 6.2.10
1) 4[‘ r(t+1)t+~[0 (e t+1)t ! fo(e t+l)t ‘ (7 )

The first integral on the right equals —In x + In (1 + x) = —In x + x — 4x2 + 4x3 — .-+ the
second integral equals —y [see Prob. 6.5(b)], and Taylor expanding the third integrand gives

* 1 1 1 5
J (e"——)—d!:—-——x1+—x3—-"-
, t+1)1 FRERNT

Combining these results recovers (6.2.8) with C = —y. More generally, ifa= —N (N =0, 1,
2, ...), then a similar analysis (see Prob. 6.6) gives

T(=N, x)~ cp+ U 3 (-1y S 0+, (62.11)
—N,x)~ ————Inx— -1y, x—-0+, 2.
N N! * n=0 n! (n—N)
n¥N
_1 +1 N 1
where Cy= g_N):v__ (y -3 —), N >0, (6.2.12)
. n=1
and C, = —y. This series contains the function In x, a new feature not found in the series

(6.2.5). The appearance of a logarithmic term when a =0, —1, —2, ... is reminiscent of the
special cases of the Frobenius method for differential equations in which logarithms also

appear.

6.3 INTEGRATION BY PARTS

Integration by parts is a particularly easy procedure for developing asymptotic
approximations to many kinds of integrals. We explain the technique by applying
it to a variety of problems.

Example 1 Derivation of an asymptotic power series. If f (x) is differentiable near x = 0, then the
local behavior of f (x) near 0 may be studied using integration by parts. We merely represent f (x)
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as the integral f(x) = f(0) + 5 f'() dt. Integrating once by parts gives

fx)=/0)+ (= x)f'¢)

e [ T - 010 de

=£(0) + x'(0) + [ (x = O)f"(t) de.

‘o

Repeating this process (N — 1) times gives
N x" 1 *
fe)= TS0+ g [ ey

If the remainder term (the integral on the right) exists for all N and sufficiently small positive x,
then

W)~ 3 S0y, o

n=0""

Why? Moreover, if this series converges, then it is just the Taylor expansion of f(x) about x = 0.

Example 2 Behavior of [© e dt as x - +00. We have already found the behavior of the
integral

1) = | Tt (63.1)

x

for small values of the parameter x. In Example 3 of Sec. 6.2 we showed that
I(x)= [ e dz—’. (L=t + 48 —Le'2 ) de
‘o ‘o

- T(%)— X+ %xs _ ﬁxg + _71§x13 - (6,3_2)

Although the series (6.3.2) converges for all x, it is not very useful if x is large (see Fig. 6.1).
In order to study I(x) for large x we must develop an asymptotic series for I(x) in inverse
powers of x; to wit, we rewrite (6.3.1) as

1,21d
= —— PR Pl 24
I(x) = 4L sl
and integrate by parts:
B e
Ix)= ——e™" —ZJ; —e " dt
Lo, 321 _,
~5e -‘-‘_[ Ge (63.3)
R - L™ . 1
But . J' e dt<;‘—J- e dt=;4—1(x)<<l(x), X = 400,
so the leading behavior of I(x) is
1
I(x) ~ w e, x- +oo. (6.3.4)

Repeated integration by parts gives the full asymptotic expansion of I(x). To systematize the
argument we define the integrals

L(x)=| ) tée dt. (635)

x
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2.0 T T T T T T T T T T
Eleven-term Taylor series B
1.8 /approximation/l(x)
1.6 — -
1.4 . —
One-term asymptotic series
12 b approximation//(x) N
1.0
0.8 + Two-term asymptotic series -
approximation//(x)
0.6 -
0.4 — —
[+~ Ten-term Taylor series
0.2 = approximation//(x) 7
0 | 1 L ) I ) L J L 1 L L
0 1.0 2.0 3.0

Figure 6.1 A comparison of small-x and large-x approximations to I(x) = {* exp (—t*) dt. The small-x
approximation to I(x) is the Taylor series in (6.3.2) which converges for all x. The large-x
approximation to I(x) is the asymptotic series in (6.3.8) which is valid as x — +co0. All approxima-
tions to I(x) are normalized by dividing by I(x). It is clear that the truncated asymptotic series is useful
in a much larger region than the truncated Taylor series.

Now, (6.3.3) becomes I(x) = e™*'/4x> ~ 31, (x). Integrating
12 1 d

I"(x)= _Z ‘ (ne3 E;e—" dt
by parts gives
Lx)= —Zmse™ . (n +%) .‘.m F%e"‘ dt
- - ( . j) Iy x). (636)
Therefore,
o 3B _emay oo L @GN - (4n - 5)
l(x)—;‘?e IQE +(4x‘)z _-W + +(=1y —-—-—————~——————~(4x4)"~l
+ (= 17' Mwﬂjf_—._l_)]"(x)' (6.3‘7)

which is an identity valid for all x > 0.
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The integrand of (6.3.5) is positive, so I, ,,(x) > 0 for x > 0. Thus, (6.3.6) implies that

| L
| L(x)] <We "‘«x‘PIe x X — +00,

so the term proportional to I,(x) in (6.3.7) is asymptotically much smaller than the last retained
term in square brackets in (6.3.7). Therefore, the full asymptotic expansion of I(x) is

I(X)Nﬁlse"' 1+ 3 (—lr%w,

n=1

X = +c0. (6.3.8)

The accuracy of this asymptotic approximation and its advantage over the convergent series in
(6.3.2) when x > 1 is demonstrated in Fig. 6.1.

Example 3 Behavior of f5t"%e " dt as x - + co. We may use integration by parts to find the
behavior of I(x) = {§ ¢~ /2" dr for large x, but we must be careful. Immediate integration by
parts gives an indeterminate expression which is the difference of two infinite terms:
x o Lx
IM:]t”%”ﬂ:—me‘—E[F“f%L (63.9)
‘o

[ ‘o

It is best to express I(x) as the difference of two integrals:

x @ @«
[ Y2t dr =f 2 gt —I t~ Y2 dr.
‘o 0 x

The first integral on the right is finite and has the value I'(}) = ﬁ; the second may be
integrated by parts successfully because the contribution from the endpoint at co vanishes:

x ) d
t7 12t dt=ﬁ+[ T —(e7") dt
o . dt

®
[ t732e7t dt.

x

N | —

e—x
=J/r-—+
Jx
Repeated use of integration by parts gives the full asymptotic expansion of I(x) (see Prob. 6.11):

OE)E) - @n—1)
(2xy

The general rule to be learned from this example is that integration by parts will not work if
the contribution from one of the limits of integration is much larger than the size of the integral.
In this example the integral I(x) is finite for all x > 0, but the endpoint ¢ = 0 contributes a
spurious infinity in (6.3.9).

], X + 0. (6.3.10)

xt"”e"dt««ﬁ—e—-—x 1+ i (=1y
N -

‘o

Example 4 Behavior of [5 ¢ dt as x — +oo. Here, it is wrong to write |3 e dt = [§ ¢ dt —
f= & dt because the right side has the form co — co. But it is also wrong to integrate directly by
‘parts:

‘0

|“ et dt =
‘o

x

| &

(") dt

~ ] —

DN |
e

t
1
="
2t

which also has the form oo — 0. To obtain a correct asymptotic expansion of this integral about
x = o0, we introduce a cutoff parameter a and write the integrals

L
+=| 7 de,
b 2 -‘o

fWM=fwm+me (63.11)
) ‘o “a

o
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for some fixed 0 < a < x. We will see that for fixed g, the full asymptotic expansion of (6.3.11) is
independent of the first integral on the right and is also independent of the cutoff a!

We begin our analysis by expanding the second integral on the right side of (6.3.11):
151,
, + E -[4 F e’ dt
, 1 1

1 * 1
2 el Loan 63.12
2x 2ae ZJ, t2 ( )

[ dt=2—1te"

ld

Note that 4 [* e” dt/t* < e*/2x (x —» + ) because by I'Hopital’s rule

Lfrem2e dr e
T 3 LI AL S SR
et 3IxTle” x=+o (2= x"2%)e"
Also, f & dt « f etdt, x-— +oo,
‘o ‘o
! &« L +
— — x— .
2° 2w ®
Hence, from (6.3.11) and (6.3.12) we have
Y |
| etdt~—e",  x- +oo, (63.13)
2x

‘o

which is the leading asymptotic behavior of the integral. Observe that integration by parts works
because the endpoint contribution in (6.3.12) from t = a is negligible compared with that from
t=xwhen0<a<x.

Repeated integration by parts in (6.3.12) establishes the full asymptotic expansion of
(5 € dt as x - + oo (see Prob. 6.11):

J‘xe‘zdt~§e"l [1 + igﬁ%n——ﬂ . x- 4o (6.3.14)

Notice that the arbitrary cutoff a does not appear in this asymptotic expansion. In fact, the
endpoint contributions from ¢ = a are exponentially smaller than those from ¢ = x after any
number of integrations by parts.

Example 5 Behavior of integrals of Airy functions. The asymptotic expansion of the integral
{5 Ai (t) dt as x - + o0 is obtained by following the procedure of Example 3. First, we write
{5 Ai (t) dt = § — [ Ai (t) dt. [Here we have used the property of Ai (t) that [§ Ai (t) dt = §;see
Prob. 10.20.] This decomposition avoids endpoint contributions (from ¢ = 0) that are larger than
the integral itself. Next, we integrate by parts using Ai” (t) =t Ai (¢), the differential equation
satisfied by the Airy function:

@ @ 1
[ Ai)ar=| AP O dt
TN RIS
= A (:)x +J, SA () dt
. 1 - 32
But Al (x) ~ ——= x4 2203 x5 too,

T
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] INFLE 1
and l_[ A (t)dtl<;j A (1) de| = 5 Ai ()
~ —\1/_)6‘9/“(““/3 X = 40
2 /n ’ '
Thus, [ Ai() dt~ XTImOy o (63.15)
L =

The full asymptotic expansion of [® Ai (t) dt as x — +co is most easily obtained by using the
differential equation y” = xy’ that it satisfies to find suitable recursion relations (see Prob. 6.12).
Another Airy function integral is [§ Bi (t) dt. The asymptotic behavior of this integral as
x — 40 may be found by following the procedure in Example 4. First, we write [§ Bi (¢) dt =
{4 Bi (t) dr + [ Bi (t) dt, where 0 < a <x, in order to avoid infinite endpoint contributions.
Then, integrating by parts in the second integral on the right using Bi” (t) = ¢ Bi (t) gives

x 51
[ Bi(e)de=| SBI () dr
1 1 *1
= ~Bi (x) - -Bi (a) + | BY (1) d.
X a dg
Next, we note a number of asymptotic relations:

1 1
-Bi' (a) « -Bi' (x), X = +o,
a X

[ Bi()di<| Bi()ds, x-+u,
‘o ‘o

x

1 1
[ 5B (t)dt < =Bi (x), X +o,
ot x
this last asymptotic relation following from I'Hopital’s rule, and

. 1
Bi (x) ~ —=x"V4e2®3 x5 t oo,
T

R 1
Bi' (x) ~ —= x1*e2=¥%3, X = +00.
T

From this heap of asymptotic inequalities we deduce that

* 1
[ Bi(t)dt~—=x">"0, x4 4 (63.16)
! N

(see Prob. 6.13). ‘

Since integration of one-signed asymptotic relations is permissible (see Prob. 3.28), (6.3.16)
could have been obtained by integrating the asymptotic behavior of Bi (x):

x 1 .*
Bi(t)dt ~—= | t V%2 d,  x— +o0.
fo ﬁ "o



258 LOCAL ANALYSIS

Integration by parts gives, for any a > 0,

. o d
- 1/4821111/3 dt = r~3/4B ezrm/s dt

x 3 .x
=423 +—] ™23 gy,

a

and (6.3.16) is easily recovered.

Integration by Parts for Laplace Integrals

Until now we have only considered integrals where the parameter x appears as a
limit of integration. A Laplace integral has the form

I(x) = |'b F(t)e=® de (6.3.17)

in which x appears as part of the integrand.
To obtain the asymptotic behavior of I(x) as x — + 00, we try integrating by

parts:
1 f(t ‘
;[ [ 0] d
_ LT e A SO xon
250 Wa——] dt[d)(tJe""”dt (63.18)

(We assume that the new integral on the right exists, of course.) The formula in
(6.3.18) is useful if the integral on the right side is asymptotically smaller than the
boundary terms as x — oo. If this is true, then the boundary terms in (6.3.18) are

asymptotic to I(x):

1 f(b) 1 f(a)

I(x) ~ = 22270 . — =2 px¥a x5 0. 6.3.19

e x e (6319

In general, (6.3.19) is a correct asymptotic relation if ¢(t), ¢'(t), and f(t) are

continuous (possibly complex ) functions and one of the following three conditions
is satisfied:

1. ¢'(t)#0 (a<t<b) and at least one of f(a) and f(b) are not zero. These
conditions are sufficient to ensure that the remainder integral on the right side
of (6.3.18) exists. Once we know that this integral exists we can prove (see Prob.
6.15) that it becomes negligible compared with the boundary term in (6.3.18) as
x — oo and therefore that (6.3.19) is valid.

2. Re ¢(t) < Re ¢(b)(a <t < b),Re ¢'(b) # 0, and f (b} # 0. These conditions are
insufficient to imply that the integral on the right side of (6.3.18) exists. Never-
theless, they are strong enough to ensure that

LSO o s oo (6320)

I{x .
e
This result is explained using Laplace’s method in Sec. 6.4 [see (6.4.19b)].
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3. Re ¢(t) <Re ¢(a) (a <t <b), Re ¢'(a) # 0, and f(a) # 0. As in condition 2,
these conditions are again insufficient to imply that the integral on the right
side of (6.3.18) exists, but they are strong enough to ensure that

I(X) ~ _£ M eX¢(a)

AR (6.321)

[see (6.4.19a)].

Example 6 Leading behavior of simple Laplace integrals. Using the formulas in (6.3.19) to
(6.3.21) we have

cosh 2

2
(a) " excoshldt~

4 s +00;
4 x sinh 2 X
3 excosh23
b [ —— X = +o00.
®) "—1 2x sinh 3 cosh 3 -

If the integral on the right side of (6.3.18) meets one of the three conditions
stated above, we may continue integrating by parts. Apparently, each inte gration
by parts introduces a new factor of 1/x; for example, if Re ¢(b) > Re ¢(a) the full
asymptotic expansion of I{(x) in (6.3.17) has the form

I(x)~e*® Y A4,x7™", x> +o0. (6.3.22)

n=1

Failure of Integration by Parts

The method of integration by parts is rather inflexible; it can only produce asymp-
totic series of the form in (6.3.22) which contain integral powers of 1/x. However,
Laplace integrals like I(x) in (6.3.17) can have large-x asymptotic expansions
which contain fractional powers of x. It is clear, therefore, that the method of
integration by parts is inadequate to find the asymptotic expansion of all such
integrals. If we have no prior knowledge of the correct expansion of an integral,
how then do we know whether or not integration by parts will work ? Generally,
the symptoms that integration by parts is breaking down are easy to detect and
interpret: when integration by parts produces an integral which does not exist it is
not working. We know that integration by parts is about to fail when ¢'(¢) has a
zero somewhere in a <t < b. Here are some examples.

Example 7 Failure of integration by parts for [3 e dt. The integral |7 e™* dt has the exact
value %\/.n/_x Since its asymptotic behavior as x — + co is not an asymptotic series of powers of
1/x like that in (6.3.22), we expect integration by pasts to fatt. Comparing this integral with the
general form in (63.17) shows that ¢(t} = —t2. Since ¢(t) = —2¢ vanishes at t = 0, integration
by parts gives a nonexistent integral,

—xtZ |on L © 1

—xt2
| Weﬂdt’

= oL e
A= |—— | (—2xte™*)dr = -
fo ¢ Jo (_2“‘1’)?é <) '25“!0 ‘o

a sure sign that integration by parts is not applicable.
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Example 8 Failure of integration by parts for [ e™**"»! d¢. For this integral ¢(t) = —sinh? ¢.
Since ¢'(t) vanishes at t = 0, we do not expect that integration by parts will be useful for finding
the large-x behavior of this integral.

In Example 6(b) of Sec. 6.4 we will use Laplace’s method to show that the leading behavior
of this integral as x — + o0 is %ﬁ/—x

Example 9 Leading behavior of {§ In (1 + t) e™**"** dt. For some integrals, integration by parts
yields several terms in the expansion of I(x) and then breaks down. The integral I(x)=
@ In (1 +t) e**""* dt has this property. For this integral f(t) = In (1 + t) and (¢) = sinh? ¢.
Thus, although ¢'(t) = sinh (2t) vanishes at ¢t = 0, f(t) also vanishes there. As a result, it is correct
to integrate by parts once:

1 ;*im(l+0d ___
I = — N T (p-xsinht dt
C)="-3 L sinh (2r) dr )
__lm (1+1) —xsmhl( + _J’ din(l+ t)] o xsinhzt gy (63.23)
x sinh (2t) o X7p dt sinh (2t)

Using Laplace’s method, one can show that the last integral on the right vanishes like x ™32 as
x— +o0 (see Prob. 6.33). Hence, I(x) ~ 1/2x (x — + co0). Thus, integration by parts gives the
leading behavior of I(x) correctly. However, integration by parts cannot be used to find the next
term in the asymptotic expansion of I(x) for large x because the next term is proportional to
x~32, which is not an integer power of 1/x.

Example 10 Stieltjes integral. Integration by parts is useful for finding the behavior of the
Stieltjes integral (see Sec. 3.8):

© ~t

I(x)= J de

1+ xt

for small positive x but not for large x. (The Stieltjes integral is not a Laplace integral.)
To derive the small-x behavior of I(x), we organize the integration by parts so that one new
factor of x is introduced at each stage:

I(x) —e ' dt

_Jo 1+xtde

o ©

1 1
-t —xJ’ ———e ' dt
o o (1 +xt)

—-——e
1+ xt

1 -
=1l4+x—7ge™!

© @ 1
2x? ——e ' dt
(1 + xt)? +ex J ¢

o o (L+xt)?

=1l-x42Ix2 = 4 (=1p Y n-1)x"""

1
_l
+(=1yn! j T

Since this procedure works for all n, we have successfully derived the full asymptotic behavior of
I(x) for small x: I(x) ~ Y20 (—1)n! x" (x > 0+).

Now let us see how mtegratnon by parts fails to give the large-x behavior of I(x). If
integration by parts did work it would have to introduce an additional factor of 1/x at each stage.
Thus, our best hope is to write I(x) = (1/x) {§ e *(d/dt) In (1 + xt) dt and to use integration by
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parts to obtain I(x) = (1/x) & ™" In (1 + xt) dt. Integrating by parts once again gives

I(X)=;15 [ e"%[(l + xt) In (1 + xt) — (1 + xt)]

;T Lz [ e '[(1 + xt) In (1 + xt) = (1 + xt)] dt.

Have we shown that the leading behavior of I(x)is x ™2 (x — +00)? No, because the last term on
the right is not small compared to x 2. In fact

lim [m e™[(1 + xt) In (1 + xt) = (1 + xt)] dt = oo (6.3.24)

x=+w "0

(see Prob. 6.16).

To understand why integration by parts has failed we need only recall [see Example 3 of Sec.
3.8 and Prob. 3.39(i)] that I(x) ~ (In x)/x (x — + 0); the large-x behavior of I(x) is not a power
series in 1/x.

(E) 64 LAPLACE’S METHOD AND WATSON’S LEMMA

Laplace’s method is a very general technique for obtaining the asymptotic
behavior as x — + oo of integrals in which the large parameter x appears in an
exponential:

1) = ’ f(t)e=*® dr. (64.1)

Here, we assume that f'(t) and ¢(t) are real continuous functions. Integrals of this
form are called Laplace integrals and were introduced in Sec. 6.3.

Laplace’s method rests on an important idea involved in many standard
techniques of asymptotic analysis of integrals, such as the methods of stationary
phase and steepest descents which are discussed in Secs. 6.5 and 6.6. The idea is
this: if the real continuous function ¢(t) has its maximum on the intervala <t <b
at t = ¢ and if f(c) # 0, then it is only the immediate neighborhood of t = c that
contributes to the full asymptotic expansion of I(x) for large x. That is, we may
approximate the integral I(x) by I(x; ¢), where

M e)= [ (e d (64.2a)
ifa<c<b,
Hso)= [ fe* dr (64.2b)

a

if the maximum of @(t) is at t = a, and

I(x; €)= fb f(t)e=*® dt (6-4.2¢)

b-¢
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if the maximum of ¢(t)is at ¢ = b. Here ¢ may be chosen to be an arbitrary positive
number (such that the restricted integration range ¢ — ¢ <t < ¢ + ¢ is a subinter-
val of a <t <b). It is crucial that the full asymptotic expansion of I(x; &) as
x— +0o0 (1) does not depend on ¢ and (2) is identical to the full asymptotic
expansion of I(x) as x — +oco. Both of these rather surprising results are true
because (we assume here that a < ¢ < b) | [57° f(£)e*®® dt| + | [ f(t)e™®? dt|
is subdominant (exponentially small) with respect to I(x) as x — + co. This is so
because for all t on the intervalsa <t < ¢ —eand ¢ + ¢ < t < b, e** is exponen-
tially smaller than ¢**© as x — + co0. To show that I(x) — I(x; ¢) is subdominant
as x — + o0, we use integration by parts (see Prob. 6.23). The result that I(x) —
I(x; ¢) is subdominant as x — + oo sometimes holds even if f(c) = 0; we discuss
this point later.

It is helpful to approximate I(x) by I(x; ¢) because ¢ > 0 may be chosen so
small that it is valid to replace f(¢) and ¢(¢) by their Taylor or asymptotic series
expansions about t = c.

Example 1 Leading behavior of [§° (1 + t)"'e™* dt as x —» +co. We use Laplace’s method to
approximate this integral. Here ¢(t) = —t has a maximum in the integration region 0 < ¢ < 10 at
t = 0. Therefore, we may replace the integral by

I(x;€) = [z (1+1¢) le ™ dt

]

for any ¢ > 0 at the cost of introducing errors which are exponentially small as x - + co. Next
we choose ¢ so small that we can replace (1 + ¢)”! by 1, the first term in its Taylor series
about ¢t = 0. This replacement makes the integral easy to evaluate. Thus,

10 €
f (l+t)"e""dt~J e Mdr=(l—e *¥)/x, X = 4 00.
0 0

Since e™** < 1 as x - +co for any & > 0, we obtain

.10 1

[ L+ te™di~=, x> +o0. (64.3)
‘o X

Note that the final result in (6.4.3) does not depend on the arbitrary parameter ¢; ¢ appears in a
subdominant term only.

Example 1 (revisited) Full asymptotic expansion of [§° (1 +t)”'e™™ dt as x - +co. Laplace’s
method gives the full asymptotic series expansion of this integral. As in Example 1, wecan replace
10, the upper limit of integration, by ¢ < 1 and introduce only exponentially small errors as
x — +oo. Instead of replacing (1 +¢)~! by 1, as we did in Example 1, we use the full Taylor
expansion (1 +t)™' =Y (—t)", which converges for |t]| < 1:

e P

Ie)=[ (140 te=de= Y [ (~eye =

] n=0"0

—xt

The easiest way to evaluate the integral jf, (—t)"e™dt for any n is ito replace it by
& (—t)ye™ dr. It may seem surprising that it is valid to replace the small parameter ¢ by co!!
However, this replacement introduces -only -exponentially :small errors as x — +oo because the
integral from & to oo is subdominant with respect to & (—t)le™™ dr={—1)m!x™""" as
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x — + co0. We verify this using integration by parts; integration by parts gives

}‘ (—t)le™™dt ~ (—eg)e™/x, x— +00,

p
which is indeed exponentially smaller than [§ (—t)% ™ dt as x — +o0. Assembling these
results, we obtain the full asymptotic expansion of f§° (1 + t)”'e™* dt as x > +o0:

10 ©
[ (o) texdi~ ¥ (—1pnlxT"Y x40, (6.4.4)

0 n=0

Let us pause a moment to review the procedure we have just used. There are
three steps involved in Laplace’s method applied to an integral I(x). First, we
approximate I(x) by I(x; ¢) by restricting the original integration region to a
narrow region surrounding the maximum of ¢(t). Second, we expand the func-
tions f(t) and ¢(t) in series which are valid near the location of the maximum of
¢(¢). This allows us to expand I(x; ¢) into a series of integrals. Finally, the most
convenient way to evaluate the integrals in the series for I(x; ¢) is to extend the
integration region in each integral to infinity. It is this third step that is hardest to
grasp. It may seem foolish to first replace the finite number 10 in Example 1
(revisited) by € and then to replace ¢ by co ! However, we must choose ¢ to be small
in order to expand the integrand of I(x; ¢) and thereby obtain a series. We then let
the integration region become infinite in order to evaluate the terms in the series.
Each time we change the limits of integration, we introduce only exponentially
small errors. Note that had we not replaced the integration limit 10 by ¢ < 1, we
could not have used the Taylor expansion for (1 + ¢)™!, which is only valid for
[t] <L

Watson’s Lemma

’Pon my word, Watson, you are coming along wonderfully.
You have really done very well indeed.

—Sherlock Holmes, A Case of Identity
Sir Arthur Conan Doyle

In Example 1 we obtained the asymptotic expansion valid as x - + o0 of an
integral which belongs to a broad class of integrals of the form

b

)= f)e™d, b>o0. (64.5)

0
There is a general formula, usually referred to as Watson’s lemma, which gives the
full asymptotic expansion of any integral of this type provided that f'(t) is contin-

uous on the interval 0 < ¢ < b and that f(¢) has the asymptotic series expansion

@)~ ) ai”,  t-0+. (6.4.6)
n=0



"
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Note that we must require that o > — 1 and $ > 0 for the integral to converge at
t = 0. Note also that if b = + 0, it is necessary that f (t) < e” (t —» + c0), for some
positive constant c, for the integral (6.4.5) to converge.

Watson’s lemma states that if the above conditions hold then

S a, e+ pn+1
I(x) ~ Zo_(x”—"f}“—)’ X — + 0. (6.4.7)

We prove this result as follows. First, we replace I(x) by I(x; ¢), where
I(x;8) = | fle)e™ dr. (6.4.8)
0
This approximation introduces only exponentially small errors for any positive
value of &. In particular, we can choose ¢ so small that the first n terms in the
asymptotic series for f(t) are a good approximation to f(t):

f-r i a,t’"

S KEHPNTD 0 <t <, (6:4.9)

where K is a nonzero constant. Substituting the first N terms in the series for f(t)
into (6.4.8) and using (6.4.9) gives

SKJ BN+ D=t gy

0

N £
I(x; €)= Y a,,j 2t e gy
n=0 V]

£
o]

K |- ta+ﬂ(N+1)e—xx dl’
‘0

IA

I+ p+pN+1)

xa+ﬁ+ﬂN+l

K

Finally, we replace ¢ by oo and use the identity j'?)" r¥brex dt =
[C(e + Bn + 1)]/x*+#"*1 to obtain
N
I(x)— Y al(a+ Bn+ 1)/x*ort < x @ N1 x5 +oo.
n=0
Since this asymptotic relation is valid for all N, we have established the validity
of the asymptotic series in (6.4.7) and have proved Watson’s lemma.

Example 2 Application of Watson’s lemma. To expand the integral

5 -xt

1(x) = | dt

e
o L+1¢2
for large x, we replace (1 + t2)™! by its Taylor series about ¢ = 0:

—s =12t 6.4.10
1+ 2 ( )
Watson’s lemma allows us to substitute (6.4.10) into the integral, interchange orders of integra-
tion and summation, and replace the upper limit of integration 5 by co. This gives I(x) ~
1/x —2!/x> + 41x> — 6!/x" + -+ (x > + 0).
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Example 3 Asymptotic expansion of K o(x) using Watson’s lemma. A standard integral representa-
tion of the modified Bessel function Ko(x) is Ko(x) = [ (s> — 1)”"2e™* ds. In order to apply
Watson’s lemma, we substitute s = ¢ + 1. This shifts the lower endpoint of integration to t = 0:

Kolx)=e™* [ (2 +20) 2% d. (64.11)
‘o
When |t] < 2, the binomial theorem gives
(£2 4 26)7 Y2 = (26) V(1L + 1/2)" 12

I[(n+4)
n T -

=)y (—t2p
n=0
Watson’s lemma then gives
o (T(n + )
Ko(x)~e™ ¥ U iz rape e

n=0

X — +00. (6.4.12)

Example 4 Asymptotic expansion of D (x) using Watson’s lemma. An integral representation of
the parabolic cylinder function D,(x) which is valid when Re (v) <0 is

e—x1/4 ©

T

D,(x) v e e S gy, (64.13)

To obtain the behavior of D,(x) as x — 400, we expand e /2 as a power series in t:
e”"2 = ¥® o (—1)'t>"/2"n!. Watson’s lemma then gives

et = r(2n—v)
D (x)~ x" -1 s
)~ x I(-v) ,,;0 =ty 2"n! x2"

X - + oo, (64.14)

in agreement with (3.5.13) and (3.5.14). [The expansion in (6.4.14) is also valid when Re v > 0.]

Asymptotic Expansion of General Laplace Integrals

Watson’s lemma only applies to Laplace integrals I(x) of the form (6.4.1) in which
¢(t)= —t. For more general ¢(t), there are two possible approaches. If ¢(t) is
sufficiently simple, it may be useful to make a change of variable by substituting

s=—¢(t) (6.4.15)

into (6.4.1) and to rewrite the integral in the form [Z3%) F(s)e™™ ds, where
F(s)= —f(t)/¢'(t). Watson’s lemma applies to this transformed integral.

Example 5 Indirect use of Watson’s lemma. Watson’s lemma does not apply directly to the

integral
/2
Ix)=[ e *umrdy (6.4.16)
‘o

because ¢(t)= —sin? t. However, if we let s=sin? ¢t and rewrite the integral as I(x)=
405 [s(1 — )]~ Y?e™* ds, then Watson’s lemma does apply. Since

=8 = i w

nso  n'T()
for |s| < 1, Watson’s lemma gives

1oy~ -t 3 TP

3 Lot X7 (64.17)
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Sometimes the substitution (6.4.15) is unwieldy because the inverse function
t = ¢~ '(—s)is a complicated multivalued function. In this case, it may be simpler
to use a more direct method than Watson’s lemma for obtaining the first few terms
in the asymptotic series for I(x). We discuss the mechanical aspects of this calcula-
tion first and postpone a more theoretical discussion till Examples 7 and 8.

To obtain the leading behavior of I(x)as x — + oo, we argue as follows. If ¢(¢)
has a maximum at t = ¢, then we can approximate I(x) by I(x; ¢), as in (6.4.2). In
the narrow region |t — c¢| < ¢, we replace ¢(t) by the first few terms in its Taylor
series. There are several cases to consider. If ¢ lies at one of the endpoints a or b
and if ¢'(c) # 0, then we approximate ¢(t) by

o(c) + (t = c)@'(c). (6.4.184a)
If ¢'(c)=0 (this must happen when c is interior to the interval a <t < b) but
¢”(c) # 0, then we approximate ¢(t) by
d(c) + 3t — ¢)*¢"(c). (6.4.18b)
More generally, if ¢'(c)= ¢"(c)=""= " V(c)=0 and $P(c)+# 0, then we
approximate ¢(t) by
(c) + ,%(t — Pe(c). (64.18¢)

In each of these cases, we also expand f (t) about t = ¢ and retain just the leading
term. For simplicity, let us assume that f'(t) is continuous and that f(c) # 0 [that
is, the leading behavior of f(t) as t — ¢ is f(c)]. We treat cases in which f(c) =0
later in Example 6 and in Prob. 6.24.

Now we substitute these approximations in I(x; ¢) and evaluate the leading
behavior of the resulting integral by extending the range of integration to infinity.
When (6.4.18a) holds, ¢ must be an endpoint, c=a or c¢=b. If ¢ = a, then
¢'(a) <0 and

ate

I(x; 8) ~ [ f(a)ex(cﬁ(ajﬂt—a)tﬁ’(a)] dt, X — 40,

a

~ f(a)e®® | eumav@ gy X — +00.
f(a)ex¢(a)
Thus, I(x)~ ———, x- +o0. 6.4.19a
()~ ~ o (64.19)
If ¢ = b, then ¢'(b) > 0 and a similar computation gives
¢(b)
I(x)~ J(b)e X — +0c0. (6.4.195)

x¢'(b)
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When (6.4.18b) holds and a < ¢ < b, then ¢”"(c) < 0 [because ¢(t) has a maxi-
mum at t = ¢] and

cte
I(x; 8) ~ f(c)exw(c)+(r—C)2¢"(r)/21 dt, X — +00,
~ f(c)ex®® - Xt aenaNz gy X = + 00,
2 ¢(c) .o
= m ’ e ds,
—x¢"(c) -
where we have substituted s* = —x(t — c)?¢"(c). Recall that (2, e **ds=
[eu Ve du=T()= /n, 50
/ Veasd
I(x) ~ _271_{”(_c)_’__ , X— +o00. (6-4.19¢)
—x¢"(c)

This result holds if ¢ is interior to the interval (g, b); if ¢ = a or ¢ = b, the result in
(6.4.19¢) must be multiplied by a factor 4. (Why?)

When (6.4.18¢) holds and a < ¢ < b, then p must be even and ¢'”(c) <0
[otherwise ¢(c) would not be a maximum]. Then

Lot
I()C; 8) ~ 'C 8f(c)ex(¢(c)+(t—c)M””(C)/P!l d[’ X — + 00,
“c—¢
. O
~f(Q)er [ s gy x s oo,
R
o]
= f(c)e**O[ - x¢'P(c)/p!] " V/* [ e ds.
Y —oo

Now recall that [, e™* ds = 2I'(1/p)/p, so

1/p
I(x) ~ %,f (€)@, x— +oo. (6.4.19d)

Example 6 Use of Laplace’s method to determine leading behavior.

(a) {52 e7*"*"" dt ~ 1/x (x > +0) because (6.4.19a) applies.

(b) [@ e7*=i™t dt ~ 4. /n/x (x — + o). Here (6.4.19¢) with the result multiplied by L applies
because ¢ = 0 is an endpoint.

(c) JLy e™5™ de ~ [I(}))/2xY* (x — + o0) because (6.4.19b) applies with p = 4.

(d) §7%, (t +2)e™* " dt ~ 4/x (x > +o0), where we have added together contributions ob-
tained using both (6.4.19a) and (6.4.19b) because there are maxima at both t = — 7/2 and
t=m/2
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L1 L€
() | simee=smidra | te=*dr,  x— +oo,
5 5

o
~ [ te™ dt, x> +oo0,
)

|
-1/2 ,-s
= s e *ds =
4x112 Jo

rg) 1 /=

4x'? T4y x’

This example is interesting because the maximum of ¢ occurs at a point where f(t) vanishes.
Laplace’s method works because the contribution to the integral from outside the interval
0 <t < ¢ is subdominant for any & > 0. In general, if f (¢) vanishes algebraically at the maxi-
mum of ¢, Laplace’s method works as explained above.

@ gTxcosht e e—x(lﬂzlzb
f dt ~ dt X — +
_ L Ry v ’
3 @ e—xr*/Z
L ~e ™ dt, X — + 00,

)
= (Sx)—llde_x S-B/Ae—s ds

0

=T (i) (8x)~4ex,

This example is interesting because f(t) is infinite at the maximum of ¢. Again, Laplace’s
method works because the contribution to the integral from outside the interval 0 <t < ¢ is
subdominant.

(9) The modified Bessel function K,(x) of order v has the integral representation
K(x)=| e **" cosh (v)dr, (64.20)
‘o

which is valid for x > 0 (see Prob. 6.36). Therefore, (6.4.19¢) with an extra factor % gives

K(x)~ | ~e*  x— +o0, (6.4.21)
2x
in agreement with (3.8.11).

(h) The integral representation (6.4.20) can also be used to find the asymptotic behavior of K (pv)
as v — +oo with pfixed: K (pv) = § [§ e7"#eosh*0 dp 4 L [& e~ *@eosh =0 gt where we have
substituted cosh (vt) = (e” + e~*')/2. Laplace’s method applied to the first integral on the
right gives its leading behavior as e~ ?*/2v. Laplace’s method also applies to the second
integral on the right. Here ¢(t) =t — p cosh ¢ has a maximum at ¢t = ¢ where p sinh ¢ = 1.
Therefore, (6.4.19¢) gives

n e ™
K (pv) ~ /5————“”1),,4, Vo +00; p>0, (64.22)

where g = pcosh ¢ —c = /1 + p* = In[(1 + /1 + p?)/p] The derivation of (6.4.22) is facil-
itated by the formulas p cosh ¢ = \/1 + p* and e = cosh ¢ + sinh ¢ = (/1 + p* + 1)/p.

The procedures used to derive the results in (6.4.19) are correct but not fully
justified. In the next two examples, we apply Laplace’s method to an integral
taking care to justify and explain our approximations more carefully.
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Example 7 Careful application of Laplace’s method to [§/* e **"** dt. Here ¢(t) = —sin® t hasa
maximum at t =0, so (6.4.2) shows that for any ¢ (0 <e&<n/2), I(x) =[5 e7*%n* gy ~
fo e ™t dt (x > + o0) with only exponentially small errors. Recall that this step is justified in
Prob. 6.23. If ¢ is small, sin ¢ can be approximated by ¢ for all t (0 < ¢ < ¢). Thus, we expect that it
is valid to approximate I(x) by I(x) ~ {5 e™** dt (x — + o). For finite ¢, the Gaussian in tegral on
the right cannot be evaluated in terms of elementary functions (it is an error function). However,
the evaluation of the integral on the right is easy if we extend the integration region to oo:

T m L (T g ge o L (1)_1\/5
‘[o e tdz..Z\/_Jo s~ 12e ds—zﬁf 31 =3( %

where we have used the substitution s = xt2. Thus,

I(x)~4/n/x, x- +oc0. (6.4.23)

Note that this result agrees with the first term in (6.4.17).
To justify the asymptotic relation (6.4.23) we must verify that

l’ e—xsinlr dt ~ f e-xxl dt, X — +00, (6424)
Yo ‘o

when 0 <¢ < 2m.

The proof of (6.4.24) is delicate and illustrates one of the more subtle aspects of Laplace’s
method, so we go through it in some detail. The idea of the proof is that over the range of ¢ that
contributes substantially to either of the integrals in (6.4.24), the integrands of both integrals are
nearly identical. Outside of this range the two integrands are quite different, but both are expo-
nentially small.

The proof of (6.4.24) begins by breaking up the range of integration 0 < t < ¢ into the two
ranges 0 <t < x"%and x ™ < t < ¢, where 4 < « < 4. This restriction on « is made so that when
t=x"%xt?> +oo0 but xt* 0 as x> +o0. Whent < x *with} <a <4,

xsin? t —xt? €1, x> 4o00. (6.4.25)

To prove (6.4.25) we use the inequalities ¢ — £/6 < sin t < ¢ which hold for all t > 0 (see Prob.
6.40) to obtain

|x sin? t — xt?| = x[sin t + t| |sin t — t] < x(26)(*/6) = xt*/3.

But xt*/3—0 as x - +o0 when t < x™%, with a >, which proves (6.4.25). Exponentiating
(6.4.25) gives

—xsin?t o —xt?

e e™™, t<x7%, x— 4o0. (6.4.26)

Integrating this asymptotic relation gives

- x-a

j e"‘“""dt~f e ™ dt,  x— +o0.
o 0
To complete the proof of (6.4.24), we must estimate the contribution to each integral from

the interval x™® < ¢ < &. Note that (6.4.26) is not true for all ¢ in this range. In fact, when t is of
order ¢ and x — 400, e *%"* i3 exponentially larger in magnitude than e™*’. Here lies the
subtlety in the proof of (6.4.24); (6.4.24) remains valid despite the discrepancy between the
magnitudes of the two integrands e **** and e ~* when ¢ is of the order &. The point is simply
that the contribution to each integral in (6.4.24) from the interval x ** < t < ¢ is subdo minant as
x — +oo0 with respect to the contribution from 0 <t < x™* when « < 4. In fact, if t > x ™% with
a <4, then e™**** and e™* are both smaller than e *** =™ ~ ¢™*'"* (x - 4 00 ) which is
exponentially small. In Fig. 6.2, we plot the integrands on the left and right sides of (6.4.24) for
x = 100. Observe that the integrands are nearly the same for those values of ¢ that contribute
substantially to the integrals and that the integrands differ substantially only for those values of ¢
that make a negligible contribution to the integrals.
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1074 - —
1078 - -
10712 |- -

¥ sin’t
10716 |- 1
10720 |- —
10724 — —
10728 —
10—32 — e —
10736 |- —
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t

Figure 6.2 A graphical demonstration that {5 exp (—x sin? t)dt ~ [§ exp (—xt?) dt (x > +o0)for any
positive ¢ < 27 [see (6.4.24)]. The graph compares the two integrands for x = 100. Observe that over
the range of ¢t that contributes significantly to either of the integrands, both integrands are nearly
equal. Outside of this range the integrands differ substantially but are negligibly small.

Example 8 Leading behavior of 1,(x) as x = + 0. It may be shown (see Prob. 6.41) that
1"
L(x)==| e<cos (n) dt, (6.4.27)
o

where I (x) is the modified Bessel function of order n. Local analysis of the modified Bessel
equation (see Example 2 of Sec. 3.5) establishes only that

I,,(x)~\/L_(c,e" +ce”*),  x— +00, (6.4.28)
X

for some constants ¢, and c,, but it does not establish the values of ¢, and c,. However,
asymptotic analysis of the integral representation (6.4.27) shows that ¢, = l/ﬁ; the value of ¢,
is not determined by asymptotic analysis of (6.4.27) because e~ * is subdominant with respect to e*
as x — +o0. Observe that integration by parts cannot be used to derive (6.4.28) because the
leading behavior of I,(x) involves l/\/§ and not 1/x.
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To use Laplace’s method we note that ¢(t) = cos ¢ has a maximum at ¢t = 0. Thus,

Lx)~| e=cos (nt)ds, n— +co. (6.4.29)
‘o
According to (6.4.18b), we must replace cos ¢ by the first two terms in its Taylor expansion
about 0. What happens if, instead, we approximate cos ¢ by 1 and cos (nt) by 1 for 0 <t < &? The
resulting approximation to I,(x), [5 e*(1) dt = ge*, is not correct because the dependence on the
arbitrary constant ¢ has not dropped out. The trouble here is that ¢* is not a good approximation
to €* °** over the subinterval of 0 < ¢ < ¢ that gives the dominant contribution to the integral (see
Fig. 6.3).
A correct application of Laplace’s method to (6.4.29) is obtained by approximating cos ¢ by
the first two terms of its Taylor series 1 — t?/2 and by approximating cos (nt) by 1:

1.
Lx)~=| e dr, x> +oo, (6.4.30)
Mo
1
~ e X — +o00. (6.4.31)
J2nx
The dependence on ¢ has disappeared, as it should.
1050ITII||llllllll]lll

1040

1030

1020

o X(1-1%12)

1010 -

0 0.5 1.0 1.5 2.0

Figure 6.3 A graphical justification that it is valid to replace exp (x cos t) with exp (x — $x?) in the
integrand in (6.4.29) when x — co. The graph compares these two expressions when x = 100. Note
that the two curves are nearly identical over many orders of magnitude.
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The leading behavior of I,(x) as x > + oo does not depend on n; however, higher-order
terms in the asymptotic expansion of I,(x) do depend on n. In fact, the complete asymptotic
expansion of I,(x) as x » +co is given in (3.5.8) and (3.5.9) with ¢, = 1//2x.

The only step that really needs justification is (6.4.30). The argument is nearly the same as
that used to justify (6.4.24). The range of integration from t = 0 to ¢t = ¢ is broken up into the two
ranges 0 <t < x “and x™* < t <¢, where 1 < a < 4. Now for fixed n, cos (nt) e* ' ~ ex! 72
(x = + o) uniformly for all ¢ satisfying 0 < t < x™* because 1 — t2/2 < cos t < | — t3/2 + t*/24.
Therefore, 57" cos (nt) e* " dt ~ [§7* "1 7*2) d¢ (x > +00). Also, when x™* < t <, the inte-
grands on both sides of (6.4.30) are subdominant with respect to e*, so the contribution to (6.4.30)
from the integration range x ~* < t < ¢ is exponentially small compared to the contribution from

a

the range 0 <t < x™"

Laplace’s Method—Determination of Higher-Order Terms

The approach we have used to obtain the leading asymptotic behavior of integrals
by Laplace’s method can be extended to give the higher-order terms in the asymp-
totic expansion of the integral. To do this one would naturally expect to have to
retain more terms in the expansions of ¢(t) and f(¢) than those used to obtain
(6.4.19). We illustrate the mechanics of this procedure for the case in which
¢'(c)=0, ¢"(c) <0,f(c)# 0, and a < ¢ < b, where c is the location of the maxi-
mum of ¢(z).

By (6.4.2), I(x) ~ [<*¢ f(t)e**® dt (x —» + o) with exponentially small errors.
The leading behavior of I(x) given by (6.4.19¢) is obtained by replacing f (¢) by f(c)
and ¢(t) by ¢(c) + 3(t — c)*¢”(c).- To compute the first correction to (6.4.19¢c) we
must approximate f(t) and ¢(t) by two more terms in their Taylor series:

10)~]  [f©+f(e)t = e)+ 11 "(e)e = F]
x exp {x[@(c) + 3t — c)*@"(c) + &t — ¢)*¢"(c)
+ 24t — )M d*@/dt*)(c)]} dt, x> +o0.  (6.4.32)
It is somewhat surprising that two additional terms in the series for ¢(t) and f (t)
are required to compute just the next term in (6.4.19¢). We will see shortly why
this is so.

Because ¢ may be chosen small, we Taylor expand the integrand in (6.4.32) as
follows:

exp (<[4t — €4 (c) + 2s(t — c)*(d*d/dr*)c)]
= 1+ x[h{e — 04"(c) + 3s(t — ) (d*¢/dr*)c)]
(e — O [# (A + .

Substituting this expansion into (6.4.32) and collecting powers of t — ¢ gives
.cte
I(X) ~ J ¢ €g¢(c)+x(’_‘)z¢”(c)/2
(t = o)

X{_f (€) + 51"(c) + (£ = ¢)* [ (c)d*¢/dt*)(c) + &4/ "(c)$" (c)]

+ At — )°x ()@ () +---1dt, x— +c0, (64.33)
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where we have excluded odd powers of t — ¢ because they vanish upon integra-
tion. Only the displayed terms in (6.4.33) contribute to the next term in (6.4.19¢).
Notice that we do not Taylor expand exp [4x(t — ¢)?¢”(c)]; we return to this point
shortly.

Next we extend the range of integration in (6.4.33) to (— o0, o) and substitute
s= \/;(t —c)

1 @
I(x) ~ ﬁech) J‘_ gsier@n2

X {f () + % (357" (c) + Fas*f (c)(d*d/dt*)(c) + s*f'(c)" (c)
+455°[9" (O ()]} ds, x> +oo.  (6434)

Observe that all the displayed terms in (6.4.33) contribute to the coefficient of 1/x
in (6.4.34); the additional terms that we have neglected in going from (6.4.32) to
(6.4.34) contribute to the coefficients of 1/x?, 1/x?, and so on.

To evaluate the integrals in (6.4.34) we use integration by parts to derive
the general formula [®,, e™*%2s?" ds = \/2n(2n — 1)(2n — 3)(2n — 5)--- (S)(3)(1).
Thus, we have

2n . L[ f7(e) | fle)d*¢/de*)(c)
6~ o <f €+ [_2¢"(c) RO

f()¢"(c) _ 59" ()] ()
A¢" (e 24[¢"(c))

One aspect of the derivation of (6.4.35) requires explanation. In proceeding
from (6.4.32) to (6.4.34) we did not Taylor expand exp [$x(t — ¢)*¢"(c)], but we
did Taylor expand the cubic and quartic terms in the exponential. If we had
Taylor expanded exp [$x(t — c)?¢"(c)] and retained only a finite number of terms,
the resulting approximation to I(x) would depend on ¢ (see Example 8). If we had
not expanded the cubic and quartic terms and if (d*¢/dt*)(c) were nonnegative,
then extending the range of integration from (c — ¢, ¢ + ¢) to (— o0, c0) would
yield a divergent integral which would be a poor approximation to I(x) indeed! If
we had not expanded the cubic and quartic terms and if (d*¢/dt*)(c) < O, then
extending the range of integration from (¢ — ¢, ¢ + ¢) to (— 00, c0) would yield a
convergent integral. However, this convergent integral might not be asymptaotic to
I(x) because replacing ¢(t) by the four-term Taylor series in (6.4.32) can introduce
new relative maxima which lie outside (¢ — ¢, ¢ + &) which would dominate the
integral on the right side of (6.4.32). In summary, there are three reasons why we
must Taylor expand the cubic and quartic terms in the exponential before we
extend the range of integration to (— o, o0):

+

]}, X — +o00. (6.4.35)

1. The resulting integrals are always convergent and depend on ¢ only through
subdominant terms.
2. It is easy to evaluate the resulting Gaussian integrals.
3. We avoid introducing any spurious maxima into the integrand.
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To illustrate the above discussion we consider the integral
n/2
)= e, (6.4.36)
‘0
To obtain a higher-order approximation to this integral than that in (6.4.23), we
Taylor expand sin? ¢ through t*:

I(x) ~ JO e E gy x4, (64.37)

Taylor expanding the quartic term, we obtain

£

: 1
I(x) ~ | e""z(1+§xt4)dt, X — + 00,

‘0
~ J e (1 + lxz“) dt , (6.4.38)
0 3

"—1 E1+—1— X— + 00
T2V x 4x)’ ’

in agreement with (6.4.17). In Fig. 6.4 we plot the integrands of (6.4.36) to (6.4.38)
for x = 100. Observe that all three integrands are nearly-identical for small ¢, but
that the integrand in (6.4.37) blows up as ¢ — + co. The integrands of (6.4.36) and
(6.4.38) do differ when ¢ is large, but large t makes a negligible contribution to
both (6.4.36) and (6.4.38).

Laplace’s Method for Integrals with Movable Maxima

There are two kinds of problems where Laplace’s method is useful but does not
apply directly. First, we know what to do when f (t) vanishes algebraically at t = ¢,
the maximum of ¢(t). But what if f (t) vanishes exponentially fast at ¢? Second, it
can happen that the Laplace integral (6.4.1) converges but that max ¢(t) = oo.
What do we do then? We consider each of these cases in the following two
examples.

Example 9 Leading behavior of [§ e™*'~'/* dt. Here f(t) = e '" vanishes exponentially fast at
t = 0, the maximum of ¢(t) = —t. If we apply Watson’s lemma (6.4.7), we obtain the asymptotic
series expansion 0 + 0/x + 0/x? + --- (x — + o0 ) because the coefficients of the asymptotic power
series of e ' as t - 0+ are all zero. Watson’s lemma does not determine the behavior of I(x)
because Watson’s lemma can only produce a series of inverse powers of x. Here, I(x) is smaller
than any power of x; it decreases exponentially fast as x — + 0.

In order to determine the correct behavior of I(x), let us determine the location of the true
maximum of the full integrand e~*~'"*. This maximum occurs when (d/dt)(—xt — 1/t)=0 or
t= l/\/;. We call such a maximum a movable maximum because its location depends on x.

For this kind of movable maximum problem, Laplace’s method can be applied if we first
transform the movable maximum to a fixed maximum. This is done by making the change of
variables t = s/./x:

“
e VR g,

_‘_l'
V%

I(x) =
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1074 - —

1072 - —
10-16 —
10720 —
10724 —

10728 - ) -
e (1 +x14/3)

107321~ -
e»x(tz—r“/})

10736 -

—x sin2
exsmt

104 00 v by b N

Figure 6.4 A comparison of the three integrands in (6.4.36) to (6.4.38) for x = 100. All three differ
when ¢t is large, but in the restricted range near ¢t = 0 all three contribute equally to the integral
as x — oo.

In this form, f(s) = 1 and ¢(s) = s + 1/s and Laplace’s method applies directly. The maximum of
the new function ¢(s) occurs at s = 1, so (6.4.19¢) gives

I(x)~/m e 2%x¥,  x - +o0.

Example 10 Derivation of Stirling’s formula for T'(x). A convergent integral representation for
I(x)is T(x) = {§ e™'r*~' dt (x > 0) (see Sec. 2.2). Here f(t) = ™'/t and ¢(t) = In t. Note that
max ¢(t) = oo for 0 <t < 00, so Laplace’s method is not immediately applicable. This example is
very similar to the previous example because the maximum of ¢(t) occurs as t — co where f(t) is
exponentially small. As in Example 9, we find the location of the maximum of e "'t*, neglecting the
factor 1/t which vanishes algebraically at co. This maximum occurs where (d/dt)e”'t* =0 or
= x. Again, we encounter a movable maximum.
If we make the change of variables ¢ = sx, we obtain

® d.
I(x)=x* J' g~ Xs~Ing ?s
)
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Now f(s) = 1/s and ¢(s) = —s + In 5. Laplace’s method applies directly to this transformed
integral. The maximum of ¢(s) occurs at s = 1 50 (6.4.19¢) gives

I(x) ~ x*e~*/2n/x, x— +oo0, (6.4.39)
in agreement with (5.4.1). To obtain the next term in the Stirling series we note that ¢(1) = —1,

¢(1)=0,¢"(1) = —1, $"(1) = 2, (d*¢p/ds*)(1) = —6, f(1) = 1, f'(1) = — 1, f*(1) = 2. Substitut-

ing these coefficients into the formula (6.4.35), we obtain

. [2m 1 -
I(x) ~ x*e < (1 + E) X = 400, (6.4.40)

in agreement with (5.4.1).

The distinction between ordinary and movable maxima is examined in Probs.
6.45 to 6.47.

6.5 METHOD OF STATIONARY PHASE

There is an immediate generalization of the Laplace integrals studied in Sec. 6.4
which we obtain by allowing the function ¢(t) in (6.4.1) to be complex. Note that,
if we wish, we may assume that f(t) is real; if it were complex, f(¢) could be
decomposed into a sum of its real and imaginary parts. However, allowing ¢(t) to
be complex poses new and nontrivial problems. In this section we consider the
special case in which ¢(t) is pure imaginary: ¢(t) = iy(t), where y(t) is real. The

resulting integral
]

1) = | f(e)e™ dr (6.5.1)
with f(t), ¥(t), a, b, x all real is called a generalized Fourier integral. When
Y(t) =t, I(x) is an ordinary Fourier integral. The general case in which ¢(t) is
complex is considered in Sec. 6.6.

To study the behavior of I(x) in (6.5.1) as x — + o0, we can use integration by
parts to develop an asymptotic expansion in inverse powers of x so long as the
boundary terms are finite and the resulting integrals exist.

Example 1 Asymptotic expansion of a Fourier integral as x - + co. We use integration by parts
to find an asymptotic approximation to the Fourier integral

1 ixt

t
141t

I(x)= jo

After one integration by parts we obtain

i . i i 1 eix!
)= e Loy, 652
(k)= =gz + - x.[o T (6.5.2)

The integral on the right side of (6.5.2) is negligible compared with the boundary terms as
x — +00; in fact, it vanishes like 1/x? as x —» 4 c0. To see this, we integrate by parts again:

i 1 eix: 1 . 1 2 1 eixl
—_—| mdt=—— e+ — ——
x «[0 (1+1) T T I

o (1+1)
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The integral on the right is bounded because
1 ixt

.[o TE

1
3
sjo (1 +t)'?dt=§.

Since the integral on the right in (6.5.2) does vanish like 1/x? as x — + oo, I(x) is asymptotic to the
boundary terms: I{x) ~ — (i/2x)e' + i/x (x - + o).

Repeated application of integration by parts gives the complete asymptotic expansion of
I(x) as x = +o00: I(x) = e*u(x) + v(x) where

i 1 (=iy(n—1)
2x  4x? oot @x)y A
L e

!
o 4, x> +00.
X

X — +00,

Example 2 Integration by parts applied to [} \ﬂ ¢ dt. Integration by parts can be used just
once for the Fourier integral I(x) = [ ./t ¢ dt. One integration by parts gives

I(x)= —ie%’zixjo \7?‘,,_ (65.3)

The integral on the right side of (6.5.3) vanishes more rapidly than the boundary term as
x — +o00. We cannot use integration by parts to verify this because the resulting integral does not
exist. (Why?) However, we can use the following simple scaling argument. We let s = xt and
obtain

Poeleixt i x s : (@ gis

—[ —-dt=—3/z[ —dS~—3/zJ —

2y St 23121 s 2320y fs
To evaluate the last integral we rotate the contour of integration from the real-s axis to the
positive imaginary-s axis in the complex-s plane and obtain

ds, X — +00.

(" s = Jr e (65.4)
‘o

N

(See Prob. 6.49 for the details of this calculation.) Therefore,
i i .
I(X) + ;elx N_Z_;S.I_iﬁ emlA’ X = +00. (655)

Clearly, this result cannot be found by direct integration by parts of the integral on the ri ght side
of (6.5.3) because a fractional power of x has appeared. However, it is possible to find the full
asymptotic expansion of I(x) as x — + 0o by an indirect application of integration by parts (see
Prob. 6.50).

In Example 1 we used integration by parts to argue that the integral on the

right side of (6.5.2) vanishes more rapidly than the boundary terms as x — + co0. In
Example 2 we used a scaling argument to show that the integral on the right side
of (6.5.3) vanishes more rapidly than the boundary terms as x — + oo. There s, in
fact, a very general result called the Riemann-Lebesgue lemma that guarantees

b
[ f()e™dt—>0, x— +oo, (6.5 6)

‘a
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provided that {% | f(t)| dt exists. This result is valid even when f(t) is not differen-
tiable and integration by parts or scaling do not work. We will cite the Riemann-
Lebesgue lemma repeatedly throughout this section; we could have used it to
justify neglecting the integrals on the right sides of (6.5.2) and (6.5.3).

We reserve a proof of the Riemann-Lebesgue lemma for Prob. 6.51. Although
the proof of (6.5.6) is messy, it is easy to understand the result heuristically. When
x becomes large, the integrand f(t)e™ oscillates rapidly and contributions from
adjacent subintervals nearly cancel.

The Riemann-Lebesgue lemma can be extended to cover generalized Fourier
integrals of the form (6.5.1). It states that I(x) — 0 as x > + oo so longas | f(¢£)] is
integrable, ¥ () is continuously differentiable for a <t < b, and y(t) is not con-
stant on any subinterval of a <t < b (see Prob. 6.52). The lemma implies that
[8° Pt dr — 0 (x — +o0), but it does not apply to [§° *e*™ dt.

Integration by parts gives the leading asymptotic behavior as x — + o0 of
generalized Fourier integrals of the form (6.5.1), provided that f(¢)/y'(t) is smooth
for a <t < b and nonvanishing at one of the endpoints a or b. Explicitly,

t=b b
I(x) = f(yt) eix\ll(t) - i J i ff(t)
ixy’(¢) ixt, dty'(r)
The Riemann-Lebesgue lemma shows that the integral on the right vanishes more

rapidly than 1/x as x — +co. Therefore, I(x) is asymptotic to the boundary terms
(assuming that they do not vanish):

1(x) " f(t) RE0)
ixy'(t)
Observe that when integration by parts applies, I(x) vanishes like 1/x as x — + co.

Integration by parts may not work if y'(t) = 0 for some ¢ in the interval
a <t < b. Such a point is called a stationary point of . When there are stationary
points in the interval a < t < b, I(x) must still vanish as x — + co by the Riemann-
Lebesgue lemma, but I(x) ‘usually vanishes less rapidly than 1/x because the
integrand f (¢)e™** oscillates less rapidly near a stationary point than it does near
a point where y/'(t) # 0. Consequently, there is less cancellation between adjacent
subintervals near the stationary point.

The method of stationary phase gives the leading asymptotic behavior of
generalized Fourier integrals having stationary points. This method is very similar
to Laplace’s method in that the leading contribution to I(x) comes from a small
interval of width ¢ surrounding the stationary points of y(t). We will show that if ¢
is a stationary point and if f(c) # 0, then I(x) goes to zero like x " */? as x — + oo if
Y”(c) # 0, like x 13 if y”(c) = 0 but Y"(c) # 0, and so on; as () becomes flatter
at t = ¢, I(x) vanishes less rapidly as x — + 0.

Since any generalized Fourier integral can be written as a sum of integrals in
which ¢/'(¢) vanishes only at an endpoint, we can explain the method of stationary
phase for the special integral (6.5.1) in which y/'(a) =0 and y'(t) # 0 fora <t <b.

ei.xll/(l) dt.

t=a

t=b
,  X— 4o (6.5.7)

t=a
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We decompose I(x) into two terms:

.at+e

I(x)=‘a

b
F@)e™O de+ [ f(t)e™ dr, (6.5.8)
“ate

where ¢ is a small positive number to be chosen later. The second integral on the
right side of (6.5.8) vanishes like 1/x as x — + oo because there are no stationary
points in the interval a + ¢ <t < b.

To obtain the leading behavior of the first integral on the right side of (6.5.8),
we replace f(t) by f (a) and y(t) by y(a) + ¥P(a)(t — a)?/p! where yP(a) + 0 but
V(@)= =y Da)=0:

.ate

1(x)~.

f(a) exp{ix [gb(a) + %w‘”’(a)(t — a)"J}dt, X — +c0.

(659)

Next, we replace ¢ by oo, which introduces error terms that vanish like 1/x as
x — + 00 and thus may be disregarded, and let s = (t — a):

a

I(x) ~ f(a)e™® J: exp [% W"’(a)s"] ds, x-+o00. (65.10)

To evaluate the integral on the right, we rotate the contour of integration from the
real-s axis by an angle n/2p if Y'P(a) > 0 and make the substitution

in P' u P
5= émr me(a)] (6.5.11a)

with u real or rotate the contour by an angle —n/2p if y?(a) < 0 and make the
substitution

. —in p! u 1/p
s=e /2p W] . (6.511b)
Thus,
ixp(a)t in ! P T(1/p
1) ~flaler o= [xl'//i’(a)l} (P e (63.12)

where we use the factor 27 if $P(a) > 0 and the factor e~"27 if y(a) < 0.

The formula in (6.5.12) gives the leading behavior of I(x) if f(a)# O but
¥'(a) = 0. If f(a) vanishes, it is necessary to decide whether the contribution from
the stationary point still dominates the leading behavior. When it does, the behav-
ior is slightly more complicated than (6.5.12) (see Prob. 6.53).

Example 3 Leading behavior of [§* e~ °** dt as x — +oo. The function y(t) = cos ¢ has a sta-
tionary point at t=0. Since Y”(0)= —1, (6.5.12) with p=2 gives I(x)~ /n/2x *~ %%
(x = +o0).
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Example 4 Leading behavior of [§ cos (xt? — t) dt as x — +co. To use the method of stationary
phase, we write this integral as [§ cos (xt*> — t) dt = Re [§ ¢'*"~9 dr. The function y(t) = ¢* has
a stationary point at t = 0. Since ¥”(0) =2, (6.5.12) with p=2 gives [§ cos (xt> — 1) dt ~
Re 4/n/x €™* =1 /n/2x (x > + o0).

Example 5 Leading behavior of J (n) as n — co. When n is an integer, the Bessel function J (x)
has the integral representation

n

1,
Jo(x)= p ‘ cos (x sin t — nt) dt (6.5.13)
0

(see Prob. 6.54). Therefore, J,(n) = Re [§ €™ *~" dt/n. The function y(t) =sin t — ¢ has a sta-
tionary point at t = 0. Since y"(0) = 0, ¢"(0) = — 1, (6.5.12) with p = 3 gives

1 1 ) 6 1/3 1
~—Re|ze ™8|-] TI|]| - +00,
J(n) nRe [3e (n) (3) x
(6.5.14)
=12'Z’33‘”6F(1)n‘”3, n— 0.
n 3

Observe that because y”(0) = 0, J,(n) vanishes less rapidly than n™'/? as n - co.
If n is not an integer, (6.5.14) still holds (see Prob. 6.55).

In this section we have obtained only the leading behavior of generalized
Fourier integrals. Higher-order approximations can be complicated because non-
stationary points may also contribute to the large-x behavior of the integral.
Specifically, the second integral on the right in (6.5.8) must be taken into account
when computing higher-order terms because the error incurred in neglecting this
integral is usually algebraically small. By contrast, recall that the approximation
in (6.4.2) for Laplace’s method is valid to all orders because the errors are expo-
nentially, rather than algebraically, small. To obtain the higher-order corrections to
(6.5.12), one can either use the method of asymptotic matching (see Sec. 7.4) or the
method of steepest descents (see Sec. 6.6).

6.6 METHOD OF STEEPEST DESCENTS

The method of steepest descents is a technique for finding the asymptotic behavior
of integrals of the form

I(x)= [ ()™ de (6.6.1)

c

as x — + oo, where C is an integration contour in the complex-t plane and h(t) and
p(t) are analytic functions of . The idea of the method is to use the analyticity of
the integrand to justify deforming the contour C to a new contour C’ on which p(t)
has a constant imaginary part. Once this has been done, I(x) may be evaluated
asymptotically as x - +00 using Laplace’s method. To see why, observe that on
the contour C’ we may write p(t) = ¢(t) + iy, where { is a real constant and ¢(t)
is a real function. Thus, I(x) in (6.6.1) takes the form

I(x) = & | h(t)e™*0 at. (6.62)
C!
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Although t is complex, (6.6.2) can be treated by Laplace’s method as x — + o
because ¢(t) is real.

Our motivation for deforming C into a path C’ on which Im p(t) is a constant
is to eliminate rapid oscillations of the integrand when x is large. Of course, one
could also deform C into a path on which Re p(t)is a constant and then apply the
method of stationary phase. However, we have seen that Laplace’s method is a
much better approximation scheme than the method of stationary phase because
the full asymptotic expansion of a generalized Laplace integral is determined by
the integrand in an arbitrarily small neighborhood of the point where Re p(t)isa
maximum on the contour. By contrast, the full asymptotic expansion of a gener-
alized Fourier integral typically depends on the behavior of the integrand along
the entire contour. As a consequence, it is usually easier to obtain the full asymp-
totic expansion of a generalized Laplace integral than of a generalized Fourier
integral.

Before giving a formal exposition of the method of steepest descents, we
consider three preliminary examples which illustrate how shifting complex con-
tours can greatly simplify asymptotic analysis. In the first example we consider a
Fourier integral whose asymptotic expansion is difficult to find by the methods
used in Sec. 6.5. However, deforming the contour reduces the integral to a pair of
integrals that are easy to evaluate by Laplace’s method.

Example 1 Conversion of a Fourier integral into a Laplace integral by deforming the contour. The
behavior of the integral

1
Ix)=| Ince™di (6.6.3)
0

as x — + oo cannot be found directly by the methods of Sec. 6.5 because there is no stationary
point. Also, integration by parts is useless because In 0 = — oo. Integration by parts is doomed to
fail because, as we will see, the leading asymptotic behavior of I(x) contains the factor In x which
is not a power of 1/x.

To approximate I(x) we deform the integration contour C, which runs from 0 to 1 along the
real-t axis, to one which consists of three line segments: C, which runs up the imaginary-t axis
from 0 to iT; C,, which runs parallel to the real-t axis from iT to 1 + iT; and C;, which runs
down from 1 +iT to 1 along a straight line parallel to the imaginary-t axis (see Fig. 6.5). By
Cauchy’s theorem, I(x) = f¢, +c,+c, In t €™ dr. Next we let T — +oo. In this limit the contribu-
tion from C, approaches 0. (Why?) In the integral along C, weset t = is, and in the integr al along
C, we set t = 1 + is, where s is real in both integrals. This gives

I(x) = ij In (is)e™™ ds i [ In (1 +is) ™+ ds. (6.6.4)
0 V]

The sign of the second integral on the right is negative because Cj, is traversed downward.

Observe that both integrals in (6.6.4) are Laplace integrals. The first integral can be done
exactly. We substitute u = xs and use In (is) = In s + in/2 and the identity |5 ¢ In u du = —,
where y = 0.5772... is Euler’s constant, and obtain

i '[ In (is) e”* ds = —i(In x)/x — (iy + n/2)/x.
0
We apply Watson’s lemma to the second integral on the right in (6.6.4) using the Taylor expansion
In(1+is)= -3, (—is)"/n, and obtain
= (=if(n - 1)!

©
_ ic) pix(1+is) Jo o oix
1J‘ In (1 +is) ds ~ ie™ Y T
o n=1 X

X — +00.
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iT - 1 +iT

Im ¢

¢, oY

Steepest-descent
paths

Less steep- / \

descent path D

Original contour C 1 Re ¢

Complex-¢ plane

Figure 6.5 It is possible to convert the Fourier integral /(x) in (6.6.3) into a Laplace integral
merely by deforming the original contour C into C, + C, + C; as shown above and then allowing
T — . C, and C, are called steepest-descent paths because |exp [xp(t)]| decreases most rapidly along
these paths as ¢ moves up from the real-t axis; |exp [xp(t)]| also decreases along D, but less rapidly
per unit length than along C,.

Combining the above two expansions gives the final result:

(=if(n — 1)!

ilnx iy+mn2 -
———-——u+ie“z—————x-nﬂ—, X = +00.
n=1

X X

I(x) ~

Let us review the calculation in the preceding example. For the integral
(6.6.3), p(t) = it. For this function, paths of constant Im p(t) are straight lines
parallel to the imaginary-t axis. On the particular contours C, and C,,
Im p(t) = 0 and 1, respectively. Note that Im p(t) is not the same constant on C,
and Cj, but this does not matter; we have applied Laplace’s method separately to
each of the integrals on the right side of (6.6.4). Since Im p(t = 0) # Im p(t = 1),it
is clear that there is no continuous contour joining ¢ = 0 and ¢t =1 on which
Im p(¢) is constant. This is why it is necessary to deform the original contour C
into C, and C; which are joined at co by C, along which the integrand vanishes.
In general, we expect that if Im p(¢)is not the same at the endpoints of the original
integration contour C, then we cannot deform C into a continuous contour on
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which Im p(t) is constant; the best one can hope for is to be able to deform C into
distinct constant-phase contours which are joined by a contour on which the
integrand vanishes.

Now we can explain why the procedure used in Example 1 is called the
method of steepest descents. The contours C, and C; are called contours of
constant phase because the phase of the complex number e**” is constant. At the
same time, C, and Cj; are also called steepest-descent paths because ||
decreases most rapidly along these paths as ¢ ranges from the endpoints O and 1
toward co. Any path originating at the endpoints 0 and 1 and moving upward in
the complex-t plane is a path on which || decreases (see Fig. 6.5). However,
after traversing any given length of arc, || decreases more along the vertical
paths C, and C, than along any other path leaving the endpoints 0 and 1,
respectively. We will explain this feature of steepest-descent paths later in this
section.

Example 2 Full asymptotic behavior of [} ¢ dt as x — + 0. The method of stationary phase
can be used to find the leading behavior of the integral I(x) = [} ¢ dt. Here y/(t) =t 2, so the
stationary point lies at ¢ = 0 and, using (6.5.12), I(x) ~ 4./n/x ¢™* (x = +0). The method of
steepest descents gives an easy way to determine the full asymptotic behavior of I(x). [The
method of integration by parts also works (see Prob. 6.57).] )

As in Example 1, we try to deform the contour C: 0 <t < 1 into contours alomg which
Im p(t) is constant, where p(t) = it>. We begin by finding a contour which passes through t = 0
and on which Im p(t) is constant. Writing t = u + iv with u and v real, we obtain Im p(t) =
u?> — v At t =0, Im p = 0. Therefore, constant-phase contours passing through ¢ = 0 must
satisfy u = v or u= —v everywhere along the contour (see Fig. 6.6). On the contour u = —v,
Re p(t) = 2%, so || = ™" increases as ¢t = (i — 1)v — co. This is called a steepest-ascent
contour; since there is no maximum of |e**| on this contour, Laplace’s method cannot be
applied. On the other hand, the contour u = v is a steepest-descent contour because Re p(t) =
—2%, so |e*®| =e 2" decreases as t= (1 +iv— 0. The contour C,: t= (1 + i
(0 < v < ) is comparable to the contour C, employed in Example 1.

Next, we must find a steepest-descent contour passing through ¢t = 1 along which I'm p(t) is
constant. At t =1, the value of Im p(t) is 1. Therefore, the constant-phase contour passing
through u = 1, v = Ois given by u = \/v*> + 1. Since Re p(t) = —2uv decreases ast = u + iv »
along the portion of this constant-phase contour with 0 < v < o0, the steepest-descent contour
passing through ¢t = 11is givenby C5:¢t = /o> + 1 + i,0 < v < c0. Note that C, and C5 become
tangent as v — + oo (see Fig. 6.6).

The next step is to deform the original contour C: 0 <t < linto C, + C;, in which C, is
traversed from t = oo to t = 1. Along C,, Im p(t) = 0, while along C, Im p(t) = 1. Since the
value of Im p(t) is different on C, and C,, it is clear that the original contour cannot be
continuously deformed into C; + Cj. Rather, we must include a third contour C, which bridges
the gap between C, and C;. We take C, to be the straight line connecting the points (1 + i)V on
C,and \/V? + 1 + iV on C, (see Fig. 6.6). C can be continuously deformed into C, together with
the portions of C, and C, satisfying 0 <v < V. Now, as V — o, the contribution from the
contour C, vanishes. (Why?) Thus,

Ix)=[ e dr~ j & dr. (6.6.5)
‘¢, [
The integral along C, can be evaluated exactly. Setting ¢t = (1 + i)v, we obtain

; ® 1 .
J e dt = (1 +1i) [ e gy = 5\/—7;(2"/‘“ (6.6.6)

Cy [



284 LOCAL ANALYSIS

Im¢

V+iv VT 1 +iv

Steepest-descent
path C;

Cy

Steepest-descent
path C3

Steepest-
ascent path
Less steep-
descent
path C,

Original contour C 1 Re ¢

Complex-t plane

Figure 6.6 The Fourier integral I(x) in Example 2 becomes a pair of Laplace integrals if the
original contour C is distorted into C, + C, + C; and V is allowed to approach co. To simplify
the evaluation of the integral along C;, we can replace the lower part of the contour C;3 by C,.

This contribution is precisely the leading behavior of I(x) as x - +co that we found using the
method of stationary phase.

Now we evaluate the contribution to /(x) from the integral on C;. Note that if we substitute
t=/v?+1+ip,0<v < oo,then p(t) = it? = i — 2v,/v? + 1. This verifies that C, is a curve of
constant phase; it is also a curve of steepest descent. An easy way to obtain the full asymptotic
expansion of the integral over C, is to use Watson's lemma. To do this, the integral must be
expressed in the form {§ f(s)e™* ds. This motivates the change of variables from ¢ to s where s is
defined by

pt)y=it?=i-s; (6.6.7)

observe that s =2v./v? + 1 is real and satisfies 0 <5 < o0 along Cj. Since t = (1 + is)"/?,
dt/ds = %i(1 + is)~ "2, so

= xs

o«
J e dr = Lie' I ds.

e

Cy o J1+is

To apply Watson’s lemma, we use the Taylor expansion
o

(L+is)72 = ¥ (~is)T(n + 4yn! ()

n=0
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We obtain

g ® T(n+3)
| e=de~ciex ¥ r(i) L (6.6.8)
Cy n=0

Combining this result with that in (6.6.6) gives the full asymptotic expansion of /(x)asx — +o0:

)~~\/— s _ .xz(_,y n+s L (6.69)

o Tyt
ns

Finally, we mention an alternative way to obtain the result in (6.6.8) for the integral on C,.
The substitution in (6.6.7) is an exact parametrization of the curve C, in terms of the real
parameter s. However, as we know from our discussion of Laplace’s method in Sec. 6.4, it is only
the immediate neighborhood of the maximum at ¢ = 1 that contributes to the full asymptotic
expansion of the integral on C,. Therefore, it is not necessary to follow the curve C; exactly. It is
correct to shift the integration path C, to one which still passes through the maximum att = 1
and which is a descent contour in the sense that |e*®| decreases and rejoins C, for large |t].
Any deformation of C; of this kind does not change the value of the integral because the
integrand is analytic. For the present example, a convenient alternative to C, is a contour C;
which originates at t = 1, goes vertically upward parallel to the imaginary-t axis, and the n rejoins
the contour C, at any point in the upper half plane (see Fig. 6.6). Only the vertical straight-line
portion of C, in the immediate vicinity of t = 1 contributes to the full asymptotic expansion of
the integral. We can parametrize the straight-line portion of Cy neart = 1 by t = 1 + iv, where v
is real and 0 < v < ¢ with ¢ small. Thus,

. o€
ox? df = ‘ &5 4t~ i I eixt1+iv? g,
cy A ‘o
c
~2xvg it gy, X = +00.
o
Using Laplace’s method
e e W (i 2n
o 2xvgixvl dv~| ey ( tx')"v dv
o ‘o n=0 M
@ .
-3 (—iy@n)! o too
S 2 g e

Since (2n)!/(2>"n!) = T(n + 1)/T'(}), we have reproduced (6.6.8) exactly.

This alternative calculation, in which we have replaced the curved path C, by a path C,
which begins as a straight line, is an important computational device that is frequently helpful in.
the method of steepest descents. Note that C,, is neither a curve of constant phase nor a curve of
steepest descent, although it is a curve of descent of |e**”|. Other descent curves could be used
instead of C, (see Prob. 6.58).

Example 3 Sophisticated example of the method of steepest descents. What is the leading behavior
of the generalized Fourier integral

I(x) = ‘ l exp (ixe™ ') ds (6.6.10)

as x - +00? This is a sophisticated example because s = 0 is an infinite-order stationary point;
i.e., all derivatives of e~ !/ vanish as s » 0+. We know from our discussion of the method of
stationary phase that if the first nonvanishing derivative of y in (6.5.1) at a stationary point is 7,
then I(x) must vanish like x™!7 as x - + co0. Therefore, we expect that if the integrand has an
infinite-order stationary point, I(x) vanishes less rapidly than any power of 1/x as x — +o0.
However, the Riemann-Lebesgue lemma guarantees that I(x) does indeed vanish as x — + 0.
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How fast does I(x) in (6.6.10) vanish? It is hard to apply the method of stationary phase to
I(x) directly. (Try it!) However, the method of steepest descents provides a relatively easy
approach. We begin by making the substitution t = e */:

The form of this integral is similar to that of the integral (6.6.3) considered in Example 1.
Therefore, as in Example 1, we shift the contour C: 0 <t < /e to two vertical lines parallel to the
imaginary-¢ axis:

ixt

= . T .‘C] md:, (6.6.11)

where C, is thepatht =iv (0 <v < oo)and C,isthe patht = 1/e + iv (0 < v < o). Now we find
the leading behavior of each of the integrals on the right in (6.6.11).

The integral on the path C, requires only a straightforward application of Laplace’s
method. We substitute t = 1/e + iv (0 < v < c0) and obtain

. eixl . Lo e v
S = ide v~ ieeefx,  x— +oo. (6612
A’CJ mep .‘0 e+ w)in (e T 0~ 1eelx x> fo0. (6612)

The integral on C, is more difficult. We simplify the integral by substituting = iv
(0 < v < o) and perform one integration by parts:

ixt © - xv © —xv

x|

c e
1(x)= | | mw

I, Y e .|0 N (6.6.13)

The integral on the right side of (6.6.13) is a Laplace integral; we can restrict the range of
integration to the vicinity of v = 0 without altering its asymptotic expansion as x — +co. Thus,
’,: e
o In (iv)
This integral does not yield to a straightforward application of Laplace’s method because
the integrand vanishes at v = 0. Moreover, the conventional treatment of a moving maximum
[see the derivation of the Stirling series for I'(x) given in Example 10 of Sec. 6.4] does not work
because the moving maximum of the integrand is too broad (see Prob. 6.47). A good way to
proceed is to substitute r = xv and thus obtain

W~

where we have used the relation In (iv) = In v + in/2. Next, we argue that the immediate vicinity
of the origin, say 0 < r < 1/x'/2, does not contribute to the asymptotic expansion of the integral
as x - + 0. To prove this we bound the contribution to I,(x) from 0 < r < 1/x"?:

Ii(x)~ -

dv, X — +o00.

_——dr, X — + 00,
lnr—lnx+m/2

L Lxt2 P

| <,
o Inr—1In x + in/2 nx!'2

because |Inr—Inx +in/2| = n/2 and |e™"| < 1. This contribution to I,(x) is negligible
because, as we shall see, the full asymptotic expansion of I ,(x) s a series in inverse powers of In x.
Thus,
ex e "
I,(x)~ — e, X — + 0. 6.6.14
%) Dwalnr—Inx+im2" (6.6.14)

To expand the integral in (6.6.14), we Taylor expand the integrand in powers of 1/In x:

1 1 o ;. n
(m/2+lnr), X1 < < ox, X o 400,
Inr—Inx+in2 Inx 5%

In x
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1 0
Thus, I(x)~—
n

Inx /25400

oo A’(in/2+ln r
e r|l L

dr, - +o00. 6.6.
.- ) r x 0 (6.6.15)

The range of each of the integrals in (6.6.15) can be extended to 0 < r < oo with an error smaller
than any inverse power of In x. (Why?) Evaluating the first two integrals, we obtain
1 in/2 -y

L)~ = + TE R (6.6.16)

where we have used [ In re™" dr = —y. The coefficient of the general term in (6.6.16) may be
expressed in terms of derivatives of I'(t) at ¢ = 1 (see Prob. 6.59).
Combining the results (6.6.12) and (6.6.16) with (6.6.11), we obtain the final result
1 in2—-y

I(x)~— +
) Inx  (Inx)? ’

X — +00. (6.6.17)

One could not have guessed this result from a cursory inspection of the original integral in
(6.6.10)! Does this asymptotic series diverge? (See Prob. 6.60.) In Table 6.1 we compare numeri-
cal values of I(x) with the asymptotic results for I(x) given in (6.6.17).

Formal Discussion of Steepest-Descent Paths in the Complex Plane

In the previous three introductory examples, we have shown that deforming con-
tours of integration in the complex-t plane can facilitate the asymptotic evaluation
of integrals. It is now appropriate to give a more general discussion of steepest-
descent (constant-phase) contours.

We begin by recalling the role of the gradient in elementary calculus. If f (u, v)
is a differentiable function of two variables, then the gradient of f is the vector
Vf = (df/du, df /dv). This vector points in the direction of the most rapid change of f
at the point (u, v). In terms of the gradient, the directional derivative df/ds in the
direction of the unit vector n is df/ds = n - Vf. This directional derivative is the
rate of change of f in the direction n. Thus, the largest directional derivative is in
the direction n = Vf/|Vf | and has magnitude |Vf |. On a two-dimensional con-
tour plot of f(u, v), the vector Vfis perpendicular to the contours of constant f

Table 6.1 Comparison between the exact value of the integral I(x) in (6.6.10) and
one-term and two-term asymptotic approximations to I(x) in (6.6.17) obtained using
the method of steepest descents

One-term asymptotic Two-term asymptotic

In x Exact value of I(x) approximation approximation

0 0.9814 + 0.1467i @ ©

2 0.3077 + 0.5419i 0.5000 03557 + 0.3927i

4 0.2499 + 0.0643i 0.2500 0.2139 + 0.0982i

6 0.1428 + 0.0423i 0.1667 0.1506 + 0.0436i

8 0.1146 + 0.0227i 0.1250 0.1160 + 0.0245i

10 0.0935 +0.0143i 0.1000 0.0942 + 0.0157i

12

0.0790 + 0.0100i 0.0833 0.0793 + 0.0109i
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(level curves). Note that the directional derivative in the direction of the tangents
to a level curve is 0.

We will now give a formal proof that constant-phase contours are also steep-
est contours. Let p(t) = ¢(t) + iyy(t) be an analytic function of the complex vari-
able t = u + iv. Also, for the moment, we restrict ourselves to regions of the
complex-t plane in which p'(t) # 0.

We define a constant-phase contour of e*”® where x > 0 as a contour on
which y(¢) is constant. A steepest contour is defined as a contour whose tangent is
parallel to V|| = Ve**"), which is parallel to V. That is, a steepest contour is
one on which the magnitude of e** is changing most rapidly with ¢.

Now we will show that if p(¢) is analytic, then constant-phase contours are
steepest contours. If p(t) is analytic, then it satisfies the Cauchy-Riemann equa-
tions

0¢p/0u = dys/ov, 0¢p/0v = —dY/ou.
Therefore,

(0b/0u)(@/0u) + (0/0)(@/0v) = 0.

However, this equation can be written in vector form as V¢-Viy =0, so V¢ is
perpendicular to Vi and the directional derivative in the direction of V¢ satisfies
dy/ds = 0. Thus, | is constant on contours whose tangents are parallel to V¢,
showing that constant-phase contours are also steepest contours.

There is a slightly more sophisticated way to establish that constant-phase
contours are steepest contours. It is well known that an analytic function p(t)isa
conformal (angle-preserving) mapping from the complex-¢ plane (u, v) to the
complex-p plane (¢, ¥) if p'(t) # 0. Therefore, since lines of constant u are perpen-
dicular to lines of constant v, lines of constant ¢ are perpendicular to lines of
constant . But lines of constant ¢ are also perpendicular to steepest curves of ¢.
This reestablishes the identity of steepest and constant-phase contours.

In the above two arguments, it was necessary to assume that p'(t) # 0. In the
second argument, this condition was necessary because a map is not conformal at
a point where p’(t) = 0. Where was this condition used in the first argument?

Saddle Points

When the contour of integration in (6.6.1) is deformed into constant-phase con-
tours, the asymptotic behavior of the integral is determined by the behavior of the
integrand near the local maxima of ¢(t) along the contour. These local maxima of
¢(t) may occur at endpoints of constant-phase contours (see Examples 1 to 3) or
at an interior point of a constant-phase contour. If ¢(¢) has an interior maximum
then the directional derivative along the constant-phase contour d¢/ds = |V |
vanishes. The Cauchy-Riemann equations imply that V¢ = Vi = 0so p’(t) = O at
an interior maximum of ¢ on a constant-phase contour.

A point at which p’(t) = 0 is called a saddle point. Saddle points are special
because it is only at such a point that two distinct steepest curves can intersect.
When p'(£,) # 0, there is only one steepest curve passing through ¢ and its tangent
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is parallel to V¢. In the direction of V¢, |e**| is increasing so this portion of the
curve is a steepest-ascent curve; in the direction of —V¢, |e*| is decreasing so
this portion of the curve is a steepest-descent curve. On the other hand, when
p'(to) = 0 there are two or more steepest-ascent curves and two or more steepest-
descent curves emerging from the point ¢,.

To study the nature of the steepest curves emerging from a saddle point, let us

study the region of the complex-t plane near ¢,.

Example 4 Steepest curves of e’ near the saddle point t =0. Here p(t) = t>. Observe that
p'(t) = 2t vanishes at ¢ = 0, which verifies that O is a saddle point. We substitute t = u + iv and
identify the real and imaginary parts of p(t):

p(t) =u? —v* + 2iuv,  P(t)=u — 02,  Y(t) = 2uv.

Since p(0) = 0, the constant-phase contours that pass through t = 0 must satisfy y(t) = O every-
where. The constant-phase contours u = 0 (the imaginary axis) and » = 0 (the real axis) cross at
the saddle point ¢t = 0.

All four curves that emerge from ¢ = 0, (a) u = 0 with v positive, (b) u = 0 with v negative, (c)
v = 0 with u positive, and (d) v = 0 with u negative, are steepest curves because p'(t) # 0 except at
t =0. Which of these four curves are steepest-ascent curves and which are steepest-descent
curves? On curves (a) and (b), ¢(t) = —v?, so ¢ is decreasing away from t = 0; these curves are
steepest-descent curves. On curves (c) and (d), ¢(t) = u?,so ¢ is increasing away from t = O; these
curves are steepest-ascent curves. A plot showing these steepest-ascent and -descent curves as well
as the level curves of ¢ away from t = 0 is given in Fig. 6.7.

Example 5 Steepest curves of e “"' near the saddle point t = 0. Here p(t) = i cosh t,so p'(t) =
i sinh ¢ vanishes at t = 0. If we substitute ¢ = u + iv and use the identity

cosh (u + iv) = cosh u cos v + i sinh u sin v,
we obtain the real and imaginary parts of p(t):
¢(t)= —sinhusinv,  Y(t) = cosh ucos v.

Since p(0) = i, the constant-phase contours passing through ¢ = 0 must satisfy y(r) = Im p(r) = 1.
Thus, the constant-phase contours through ¢t = 0 are given by

coshucosv=1

Other constant-phase contours (steepest-descent and -ascent curves) are given by coshucosv = ¢,
where ¢ is a constant. On Fig. 6.8 we plot the constant-phase contours for various values of c.
Observe that steepest curves never cross except at saddle points.

Example 6 Steepest curves of e*""*~ near the saddle point at t = 0. Here p(t) = sinh t —t, so
p'(t) = cosh t — 1 vanishes at t = 0. Note that p”(t) = sinh t also vanishes at 0 and that the lowest
nonvanishing derivative of p at t = 0 is p”(t). We call such a saddle point a third-order saddle
point. At t = 0 six constant-phase contours meet. To find these contours we substitute t = u + iv
and identify the real and imaginary parts of p:

p = ¢ + iy = (sinh u cos v — u) + i(cosh u sin v — v).
But p(0) = 0. Thus, constant-phase contours passing through ¢ = 0 satisfy cosh u sin v —v =0.
Solutions to this equation are v = 0 (the u axis) and u = arc cosh (v/sin v).
1In Prob. 6.61 you are asked to verify that (a) a total of six steepest paths emerge fromt = 0;
(b) paths emerge at 60° angles from adjacent paths; (c) as t moves away from 0, the paths

alternate between steepest-ascent and steepest-descent paths; (d) the paths approach oo,
+ 00 +in, + 0 — in. All these results are shown on Fig. 6.9.
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Figure 6.7 Steepest curves of ¥’ near the saddle point at ¢t = 0 in the complex-t plane. The steepest
curves satisfy uv = constant. The level curves of ¢ satisfy u?> — v = constant and are orthogonal to
the steepest curves.

Example 7 Steepest curves of e*°*"~"/2) near the saddle point at t = 0. Here p(t) = cosh t —
t2/2. Note that p'(t), p"(t), and p"(t) all vanish at ¢ = 0. The first nonvanishing derivative of p(t) at
t =0 is d*p/dt*, so we call t = 0 a fourth-order saddle point. Eight constant-phase curves meet
at t = 0. Note that

p(t) = cosh u cos v + (v? — u?)/2 + i(sinh u sin v — u).

Thus, constant-phase contours emerging from ¢ = 0 satisfy = sinh u sin » — upv = 0. Solutions
to this equation are u = 0 (the imaginary axis), v = 0 (the real axis), and (sinh u)/u = v/sin v.

In Prob. 6.62 you are asked to verify the results on Fig. 6.10. Namely, that (a) eight steepest
paths emerge from t = 0, all equally spaced at 45° from each other; (b) as t moves away from 0,
the paths alternate between steepest-ascent and steepest-descent paths; (c} the four steepest-
ascent paths lie on the u and v axes; (d) the four steepest-descent paths approach +oo + im,
+oo —im

Steepest-Descent Approximation to Integrals with Saddle Points

We have seen that by shifting the integration contour so that it follows a path of
constant phase we can treat an integral of the form in (6.6.1) by Laplace’s method.
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Figure 6.8 Constant-phase (steepest) contours of exp (ix cosh t) in the complex-(t = u + iv) plane.
Constant-phase contours satisfy (cosh u) (cos v) = ¢, where ¢ is a constant. Saddle points lying at
t=0and t = tin are shown.

What happens when the constant-phase contour passes through a saddle point?
In the following examples we encounter this situation.

Example 8 Asymptotic expansion of J(x) as x - + c0. A standard integral representation for
Jo(x) [see (6.5.13)] is Jo(x) = §¥%, cos (x cos ) d6/n, which can be transformed into
1 in/2 .
Jo(x) = Re — j de eix ot (6.6.184)
M _in2

by substituting ¢ = i6.

We can certainly use the method of stationary phase to find the leading behavior of this
integral as x — + o (see Prob. 6.54). However, it is better to use the method of steepest descents
to find the higher-order corrections to the leading behavior. (Why?)

To apply the method of steepest descents we extend the contour to infinity. Note that the

integrals
1 —in/2

dt = coht, (6.6.18b)

in —~a —inf2
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Figure 6.9 Steepest curves of exp [x(—t + sinh t)] near the third-order saddle point at ¢t = 0. The plot
indicates that three steepest-descent curves and three steepest-ascent curves meet at ¢t = 0.
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Figure 6.10 Steepest curves of exp [x(—4t? + cosh t)] near the fourth-order saddle point at t = 0. The
graph shows that four steepest-descent curves and four steepest-ascent curves meet at t =0. In
Example 12 the structure of the saddle point is the same as the one in this graph shifted by in;
the steepest-descent curve used in Example 12 consists of the curves in the third and fourth quadrants
of this figure.
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Figure 6.11 To find the asymptotic behavior of Jo(x) as x > + oo we first represent J,(x) as an
integral along the special contour in (6.6.18a, b, c). Second, we observe that any Sommerfeld contour
C from —oo — in/2 to + o0 + in/2 is equally good. Third, to approximate the integral in (6.6.19) we
choose that Sommerfeld contour which is also a path of steepest descent through the saddle point at
t=0.

where the contour extends along a line parallel to and below the real axis, and

1 otin2
— dt eix cosh z, (6618C)
T2

where the contour extends along a line parallel to and above the real axis, are convergent and
pure imaginary (see Prob. 6.63). Thus, we have constructed the rather fancy represen tation

1 ;
Jolx)=Re — | deetxcome, (66.19)
‘c

where C is any contour which ranges from — oo — in/2 to + oo + in/2 (see Fig. 6.11). Such a
contour is called a Sommerfeld contour.
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From here on the steepest-descent analysis is easy because there is a curve of constant phase
which ranges from — oo — in/2 to + o0 + in/2 (see Fig. 6.8)! We have seen in Example 5 that this
curve passes through a saddle point at t = 0. The equation for this curve is cosh u cos v = 1. Note
that | “>***| attains its maximum value on the contour at the saddle point at t = 0. Thus, we know
from our study of Laplace’s method that as x - + oo the entire asymptotic expansion is deter-
mined by a small neighborhood about ¢ = 0.

To find the leading behavior of J,(x) as x — oo, we approximate the steepest-descent path in
a small neighborhood of t = 0 by the straight line t = (1 + i)s (s real) and approximate cosh ¢
near s = 0 by cosh ¢t ~ 1 + is? (s > 0). Thus,

Jo(x) ~ Re [(1 + i)/in] .[5 e s, x— +oo.

=-c
Extending the limits of integration to co and evaluating the integral gives

Jo(x) ~ Re [(1 + i)/in)e™*\/n/x = /2/nx cos (x — n/4), x— +c0.

To find the full asymptotic expansion of J(x) as x - + oo, we use Watson’s lemma. It is
simplest to parametrize the integration path in terms of ¢ = Re p(t). We know that along the
steepest-descent contour p(t) =i + ¢(t), where ¢(t) is real and ranges from ¢ =0 at t =0 to
¢=—o0 at t = +(0 +in/2). Also, we have ¢(t)=1icosht— i, so d¢ =isinh tdt. Thus,

= d¢/i,/ — ¢* — 2i¢. Substituting this result into (6.6.19) and replacing ¢ by — ¢ gives

pix-in/e o dp i) 12
V2| N (1—7)

T ‘0

To apply Watson’s lemma, we expand the square root:

(1 _ii’)_m _ i (i¢/2yT(n + %)

2 - n!'T@)

and integrate term by term:

Jo(x) ~ Re < W‘\/.Z_ X (Tt + 31 (2&) X - 400,

2 2 \/—

Thus, the full asymptotic expansion of J(x) is given by

Jo(x) = \/_xi;[a(x) cos (x — n/4) + B(x) sin (x — m/4)], (6.6.20)
where j‘: 2k—+2)]2x)_T1)k s X — + 00,

[Tk + HP(= 1+
d —_— i - +o0.
an kZO a2k + )@ T

The trick of adding the contour integrals (6.6.18b,c) to (6.6.18a) to derive (6.6.19) could have
been avoided by deforming the contour from —in/2 to in/2 into three constant-phase contours:
Cyit=—in/24+u(—o0 <u<0);C,:coshucosv=1;and C;:t=in/2 +u (0 <u< o). The
contributions from C, and C; cancel exactly in this problem.

Example 9 Asymptotic expansion of T(x) as x - +co. In Example 10 of Sec. 6.4 we used
Laplace’s method to show that

I(x) ~ x*e™*/2n/x (6.6.21)
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[see (6.4.39)]. In this example we use the method of steepest descents to rederive this result from a
complex-contour integral representation of I'(x) [see Prob. 2.6(/)]:

1 1
T 2. et7* dt, (6.6.22)
where C is a contour that begins at t = — o0 — ia (a > 0), encircles the branch cut that lies along
the negative real axis, and ends up at — oo + ib (b > 0) (see Fig. 6.12). The branch cut is present
when x is nonintegral because ¢~ is a multivalued function. The advantage of (6.6.22) over the
integral representatior. used in Example 10 is that it converges for all complex values of x and not
just those x for which Re x > 0. Nevertheless, in this example we will only investigate the
behavior of I'(x) in the limit x — + co.

We begin our analysis by making the same substitution that was made in Example 10 of Sec.
6.4; namely, ¢t = xs. This substitution converts the integrand from one that has a movable saddle
point to one that has a fixed saddle point. (Why?) The resulting integral representation is

1 1

e[ dsextmro, 6.6.23
I(x) 2nix“‘-‘c s ( )

w2

/\/

Branch cut

i

o
—4 2
Contour Cin (6.6.23) Complex-s plane
"1|'/2 o
T
+ Down
T
Deformation of
Cinto steepest
descent contour Saddle
oint
Branch cut P
L L 1 L " L - " 4 . |
3 T T T N i i
-4 -3 -2 -1 / 2

Complex-s plane

< Down 1

—

-

Figure 6.12 To find the asymptotic behavior of I'(x) as x — + o0, we represent I'(x) as the integral
in (6.6.23) along a contour C in the complex-s plane which goes around the branch cut on the
negative real axis. Then we distort C into a steepest-descent contour which passes through the saddle
point at s = 1.
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For this integral p(s) = s — In 5. Thus, p'(s) =1 — 1/sand p’ = 0 when s = 1. So there is a simple
(second-order) saddle point at s = 1.

To ascertain the structure of the saddle point we let s = u + iv and identify the real and
imaginary parts of p: p(s) = u — In \/u® + v? +i(v — arc tan v/u). At s = 1, p = 1. Therefore,
paths of constant phase (steepest curves) emerging from s = 1 must satisfy

v — arc tan v/u = 0.

There are two solutions to this equation: v = 0 and u = v cot v. These two curves are shown on
Fig. 6.12. In Prob. 6.64 you are asked to verify that (a) the steepest-descent curves are correctly
shown on Fig. 6.12; (b) as s moves away from s = 1, steepest-descent curves emerge from s = 1
initially parallel to the Im s = v axis; (c) the steepest-descent curves cross the v axis at +in/2 and
approach s = — oo + im.

To use the method of steepest descents, we simply shift the contour C so that it is just the
steepest-descent contour on Fig. 6.12 which passes through the saddle point at s = 1. Let us
review why we choose such a contour. In general, we always choose a steepest-descent contour
because on such a contour we can apply the techniques of Laplace’s method directly to complex
integrals. If the steepest-descent contour is finite and does not pass through a saddle point, then
the maximum value of |e* | must occur at an endpoint of the contour and we need only perform
a local analysis of the integral at this endpoint. However, in the present example the contour has
no endpoint and is infinitely long. It is crucial that it pass through a saddle point because ||
reaches its maximum at the saddle point and decays exponentially as s — oo along both of the
steepest-descent curves. If there were no saddle point, then, although |e**| would decrease in one
direction along the contour, it would increase in the other direction and the integral would not
even converge!

Now we proceed with the asymptotic expansion of the integral in (6.6.23). We can approxi-
mate the steepest-descent contour in the neighborhood of s = 1 by the straight line s = 1 + iv.
This gives the Laplace integral

1 .

—~————~| dy 12 X— +w
I(x) 2ax*" 1.0 ’ ’

which we evaluate by letting ¢ — oo

1 1 e
o~ T ﬁ\/EZ X— +co.

We thereby recover the result in (6.6.21).

Example 10 Steepest-descents approximation of a real integral where Laplace’s method fails. In
this example we consider the real integral

1
I(x) = | dte™*" cos (5xt — xt’) (6.624)
“o

in the limit x — + co. This integral is not a Laplace integral because the argument of the cosine
contains x. Nonetheless, one might think that one could use the ideas of Laplace’s method to
approximate the integral. To wit, one would argue that as x — + oo, the contribution to the
integral is localized about x = 0. Thus, a very naive approach is simply to replace the argument of
the cosine by 0. If this reasoning were correct, then we would conclude that

1

: n
Ix)~| dte ™~ [— x— +o0. WRONG
()~ | T ( )

This result is clearly incorrect because e~ * does not become exponentially small until ¢ is
larger than 1/\/;. Thus, when ¢t ~ 1/\/; (x = +00), the argument of the cosine is not small. In
particular, the term 5xt is large and the cosine oscillates rapidly. This suggests that there is

destructive interference and that I(x) decays much more rapidly than /n/16x as x —» + 0.
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Can we correct this approach by including the 5xt term but neglecting the xt* term? After
all, when ¢ lies in the range from 0 to 1/\/;, the term xt*> — 0 as x - + co. Thus, xt* does not even
shift the phase of the cosine more than a fraction of a cycle. If we were to include just the Sxt term,
we would obtain

1
I(x) ~ I dee™* cos (5xt),  x— +oo,
‘o

®
~ [ dte™** cos (5xt), x— +oo,
‘o

©
1 [ d o= 4w+ 5ixt

-

1 —x(2t—5i/4)2-25x/16
3 dte

Jm/x e 23x/16 X - + 0. (WRONG)

S

Although this result is exponentially smaller than the previous wrong result, it is also wrong! Itis
incorrect to neglect the xt* term (see Prob. 6.65).

But if we cannot neglect even the xt* term, then how can we make any approximation at all?
It should not be necessary to do the integral exactly to find its asymptotic behavior!

The correct approach is to use the method of steepest descents to approximate the integral
at a saddle point in the complex plane. To prepare for this analysis we rewrite the integral in the
following convenient form:

I(x)=14 | dt e 4xt+ Six—ixd
T-1
1
=1de72x dte™?, (6.6.25)
-1
where p()=—( =iy —i(t—i) (6.6.26)

Our objective now is to find steepest-descent (constant-phase) contours that emerge from
t =1 and t = —1, to distort the original contour of integration t: —1 — 1 into these contours,
and then to use Laplace’s method. To find these contours we substitute t = u + iv and identify the
real and imaginary parts of p:

plt)=¢ +iy
= —0v® +4v? = Sv + 3uPv — 4u? + 2 + i(3uv? — 8uv + Su — u?). (6.627)
Note that the phase of y =Imp at t=1 and at t= —1 is different: Im p(—1)= —4,
Im p(1) = 4. Thus, there is no single constant-phase contour which connects t = —1tot= 1.
Our method is similar to that used in Examples 1 and 2. We follow steepest-descent
contours C, and C, fromt = —1 and from ¢ = 1 out to co. Next, we join these two conto urs at co

by a third contour C, which is also a path of constant phase. C; must pass through a saddle point
because its endpoints lie at. co; otherwise, the integral along C, will not converge (see the
discussion in Example 9).

There are two saddle points in the complex plane because p'(t) = —2(t — i) — 3i(t — i) =0
has two roots, t = i and t = 5i/3. The contour C, happens to pass through the saddle point at i.
On Fig. 6.13 we plot the three constant-phase contours C,, C,,and Cj. It is clear that the original
contour C can be deformed into C; + C, + C;. (In Prob. 6.66 you are to verify the results on Fig.
6.13.)

The asymptotic behavior of I(x) as x > + oo is determined by just three points on the
contour C, + C, + C: the endpoints of C, and C, at t = —1 and at t = +1 and the saddle
point at i. However, the contributions to I(x) at t = +1 are exponentially small compared with
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Figure 6.13 To approximate the integral in (6.6.25) by the method of steepest descents we deform
the original contour connecting the pointst = —1 to ¢t = 1 along the real axis into the three distinct
steepest-descent contours above, one of which passes through a saddle point at ¢ =i. Steepest-
ascent and -descent curves near a second saddle point at ¢t = 5i/3 and steepest-ascent curves going
from 1 and —1 to —ioo are also shown, but these curves play no role in the calculation.

that at ¢t = i (see Prob. 6.67). Near ¢ = i we can approximate the contour C, by the straight line
t =i+ uand p(t) by p(t) ~ —u? (u— 0). Thus,

l(x)~%e‘2‘[ e ™ du,  x- +oo,

—&
~2= /m/x, X — + 0. (6.6.28)
This, finally, is the correct asymptotic behavior of /(x)! This splendid example certainly shows the
subtlety of asymptotic analysis and the power of the method of steepest descents.

~%g

Example 11 Steepest-descents analysis with a third-order saddle point. In Example 5 of Sec. 6.5
and Prob. 6.55 we showed that

1 1
J(x) ~ 27233~ vsT (3) X" x5 oo, (6.6.29)
s
Here we rederive (6.6.29) using the method of steepest descents.
We begin with the complex-contour integral representation for J (x):

1
J - df x sinh '_", 6630
)= dre (6630)
where C is a Sommerfeld contour that begins at + oo — in and ends at + oo + im. Setting v = x
gives

Jdx) = 5= | drexsimne, (6.631)
C

1
2ni
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For this integral p(t) = sinh t — ¢ has a third-order saddle point at t = 0.

We have already analyzed the steepest curves of this p(t) in Example 6 (see Fig. 6.9). Note
that we can deform the contour C so that it follows steepest-descent paths to and from the saddle
point at ¢t = 0.

The contribution to J(x) as x — + co comes entirely from the neighborhood of the saddle
point. In the vicinity of the saddle point we can approximate the contours approaching and
leaving ¢t = O by the straight lines ¢t = re~'™* and t = re’™. Substituting into (6.6.30) gives

t 0 Zinf3 - Lo inf3
J(x) ~— [ dre ™3¢ ’6+'—,j drei™3e*"16 x5 oo,
2ni

2nid,_, =0

To evaluate these integrals, we replace ¢ by oo

oM3 _ pminid o
Jx(x)“‘—am.—"’ dre*rls, X~ +o00,
r=0
= Sin—(—’£2(6/x)”3 Jm e~ " dr, X — 4 00.
n

o

But [§ e™" dr =4 {3 e7s7%* ds = iT'(}). Thus,

1~ (0 e )

which reproduces the result in (6.6.29).

Example 12 Steepest-descents analysis with a fourth-order saddle point. What is the leading
asymptotic behavior of the real integral

I{x) =f dt cos (xmt) e xicosh e+ (6.6.32)
0
as x » +00? To analyze I(x) we first rewrite the integral as

©
I(x) = _21 J gxlint~cosh1=12/2)

-©

©
= domxmu2 [ dt e¥tcosh u=imy=(1=im3/2] (6633)

For this integral p(t) = cosh (¢t — in) — (¢ — in)*/2 has a fourth-order saddle point at t = ir (see
Example 7). The steepest-descent contours from this saddle point are drawn in Fig. 6.10 (the
saddle point in Fig. 6.10 is shifted downward by =).

To approximate (x) we shift the original integration path¢: — o0 — + oo from the real axis
into the complex plane so that it follows a steepest-descent curve passing through the saddle
point. The asymptotic behavior of /(x) is completely determined by the contribution from the
saddle point. In the neighborhood of the saddle point at in, we can approximate the steepest-
descent contour by the straight lines ¢ = in + re'™* to the left of the saddle point and
t = in + re”"™* to the right of the saddle point. In terms of r, (6.6.33) becomes

0 3
I(x) ~ o= [J’ il drex(n—ﬁ/14)+j eI dpoxi-r2)| X = + 00,
-t o

®
= e~ *®24x oo ("/4),[ dr =124, X — +00.
0

But [¥ dre™" =14 [¥ dr r™¥3¢™" = iT'(}). Thus, we obtain the final result that

I(x) ~ &7 B(6/x)*T'(}). (6.634)
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This result could not have been obtained by performing a Laplace-like analysis of the real
integral in (6.6.32). Suppose, for example, we argue that as x — + co the contribution to (6.6.32)
comes entirely from the neighborhood of the origin t = 0. Then it would seem valid to replace
cosh t by 1 + t2/2, the first two terms in its Taylor series. If we do this, we obtain an integral
which we can evaluate exactly:

© o
J dt cos (xnt)e“““”:%J dt exe X1
o ~o

©
dt e—x(l—ix/l)‘e—xU*n‘/“)

=1 /mjx e 1=,

But this does not agree with (6.6.34) and is therefore not the asymptotic behavior of I(x) as
x — +oo! What is wrong with this argument? (See Prob. 6.68.)

Steepest Descents for Complex x and the Stokes Phenomenon

Until now, x in (6.6.1) has been treated as a large real parameter. However, the
method of steepest descents can be used to treat problems where x is complex. As
we have already seen in Secs. 3.7 and 3.8, an asymptotic relation is valid as x — oo
in a wedge-shaped region of the complex-x plane. At the edge of the wedge, the
asymptotic relation ceases to be valid and must be replaced by another asymptotic
relation. This change from one asymptotic relation to another is called the Stokes
phenomenon.

The Stokes phenomenon usually surfaces in the method of steepest descents in
a relatively simple way. For example, as x rotates in the complex plane, the
structure of steepest-descent paths can change abruptly. When this happens, the
asymptotic behavior of the integral changes accordingly. The integral representa-
tion of Ai (x) behaves in this manner (see Prob. 6.75). The Stokes phenomenon
can also appear when the contribution from an endpoint of the contour suddenly
becomes subdominant relative to the contribution from a saddle point (or vice
versa). We consider this case in the next example.

Example 13 Reexamination of Example 10 for complex x. In this example we explain how the
Stokes phenomenon arises in the integral (6.6.25). It is essential that the reader master Example
10 before reading further.

The integral I(x) in (6.6.25) exhibits the Stokes phenomenon at arg x = tarctanj =
26.57° and at +n. When |arg x| < arc tan 4, the contribution to I(x) from the saddle point
at t = i dominates the endpoint contributions. As in (6.6.28), this gives

I(x)~ e~ /m/x, x— oo, |arg x| < arc tan }. (6.6.35)
When arc tan § < arg x < =, the endpoint contribution from t = — 1 dominates. We obtain (see
Prob. 6.69)
i—4 ;
I(x) ~ We““* Dx x—o0,arctan f<argx <m. (6.6.36)
X

When — = < arg x < —arc tan , the endpoint contribution from t = 1 dominates, giving

i+4 ,.
Ix)~ -2F2 e*x x5 00, —m<argx < —arc tan . (6.6.37
68x &
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It is interesting to see what happens to the steepest-descent contours as x is rotated into the
complex-x plane. We have plotted the steepest-descent contours for I(x) for arg x = 0°, 30°, 75°,
and 135° in Figs. 6.13 to 6.16. Observe that as arg x increases from 0° to 75°, the contours through
the endpoints at t = +1 and the saddle point at ¢t =i tilt and distort slightly. Note that the
asymptotes of these contours at co rotate by — (arg x)/3 as arg x increases. This is so because

Si__]
4i
1
3i

2i+

S 4
Tt
1 3 4 5
__.’21'_‘
=3it 0,
1 KN
—4i 1+
1 Complex-t plane
_5, .

Figure 6.14 Steepest-descent path for I(x) in (6.6.25) when arg x = 30°. (See Fig. 6.13.)
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Figure 6.15 Steepest-descent path for I(x) in (6.6.25) when arg x = 75°.



302 LOCAL ANALYSIS

=2i
Complex-t plane

-3

—4i

=5i 3
o)
ES

I’
v

Figure 6.16 Steepest-descent path for I(x)in (6.6.25) when arg x = 135°. Note that the steepest-descent
path no longer passes through the saddle point at ¢t =i as it does in Figs. 6.13 to 6.15.

Im [xp(t)] must be constant at t = co. The constancy of Im [xp(t)] on the steepest-descent con-
tours implies that the endpoint contours passing through t = + 1 rotate by —arg x neart = +1
and that the contour through t =i rotates by —(arg x)/2 near t = i. There is no abrupt or
discontinuous change in the configuration of the steepest-descent contours as arg x increases past
arc tan 1. In this example the Stokes phenomenon is not associated with any discontinuity in the
structure of the steepest-descent path. It occurs because the contribution from the saddle point
becomes subdominant with respect to the contribution from the endpoint as arg x increases past
arc tan 3.

When arg x reaches m — arc tan 2 = 116.57°, there is a discontinuous change in the
steepest-descent path for I(x) (see Prob. 6.69). As illustrated in Fig. 6.16, when arg x = 135°, the
steepest-descent contour no longer passes through the saddle point at t = i. When arg x >
116.57°, the steepest-descent contours from ¢t = + | meet at 00, s0 it is no longer necessary to join

. them by a constant-phase contour passing through the saddle point at i. The abrupt disappear-
ance of the saddle-point contour from the steepest-descent path when arg x increases beyond
116.57° does not affect the asymptotic behavior of I(x) because the saddle-point contribution
from t = i is subdominant when arc tan § < |arg x| < &

() 6.7 ASYMPTOTIC EVALUATION OF SUMS

In this section we discuss methods for finding the asymptotic behavior of sums
which depend on a large parameter x. We consider four methods in all: truncating
the sum after a finite number of terms, approximating the sum by a Riemann
integral, Laplace’s method for sums, and the Euler-Maclaurin sum formula. The
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first method is very elementary and rarely applicable, but for completeness we
illustrate it in the following brief example:

Example 1 Behavior of Y2, e”"**" as x - + co. The behavior of this convergent series is easy to
find because the sum of the terms with n = 1, 2, 3, ... is clearly subdominant with respect to the
first term as x — +o00. Thus, 1 + ™ + €™ % + -~ | (x > +00).

Approximation of Sums by Riemann Integrals

The Riemann integral I = [} f(t) dt is defined as the limit of the Riemann sum,

I = lim Z FE) st = ta),
N-o© n=0
where f(t) is continuous, t, is any point in the interval ¢, <, <t,,,, and
t, = a + n(b — a)/N. In the next two examples we show how to use this formula
to find the leading behavior of sums.

Example 2 Behavtor of S(x) = Y. 1/(n* + x*) as x - + co0. Note that each term in this series
decays to 0 like x 72 as x — + oo and that this series converges. One might therefore be tempted to
conclude that S(x) decays to 0 like x ~ 2. However, the correct behavior is

S()~—,  x— +oo. (611)
2x
The origin of this surprising result is that as x increases, more terms contribute significantly to the
leading behavior of S(x). Roughly speaking, x terms, each of size x~ 2, contribute to §(x) causing
S(x) to decay like x™! as x —» +oo0.
We can establish (6.7.1) by converting the series to a Riemann sum. We simply multi ply by
x, rewrite the series as

b 1
)= LT (n/x) *

and observe that as x — + oo the series becomes a Riemann sum for the convergent integral

@

dt =

T
L Tl (6.7.2)

Specifically, a Riemann sum for this integral is obtained by choosing the discrete points
t,=t,=n/x (n=0,1,2,...). This gives

1
ol +12

(tas1 — ta)

uMa

This Riemann sum converges to the integral in (6.7.2) as the interval t,,, — t, = x ' - 0. Thus,
we obtain lim, _, , xS(x) = n/2, which is just (6.7.1). For a higher-order approximation to S(x)see
Prob. 6.91.

Example 3 Behavior of ¥, <, <, n* as x > +0c0. We will show that the leading behavior of

S)= ¥ (6.7.3)
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for large x is

xa+1
—, Xx—- +o;a>—1, (6.7.4a)
a+1

S~ iy, x> tooja= —1, (6.7.45)
{(—a), x-o +oja< -1, (6.7.4c)

{p)= Y n™» Rep>L (6.7.5)

To verify (6.7.4a) we reason as in Example 2. We observe that as x — o0, x™*7'S(x) =
¥ 1 <n<x (B/xF/x is a Riemann sum for the integral 3 ¢* dt = 1/(x + 1), where we have approx-
imated the integral as a Riemann sum on the discrete points ¢, = n/x forn =1, 2, ..., [x] ([x]
stands for the largest integer less than x). This justifies (6.7.4a). The proof of (6.7.4b) was given in
Prob. 5.8. Finally, when o < — 1, the sum S(x) converges as x —» + o to S(+ o0) = {(—«). This
proves (6.7.4c).

Laplace’s Method for Sums

In the next example we show how to obtain the leading behavior of a sum by
following the philosophy of Laplace’s method which was introduced in Sec. 6.4.

Example 4 Leading behavior of Y 7., x"(n!)™* as x - +co. We have already encountered this
problem in Example 1 of Sec. 3.5 and Prob. 3.42. There we solved the problem by finding a
differential equation satisfied by the sum and then determining the asymptotic behavior of its
solutions. However, you will recall that because the differential equation was linear, local analysis
could not determine the overall multiplicative constant in the asymptotic behavior of the sum. In
this example we find the leading behavior of the sum directly and encounter no such ambiguities.

To find the leading behavior of this sum by Laplace’s method, we must identify the largest
term in the series. Let us examine the ratio of the (n — 1)th term to the nth term in the series:

X" (n = D) 7Hx"(nt)F = n¥/x.

Note that this ratio is less than 1 if n < x'* and greater than 1 if n > x'* Therefore, the
terms in the series increase as n increases until n reaches [x'*]. This is the largest term in the
series. The remaining terms decrease with increasing n.

As x - + o0, the terms in the series peak sharply near the n = [x'/*] term. Therefore, using
the principles of Laplace’s method, we expect that for any ¢ > 0

Py M1 +a)  yn
S(x)= 3 x"(nt)™*~ —. (6.7.6)
nz=:0 n=[x‘%}l -l (n!}

with errors that are subdominant with respect to every power of 1/x as x — + co.
Next we use the Stirling formula (see Sec. 5.4) to approximate each of the terms retained in
(6.7.6). If n = x'* + 1, where t is small compared with x'/¥, then by Stirling’s formula we have

n! ~ (nfe)'/2nn, n— 4+,
= (x'* + tye™"/2nn
= xken In(l'“x'llk’e—n\/m

~ xn/ke—x”*eﬁx‘l/l/z 27t Xl/Zk’ X — +00; t3 « lek,
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where we have truncated the Taylor expansion of In (1 + tx~'/*) after quadratic terms in ¢.
Therefore,

X n’)— kxlk —12kx " I/A/Z(zn)-kll ~1/2 X — +oO;n=x”"+t, t3 « lek.

Finally, we substitute this result into the sum on the right side of (6.7.6) and extend the
region of summation to oo, just as we do with integrals. We obtain

@
S(x)~ T eMxemihx M) kit - 112, X — +00. (6.7.7)

t=-w

The leading behavior of the sum on the right side of (6.7.7) can be obtained as in Examples 2
and 3 by observing that the sum is a Riemann sum for the integral
© et ikx "IN () =k12 =172 4y Hence, we evaluate this integral and find that the leading
behavior of S(x) as x —» + o0 is

S(x)~ (21[)41—“/2,(—I/ZX(I‘k)/Zkekxl/k’ X ~ + 0. (678)

Can you find the next-higher-order correction to this result? (See Prob. 6.89.)

Euler-Maclaurin Sum Formula

The Euler-Maclaurin sum formula is an elegant and general expression for the
asymptotic expansion of sums of the form

ORI (679)

as n— co0. For example, this formula can be used to find the full asymptotic
expansion of sums like Y4_, k% Y%_,Ink as n—oo and even sums like
Yo V(K2 + x%), Y0 (k +x)"% as x > + 0.

The Euler-Maclaurin sum formula involves Bernoulli polynomials B,(x)
which are defined as the nth derivative of te*/(e' — 1) evaluated att= 0 The ﬁrst
few Bernoulli polynomials are By(x)=1, By(x)=x—14, By(x)=x>— x +§
B,(x) is a polynomial of degree n. Some of the properties of these polynomials are
studied in Prob. 6.88. The Bernoulli numbers B, are defined in terms of Bernoulli
polynomials as B, = B,(0). The first few Bernoulli numbers are B, = 1, B, = —3,

=1 By;=0, B,= —3% Some of the properties of Bernoulli numbers are
exammed in Prob. 5.18. There it is shown that B,,,; =0forn > 1.
In terms of B, and B,(x), the full asymptotic expansion of F(n) in (6.7.9) is

1
F(n)~ = t)de+C _pyrr B o ,
(n) 2f(n)+] fe)de+ +,;( A e A s
(6.7.10)
where C is a constant given by the rather messy formula

C=.:if:o L;(( ll't;;)’;lfm(o)Jr 5/(0)
( 1y

tmE J By a(t = [ V(e) at (6.7.11)
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Table 6.2 Comparison between the exact sum of the first n reciprocal integers and
the one-, two-, and three-term asymptotic approximations to this sum glven by the
Euler-Maclaurin sum formula in (6.7.12)

5 1 | I I !

n ‘Elk nn nn+y nn+«y+2'l
10 2.928 968 25 2.302 585 09 2.879 800 76 2.929 800 76
50 4.499 205 34 3.912 023 01 4.489 238 67 4.499 238 67
100 5.187 377 52 4.605 170 19 5.182 385 85 5.187 385 85
500 6.792 823 43 6.214 608 10 6.791 823 76 6.792 823 76
1,000 7.485 470 86 6.907 755 28 7.484 970 94 7.485 470 94
5,000 9.094 508 85 8.517 193 19 9.094 408 86 9.094 508 86

and [¢] is the largest integer less than t. The proof of these formulas is left to
Prob. 6.88.

Example 5 Full asymptotic behavior of Y., 1/k as n — co. By (6.7.10) with f(¢) = 1/(¢ + 1) and
n replaced by n — 1,
" 1 B, B, B,
Celn4+Ch— -t A T8 -~ . 6.7.12
,;l PR R S 1 nme ( )

The constant C, as given in (6.7.11), is evaluated in Prob. 6.90; the result is C = y = 0.5772. In
Table 6.2 we test the accuracy of the expansion in (6.7.12).

Example 6 Full asymptotic behavior of In (n!) as n — co. Using f(t) = In (1 + t) and n replaced
by n — 1, (6.7.10) gives

B, B,
1-2n NER™ +5~6n5

ln(n')~(n+2)lnn—n+C+ +,  n— oo, (6.7.13)
Here C = lim,_, [In (n!) = (n + §) In n + n] = In 2=, by Stirling’s formula.
For more examples, see the problems for Sec. 6.7.

PROBLEMS FOR CHAPTER 6

Sections 6.1 and 6.2

(E) 6.1 Show that the integral in (6.1.3) satisfies the differential equation (6.1.1).
' Clue: Differentiate three times under the integral sign and integrate by parts once.
(E) 6.2 Show that a, in (6.1.5) satisfies the difference equation (6.1.4) and the initial conditions a, = 1,
a, =0
(TE) 6.3 (a) Prove (6.2.1).
Clue: Assuming that the asymptotic relation f(t, x) ~ fo(t) (x = X,) is uniform in ¢, show that for
any ¢ >0, | £ (¢, x) dt — 5 fo(t) dt| < | [’ fo(t) dt] for x sufficiently close to x,.
(b) Prove (6.2.2).
(I) 64 Verify (6.2.7). (Note that N is the largest integer less than —a and a < 0.)
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(D) 6.5 Euler's constant y is defined by y = lim,_,, (1 + $+ % + - + 1/n — In n) = 0.5772. Show that y
can also be represented as

(@) y = — lim (j t~le~dt +In x);

x=0+ \V'x

) y= " @/ + 0= e

() 6.6 Verify (6.2.11) and (6.2.12).
(E) 6.7 Find the leading behavior as x - 0+ of the following integrals:

(a) Il cos (xt) dt;

(b) jl /sinh (xt) dt;
© ] Lo,

1
@ [ et
1

(e) I sin (xt) dt;

x

()] rtr = e — e
1/x

@) [ e

0o

1
() |l + ) d;
[
() [ Jobeey™1 de
0
(E) 6.8 Find the full asymptotic behavior as x — 0+ of the following integrals:
1
(a) I [e™/(1 + x?¢3)] dt;
0
1
() [ [e/(1 = )" — &);
- 0

© | ) [e™/(t + a)] dt.

(I) 6.9 Show that [§ [dt/(1 — t)](e* — )~ " In x + €y + " (x > + ).
(D) 610 Let I(x) = f& [e"/(1 + xe')] dt.
(a) Show that I(x) — 1 ~ —exp (\/—In x) (x - 0+).

(b) Find the full asymptotic expansion of I(x) as x —=0+.

Section 6.3

(I) 611 (a) Verify (6.3.10)
(b) Verify (6.3.14).
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6.12 Find the full asymptotic expansion of [§ Ai (t) dt as x — +c0 and compare three methods for
obtaining this result:

(@) Use direct integration by parts.

(b) Use the asymptotic expansion of Ai (x) valid for large x.

(c) Show that {5 Ai (t) dt satisfies the differential equation y” = xy' and use this equation to
generate the series.

Which method is easiest?
6.13 Verify (6.3.16).
6.14 Find the full asymptotic expansion of f§ Bi (t) dt as x — +co.
6.15 Show that the integral term on the right side of (6.3.18) becomes negligible compared with the
boundary term as x — + co, assuming that the integral exists and that ¢'(t) # 0 fora <t < b.

Clue: Divide the integration region into small subintervals and bound the integral on each
subinterval.
6.16 Verify (6.3.24).

Clue: [§ e™(1 + xt)In (1 + xt)dt > x [§ te™" In (xt) dt.
6.17 (a) The Fresnel integrals are |2 cos (t?) dt, {2 sin (¢?) dt. Find the full asymptotic expansions as
x —0and as x - + 0.

(b) The generalized Fresnel integral is defined by F(x, a) = |2 t™%" dt for a > 0. Find the full
asymptotic expansion of F(x, a) as x —» + 00.
6.18 Find the leading behaviors of:

(a) I e * dt as x — + o0, where a> 0 and b > 0;

(b) j cos (xt)t™'dtas x —»0+.
1

6.19 (a) How many terms of the asymptotic expansion of [§* cos (xt?) tan® ¢ dt as x — + oo can be
computed using integration by parts? Compute them.

(b) Do the same for {§ cos (xt) sin () dt as x — + oo.
6.20 Find the leading behavior as x — + oo of the following integrals:

(a) {2 Ko(t) dt, where K, is a modified Bessel function of order 0;

(b) §5 Io(t) dt, where I, is a modified Bessel function of order 0;

(c) |? D,[t) dt, where D, is a parabolic cylinder function of order v.
6.21 (a) Show thatiffis infinitely differentiable, then 4, = f§ f(cos 6) cos (nf) df defined for integer n
vanishes more rapidly than any finite power of 1/n as n — co. (This proves that the Fourier expansion
of any even, 2n-periodic, infinitely differentiable function is uniformly convergent and can be differen-
tiated termwise an arbitrary number of times.)

(b) What is the leading behavior of A, as n — co through nonintegral values?
6.22 Find the leading behavior as n— oo (through integer values) of the integral
A, =[5 t sin (3me)o(4,t) dt, where J, is the Bessel function of order 0 and 4, is its nth zero.

Clue: Use the asymptotic expansion of J,(x) as x — + oo to show that 4, ~ (n — {)n (n —» o).
Also, note that J (4, t) satisfies the differential equation (ty’) + tA2y = 0. Note that the Fourier-Bessel
expansion of sin (3mx) is 2 Y=, A, Jo(4, x)/To(4,)%

Section 6.4

6.23 Use integration by parts to show that the difference between I(x)in (6.4.1) and I(x; €)in (6.4.2) is
subdominant with respect to I(x).
6.24 (a) Find the leading behavior as x — + o of Laplace integrals of the form % (t — afg(t)e**" dt,
where ¢(t) has a maximum at ¢t = a and g(a) = 1. Here a > —1 and ¢'(a) < 0.

(b) Repeat the analysis of part (a) when @ > —1 and ¢'(a) = ¢"(a) = - = ¢'*""(a) = 0 and
¢'P(a) < 0.
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6.25 (a) Use the integral representation

&2y "

J(x) = —=—"——| cos (x cos §) sin®* 6 d6,
()= r s eesd)
which is valid for v > —3, to show that the Bessel function J (x) satisfies J (x) ~ (x/2)'/T"(v + 1)
(v = o)
(b) Use the integral representation

1 " H M 1 b Vi -t —x sinht

Y, (x) = - J; sin (x sin 6 — v6) df — - J;) [e" + e~ cos (vm)]e de
to show that the Bessel function Y(x) satisfies Y,(x) ~ —I'(v)(2/x)"/n/(v - o).
6.26 (a) Obtain three terms of the asymptotic expansion of 52 e™****? df as x — co.

(b) Find the leading behavior of {3* (1 + t?)e****' dt as x — + co. Note that two maxima contrib-
ute to this leading behavior.
6.27 Show that |§ Ai (xt)/(1 + t2)dt ~ 1/(3x) (x — +c0), where Ai (s) is the Airy function. Can you
find the full asymptotic behavior of this integral as x - +00?

6.28 Find the leading behaviors of
/2 .
(a) J Jsint e™ 5" dt as x — o0;
0

1
(b) I Vit —t) (t +a) " dt as x - + o0 witha > 0;
0
24
(L‘)J Jtant e ™ dras x » +o0;
o
22 /2

@[ ds[ deeeTasxo too

) 0

6.29 Define P,(z) = (1/x) [§ [z + (z2 — 1)* cos 6]" d6 (z > 1) where the positive square root is taken.
P,(z) is the nth-degree Legendre polynomial. Show that for large n,

1 [z + (22 — 1)1/2]n+1/2
2nn (22 - 1)1/4

6.30 (a) The digamma function y(z) = I"(z)/T'(z) has the integral representation

Po(z) ~

Y(z)=Ilnz-1/2z - J’w [(et = 1)yt =17 + §le~*= de.
0

Use this integral representation to generate the first three terms of the asymptotic expansion of
Y(z)—Inz+1/2zas z— 0.
(b) Show that

© ot _ o=
+y=| ———dt
e +r=| s

(c) Show that y(z) + 1/z +y = 3%, (= 1)*{(k)z*~* (|z| < 1), where the Riemann { function
is defined by {(k)= Y=, n7~

(d) Use the series in part (c) to derive a recursion relation for the coefficients C; in the Taylor
series (5.4.4) for 1/T(z).
6.31 Use Laplace’s method for a moving maximum on (6.1.3) to show that A in (6.1.2) is given by
/29213312,

6.32 Use Laplace’s method for a moving maximum on (6.1.5) to verify (6.1.6).
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6.33 Show that the last integral on the right side of (6.3.23) vanishes like x %2 as x » + a0.

6.34 Calculate two terms in the asymptotic expansion of Io “toxi gt and [@ e”(1 + )" Y2 dt as
x—0+ and as x > +oc.

6.35 Find the leading behavior of | e™*~*".dt for « > 0 as x » 0+ and as x - + 0.

6.36 (a) Verify that the integral representation in (6.4.20) satisfies the differential equation for K (x).
(b) Use the integral representation (6.4.20) to show that K (x) ~ \/7/2v (2v/ex)’ (v = + o).

6.37 (a) Show that
© px— l -t

| dt~—1"(x) X +oo.
o t+Xx

(b) Find the leading behavior as x - + oo of

jw [ (x +t)) e de

[ ertera

o
6.38 Solve Prob. 3.77 using Watson’s lemma.
639 The logarithmic integral function li (x) is defined as li (x) = P {§ dt/In t, where P indicates that
the Cauchy principal part of the integral is taken, when x > 1. Show that li (¢°) ~ e* Y., n'/a"+1
(@a— + o).
6.40 Prove that

2N+1 t2n+l 2N t2n+l
—_— ———— t [P—
L CUgayiine< L CU gy

for all t > 0 and all integers N.

Clue: Prove that sin t < t by integrating cos ¢t < 1. In the same way, use repeated integration to
establish the general result.
6.41 Show that (6.4.27) is an integral representation of the modified Bessel function I,(x). In other
words, show that the integral satisfies the differential equation x2y” + xy' — (x* + v*)y = 0 and the
relation I,(x) ~ (x/2)'/n! (x - 0+).
6.42 Use Laplace’s method for a movable maximum to find the next correction to (6.4.40). In particu-
lar, show that

1
[(x) ~ x*~ 12 “‘./Zn(l +— +

o
2x Tossa t ) xo ™

6.43 (a) Show that Laplace’s method for expanding integrals consists of approximating the integrand
by a & function. In particular, show how the representation d(t) = lim, .., \/x/n e™* reproduces the
leading behavior of a Laplace integral for which ¢'(c) = 0 but ¢"(c) < 0. [See (6.4.19¢) and (1.5.10c).]

(b) What is the appropriate d-function representation for the case in which ¢(t) < ¢(a) for
a<t<band ¢'(a) < 0? [See (6.4.19a)]

(c) What is the appropriate é-function representation for the case in which ¢'(c) = ¢"(c) =
¢~ V(c) =0, ¢'P(c) < 0 with p even? [See (6.4.19d).]

(d) Extend the d-function analysis of parts (a) to (c) to give the higher-order corrections to the
leading behavior.

Clue: The answer is given in (6.4.35).
6.44 Find the leading behavior of the double integral [ ds [§ dt e™*P=*tcosinal a5 x 1 o for
0<v<l,v=1,and v > 1. Sketch the function for large x.

Clue: Show that when 0 < v < 1, the exponent has four stationary points. As v— 1—, these
stationary points merge into two. When v > 1, there are no stationary points.
6.45 What happens if we try to treat an ordinary Laplace integral % f(t)e**" dt using the methods
appropriate for a moving maximum? Suppose we rewrite the integral as {5 ¢*#*!" /% dt and expand
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about the maximum of the integrand. Show that now an interior maximum is shifted slightly from
t = ¢ where ¢'(c) = 0, but that this does not affect the result given by Laplace’s method in (6.4.19¢ to d).

6.46 Show that naive application of Laplace’s method for a moving maximum to the integral
I(x, a) = {§ t%¢™*" dt = x~*~'T'(« + 1) gives the wrong answer! Show that the maximum of the inte-
grand occurs at t = a/x and retaining only quadratic terms gives

L
I(x, a)~e""a”'/2x_"'ﬁj e du,  x-— +o0.
—Jaz~

Explain why we have obtained the wrong answer.
6.47 (a) Show that

L le e—xr

|

Clue: See Example 3 of Sec. 6.6.
(b) Show that

1/e

~ = , X — +00.
o Int x In x

e~

J’o Y T ,.=Zo (ln x)™" J‘o (In sye™>ds, x— +oo.

(c) Explain why naive use of Laplace’s method for a moving maximum fails to give the results (a)
and (b) above.
6.48 Find the leading behaviors of

@©
(a) J e e 1 gt as x — o0;
o

(b) (d"/dx")[(x)|,, as n— co.

Section 6.5
6.49 Show that [§ e*s*~! ds = ¢™/*I'(a) for 0 < Re & < 1.
Clue: Substitute s = it and rotate the contour of integration from the negative imaginary-t axis to
the positive real-t axis.
6.50 Use integration by parts to show that the full asymptotic expansion I(x) in (6.5.3) is

INZ i 1@ (=i 1
1 ~ inja _ é* [1 _ - r + -
) +2,.§,(X) (n 2)

e

2x3/2 X\/;T

R X — +00.

Clue: Write
W1 eﬂx: . © eixr L@© eix'
Jo \/;dt Jo \/;dt J’ \/;dt
and use integration by parts on the second integral on the right.
6.51 Prove the Riemann-Lebesgue lemma by showing that f° f(t)e™ dt — 0 (x — + c0) provided that
| £(t)] is integrable.
Clue: Break up the region of integration into small subintervals and bound the integral on each
subinterval.
6.52 Show that {% f(t)e™¥® dt — 0 (x —» + o) provided that | f(t)| is integrable, Y(t) is continuously
differentiable, and y(t) is not constant on any subinterval of a <t <b.
Clue: Use the Riemann-Lebesgue lemma.
6.53 Find the leading behavior of f%f(t)e™*® dt under the following assumptions: y'(a) = - =
P~ Na) = 0; YyPl(a) # 0; f(t) ~ A(t — a)* (t > a+) witha > — L.
(a) What is the leading contribution to the behavior of I(x) from the neighborhood of the
stationary point at t = a? This result is a generalization of the formula in (6.5.12).
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(b) For which values of a and p does the contribution found in (a) equal the leading behavior of
I(x) as x — co. Assume that J'(t) # 0 for a < t < b and that f (t) is continuous and nonvanishing for
a<t<h
6.54 (a) Show that (6.5.13) is an integral representation of J,(x).
Clue: Show that the integral satisfies the Bessel equation x2y” + xy’ + (x? — nz)y = 0 and be-
haves like (x/2)'/n! as x — 0.
(b) Use the integral representation (6.5.13) to find the leading behavior of J,(x) as x — + 0.
6.55 When v is not an integer, (6.5.13) generalizes for positive x to
1 n M 0 R
J(x)= —J cos (x sin t — vt) dt — MJ eTxsinhemv gy
mly T Y
(a) Verify the validity of this integral representation of J (x).
(b) Use this integral representation to find the leading behavior of J (v) as v — + oo. The result
shows that (6.5.14) remains valid when n is not an integer.
6.56 Use the method of stationary phase to find the leading behavior of the following integrals as
X — 400:

1
(a) j & cosh 1? dt;
o

1
(b) I cos (xt*)tan t dt;
o
i . .
(C) J enx(r—smn d[;

[

1
(d) J sin [x(t + $* — sinh t)] cos ¢ dt;
0

(e) jl sin [x(t — sin ¢)] sinh ¢ dt.

Section 6.6

6.57 Evaluate the full asymptotic behavior of f ¢** dt using integration by parts (see Example 2 of
Sec. 6.6).
6.58 Explain why the contour C, can be replaced by the contour C, in Fig. 6.6. Show that this
replacement introduces errors that are smaller than any term in the asymptotic expansion (6.6.8).
6.59 Show that the coefficient of the general term in (6.6.16) can be expressed in terms of derivatives of
(t)ate=1
6.60 Find the radius of convergence of the asymptotic series (6.6.17).

Clue: See Probs. 6.48(b) and (6.59).
6.61 Verify the features of Fig. 6.9. In particular, show that six steepest paths emerge from ¢t = 0 with
60° angular separations, that the six paths are alternately ascent and descent curves, and that the paths
approach + oo, £ o0 + in, + o0 — in.
6.62 Verify the features of Fig. 6.10. In particular, show that eight steepest paths emerge from t = 0
with 45° angular separations, that the eight paths are alternately ascent and descent curves, and that
the paths approach + oo, +ioco, +00 + in, + 0 — im.
6.63 Verify (6.6.19) by showing that the integrals (6.6.18) are pure imaginary.
6.64 Verify that the steepest-descent curve through the saddle point of (6.6.23) is correctly drawn in
Fig. 6.12. Show that this curve is vertical at s = 1, crosses the imaginary-s axis at s = +in/2, and
approaches — oo + im.
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6.65 Formulate a convincing explanation that if we neglect the term xt* in (6.6.24), we will obtain the
wrong asymptotic behavior of the integral as x — + c0.

Clue: On the assumption that the term is small, expand the cosine and estimate the error terms.
Show that the error is not smaller than the exponentially small integral obtained by neglecting xt.
6.66 Verify the results in Fig. 6.13. In particular, show that C,, C,, and C, are steepest-descent
contours.

6.67 Show that the contributions to I(x)in (6.6.25) from C, and C, in Fig. 6.13 are exponentially small
compared with the contribution from the saddle point on C,.

6.68 Formulate a convincing explanation that if we replace cosh t by 1 +t%/2 in (6.6.32), we will
obtain the wrong asymptotic behavior of (6.6.32) as x —» + o0.

Clue: See Prob. 6.65.
6.69 (a) Verify (6.6.35) to (6.6.37).

(b) Show that as arg x in (6.6.25) increases past = — arc tan 2 the steepest descent path through
the endpoints at t = + 1 no longer passes through the saddle point at t = i. (See Figs. 6.13 to 6.16.)
6.70 The integrand in (6.6.19) has saddle points at t = inw (n =0, + 1, +2,...). Why don’t we distort
the contour C to pass through all or some of these points instead of just through ¢t = 0 as in Example 8
of Sec. 6.6?

6.71 An integral representation of the modified Bessel function K (x)is K ,(x) =4 |2 e”*<="*¥ 4,
Show that Ki,(x) = /27 (p? — x2)™ ¥3e~P"2sin ¢(x), where ¢(x) — p cosh™ ! (p/x) + /p? — X2 ~ /4
(x = + 0, p/x > +00).

Clue: The contribution comes from the neighborhood of two saddle points satisfying sinh ¢ =
ip/x. Explain why it is that although there are an infinite number of saddle points, only two contribute
to the leading behavior.

6.72 Investigate the Stokes phenomenon for the integral I(x) = [§ €’ dt as x — co. Specifically, evalu-
ate the asymptotic behavior of I(x) as x — co with arg x fixed for several values of arg x and show that
there are Stokes lines at |arg x| = n/2.

6.73 Find the first two terms in the asymptotic behavior of [§/* cos (xt?) tan? ¢ dt as x — + co.

6.74 Find three terms in the asymptotic behavior of f§ In (1 + t) e**i"** dt as x —» + 0.

6.75 (a) Show that an integral representation of the Airy function Ai (x) is given by

1
Al ()= 5 j e gy,
c

where C is a contour which originates at coe™2*/* and terminates at coe?™">.

(b) Use this integral representation to show that the Taylor series expansion of Ai (x) about
x = 0 is as given in (3.2.1).

(c) Using the method of steepest descents, find the asymptotic behavior of Ai (x) as x — + co.

(d) Extend the steepest-descent argument used in part (c) to show that the same asymptotic
behavior is valid for x —» oo with |arg x| <m and that there is no Stokes phenomenon at
|arg x| = /3.

() Show that there is no Stokes phenomenon at |arg x| = n/3 in a different way. Transform
the integral in (a) to

. 1 ® .
Al (x)=—e 23 J e X3 gy
n 0

and then use Laplace’s method.

Clue: For real positive x, deform C in (a) into the straight-line contour connecting —x — ico to
—Xx + ico and then allow x to be complex with |arg x| < /2.

(/) Find the leading behavior of Ai (x) as x > — co.
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Clue: Show that the steepest-descent contour connecting coe™ 2*/> to coe?™/* consists of two
pieces, one passing through the saddle point at t = —i,/—x and one passing through the saddle point
att= +iy/—x.

6.76 (a) Show that an integral representation of the Airy function Bi (x) is given by

1 1
Bi(x)=—| e ™*Pdt+—| e "4,
() 2n JC' * 2n .[C_

where C, is a contour which originates at coe*?™/* and terminates at + co.

(b) Use this integral representation to show that the Taylor series expansion of Bi (x) about
x = 0is given in (3.2.2).

(e) Using the method of steepest descents, find the asymptotic behavior of Bi (x) as x — + o0.

(d) Extend the steepest-descent argument used in (c) to show that this leading asymptotic
behavior of Bi (x) is still valid for x — oo with |arg x| < =/3.

(e) Use the integral representation of (a) to find the asymptotic behavior of Bi (x) as x — co with
n/3 < |arg x| < . Show that as |arg x| increases beyond n/3, the contribution from the saddle point
at t = —/x overwhelms the contribution from the saddle point at t = +/x.
6.77 Consider the integral I(n) = [§ cos (nt) e <**' dt where n is an integer.

(a) Use integration by parts to show that I(n) for n integral decays to O faster than any power of
1/n as n — co. What if n is nonintegral?

(b) Use the method of steepest descents in the complex-t plane to show that I(n)~
V/2n (diea/n)* (n > o).

(c) By setting z = cos t show that
1 J- ol dz
e (z+ /-1y J1-72°

where the branch cut of \/zZ — 1 is chosen to lie along the real axis from z= —1to z= +1, the
branch is chosen so that \/z* — 1 » +z as z — 00, and C is any contour that loops around the branch
cut just once in the counterclockwise sense.

(d) Use the integral representation in (c) and the method of steepest descents to reproduce the
results in (b). Notice that there are no endpoint contours required with this alternative derivation.
6.78 Let f(z) be an entire (everywhere analytic) function of z whose Taylor series about z =0 is
f(2) =Y, a,z". Cauchy’s theorem gives a contour integral representation for a,:

,.=—1—.[ 0,
2mi Je !

I(n)=

q,

where C loops the origin once in the counterclockwise sense. Using the method of steepest descents,
find the leading asymptotic behavior of a, as n — oo for the following functions:

(@) f(z) = €* (the result is a rederivation of the Stirling formula for n!);

(b) f(z)=eT;

(¢) f(z) = exp (€?) (see Prob. 5.71).
6.79 Using the approach of Prob. 6.78, verify the result stated in Prob. 5.20 for the asymptotic
behavior of the Bernoulli numbers B, = n! f(0) where f(z) = z/(e* — 1).
6.80 Find two terms in the asymptotic expansion of [§ e *** dt as x — +co. Where are the Stokes
lines in the complex plane?
6.81 Use the method of steepest descents to find the full asymptotic behaviors of

(a) .{l & dt (x - +0);

1
() [ e dt (x = +oo).
‘o
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6.82 Find the leading behavior of the integral {2 %%, t~2¢™*"/>~" 4t as x —» + o0, where a > 0 and
the contour of integration is an infinite straight line parallel to the real-t axis lying in the upper half of
the complex-t plane. What is the effect of the branch point at t = 0?
6.83 (a) Show that y(x) = . €“~*/ dt, where C is any contour connecting the points c0, coe*2%/5,
ooe*/5 at which the integrand vanishes, satisfies the hyperairy equation (3.5.22).

(b) Use the integral representation given in (a) to find the possible leading behaviors of solutions
to the hyperairy equation as x — + 0.

(c) Investigate fully the Stokes phenomenon for that solution of the hyperairy equation obtained
by choosing C to be a contour connecting coe™ *™/ to coe™2™/5,
6.84 (a) Show that D(x) = (e‘"‘/k/ff:) fc t"e™**2 dt, where C is a contour connecting —ico to
+ico on which Re t > 0, satisfies the parabolic cylinder equation (3.5.11) and the initial conditions
D,(0) = n'22"%/T'(} — v/2), D/,(0) = —x!/22¢* V21 (- y/2).

(b) Use the method of steepest descents to show that D,(x) ~ x"e™*/* (x = + o).

(c) Extend the steepest descent argument of (b) to show that D,(x) ~ x"e™**/* s still valid if
x — o0 with |arg x| < /2.

Clue: Show that the branch point of ¢* at t = 0 does not affect the steepest descent calculation if
|arg x| < m/2.

(d) Show that the asymptotic behavior found in (b) and (c) is valid beyond |arg x| = n/2 and
only breaks down at |arg x| = 3n/4 when v is not a nonnegative integer.

Clue: Show that the contribution from the branch point at t = 0 found in part (c) becomes
significant as |arg x| increases beyond 3m/4.

(e) Find the asymptotic behavior of D,(x) as x — oo with 3n/4 < |arg x| < 5n/4.
6.85 (a) Using the integral representation of Prob. 6.84(a), show that if Re (v)> —1,
D,(x) = /2/m €/ [§ e %2t cos (xt — vn/2) dt.

(b) Show that D,(x) = /2 (v/e)"* cos 0, where 8 ~ xv"/? — vi/2 (v — o0; x fixed).
6.86 Find the leading behavior as x — + oo of the integral

ix(e3)3 -
eu(. 13-1)

Jc T dt,

where C is a contour connecting —oo to +co in the upper-half ¢ plane and a is a real constant.
Investigate separately the cases |a| <1, |a| >1,a= +1.
6.87 (a) Find the leading behavior of I (x) = [§ ¢~ "/" dt as x » + c0. (See Prob. 6.83.)

(b) Investigate the Stokes phenomenon for I,(x) as x — co in the complex-x plane.

Section 6.7

6.88 Derive the Euler-Maclaurin sum formula (6.7.10) as follows:
(a) Verify that
k+1

W4k 0= [ =] (—k-drd

(b) Sum the identity in (a) to show that F(n) in (4.7.9) satisfies F(n)=3[f(0)+f(n)] +
fa f(t)dt + f3 By(t — [t])f"(¢) dt, where B,(s) is the Bernoulli polynomial of degree 1, B,(s) =5 — 3.

(c) Show that the Bernoulli polynomials B,(x), which are defined by the formula te*/(e — 1) =
Yoo Bax)t"/n!, satisfy B,(x) = nB,_,(x) and B,(0) = B,(1) for n > 2.

(d) Integrate the result of (b) repeatedly by parts to show that

F(")=§[f(0)+f(n)]+[ f(¢)de + Z (= 1)+ ,:ll)v

< 00 = 170) + "")

(¢) Let m — oo and thus derive (6.7.10) and (6.7.11).

[ B ()£ 1) de.
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6.89 Find the first correction to the result in (6.7.8).
6.90 Euler’s constant y is defined as y = lim, ., (Js=, 1/k — In n). Use the formula (6.7.11) to show
that the constant C in (6.7.12) is Euler’s constant y.

Clue: Reverse the process of integration by parts used in Prob. 6.88.
691 (a) Show that }' 2., 1/(k? + x*) — m/2x ~ 1/2x? (x = + o0).

Clue: Follow the derivation given in Prob. 6.88 to derive an analog of the Euler-Maclaurin sum
formula for x —» + co.

(b) Evaluate Y°, (k? + x2)~! exactly by representing the sum as the contour integral

1 I cot t
2mi Je 12 4+ x?
over an appropriate contour.

(c) By comparing the results of (a) and (b), show that the error in (a) is exponentially small as
X — +00.

6.92 Find two terms in the asymptotic behavior as x - + oo of the following sums:

(a) :Z::o (k+x)"* (@>1);

(b)) Y (k*+x*)"2
k=0
6.93 Find three terms in the asymptotic behavior as n — co of the following sums:

(a) z (= 1k;
®) % B

(c) Y sin k/k.
k=1
6.94 Show that
ad 1 In x

,y Ll
e e e )

k=1 n=1

(=1rB,,
——anz"” , X = + 0.
6.95 Show that

(a) Z 2—(1+1/2+l/3+~-~+l/n}~xl—InZ/(l_ln 2)(X—'+CD),
1snsx

B Y a2 ~2xe™” (x - +o0);

1<n<x

© F (n+ D + 17 + 619 ~ 23x (x = +c0);

@ E Ao =¥~ 027k (1 o),
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PERTURBATION METHODS

When I hear you give your reasons, the thing always appears
to me to be so ridiculously simple that I could easily do it
myself, though at each successive instance of your reasoning
I am baffled until you explain your process.

—Dr. Watson, A Scandal in Bohemia
Sir Arthur Conan Doyle

The local analysis methods of Part il are powerful tools, but they cannot provide
global information on the behavior of solutions at two distantly separated points.
They cannot predict how a change in initial conditions at x = 0 will affect the
asymptotic behavior as x - + 0. To answer such questions we must apply the
methods of global analysis which will be developed in Part IV. Since global
methods are perturbative in character, in this part we will first introduce
the requisite mathematical concepts: perturbation theory in Chap. 7 and summa-
tion theory in Chap. 8.

Perturbation theory is a collection of methods for the systematic analysis of
the global behavior of solutions to differential and difference equations. The gen-
eral procedure of perturbation theory is to identify a small parameter, usually
denoted by ¢, such that when ¢ = 0 the problem becomes soluble. The global
solution to the given problem can then be studied by a local analysis about ¢ = 0.
For example, the differential equation y” = [1 + ¢/(1 + x?)]y can only be solved in
terms of elementary functions when ¢ = 0. A perturbative solution is constructed
by local analysis about ¢ = 0 as a series of powers of ¢:

y(x) = yol(x) + ey (x) + €2ya(x) + -

This series is called a perturbation series. It has the attractive feature that y,(x)
can be computed in terms of yo(x), ..., y,—1(x) as long as the problem obtained
by setting ¢ = 0, y” = y, is soluble, which it is in this case. Notice that the pertur-
bation series for y(x) is local in ¢ but that it is global in x. If ¢ is very small, we
expect that y(x) will be well approximated by only a few terms of the perturbation

series.
317
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The local analysis methods of Part II are other examples of perturbation
theory. There the expansion parameter is ¢ = x — x, or ¢ = 1/x if x, = co.

Perturbation series, like asymptotic expansions, often diverge for all ¢ # 0.
However, since ¢ is not necessarily a small parameter, the optimal asymptotic
approximation may give very poor numerical results. Thus, to extract maximal
information from perturbation theory, it is necessary to develop sophisticated
techniques to “sum” divergent series and to accelerate the convergence of slowly
converging series. Methods to achieve these goals are presented in Chap. 8. Sum-
mation methods also apply to the local series expansions derived in Part II.

In perturbation theory it is convenient to have an asymptotic order relation
that expresses the relative magnitudes of two functions more precisely than « but
less precisely than ~. We define

S (x)=O[g(x)], X = X,

and say “f (x) is at most of order g(x) as x — x,” or “f(x) is ‘O’ of g(x) as x — x,”
if f(x)/g(x) is bounded for x near x,; that is, | f(x)/g(x)| < M, for some constant
M if x is sufficiently close to x,. Observe that if f'(x) ~ g(x) or if f(x) « g(x) as
X — Xo, then f(x) = O[g(x)] as x - xo. If f « g as x — x,, then any M > G satisfies
the definition, while if f ~ g (x — x,), only M > 1 can work.

In perturbation theory one may calculate just a few terms in a perturbation
series. Whether or not this series is convergent, the notation “O” is very useful for
expressing the order of magnitude of the first neglected term when that term has
not been calculated explicitly.

Examples

1. x sin x = O(x) (x = 0 or x — ©);

2. e7V*=0O(x") (x - 0+) for all n;

x5 =0(x?) (x> 0+);

4. e =1+x+ (x*/2) + O(x*) (x > 0);

5. Ai (x) = §n™ M2x T Mee T 2B — FHixT¥2 4 O(x73)] (x — +o0).
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SEVEN
PERTURBATION SERIES

You have erred perhaps in attempting to put colour and life
into each of your statements instead of confining yourself
to the task of placing upon record that severe reasoning
from cause to effect which is really the only notable feature
about the thing. You have degraded what should have been
a course of lectures into a series of tales.

—Sherlock Holmes, The Adventure of the Copper Beeches
Sir Arthur Conan Doyle

7.1 PERTURBATION THEORY

Perturbation theory is a large collection of iterative methods for obtaining
approximate solutions to problems involving a small parameter ¢. These methods
are so powerful that sometimes it is actually advisable to introduce a parameter e
temporarily into a difficult problem having no small parameter, and then finally to
set & = 1 to recover the original problem. This apparently artificial conversion to a
perturbation problem may be the only way to make progress.

The thematic approach of perturbation theory is to decompose a tough prob-
lem into an infinite number of relatively easy ones. Hence, perturbation theory is
most useful when the first few steps reveal the important features of the solution
and the remaining ones give small corrections.

Here is an elementary example to introduce the ideas of perturbation theory.

Example 1 Roots of a cubic polynomial. Let us find approximations to the roots of
x* — 4.001x + 0.002 = 0. (7.1.1)

As it stands, this problem is not a perturbation problem because there is no small parameter e. It
may not be easy to convert a particular problem into a tractable perturbation problem, but in the
present case the necessary trick is almost obvious. Instead of the single equation (7.1.1) we
consider the one-parameter family of polynomial equations

X —(4+ex+2=0 (7.1.2)

When ¢ = 0.001, the original equation (7.1.1) is reproduced.
It may seem a bit surprising at first, but it is easier to compute the approximate roots of the
family of polynomials (7.1.2) than it is to solve just the one equation with ¢ = 0.001. The reason
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for this is that if we consider the roots to be functions of ¢, then we may further assume a
perturbation series in powers of &:

x(e) = {Z a,e" (7.1.3)

To obtain the first term in this series, we set ¢ = 0 in (7.1.2) and solve
x3—dx=0. (7.1.4)
This expression is easy to factor and we obtain in zeroth-order perturbation theory
x(0)=ay= —2,0,2.
A second-order perturbation approximation to the first of these roots consists of writing

(7.13) as x;, = =2 + a, £ + a;&* + O(e®) (¢ — 0), substituting this expression into (7.1.2), and
neglecting powers of ¢ beyond ¢*. The result is

(-8 +8)+ (12a, —4a, + 2 + 2)e + (12a, — a, — 6a% — 4a,)e* = O(e®), e—0. (7.15)

It is at this step that we realize the power of generalizing the original problem to a family of
problems (7.1.2) with variable &. It is because ¢ is variable that we can conclude that the coefficient
of each power of ¢ in (7.1.5) is separately equal to zero. This gives a sequence of equations for the
expansion coefficients ay, a,, ... :

e': 8a,+4=0; e?:  8a,—a, —6al=0;
and so on. The solutions to the equations are a, = —4, a, = 4, .... Therefore, the perturbation
expansion for the root x, is
x;=-2-le+Ler+--. (7.1.6)

If we now set & = 0.001, we obtain x, from (7.1.6) accurate to better than one part in 10°.
The same procedure gives

x;=0+3—§e2+0(?), x3=2+0¢c+0e2 +0(*), e—0.

(Successive coefficients in the perturbation series for x5 all vanish because x; = 2 is the exact
solution for all &.) All three perturbation series for the roots converge for ¢ = 0.001. Can you
prove that they converge for |¢| < 1? (See Prob. 7.6.)

This example illustrates the three steps of perturbative analysis:

1. Convert the original problem into a perturbation problem by introducing the small
parameter ¢.

2. Assume an expression for the answer in the form of a perturbation series and
compute the coefficients of that series.

3. Recover the answer to the original problem by summing the perturbation series for
the appropriate value of .

Step (1) is sometimes ambiguous because there may be many ways to intro-
duce an &. However, it is preferable to introduce ¢ in such a way that the zeroth-
order solution (the leading term in the perturbation series) is obtainable as a
closed-form analytic expression. Perturbation problems generally take the form of
a soluble equation [such as (7.1.4)] whose solution is altered slightly by a perturb-
ing term [such as (2 — x)e]. Of course, step (1) may be omitted when the original
problem already has a small parameter if a perturbation series can be developed in
powers of that parameter.
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Step (2) is frequently a routine iterative procedure for determining successive
coefficients in the perturbation series. A zeroth-order solution consists of finding
the leading term in the perturbation series. In Example 1 this involves solving the
unperturbed problem, the problem obtained by setting ¢ = 0 in the perturbation
problem. A first-order solution consists of finding the first two terms in the pertur-
bation series, and so on. In Example 1 each of the coefficients in the perturbation
series is determined in terms of the previous coefficients by a simple linear equa-
tion, even though the original problem was a nonlinear (cubic) equation.

Generally it is the existence of a closed-form zeroth-order solution which ensures
that the higher-order terms may also be determined as closed-form analytical
expressions.

Step (3) may or may not be easy. If the perturbation series converges, its sum
is the desired answer. If there are several ways to reduce a problem to a perturba-
tion problem, one chooses the way that is the best compromise between difficulty
of calculation of the perturbation series coefficients and rapidity of convergence of
the series itself. However, many series converge so slowly that their utility is
impaired. Also, we will shortly see that perturbation series are frequently diver-
gent. This is not necessarily bad because many of these divergent perturbation
series are asymptotic. In such cases, one obtains a good approximation to the
answer when ¢ is very small by summing the first few terms according to the
optimal truncation rule (see Sec. 3.5). When ¢ is not small, it may still be possible
to obtain a good approximation to the answer from a slowly converging or
divergent series using the summation methods discussed in Chap. 8.

Let us now apply these three rules of perturbation theory to a slightly more
sophisticated example.

Example 2 Approximate solution of an initial-value problem. Consider the initial-value problem
y=fx)y, y0)=1y0)=1, (7.1.7)

where f(x) is continuous. This problem has no closed-form solution except for very special
choices for f(x). Nevertheless, it can be solved perturbatively.
First, we introduce an ¢ in such a way that the unperturbed problem is solvable:

y'=¢k)y, y0)=1y0)=1 (7.1.8)

Second, we assume a perturbation expansion for y(x) of the form

@©

Y = ¥ epx) (7.19)
n=0
where yo(0) = 1, y5(0) = 1, and y,(0) = 0, ,(0)=0 (n > 1).
The zeroth-order problem y” =0 is obtained by setting & = 0, and the solution which
satisfies the initial conditions is y, = 1 + x. The nth-order problem (n > 1) is obtained by substi-
tuting (7.1.9) into (7.1.8) and setting the coefficient of &” (n > 1) equal to 0. The result is

Ya=Yu-r f(x), ¥.(0)=y,(0)=0. (7.1.10)

Observe that perturbation theory has replaced the intractable differential equation (7.1.7)
with a sequence of inhomogeneous equations (7.1.10). In general, any inhomogeneous equation
may be solved routinely by the method of variation of parameters whenever the solution of the
associated homogeneous equation is known (Sec. 1.5). Here the homogeneous equation is
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precisely the unperturbed equation. Thus, it is clear why it is so crucial that the unperturbed
equation be soluble.
The solution to (7.1.10) is

vo= [ [ dsfya ozt (1.L11)

Equation (7.1.11) gives a simple iterative procedure for calculating successive terms in the pertur-
bation series (7.1.9):

yx)=1+x +eJ.Idt J'lds(l +5)f(s)

+sljxdtj'dsf(s)j:dvjuduu+u)f(u)+---. (7.1.12)

Third, we must sum this series. It is easy to show that when N is large, the Nth term in this
series is bounded in absolute value by e"x2*K¥(1 + |x|)/(2N)!, where K is an upper bound for
| f(£)| in the interval 0 < |¢] < |x|. Thus, the series (7.1.12) is convergent for all x. We also
conclude that if x?K is small, then the perturbation series is rapidly convergent for ¢ = 1 and an
accurate solution to the original problem may be achieved by taking only a few terms.

How do these perturbation methods for differential equations compare with
the series methods that were introduced in Chap. 3? Suppose f(x)in (7.1.7) has a
convergent Taylor expansion about x = 0 of the form

fx)= zof,,x". (7.1.13)

Then another way to solve for y(x) is to perform a local analysis of the differential
equation near x = 0 by substituting the series solution

yx)= Y ax",  a=a =1, (7.1.14)
n=0

and computing the coefficients a,. As shown in Chap. 3, the series in (7.1.14) is
guaranteed to have a radius of convergence at least as large as that in (7.1.13).
By contrast, the perturbation series (7.1.9) converges for all finite values of x,
and not just those inside the radius of convergence of f (x). Moreover, the pertur-
bation series converges even if f(x) has no Taylor series expansion at all.

Example 3 Comparison of Taylor and perturbation series. The differential equation
y'=—e*y, y0)=1y(0)=1, (7.1.15)
may be solved in terms of Bessel functions as

(%) + Yo@)Woe™2) = [Jo(2) + Jo(2)] Yo(2e )
a Jo(2)Y5(2) — J5(2)Yo(2) ’

y(x)

The local expansion (7.1.14) converges everywhere because e”* has no finite singularities. Never-
theless, a fixed number of terms of the perturbation series (7.1.9) (see Prob. 7.11) gives a much
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better approximation than the same number of terms of the Taylor series (7.1.14) if x is large and
positive (see Fig. 7.1).

In addition, the perturbation methods of Example 2 are immediately applic-
able to problems where local analysis cannot be used. For example, an approxi-
mate solution of the formidable-looking nonlinear two-point boundary-value
problem

. _cosx _ (=
=g 0=y(3) -2 (1.L16
may be readily obtained using perturbation theory (see Prob. 7.14).
Thus, the ideas of perturbation theory apply equally well to problems requir-
ing local or global analysis.

| ] J
8.0 9.0 100
x
Exact

-0.5 solution y(x)

Eleven-term Taylor| Two-term Four-term perturbation
—1.0 |- series approxima- perturbation series approximation

tion to y(x) series approxi-\ to y(x)

\ mation to y(x)

-1.5F
-2.0%

Figure 7.1 A comparison of Taylor series and perturbation series approximations to the solution of
the initial-value problem y”= —e™*y [y(0)=1, y'(0) = 1] in (7.1.15). The exact solution to the
problem is plotted. Also plotted are an 11-term Taylor series approximation of the form in (7.1.14) and
2- and 4-term perturbation series approximations of the form in (7.1.3) with ¢ = 1. The global perturba-
tive approximation is clearly far superior to the local Taylor series.
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7.2 REGULAR AND SINGULAR PERTURBATION THEORY

The formal techniques of perturbation theory are a natural generalization of the
ideas of local analysis of differential equations in Chap. 3. Local analysis involves
approximating the solution to a differential equation near the point x = a by
developing a series solution about a in powers of a small parameter, either x — a
for finite a or 1/x for a = co. Once the leading behavior of the solution near x = a
(which we would now refer to as the zeroth-order solution!) is known, the remain-
ing coefficients in the series can be computed recursively.

The strong analogy between local analysis of differential equations and formal
perturbation theory may be used to classify perturbation problems. Recall that
there are two different types of series solutions to differential equations. A series
solution about an ordinary point of a differential equation is always a Taylor series
having a nonvanishing radius of convergence. A series solution about a singular
point does not have this form (except in rare cases). Instead, it may either be a
convergent series not in Taylor series form (such as a Frobenius series) or it may
be a divergent series. Series solutions about singular points often have the remark-
able property of being meaningful near a singular point yet not existing at the
singular point. [The Frobenius series for Kq(x) does not exist at x = 0 and the
asymptotic series for Bi (x) does not exist at x = c0.]

Perturbation series also occur in two varieties. We define a regular perturba-
tion problem as one whose perturbation series is a power series in ¢ having a
nonvanishing radius of convergence. A basic feature of all regular perturbation
problems (which we will use to identify such problems) is that the exact solution
for small but nonzero |¢| smoothly approaches the unperturbed or zeroth-order
solution as ¢ — 0.

We define a singular perturbation problem as one whose perturbation series
either does not take the form of a power series or, if it does, the power series has a
vanishing radius of convergence. In singular perturbation theory there is
sometimes no solution to the unperturbed problem (the exact solution as a func-
tion of ¢ may cease to exist when ¢ = 0); when a solution to the unperturbed
problem does exist, its qualitative features are distinctly different from those of the
exact solution for arbitrarily small but nonzero ¢. In either case, the exact solution
for ¢ = 0 is fundamentally different in character from the “neighboring” solutions
obtained in the limit ¢ — 0. If there is no such abrupt change in character, then we
would have to classify the problem as a regular perturbation problem.

When dealing with a singular perturbation problem, one must take care to
distinguish between the zeroth-order solution (the leading term in the perturbation
series) and the solution of the unperturbed problem, since the latter may not even
exist. There is no difference between these two in a regular perturbation theory,
but in a singular perturbation theory the zeroth-order solution may depend on ¢
and may exist only for nonzero &.

The examples of the previous section are all regular perturbation problems.
Here are some examples of singular perturbation problems:
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Example 1 Roots of a polynomial. How does one determine the approximate roots of
ex® —ex* — x> +8 =07 (7.2.1)

We may begin by setting ¢ = 0 to obtain the unperturbed problem —x3 + 8 = 0, which is
easily solved:

x =2, 20, 20?, (7.22)

where @ = e2™/3 is a complex root of unity. Note that the unperturbed equation has only three

roots while the original equation has six roots. This abrupt change in the character of the
solution, namely the disappearance of three roots when ¢ = 0, implies that (7.2.1) is a singular
perturbation problem. Part of the exact solution ceases to exist when & = 0.

The explanation for this behavior is that the three missing roots tend to oo as ¢ — 0. Thus,
for those roots it is no longer valid to neglect £2x® — ex* compared with —x3 + 8 in the limit
& — 0. Of course, for the three roots near 2, 2w, and 2w?, the terms £2x® and ex* are indeed small
as ¢ » 0 and we may assume a regular perturbation expansion for these roots of the form

x () =23+ ¥ a,,&", k=123 (7.23)
n=1

Substituting (7.2.3) into (7.2.1) and comparing powers of ¢, as in Example 1 of Sec. 7.1, gives a
sequence of equations which determine the coefficients a,, .

To track down the three missing roots we first estimate their orders of magnitude as ¢ — 0.
We do this by considering all possible dominant balances between pairs of terms in (7.2.1). There
are four terms in (7.2.1) so there are six pairs to consider:

(a) Suppose&2x® ~ ex* (e — 0)is the dominant balance. Then x = O(e ™ /?) (¢ — 0). It follows that
the terms £2x% and ex* are both O(e ™ !). But ex* « x> = O(e~32) as ¢ — 0, so x> is the biggest
term in the equation and is not balanced by any other term. Thus, the assumption that e?x®
and ex* are the dominant terms as ¢ — 0 is inconsistent.

(b) Suppose ex* ~ x> as ¢—0. Then x=O(¢""'). It follows that ex* ~x*>=O(¢"*). But
x3 «g2x®=0(e"*) as ¢ - 0. Thus, e2x® is the largest term in the equation. Hence, the
original assumption is again inconsistent.

(c) Suppose £2x® ~ 8 so that x = Oe ™ /*) (e — 0). Hence, x> = O(¢ ') is the largest term, which
is again nconsistent.

(d) Suppose ex* ~ 8 so that x = O(e~ */*) (¢ — 0). Then x> = O(e~*'*) is the biggest term, which
is also inconsistent.

(e) Suppose x* ~ 8. Then x = O(1). This is a consistent assumption because the other two terms
in the equation, £2x® and ex*, are negligible compared with x> and 8, and we recover the three
roots of the unperturbed equation x = 2, 2w, and 2w™.

(f) Suppose £2x® ~ x* (¢ — 0). Then x = O(e~ ¥?). This is consistent because &x® ~ x> = O(¢~?)
is bigger than ex* = O(e”*?) and 8 = O(1) as ¢ ~ 0.

Thus, the magnitudes of the three missing roots are O(e ™) as ¢ — 0. This result is a clue to
the structure of the perturbation series for the missing roots. In particular, it suggests a scale
transformation for the variable x:

x =g 3y, (7.2.4)
Substituting (7.2.4) into (7.2.1) gives
¥ — y® + 82 —&!3y* = 0. (7.2.5)

This is now a regular perturbation problem for y in the parameter ¢!/* because the unper-
turbed problem y® — y* = 0 has six roots y = 1, o, w?, 0, 0, 0. Now, no roots disappear in the
limit £'/3 - 0.
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The perturbative corrections to these roots may be found by assuming a regular perturba-
tion expansion in powers of &!/3 (it would not be possible to match powers in an expansion
having only integral powers of &):

y=X nl?) (7.26)
n=0
Having established that we are dealing with a singular perturbation problem, it is no surprise that
the perturbation series for the roots x is not a series in integral powers of e.

Nevertheless, when y, = 0 we find that y, = 0 and y, = 2, 2w, and 2w>. Thus, since the ﬁrst
two terms in this series vanish, x = ¢~ *?y is not really O(e”?) but rather O(1) and we have
reproduced the three finite roots near x = 2, 2w, 20?. Moreover, only every third coefficient in
(7.2.6), 5, ¥s ¥s» - -, is nonvanishing, so we have also reproduced the regular perturbation series
in (7.2.3)!

Example 2 Appearance of a boundary layer. The boundary-value problem

ey =y =0 y0)=0y1)=1, (727)
is a singular perturbation problem because the associated unperturbed problem
-y=0, y(0)=0y(1)=1, (7.2.8)

has no solution. (The solution to this first-order differential equation, y = constant, cannot satisfy
both boundary conditions.) The solution to (7.2.7) cannot have a regular perturbation expansion
of the form y = ¥'=_; y,(x)e" because y, does not exist.

There is a close parallel between this example and the previous one. Here, the highest
derivative is multiplied by ¢ and in the limit ¢ — 0 the unperturbed solution loses its ability to
satisfy the boundary conditions because a solution is lost. In the previous example the highest
-power of x is multiplied by ¢ and in the limit ¢ » 0 some roots are lost.

The exact solution to (7.2.7) is easy to find:

et -1
)=y (7.29)
This function is plotted in Fig. 7.2 for several small positive values of &. For very small but
nonzero ¢ it is clear from Fig. 7.2 that y is almost constant except in a very narrow interval of
thickness O(e) at x = 1, which is called a boundary layer. Thus, outside the boundary layer the
exact solution satisfies the left boundary condition y(0) = 0 and almost but not quite satisfies the
unperturbed equation y’ = 0.

It is not obvious how to construct a perturbative approximation to a differen-
tial equation whose highest derivative is multiplied by ¢ until it is known how to
construct an analytical expression for the zeroth-order approximation. A new
technique called asymptotic matching must be introduced (see Sec. 7.4 and
Chap. 9) to solve this problem.

Example 3 Appearance of rapid variation on a global scale. In the previous example we saw that
the exact solution varies rapidly in the neighborhood of x =1 for small ¢ and develops a
discontinuity there in the limit ¢ —»0+. A solution to a boundary-value problem may also
develop discontinuities throughout a large region as well as in the neighborhood of a point.
The boundary-value problem ey” + y =0 [y(0) =0, y(1)= 1] is a singular perturbation
problem because when ¢ = 0, the solution to the unperturbed problem, y = 0, does not satisfy the
boundary condition y(1) = 1. The exact solution, when ¢ is not of the form (nt)"% (n =0, 1,2, ...),
is y(x) = sin (x/f)/sm 1/\/_) Observe that y(x) becomes discontinuous throughout the inter-



PERTURBATION SERIES 327

Boundary layer

= omm s
LU T [
eLeee
OO~ 2
[y

0.6

0.3

0 0.2 0.4 0.6 0.8 1.0
x

Figure 7.2 A plot of y(x) = ("¢ — 1)/(e"* — 1) (0 < x < 1)for ¢ = 0.2, 0.1, 0.05, 0.025. When ¢ is small
y(x) varies rapidly near x = 1; this localized region of rapid variation is called a boundary layer.
When ¢ is negative the boundary layer is at x =0 instead of x = 1. This abrupt jump in the
location of the boundary layer as ¢ changes sign reflects the singular nature of the perturbation
problem.

val 0 < x < 1 in the limit ¢ » 0+ (see Fig. 7.3). When & = (nm)”2, there is no solution to the
boundary-value problem.

When the solution to a differential-equation perturbation problem varies
rapidly on a global scale for small ¢, it is not obvious how to construct a leading-
order perturbative approximation to the exact solution. The best procedure that
has evolved is called WKB theory (see Chap. 10).

Example 4 Perturbation theory on an infinite interval. The initial-value problem
y'+(1—-ex)y=0, yp0)=1,y(0)=0, (7.2.10)

is a regular perturbation problem in ¢ over the finite interval 6 < x < L In fact, the perturbation
solution is just

x) = cos x + g(4x? sin x + 4x cos x — % sin x
y vt [ 3
+ g2(—35x* cos x + x> sin x + Fgx? cos x — {ex sin x) + -, (7.2.11)

which converges for all x and ¢, with increasing rapidity as ¢ > 0+ for fixed x.
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Figure 7.3 A plot of y(x} = [sin (xe™*2)]/[sin (¢~ "?)] (0 < x < 1) for & = 0.005 and 0.00014. As ¢ gets
smaller the oscillations become more violent; as ¢ — 0+, y(x) becomes discontinuous over the entire
interval. The WKB approximation is a perturbative method commonly used to describe functions
like y(x) which exhibit rapid variation on a global scale.

However, this same initial-value problem must be reclassified as a singular perturbation
problem over the semi-infinite interval 0 < x < co. While the exact solution does approach the
solution to the unperturbed problem as & » 0+ for fixed x, it does not do so uniformly for all x
(see Fig. 7.4). The zeroth-order solution is bounded and oscillatory for all x. But when & > 0, local
analysis of the exact solution for large x shows that it is a linear combination of exponentially
increasing and decreasing functions (Prob. 7.20). This change in character of the solution occurs
because it is certainly wrong to neglect ex compared with 1 when x is bigger than 1/e. In fact, a
more careful argument shows that the term ex is not a small perturbation unless x < ¢~ '/? (Prob.
7.20).

Example 4 shows that the interval itself can determine whether a perturbation
problem is regular or singular. We examine more examples having this property in
the next section on eigenvalue problems. The feature that is common to all such
examples is that an nth-order perturbative approximation bears less and less
resemblance to the exact solution as x increases.

For these sorts of problems Chap. 11 introduces new perturbative procedures
called multiple-scale methods which substantially improve the rather poor
predictions of ordinary perturbation theory. The particular problem in Example 4
is reconsidered in Prob. 11.13.

Example 5 Roots of a high-degree polynomial. When a perturbation problem is regular, the
perturbation series is convergent and the exact solution is a smooth analytic function of ¢ for
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Figure 7.4 Exact solutions to the initial-value problem y” + (1 — ex)y =0 [y(0)=1, y'(0)=0] in

(721

0) for ¢ = 0 and ¢ = 75. Although this is a regular perturbation problem on the finite interval

0<x <L, itis a singular perturbation problem on the infinite interval 0 < x < co because the
perturbed solution (¢ > 0) is not close to the unperturbed solution (¢ = 0), no matter how small ¢ is.
When x = O(e™!?) the frequencies begin to differ (the curves become phase shifted) and when
x = O(e™") the amplitudes differ (one curve remains finite while the other grows exponentially).

sufficiently small &. However, just what is “sufficiently small” may vary enormously from problem
to problem. A striking example by Wilkinson concerns the roots of the polynomial

20
IT (x — k) + ex'® = x2° — (210 — g)x*® + -+ + 20! (7.2.12)
k=1

The perturbation ex!® is regular, since no roots are lost in the limit ¢ — 0; the roots of the
unperturbed polynomial lie at 1, 2,3, ..., 20.

Let us now take ¢ = 1072 so that the perturbation in the coefficient of x'? is of relative
magnitude 10~°/210, or roughly 107!, For such a small regular perturbation one might expect
the 20 roots to be only very slightly displaced from their ¢ = 0 values. The actual displaced roots
are given in Table 7.1. One is surprised to find that while some roots are relatively unchanged by
the perturbation, others have paired into complex conjugates. The qualitative effect on the roots
of varying ¢ is shown in Figs. 7.5 and 7.6. In these plots the paths of the roots are traced as a
function of &. As |e| increases, the roots coalesce into pairs of complex conjugate roots. Evi-
dently, a “small” perturbation is one for which |¢]| < 107'!, while || 2 107'% is a “large”
perturbation for at least some of the roots. Low-order regular perturbation theory may be used to
understand this behavior (Probs. 7.22 and 7.23).
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Table 7.1 Roots of the Wilkinson polynomial (7.2.12) with ¢ = 107°

The first column lists the unperturbed (¢ = O)roots 1, 2, ..., 20; the second column gives the results of
first-order perturbation theory (see Prob. 7.22); the third column gives the exact roots. The unper-
turbed roots at 13 and 14, 15 and 16, and 17 and 18 are perturbed into complex-conjugate pairs.
Observe that while first-order perturbation theory is moderately accurate for the real perturbed roots
near 1, 2, ..., 12, 19, 20, it cannot predict the locations of the complex roots (but see Prob. 7.23)

First-order

Unperturbed root perturbation theory Exact root

1 1.000 000 000 0 1.000 000 000 0

2 2.000 000 000 0 2.000 000 000 0

3 3.000 000 000 O 3.000 000 000 0

4 4.000 000 000 0 4.000 000 000 0

5 5.000 000 000 0 5.000 000 000 0

6 5.999 999 941 8 5.999 999 941 8

7 7.000 002 542 4 7.000 002 542 4

8 7.999 994 030 4 7.999 994 031 5

9 9.000 839 327 5 9.000 841 033 5
10 9.992 405 941 6 9.992 518 124 0
11 11.046 444 571 11.050 622 592
12 11.801 496 835 11.832 935 987
13 13.605 558 629 .
14 12.667 031 557} 13.349 018 036 + 0.532 765 750 0i
15 17.119 065 220 .
16 13.592 486 027} 15.457 790 724 + 0.899 341 526 2i
17 18.904 402 150 .
18 17.004 413 300 17.662 434 477 + 0.704 285 236 9i
19 19.309 013 459 19.233 703 334
20 19.956 900 195 19.950 949 654

This example shows that the roots of high-degree polynomials may be ex-
traordinarily sensitive to changes in the coefficients of the polynomial, even
though the perturbation problem so obtained is regular. It should serve as ample
warning to a “number cruncher” not to trust computer output without sufficient
understanding of the nature of the problem being solved.

73 PERTURBATION METHODS FOR LINEAR EIGENVALUE
PROBLEMS

In this section we show how perturbation theory can be used to approximate the
eigenvalues and eigenfunctions of the Schrodinger equation

2

_%2. + V(x) + W(x)— E | y(x) = 0, (73.1)

subject to the boundary condition
lim y(x)=0. (7.32)

x|~
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Figure 7.5 Roots of the Wilkinson polynomial (x — 1)(x — 2)(x —3)---(x — 20) + &x'? in (7.2.12)
for 11 values of &. When & = 0 the roots shown are 10, 11, ..., 20. As ¢ is allowed to increase very
slowly, the roots move toward each other in pairs along the real-x axis and then veer off in
opposite directions into the complex-x plane. We have plotted the roots for ¢ =0, 1071%,2 x 1071°,
3 x1071° ..., 107° Some of the roots are numbered to indicate the value of & to which they
correspond; that is, 6 means & = 6 x 107!°, 3 means ¢ = 3 x 107!°, and so on. The roots starting
at 11, 12, 19, and 20 move too slowly to be seen as individual dots. We conclude from this plot
that very slight changes in the coefficients of a polynomial can cause drastic changes in the values
of some of the roots; one must be cautious when performing numerical calculations.

In (7.3.1) E is called the energy eigenvalue and V + W is called the potential. We
assume that ¥(x) and W(x) are continuous functions and that both V(x) and
V(x) + W(x) approach o as |x| — co.

We suppose that the function V(x) + W/(x)is so complicated that (7.3.1) is not
soluble in closed form. One can still prove from the above assumptions that
nontrivial solutions [y(x) # 0] satisfying (7.3.1) and (7.3.2) exist for special discrete
values of E, the allowed eigenvalues of the equation (see Sec. 1.8). On the other
hand, we assume that removing the term W(x) from (7.3.1) makes the equation an
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Figure 7.6 Same as in Fig. 7.5 except that the values of & are 0, —107!°, —2 x 1010,
—3x 107°, ..., —10~°. The roots pair up and veer off into the complex-x plane, but the pairs are
not the same as in Fig. 7.5.

exactly soluble eigenvalue problem. This suggests using perturbation theory to
solve the family of eigenvalue problems in which W(x) is replaced by eW(x):

2

—-dd? + V(x) + eW(x) — E| y(x)=0.

Our assumptions on the nature of V(x) and W(x) leave no choice about where to
introduce the parameter ¢ if the unperturbed problem is to be exactly soluble.

(7.3.3)

Example 1 An exactly soluble eigenvalue problem. Several exactly soluble eigenvalue problems
are given in Sec. 1.8. One such example, which is used extensively in this section, is obtained if we
take V(x)=x2/4. The unperturbed problem is the Schrodinger equation for the quantum-
mechanical harmonic oscillator, which is just the parabolic cylinder equation

xl
_y” + 7y — Ey =0. (734)

*x2/4

We have already shown that solutions to this equation behave like e as |x| — oo



PERTURBATION SERIES 333

There is a discrete set of values of E for which a solution that behaves like e™*/* as x — oo also

behaves like e *¥* as x - —oo (see Example 4 of Sec. 3.5 and Example 9 of Sec. 3.8). These
values of E are

E=n+4 n=0,12,..., (7.3.5)
and the associated eigenfunctions are parabolic cylinder functions

y.(x) = D,{x) = e~="* He, (x), (7356)
where He, (x) is the Hermite polynomial of degree n: He, (x)=1, He, (x)=x,

He, (x)=x%—-1,....

In general, once an eigenvalue E, and an eigenfunction y,(x) of the unper-
turbed problem

d2
— o2 V) = Eo | yolx)=0 (73.7)
have been found, we may seek a perturbative solution to (7.3.3) of the form
E= Z E.¢", (7.3.8)
y(x)= Z Yalx (7.3.9)

Substituting (7.3.8) and (7.3.9* into (7.3.3) and comparing powers of ¢ gives the
following sequence of equations:

2

i V) = Eo 3x) = =3 i)+ 3 By ),

n=123,..., (7.3.10)
whose solutions must satisfy the boundary conditions

im y,(x)=0, n=123... (7.3.11)
|x] =0
Equation (7.3.10) is linear and inhomogeneous. The associated homogeneous
equation is just the unperturbed problem and thus is soluble by assumption.
However, technically speaking, only one of the two linearly independent solutions
of the unperturbed problem (the one that satisfies the boundary conditions) is
assumed known. Therefore, we proceed by the method of reduction of order (see
Sec. 1.4); to wit, we substitute

Yalx) = yo(x)Fa(x), (7.3.12)

where Fy(x) = 1, into (7.3.10). Simplifying the result using (7.3.7) and multiplying
by the integrating factor yo(x) gives

%[y%(x)Fj,(x)]:y%(x) W(x)F,,_l(x)—jZ":l EF,_ )| (1313
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If we integrate this equation from —oo to oo and use y3(x)F,(x)=
Yo(X)yn(x) = ¥o(x)ya(x)— 0 as |x| — co, we obtain the formula for the coefficient
E

ne
n—1

yo(x)(W(X)yn_ 1(x) = j;l Ejya_j{x)| dx

[ 1300 dx

E,=—=2

n=1,23..  (13.14)

from which we have eliminated all reference to F,(x). [The sum on the right side of
(7.3.14) is defined to be 0 when n = 1]
Integrating (7.3.13) twice gives the formula for y,(x):

VX t ot

)=y [ ]

dsyo(S)[W( $)¥n-1(s Z Ejya_js

n=1,23 ... (73.15)

Observe that in (7.3.15) a is an arbitrary number at which we choose to
impose y,(a) = 0. This means we have fixed the overall normalization of y(x) so
that y(a) = yo(a) [assuming that yo(a) # 0]. If y,(¢) vanishes between a and x, the
integral in (7.3.15) seems formally divergent; however, y,(x) satisfies a differential
equation (7.3.10) which has no finite singular points. Thus, it is possible to define
ya(x) everywhere as a finite expression (see Prob. 7.24).

Equations (7.3.14) and (7.3.15) together constitute an iterative procedure for
calculating the coefficients in the perturbation series for E and y(x). Once the
coefficients Ey, E, ..., E,_{, Yo, ¥y, ---» Yu—y are known, (7.3.14) gives E,, and
once E, has been calculated (7.3.15) gives y,. The remaining question is whether or
not these perturbation series are convergent.

Example 2 A regular perturbative eigenvalue problem. Let V(x) = x*/4 and W(x) = x. It may be
shown (Prob. 7.25) that the perturbation series for y(x) is convergent for all ¢ and that the series
for E has vanishing terms of order ¢" for n > 3. This is a regular perturbation problem.

Example 3 A singular perturbative eigenvalue problem. It may be shown (Prob. 7.26) that if
V(x) = x?/4 and W(x) = x*/4, then the perturbation series for the smallest eigenvalue for positive
eis

Ele)~3+3— 32+ ++, e-0+. (7.3.16)
The terms in this series appear to be getting larger and suggest that this series may be divergent
for all e¢# 0. Indeed, (7.3.16) diverges for all &¢ because the nth term satisfies E, ~
—(=3yr(n + 7)\[/1:”’ (n— oo). (This is a nontrivial result that we do not explain here.)

The divergence of the perturbation series in Example 3 indicates that the perturbation
problem is singular. A simple way to observe the singular behavior is to compare e™*/%, the
controlling factor of the large-x behavior of the unperturbed (¢ = 0) solution, with e =**v¥/6, the
controlling factor of the large-x behavior for ¢ # 0. There is an abrupt change in the nature of
the solution when we pass to the limit (¢ — 0 + ). This phenomenon occurs because the perturbing
term ex*/4 is not small compared with x2/4 when x is large.
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If the functions V(x) and W(x) in Example 3 were interchanged, then the resulting
eigenvalue problem would be a regular perturbation problem because ex? is a small perturbation
of x* for all |x| < co. However, the unperturbed problem, (—d*/dx? + x*/4 — E,)yo(x) =0,
is not soluble in closed form. Thus, it would not be possible to use (7.3.14) and (7.3.15) to compute
the coefficients in the perturbation series analytically.

Also note that if the boundary conditions in Example 3 were givenat x = + 4, A < oo, then
the perturbation theory would be regular. This is because here ex* is a small perturbation of x2.
However, it is much more difficult to solve the unperturbed problem on a finite interval.

Thus, one is forced to accept a solution to Example 3 in the form of a divergent series.
Fortunately, this series is one of many that may be summed by Padé theory to give a finite and
unique result (see Sec. 8.3).

Example 4 Another regular perturbation problem. When V = x?/4 and W = |x| the perturba-
tion problem is regular. But unlike the problem in Example 2, this perturbation series is not
convergent for all ¢; the series in (7.3.8) and (7.3.9) have finite radii of convergence. The
significance of the finite radius of convergence is discussed in Sec. 7.5.

(D) 7.4 ASYMPTOTIC MATCHING

The purpose of this section is to introduce the notion of matched asymptotic
expansions. Asymptotic matching is an important perturbative method which is
used often in both boundary-layer theory (Chap. 9) and WKB theory (Chap. 10)
to determine analytically the approximate global properties of the solution to a
differential equation. Asymptotic matching is usually used to determine a uniform
approximation to the solution of a differential equation and to find other global
properties of differential equations such as eigenvalues. Asymptotic matching may
also be used to develop approximations to integrals.

The principle of asymptotic matching is simple. The interval on which a
boundary-value problem is posed is broken into a sequence of two or more
overlapping subintervals. Then, on each subinterval perturbation theory is used to
obtain an asymptotic approximation to the solution of the differential equation
valid on that interval. Finally, the matching is done by requiring that the asymptot-
ic approximations have the same functional form on the overlap of every pair of
intervals. This gives a sequence of asymptotic approximations to the solution of
the differential equation; by construction, each approximation satisfies all the
boundary conditions given at various points on the interval. Thus, the end result is
an approximate solution to a boundary-value problem valid over the entire
interval.

Asymptotic matching bears a slight resemblance to an elementary technique
for solving boundary-value problems called patching. Patching is helpful when the
differential equation can be solved in closed form. Here is a simple example:

Example 1 Patching. The method of patching may be used to solve the boundary-value problem
y" —y=e ¥ [y(+ o) = 0]. There are two regions to consider. When x <0, the most general
solution which satisfies the boundary condition y(—o0)=0is

y(x) = ae* + ixe*, (74.1)
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where a is a constant to be determined. When x > 0, the most general solution which satisfies
y(0)=01is

y(x)=be™™ — {xe™%, (7.4.2)
where b is another constant to be determined. Solutions (7.4.1) and (7.4.2) are now patched
together at the one point common to both regions, namely, x = 0. That is, we require that y(x)
and y'(x) be continuous at x = 0. This gives a pair of equations for a and b whose solution is

a=b = —4. Substituting these values of a and b into (7.4.1) and (7.4.2) gives the exact solution to
the boundary-value problem: y(x) = —4e ! — 4|x|e~!xl.

Matching is different from patching because an asymptotic approximation to
the solution of the differential equation rather than the exact solution gets
matched. Moreover, matching is done by comparing functions over an interval
while patching is done by comparing functions and their derivatives at a point. In
general, the length of the matching interval approaches oo as ¢, the perturbing
parameter, approaches 0. Here are several examples to introduce the techniques of
asymptotic matching.

Example 2 Asymptotic matching for a first-order differential equation. The first-order differential
equation

Yo+ (ex?+ 1+ 1/xY)y=0, y1)=1,

isexactly soluble on the interval | < x < co. Nevertheless, we will use the principles of asymptotic
matching to study the approximate behavior of the solution as ¢ - 0+. When x is not too large,
the term ex? is negligible so an approximate equation for y is

v+ (1+ Ux?)y, =0,

where the subscript L refers to the left region. The solution to this equation which satisfies

yi(l)=Lis
= e T (743)

When x is large, ex? is no longer negligible but 1/x? is. Therefore, an approximate equation
valid as x - + o0 is

Ve + (ex? + 1)yg =0,
where the subscript R refers to the right region. The solution to this equation is

Yr=aem R (7.4.4)
where a is a constant.
There is a common region of validity of the two solutions (7.4.3) and (7.4.4) which enables us
to determine the approximate value of a. For those values of x lying in the range

e x xgm V8 e—0+, (74.5)

x is so large that (7.4.3) may be approximated by y,(x) = e **¥* ~ e™* (¢ > 0+), but x is still
small enough that (7.4.4) may be approximated by yg(x) = ae™**3~* ~ ge™* (¢ > 0+). In the
overlap region both solutions have the same functional dependence on x. If both asymptotic
expansions are to agree in the overlap region (7.4.5), then we must choose a ~ 1 (¢ - 0+ ). This is
asymptotic matching; we have obtained a global approximation to the original differential equa-
tion. The condition y(1) = 1 translates into the condition that a ~ 1 (¢ - 0+ ), which completely
determines the approximation to y(x) as x — co. Note that the extent of the matching region in
(7.4.5) becomes infinite as ¢ - 0+.

The matching region (7.4.5) that we have chosen is not the only possible choice. We could
have matched on the interval & Y «<x«eg Y" (¢—0+) or even the interval
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£ 199 « x « 739 (g 0+)! These regions all work because they satisfy the general matching
criterion that x lie in the asymptotic interval 1 « x « &™'/? as ¢ -0+ (see Prob. 7.30).

Example 3 Asymptotic matching in higher order. Let us return to the differential equation in
Example 2 and carry out the asymptotic matching to first order in ¢ First we consider the left
region. In Example 2 we merely discarded the term ex?. Now let us seek an orderly perturbative
expansion of the solution in powers of &: y, = yo(x) + &y,(x) + 2y,(x) + -, where yo(1) =1,
yi(1) =0, y,(1) =0, .... As before, yo = e™** !/~ y, satisfies the inhomogenous equation

1
yilx) + (l + ;) y1(x) = —x?yo(x),
whose solution is

l xa —-x+1/x
yx(x)—(g—?)e .

Hence a first-order approximation to y, is
yr=e XL +g(l ~ x*)/3 + OE*x®)], e—-0+, (7.4.6)

where the form of the error term is suggested by an examination of y,(x) (see Prob. 7.30).

Next we consider the right region. A more accurate estimate of the behavior of y for large x
is found by the usual technique of substituting y = e*), as explained in Chap. 3. This method
normally generates only the asymptotic expansion of y(x) valid as x — co, but in this example it
gives the exact solution because the differential equation for y(x) is first order:
yr(x) = ae™*/3=*+Vx In the overlap region this expression is approximately

yr(x) = ae™**'[1 — ex?/3 + O(e2x®)], e—0+. (7.4.7)

Comparing (7.4.6) and (7.4.7) determines a to first order in g: a = 1 + ¢/3 + O(e?) (e = 0+).
Note that the exact value of a is 3. The method of matched asymptotic expansions has given the
first two terms in the expansion of a for small e.

Example 4 Asymptotic matching for a second-order differential equation. Unlike the first-order
differential equation of Examples 2 and 3, the equation
1 x?

Y+ v+ 374 sx‘) y=0, (7.4.8)
where v is a parameter and ¢ — 0+, does not have a closed-form solution. Nevertheless, the
method of matched asymptotic expansions may be used to obtain an approximate solution to the
boundary-value problem y(0) = 1, y(+00) = 0.

When x is so small that ex* is negligible compared with x2/4, the original differential
equation (7.4.8) may be approximated by the simpler equation y” + (v + 3 — x?/4)y = 0. Thisis a
parabolic cylinder equation; a solution which decays exponentially for large x and satisfies
y(0)=1is

¥x) = D,(x)/D,(0) (749)

[We could also include in (7.4.9) a linearly independent solution like D,(—x) (when v is noninte-
gral) which grows exponentially for large x, but such a solution would immediately be rejected in
the course of asymptotic matching, as we will shortly see.] '

When x is large and positive, we can perform a local analysis of (7.4.8). The usual procedure
is to substitute y = 5 and to look for the exponentially decaying solution. The leading term in
the asymptotic expansion of y(x) for large x has the rather complicated form (see Prob. 7.31)

x2 -1/4 /1+ x2 —4 v2+1/4 1 1\%2
yx) ~ a(— +ex‘) (——\/:*_%_2*_;) exp —i(exz + —) . X— 4o0.
% 1

4 4
(7.4.10)
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The constant a cannot be determined by a local analysis of (7.4.8). However, asymptotic
matching supplies the connection between the behavior at co and the boundary condition
y(0) = 1, and can thus be used to determine a approximately.

The asymptotic matching procedure relies on the existence of an overlap region. We will
seek an overlap region where x is so large that it is valid to use (7.4.10) but where the term ex* is
still negligible compared with x?/4 so that it is valid to use (7.4.9). The interval

eV <x <3 (74.11)
satisfies these constraints. Note that this interval becomes infinitely long as ¢ » 0+ (see Prob.
7.32).

When x lies in this overlap region, the asymptotic approximation in (7.4.10) may be greatly
simplified because ex? is small compared with 1:

1/1 32 1 1
——(-+8x2) ~—— —-x7
3e\4 24 4
(\/%+sx2—%) ox?
\/i‘+sx2+% ’

X2 -4 o\ 12
(—+sx“) ~(—) , &0+,
4 x

Thus,

P(x) ~ a2V2er2F Udpm U2beyvo=xtd o 0+, (7.4.12)

On the other hand, the expression in (7.4.9) may be replaced by its asymptotic behavior for large
x when x lies in the overlap region (7.4.11) (see Chap. 3):

1 xveAxI/A

. e-0+. 7.4.13
5,0} ¢ (413)

ylx) ~

Throughout the overlap region the two asymptotic expansions (7.4.12) and (7.4.13) match;
they exhibit the same dependence on x! We thus conclude that to lowest order in ¢, an expression
for ais

a= 2 U2g=vi2=1/d 1124z

D,(0)

Our treatment of asymptotic matching has no doubt raised several questions
of principle. How do we know that an overlap region necessarily exists? If it does
exist, how can we predict its size? What do we do if there is no overlap region? We
postpone a discussion of these serious questions until Part IV. Our goal here is
merely to introduce the mechanical aspects of asymptotic matching. With this in
mind, we give three more examples which, although they are somewhat involved,
clearly illustrate the depth of analytical power which the method of asymptotic
matching can provide.

Example 5 Nonlinear eigenvalue problem. Asymptotic matching may be used to find an asymp-
totic approximation to the large positive eigenvalues E of the boundary-value problem
(x? = 1)y"(x) + xy'(x) + (E> = 2Ex)y(x) =0,  y(1)=0, y(e0) = 0. (74.14)

This eigenvalue problem is different from those considered in Sec. 7.3 because the eigenvalue E
appears nonlinearly.
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The differential equation (7.2.3) may be recast into a somewhat more familiar form by
substituting x = cosh s. In terms of the new variable s (7.4.14) becomes

y'(s) + (E? — 2E cosh s)y = 0,

which is called the associated Mathieu equation (Mathieu equation of imaginary argument).
It becomes the ordinary Mathieu equation

y'(t)+ (¢ + Bcost)y =0

when we replace s by it.

This is an interesting but terribly impractical result! Recognizing that we are solving the
Mathieu equation is by itself no progress; at best it assures us that it will be fruitless to search for
a simple analytical expression for E. We thus return to (7.4.14) and attempt a perturbative
solution. Let us take E to be large and positive and choose the perturbing parameter for this
problem to be 1/E. We will attempt to find an approximate formula for those eigenvalues E which
are large.

When E is large, we can decompose the full interval 1 < x < co into two smaller and
overlapping regions: region I for which 1 < x < E (E— +0) and region II for which 1 < x
(E — + o). Note that the overlap region, which includes values of x lying between but far from 1
and E, becomes infinitely long as E — +co. We will show that it is fairly easy to solve (7.4.14) in
regions I and II separately. We will then require that both approximations agree in the overlap
region. This requirement translates into a condition which determines the eigenvalues.

Throughout region I the term 2Ex is small compared with E2. When x is of order 1, it is
valid to neglect 2Ex compared with E2. When we do so, the resulting differential equation

(x? = 1yi(x) + xyi(x) + E*py(x) = 0
is soluble. To solve this equation we again let x = cosh s and obtain
¥ils) + E*yi(s) =0,
whose solutions are y, = cos Es and y, = sin Es. But since
s =arccosh x = In [x + (x? — 1)/?]
and since y(x) must satisfy the boundary condition y(1) = 0, we have
y(x) = Asin [E In (x + /%7 = 1)}, (74.15)

where A is an undetermined constant.

One should note that (7.4.15) is not quite valid throughout region I, but only when x = 0(1).
To understand why, one can substitute (7.4.15) into (7.4.14) and observe that terms containing E
do not all cancel. A solution which uniformly satisfies (7.4.14) up to terms of order 1 for all x in
region I is (see Prob. 7.35)

yilx)=4 (1 + %) sin [E In (x + /x2 = 1) = /x* = 1]. (7.4.16)

Equation (7.4.16) is a higher-order perturbative approximation to the solution of (7.4.14) than is
(7.4.15). In general, one can solve (7.4.14) to all orders in powers of 1/E as an expression of the
form

sin [E In(x +/x*=1)+ i g.(x)E™" (7.4.17)

n=0

pix) = 4 [1 £ 3 E

n=1

(see Prob. 7.35), where the two series in brackets are asymptotic series in powers of 1/E valid as
E - 0.
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The matching region is the interval 1 € x < E as E — + 0. Since x is large on this interval,
we may approximate (7.4.16) by its asymptotic expansion

Yovenap(X) = Af (x) sin g(x),

fx)~1+ ZX_E (7.4.18)

g(x)~EIn(2x)-x, E- o, «x<E.

This completes the analysis of region L.
Throughout region II, the term — 1 is small compared with x? so we may replace (7.4.14)
with the approximate differential equation

x2yi(x) + xyy + (E2 — 2Ex)yy = 0. (7.4.19)

Although the difference between (7.4.14) and (7.4.19) may seem slight, (7.4.19) is now soluble. The
substitution ¢t = \/8Ex converts (7.4.19) into

2y"(t) + ty' (1) + (4E* = )y(t) = 0,

which is a modified Bessel equation. Two linearly independent solutions are yy = I,;£(t), Ky(t).

In Example 2 of Sec. 3.5 we showed that for large positive argument I (x) grows exponen-
tially like e"/\/; and that K (x) decays exponentially like e"‘/\/)_c. Thus, the most general
solution of (7.4.19) which satisfies the boundary condition y(c0) =0 is

yu = BK;e(\/8Ex), (7.4.20)

where B is an arbitrary multiplicative constant.
Finally, recall from Prob. 6.71 that when p and z are real and p > z, the leading behavior of
Ki,(2) is

V2r (p? — 22)” Ve "2 sin [p cosh ™! (p/z) —\/p* — 2% + m/4].

In our case p = 2E and z = ,/8EXx, so in the overlap region the condition p >» z actually holds.
Hence, the leading behavior of yy(x) in the overlap region is

—B(1+i) ne'E"sin(Eanx—x+2E Eln4£—f)
2BV E a)

E— 00,1 <x<<E. (7.4.21)

This completes the analysis of region IL.

We now have two asymptotic approximations (7.4.18) and (7.4.21) to y(x) in the overlap
region. Since they both approximate the same function, they must agree over the entire overlap
region. Thus, 2E — E In 4E — n/4 must be an integral multiple of =. This condition gives a
simple approximate formula for the eigenvalues E which becomes increasingly accurate as
E — oo. It states that as n — oo the nth eigenvalue E, satisfies the equation

E,In4E,—2E,=(n+3n, n=0,1,2,.... (74.22)

How accurate is this result? In Table 7.2 we compare the exact eigenvalues (obtained
numerically on a computer) with the solutions of (7.4.22) for values of n ranging from 0 to 8.
Observe that the percentage error does indeed decrease as n increases. But what is most remark-
able is that the error is never more than 3.38 percent. This entire calculation rests on the
assumption that E is large. However, it is never clear just how large is large. One might imagine
that E must be a million or so before one can believe the result in (7.4.22). However, the computer
calculation shows that E = 3 is large enough to give 3 percent errors. It is a common experience
that asymptotic calculations tend to give errors which are far smaller than what one might
reasonably have expected.
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The asymptotic match gives the eigenfunctions as well as the eigenvalues. Demanding that
(7.4.18) and (7.4.21) agree in the overlap region imposes a relation between the constants A and
B: A= Bfn/_E e ®*(—1y. Thus, the eigenfunctions are now known approximately for
1 < x < o0 up to an overall multiplicative constant. Of course, without further information [such
as y(6) = 19] the normalization of y(x) cannot be determined because the boundary-value prob-
lem is homogeneous.

Approximate Evaluation of an Integral

Asymptotic matching may be used to determine asymptotically the behavior of
some integrals. Consider, for example, the integral
Fe)=[ e ar (7.423)
0
ase—0+.

The leading behavior of F(¢g) as ¢ — 0+ is easy to find. We simply set ¢ = 0
in (7.4.23): F(0) = [§ e~*dt = 1. Even though the integrand does not approach
e~ "uniformly near ¢t = 0 as ¢ — 0+, we will verify shortly that the leading behavior
of F(e) is correctly given by

Fe)~1, &e—0+. (7.4.24)

It is more difficult to find the corrections to this leading behavior. Differenti-
ating F(e) gives F'(e) = — [§ e™'"“" dt/t, so lim, ., F'(¢) does not exist. Appar-
ently, the perturbative expansion of F(¢) for small ¢ has the curious property
that while its first term in (7.4.24) is almost trivial to find, successive terms
require some real ingenuity. It is much more common for the first term (the

Table 7.2 A comparison of the exact eigenvalues E, of (7.4.14) obtained from com-
puter calculations with the approximations to E, in (7.4.22) obtained from asymp-
totic matching

The percentage relative error [percentage relative error = (approximate — exact)/exact] decreases as
E, increases and the error is never more than 3.38 percent. Observe that the relative error falls off
roughly as 1/E, the small parameter in the asymptotic analysis which led to the above results. The form
of (7.4.22) suggests that there are logarithmic corrections to the 1/E behavior of the relative error

E, (from asymptotic Percentage
n E, (from computer) matching) relative error
0 3.6975 3.5724 —3.38
1 5.3723 5.2569 —-2.15
2 6.8195 6.7031 -1.71
3 8.1423 8.0223 —-1.47
4 9.3826 9.2583 —1.33
5 10.5625 10.4337 —-122
6 11.6955 11.5623 -1.14
7 12.7904 12.6532 -1.07
8 13.8535 13.7128 —-1.02
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unperturbed problem) to require the ingenuity and the remaining terms to require
nothing more than paper and patience.

We will obtain the corrections to (7.4.24) in two ways. First, we express F(e)
in terms of a modified Bessel function and use this representation to quickly
write down the appropriate expansion of F(¢) about ¢ = 0. This method has
nothing to do with matched asymptotic expansions but it rapidly establishes the
answer. Second, and here is the point of this discussion, we use matched asymp-
totic expansions to rederive the expansion of F(¢) without using any special
properties of modified Bessel functions.

First, we represent F(¢) as a modified Bessel function. By differentiating F(e)
in (7.4.23) twice we see that F(¢) satisfies the differential equation ¢F”(e) = F(e).
The substitution F(¢) = ty(t), where t = 2\/2 converts this equation into the modi-
fied Bessel equation of order 1:

t2y(t) + ty'(t) — (1 + e2)y(t) = 0.
Therefore,

F(e) = 24\/¢ 1,(2\/¢) + 2B/¢ K,(2./¢),

where A and B are constants to be determined from boundary conditions at
0 and oo.

To calculate 4 and B we use the asymptotic relations I;(x) ~ e*(2nx)
Ky (x) ~ e *(2x/m)""* (x » + o) and I,(x) ~ x/2, K (x) ~ 1/x (x = 0+). Since
the integral in (7.4.23) vanishes as ¢ > + oo, the first set of asymptotic relations
implies that A = 0. Also, comparing the leading asymptotic behavior in (7.4.24)
with the second set of asymptotic relations gives B = 1. Thus,

F(e) = 2./ K,(2\/¢). (7.4.25)
Finally, we look up the behavior of K(x) as x -0+ in the Appendix
and learn that

-1/2
>

Fle)~1+elne+ey—1)+3e>lne+e*(y—3)
+58me+ @y -1+, -0+, (7426)

where y = 0.5772 is Euler’s constant.

Having established the answer, we proceed to the second and main point
of this discussion: namely, an independent derivation of (7.4.26) directly from
asymptotic matching. We observe that asymptotic matching may be useful here
because the character of the integrand e~ '~ is very different in the two regions
t«1l(e—>0+)ande «t(¢—0+). In the inner region (¢ « 1)it is valid to expand
the integrand as

e tEl o e-g/[(l —t+ %[2 _%t3 + ), t_>0-|-’ (7427)

in the outer region (¢ » ¢) we have

e""/‘~e"(1——+———-——3+~--), e/t - 0+. (7.4.28)
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The terms “inner” and “outer” are borrowed from the terminology of boundary-
layer theory (Chap. 9).

Since these two asymptotic regions overlap for e « t « 1 (¢ — 0+ ), it is natural
to write

F(£)=J‘6

e+ [ e, (7.4.29)
0 4

where 6(¢) is arbitrary subject to the asymptotic constraint ¢ < § « 1 (¢ —0+).

Our plan is to calculate each of the two integrals on the right side of (7.4.29)
asymptotically as ¢ > 0+ and then to show that the two results match asymp-
totically; i.e, their sum depends only on ¢ and not on the arbitrary matching
parameter §. We will perform this match to several orders in the inner matching
variable ¢ and the outer matching variable ¢/0. Note that in terms of the variable
/e, the extent of the overlap region becomes infinite as ¢ — 0+.

Leading-Order (Zeroth-Order) Match

An approximation to the integral over the inner region 0 < ¢t < ¢ that is correct to
zeroth orderin §is [3 e™* =%/ dt = O(5) (6 — 0+ ) because the integrand is bounded
by 1 for all t > 0. On the other hand, a zeroth-order approximation to the integral
over the outer region 6 <t < o0 is

0 @ ¢

J e“‘”‘dt=J e"‘dt+J‘ e e — 1) dt

] 3 o
=e~% + O(g/d), g/6 -0+,
because

4 0O

J e fe™ — 1) dt
L)

e) -t e

SsJ“s ertﬁgL e"dtsg,

where we have used the inequality |e™* — 1| < x for all x > 0.
Combining the contributions from the inner and outer regions gives

0

Fe) = jo e dr = e + O(8) + O(e/d)

=1+0(8)+0(E/5), 6-0+,6/0-0+, (7.4.30)

becausee™® = 1 + O(5) (6 —» 0+ ). Note that the dependence on 6 has dropped out
to zeroth order (albeit in a trivial way) in both the inner expansion parameter &
and the outer expansion parameter ¢/5. We have rederived the leading behavior of
F(e) in (7.4.24).

To find higher-order corrections to the leading behavior of F(¢) we must
match to higher order in powers of 6 and &/6, which we now do.
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First-Order Match

To find an approximation to the integral over the inner region 0 < t < § which s
valid to first order in 8, we use the inequality |e™* — 1| < x (x > 0) to write

J‘é eTt M dr = r e~ dr + f'é e Me ™t —1)dt
0 0 0
3

=j e di +0(62), 6-0+.

(o]

Setting s = ¢/t, we obtain

L] @©
[ etar=c] evs72ds+0(6?), 50+

0 £fo

The integral on the right is an incomplete gamma function. It was shown in
Example 4 of Sec. 6.2 that when N=0, 1,2,3,4, ...,

© oS (_1)N+1 © xn-N
L sN“ds‘cN-I- N! In x ,,go(—l)"n!(n—N)’
n¥EN
x-0+, (7431)
where Co= —y,

(_1)N+1( N 1)
Cv=-1_ |y — -1, N=123,...,
N N' ’ ng:l

and y = 0.5772 is Euler’s constant. Therefore, in the limit ¢/6 — 0+, the first-order
contribution to F(e) from the inner region is

J et = S(C, +In (6) + 3Jc + O(e/5)] + O0%),

0
5—0+,80-0+. (7432)

We have retained two error terms in this expansion but we cannot yet conclude
anything about the relative sizes of O(¢?/5) and O(5?).

Next, we compute a first-order approximation to the integral in the outer
region § <t < co. Using |[e™ — 1 + x| < x? (x > 0)and (7.4.31) with N = 1, we
have

Jv et Jp = J e”(1 —¢gft) dt + J e—l(e-e/r —1+¢/t)de
5 s é

. 0O

=| e(L—gt)dt+OEO),  &f6-0+  (1433)
]
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(see Prob. 7.38). Therefore, using (7.4.31) with N =0,

<]

j e”H dt = e7% — ¢[Co — In 6 + O(5)] + O(e?/5)

L]
=1-06—¢Co+¢lnd+ O(8%) + O(c*/5),
004,660+, (7.4.34)

where we neglect the error term ¢ O(5) because &§ « 6% (¢/6 —» 0+).

Now we combine the contributions in (7.4.32) and (7.4.34) from the inner and
outer regions. Even though the parameter 6 appears explicitly in these two for-
mulas, it cancels to second order in § and ¢/0 when the formulas are added
together:

[ emdr =1+ e ln e+ 2y — 1)+ O(?) + O(6),
0

0->0+,¢06-0+, (7.4.35)

where we have used Cy = —y and C, = y — 1. We have now reproduced the first
three terms in (7.4.26).

It is interesting to note that the original condition on 6, €6 <1 (e > 0+),is
not adequate to ensure that the error terms in (7.4.35) are smaller than the
retained terms. The constraint on & must be sharpened to read ¢ < & < ¢!/
(e = 0+). However, even though this new relation restricts 6 more than ¢ € § « 1
(¢ = 0+), the matching of the inner and outer integrals still occurs over an infinite
range in terms of the matching variable §/e: 1 € §/e K¢~ V2 (e~ 0+).

Third-Order Match

Now we use asymptotic matching to calculate the first seven terms in the series

(7.4.26). We will see that the number of expansion terms in the inner and outer

expansions proliferate rapidly. To reproduce (7.4.26) we have to calculate the

inner integral accurate to O(6°) (6 — 0+ ) and the outer integral to O(e%/5°)! We

must retain terms to this order if we are to achieve a proper match to order £° In &.
To fifth order in J, the inner integral is

L) ]
j e""/‘dr=f e 1 —t+ 42 — 3 + &4t*] dt + O(6°), 60+
0 0

Setting s = ¢/t, we obtain

rd © 1 e & & e*
—toElt gy — -s |- _ = =z d 0] 6 S5—0+.
JO ¢ t=¢ L,, ¢ (s2 St e T 2456) s +0(5%),
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Using (7.4.31) with N= 1, ..., 5, we get

J

0

é

e"dt =¢|C 1n(¢5)+é—i+£2 il + o3 a +0 al
=e|Ci+ (o) + 7 =55 + 1957 ~ 75 T ag0st »

1 8 6 ¢ g2 &
— 2 —_—— — — — ——— p—
£ [Cz )3t ame T O (5‘-‘)}

1 A ) €

E C3 —ln (8/5) 3 33 26 3 +2_£ +O (5)]

1, [o* &3 6?
‘3[@‘?*0G”

1 [é° o* 6
t 528 [55+© s +0(°), 06-0+,¢/0-0+.

The outer integral is expanded similarly:

© © 2 3 4 5 6
g [Tt O ey ()
L ¢ a L ¢ (1 t T2 Ted Tk 120:) tHO\s)
g_.o+ (7.4.36)

(see Prob. 7.38). Using (7.4.31) with N=0, ..., 4 gives

e
j e dt=e"%—~¢ |C,
s

1, _1_3 4
In 6 +06— ;8% + 7287+ 0(5*)

12 C1+ln5+l——6+0(62)
2 0

1, 1 11
—-6-8 [C2_51n5+5(5—2—5+0(5)]

1,1 1 1
+ﬂﬁ%rﬁﬁogn
1 1 1 &°
T O (—53)] + O (5—5),

g5
120°
50+, 8/6—0+.

The order of accuracy to which we compute the inner and outer expansions is
not arbitrary; the error terms are chosen so that these expansions match through
terms of order £>. Indeed, if we add together the inner and outer expansions, we
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obtain
Fle)=[ e *di
0
1 2
=1+¢elne+e2y— 1)+§s Ine¢

+82(y—§)+—1—a3lna+s3(éy—~—5—) + 0(5%)

12 18
6 &5 g4 ,
vo(5)+o(5)+o (%) + 052 + 05 + o),

6-0+,8/0-0+, (7437)

where we have substituted the values Co= —y, C;, =y —1, C, = =3y + 32,
C; =%y — 35 We have thus reproduced the series (7.4.26).

Note that all the error terms in (7.4.37) are negligible with respect to ¢ if the
constraint on & is sharpened to read &¥° «§ «¢'2 (¢— 0+). In successively
higher orders the constraint on é becomes increasingly tight. However, in terms of
the matching variable /¢ the extent of the matching interval is always infinite.

In Fig. 7.7 we compare the series for F(¢)in (7.4.30), (7.4.35), and (7.4.37) with
a numerical evaluation of the integral in (7.4.23).

In the next example we use the method of matched asymptotic expansions
to obtain higher-order terms in the expansion of a generalized Fourier integral.

Example 6 Use of asymptotic matching to improve the predictions of stationary-phase analysis. In
this example we use asymptotic matching to find the large-x behavior of the integral

n/2
Ix)= [ exe=rae, (7.438)

[

The method of stationary phase (see Example 3 of Sec. 6.5) quickly gives the leading

behavior of I(x):
LI .
[ emestdrn | et x o poo, (7.439)
2x

]

However, we did not explain in Sec. 6.5 how to obtain the higher-order corrections to this leading
behavior.

In Sec. 6.5 we showed that the leading-order behavior is completely determined by a local
analysis of the integrand in the neighborhood of the stationary point, which for the integral
(7.4.38) lies at ¢t = 0. On the other hand, higher-order corrections to the leading behavior may
arise from regions in the domain of integration away from the stationary point. Therefore, some
form of global analysis is required to obtain higher-order corrections; this example shows how
asymptotic matching can be used.

As usual, the procedure consists of dividing the domain of integration into two regions: the
first is a narrow region 0 <t < containing the stationary point at t = 0; the second is the
remainder of the integration interval § < t < n/2. For now we say only that 6 = 3(x) is a small
parameter satisfying 6 < 1 (x - +o00). Later we will impose more restrictive conditions on
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Figure 7.7 A comparison of three approximations to the integral F(e) = [& exp (—t — &/t) dt which
were derived using asymptotic matching. The leading-order (zeroth-order) approximation in (7.4.30)
is simply F(e) ~ 1 (¢ > 0+). The first-order and third-order approximations are given in (7.4.35) and
(7.4.37). The accuracy increases rapidly with the order of the approximation.

the size of §(x). Next, we decompose the integral I(x) into two integrals I(x) = I(x) + I,(x),
where I,{x) = J} e ** dr and I,(x) = [§? > ' dt. We will find asymptotic approximations to
I,(x)and I,(x)as x > + oo and §(x) > 0+. These approximations will each depend on é but, as
we will see, their sum I(x) will not depend on 6.

First, we approximate I,(x) as x — +oo. Since § « 1 as x— +oo0, we have cost=
1-3?+0(5*) (0<t<8, 6-0+) Therefore, I;(x)=e™[5e ™2 dt + O(xd°) (x - oo,
x/4§ — 0+ ). This result is valid if we impose the condition on § that x'/45 — 0+ asx — +0; we
are free to impose this condition which specifies just how rapidly 6 — 0 as x — + co. To approxi-
mate the above integral further, we write 3 e~ ™*/? dt = (5 ™2 dt — [ e~™"/? dt.In both of
these integrals we rotate the contour of integration by 45° in the complex-t plane. This enables us
to do the first integral exactly and to approximate the second using integration by parts twice.
The result for I,(x) is

= [ ix-n T U a-n 3igt oD !
Il(x)—- Ee‘ ’4’+Ee (1 /2)—358 8 6/2)—T+0(X65)+0 W .

X = +00, x¥5 - 04, xY25 > + 0. (7.4.40)
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To make the error incurred upon integrating by parts smaller than the smallest retained term, we
have imposed two new conditions on the magnitude of §: x*35 »0+ (which supplants
x'46 - 0+ because it is more stringent) and x"/2§ — + 00 as x —» + 0. Observe that the condi-
tions x > +00, 8 » 0+, x¥°56 - 0+, and x'/25 — + co are all satisfied if we take

x M« xTU, x> +oo. (7.441)

Next, we approximate I,(x) as x — +co. Since there are no stationary points of the inte-
grand for § <t < 1, it is valid to integrate by parts. Three integrations by parts give

l ( ) ieix cost |r/2 eix cost . 2 ‘(l + 2 COSZ t)el‘x cost |m/2 O 1
x)=— - —— Cos - - +
z xsint|, xZsin’t s x? sin® ¢ s x*s7
€% 0 X o5 5 g %2 cos? b + | 1 1
== - " + 73 + (3 —3 )+ (0] ==+ (o] =)
x xsind x% sin’ & x? sin® & x x*6
x— +00, x*75 —» +o0. (7.442)

We have imposed the additional condition x ™37 « §(x — +c0) to ensure that the error term is
smaller than the smallest retained term. Notice that x'/28 = (x*78)x!/!* — oo when x*7§ —» + o0
and x - + .

Finally, we add together the asymptotic approximations to I,(x) and I,(x) in (7.4.40) and
(7.4.42) and obtain

; i 1 1
I(x) = [;—xe““""’ +i +0 (x‘é’) +0(x8°) + O (3‘—3),

X = +00, x5 -0+, x3"6 - + 0. (7.443)

This is the answer; we have found the first two terms (one term beyond the leading behavior) in
the expansion of I(x) as x — + co. Observe that the parameter é cancels out of the asymptotic
expansion of I,(x) and I,(x) and appears only in error terms in the final answer for 7 (x).

The consistency of the asymptotic match depends on the error terms being smaller than the
smallest retained term, i/x. There are two error terms that must be checked: x "*6~7 «< x ! and
x8° « x™! (x - +o0). These conditions are satisfied because it is possible to impose the asymp-
totic conditions x¥7 « § « x~ %5 (x — +o0), which is a further refinement of the condition in
(7.4.41). To stress the delicacy of this condition we rewrite it as

XTI 5w xTI, x5 o0 (7.4.44)

The consistency of the asymptotic match depends on the existence of a parameter d which
satisfies (7.4.44). If it were not true that x =335 « x 71435 (x - + o), then there would have been
no such §!

We can now explain why it was necessary to integrate by parts three times even though (a)
the final answer in (7.4.43) was determined after just one integration by parts and (b) further
integration by parts generated terms depending on é which cancelled whén we added 7, and 1,.
Three integrations by parts were necessary to establish the consistency of asymptotic matching. If
we had done just one or two integrations by parts, the final asymptotic condition on 8, instead of
being consistent like that in (7.4.44), would have been inconsistent. For example, after one or two
integrations by parts we would have had

-2/5 5

x WP ad«x or x M«dxx, x-o 400, (7.4.45)

respectively, which are impossible conditions (see Prob. 7.41). In general, the result of an asymp-
totic match cannot be trusted until the matching scheme has been shown to be consistent. The
condition in (7.4.44) is crucial because it shows that the parameter 8, which determines the
location of the matching region, exists. This is the subtlety of asymptotic matching; the rest is
straightforward calculation.
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7.5 MATHEMATICAL STRUCTURE OF PERTURBATIVE
EIGENVALUE PROBLEMS

The series Y ., ¢" diverges for |¢| > 1. Naturally, this divergence reflects the
singularity structure of the function f'(¢) that the series approximates; here, f (¢) =
1/(1 — ¢) has a pole at ¢ = 1. Several examples of perturbative eigenvalue prob-
lems having perturbation series in the form of power series in ¢ were given in Sec.
7.3. In those problems, also, when the perturbation series for the eigenvalue had a
finite or vanishing radius of convergence, the exact eigenvalue considered as a
function of ¢ also had singularities in the complex-¢ plane.

In this section we discuss the origin and meaning of such singularities. We will
argue that the presence of singularities as well as their type is not a chance event,
but is a predictable phenomenon characteristic of a broad class of perturbative
eigenvalue problems.

Example 1 Eigenvalues of a 2 x 2 matrix. We begin by considering the simplest eigenvalue
problem of all. Let A and B be real symmetric 2 x 2 matrices of the form

A=(a 0)’ B=(x z)’
0 b zy
and consider the problem of finding the eigenvalues of A + B by perturbation theory. To do this
we replace B with ¢éB and express each eigenvalue as a power series in &. Each power series begins
with the numbers a or b and is expected to be convergent for sufficiently small ¢ because the
perturbation problem is regular.

To find the radii of convergence we solve the problem exactly. Setting the determinant of
A + ¢B — I] equal to zero gives the following formula for the two eigenvalues 1, :

‘li =4a+b+ex+ey+[(a—b+ex—ey)? +4e222]V2). (7.5.1)

1. are analytic functions of £ except at the zeros of the square-root term. Thus, 1. (¢) havea
pair of square-root branch points, symmetrically placed about the real axis, at
po—27b - (152)
y—xz2iz
The radius of convergence of the perturbation series is |a — b|/[(x — y)* + 42%]"/%.

Observe that the radius of convergence vanishes when a = b. But a and b are the unper-
turbed eigenvalues, so that, if a = b, the unperturbed problem is degenerate. Thus, when a = b,
the exact solution of the perturbed problem (which is nondegenerate if ¢ # 0) undergoes an
abrupt change (the appearance of degeneracy) in the limit ¢ — 0. The perturbation problem must
therefore be singular when a = b and this conclusion is consistent with the vanishing of the radius
of convergence.

The noteworthy feature of this example is that the two eigenvalues in (7.5.1) are analytic
continuations of each other and together they form a single two-valued function A(e). A(e) is
defined on a two-sheeted (Riemann) surface; on the lower sheet A(e) = A_(¢) and on the upper
sheet A(¢) = 1 ,{e). Analytic continuation around either of the two branch points (7.5.2) exchanges
the identities of the two eigenvalues because the sign of the square root in (7.5.1‘) changes; this
phenomenon is called level crossing.

The existence of square-root branch-point singularities, the appearance of
level crossing, and the unification of the eigenvalues into a single many-valued
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analytic function of ¢ are not just special properties of the simple problem in
Example 1. Rather, these seem to be very general features of perturbative
eigenvalue problems having perturbation series that diverge for sufficiently large
]e|. Of course, one could argue that all this analytical structure is artificial be-
cause the original problem did not involve ¢. However, we are often forced to
introduce a perturbation parameter ¢ when there is no other analytical way to
make progress in computing the eigenvalues. And, when the perturbation series is
divergent, the recovery of the eigenvalues depends upon a clear understanding of
the analytical structure of the perturbed model, as will be shown in Chap. 8.

Next we consider a more general eigenvalue problem and show that an
approximate solution displays the same basic analytic structure as the above
example.

Let us reconsider (7.3.3):

2

_%5 + V() + eW(x) E(e)] (x)=0 - (153)

with the boundary conditions that y(x)— 0 as |x| — co. However, instead of
immmediately expanding the solution in power series in ¢, let us instead represent
the solution as an infinite linear combination of eigenfunctions of the unperturbed
problem, which we assume are all known. We will then use the differential equa-
tion to determine the coefficients in this expansion. If we label the nth unperturbed
eigenfunction and eigenvalue by the superscript (n), then

d2
e — ¥+ V(x)ye — EQyP =0, (7.5.4)

where y§’(x) — 0 as |x| - oo.

The Schrodinger equation (7.5.4) is a Sturm-Liouville eigenvalue problem (see
Sec. 1.8). Therefore, the eigenfunctions y§” are complete. For these Schrodinger
eigenfunctions completeness means that an arbitrary square-integrable function,
such as an exact eigenfunction solution y(x) of (7.5.3), can be expanded as the
infinite linear combination

W)= 3 i) (1:55)

Eq. (7.5.5) is not a perturbation expansion because there is no perturbing
parameter.
We assume that W(x)y§’(x) may also be expanded in terms of the same

eigenfunctions y§:

W (x)yg(x z ALY (7.5.6)

Applying the differential equation (7.5.3) to (7.5.5), using (7.5.6), and equating
coefficients of y§? for each n gives an infinite matrix equation satisfied by the
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coefficients a,,:

E) — E 4+ ¢A9 eA} eAl ~Hao
_ gAY EQ — E + ¢A} eA? ~la,
Ma = eA9 eA} E® — E + eA3 a| 0.
(75.7)

If the matrix M were finite dimensional, the condition that there be nontrivial
solutions a satisfying (7.5.7) is that det M =0 (Cramer’s rule). Unfortunately,
when M is infinite dimensional, as it is here, det M (called a Hill determinant) may
not exist. Therefore we devise a sequence of approximations in which we truncate
the matrix M. Let My be an N x N matrix whose entries are the same as the first
N rows and columns of M. We thus approximate (7.5.7) by

Myay =0, (7.5.8)

where ay = (ag, a,, ..., ay_,). We have replaced the complicated equation in
(7.5.3) by a comparatively trivial sequence of matrix equations.

Note The matrix M can be obtained directly using the orthogonality properties of the eigen-
functions y§’. This process, called the Galerkin method, involves three steps. First, we seek an
approximation to y(x) in the form

N-1

VapproxlX) = L anl. (1.5.9)

n=0

Second, we substitute y,pprox(x) into the perturbed differential equation and reexpand the result as
a series of the y§. Third, equations for the expansion coefficients a, (=0, 1, ..., N — 1) are
obtained by equating coefficients of y§’(n = 0, 1,..., N — 1) to 0. The result is precisely the matrix
equation (7.5.8). This so-called Galerkin procedure is very useful in numerical analysis.

The approximation (7.5.8) can also be derived in a somewhat different way using a
Rayleigh-Ritz variational procedure. There, one also begins with the series (7.5.9). The
coefficients a, which give the “best fit” to y(x) are determined by applying a variational principle
to minimize the difference between y(x) and y,,..,(x). The “best fit” is achieved when (7.5.8) is
satisfied.

Next, we define Dy(E, ¢) = det My. The limit of Dy(E, ¢) as N — oo may or
may not exist, but we are not really interested in this limit. We are actually
concerned with the behavior of the roots of the equation

Dy(E, &) = 0. (7.5.10)

Do the roots of this equation approach the exact eigenvalues of the differential
equation (7.5.3) as N — o0 ? A glance at (7.5.7) shows that Dy(E, ¢)is an Nth-order
polynomial in E and . Thus, given any ¢ we can obtain N values for E. Leaving
aside all questions of rigor we will simply assume that for every value of ¢ these
values of E do approach the correct eigenvalues of the exact problem in (7.5.3) as
N — co. We have thus replaced the complicated differential-equation eigenvalue
problem (7.5.3) by a much simpler matrix eigenvalue problem very similar in
structure to the one considered in Example 1.
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Example 2 Singular perturbation of the parabolic cylinder equation. When V = x%/4 and
W = x*/4, Dy(E, ¢) satisfies a five-term recursion relation (see Prob. 7.43). The results of a
numerical computation of the zeros of D(E, ¢) for e = 1 are given in Table 7.3. As N increases,
the eigenvalues rapidly converge to the eigenvalues of the differential equation. The eigenvalues
approach their limits in order of their size, the smaller ones converging more rapidly than the
larger ones. This sequential (nonuniform) convergence of the eigenvalues typically occurs when

infinite matrices are approximated by truncated finite matrices.

Table 7.3 Numerical calculation of the first five eigenvalues of (7.3.3) with V(x) =
x2/4, W(x)= x*/4, and ¢ = 1

The eigenvalues are the limits as N — oo of the zeros of Dy(E, & = 1). This table shows that as N
increases zeros rapidly converge to the exact eigenvalues listed on the bottom line [obtained by Padé
summation (see Chap. 8)). The entries in the table form a checkerboard pattern with every other entry
absent because the values of the zeros only change when N increases by 2. This effect is connected with
the fact that the perturbed and unperturbed eigenfunctions are either even or odd functions of x

N E©® EM E? E® EW®
1 1.250 000
2 5.250 000
3 0.855 087 12.644 91
4 3.273 837 24.226 16
5 0.808 229 7.382 825 40.558 95
6 2.843 872 13.867 49
7 0.805 870 5.860 713 23.373 00
8 2.752 576 10.308 12
9 0.805 614 5.361 362 16.794 95
10 2.740 927 8.842 45
11 0.804 698 5.215 487 13.702 25
12 2.740 828 8.240 62
13 0.804 076 5.185 265 12.170 52
14 2.740 060 8.020 67
15 0.803 838 5.182 772 11435 98
16 2.738 944 7.957 72
17 0.803 781 5.182 628 11.117 65
18 2.738 253 7.946 76
19 0.803 774 5.181 493 11.002 51
20 2.737 979 7.946 43
21 0.803 774 5.180 331 10.972 07
22 2.737 907 7.945 87
23 0.803 773 5.179 657 10.967 97
24 2.737 897 7.944 56
25 0.803 772 5.179 385 10.967 97
26 2.737 897 7.943 41
27 0.803 771 5.179 310 10.967 08
28 2.737 896 7.942 77
29 0.803 771 5.179 298 10.965 69
30 2.737 894 7.942 50
© 0.803 771 2.737 893 5.179 292 7.942 40 10.963 58
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Let us examine the structure of the roots Ey(e) of Dy(E, ¢). Equation (7.5.10) s
an implicit algebraic relation between E and ¢. Therefore, the solution Ey(¢) is one,
or possibly several, multivalued functions (having altogether N values) and the
only singularities that Ey(¢) may exhibit are poles or branch points. However, from
the specific form of the Dy(E, ¢) one may show that Ey(¢) may not have poles or
branch points at which Ey(¢) = co (see Prob. 7.44). The only singularities that
En(e) may have are branch points at which Ey(e) remains finite. Level crossing of
the approximate eigenvalues occurs as the solutions of (7.5.10) are analytically
continued around these branch points.

At a branch point of Ey(e) we expect at least two eigenvalues to become
degenerate [see (7.5.1)]. Thus, at a branch point (7.5.10) must have at least a
double root. The condition for a double root is

(—;}E Dy(E, &)= 0. (7.5.11)
Since 0Dy /OE is a polynomial of degree N — 1 in both E and ¢, the simultaneous
solutions of (7.5.10) and (7.5.11) may yield at most N(N — 1) branch points (see
Prob. 7.45). These branch points typically occur as sN(N — 1) complex conjugate
pairs because (7.5.10) and (7.5.11) are real [see (7.5.7)].

A double root of (7.5.10) implies that Ey(e) has a square-root branch pointin
the ¢ plane. A more complicated branch point of Ey(¢) would require Dy(E, €) to
have a multiple root; e.g, a cube-root branch point would occur if
(0*/0E*)Dy(E, €) = 0 holds simultaneously with (7.5.10) and (7.5.11). Of course, it
is not impossible for three or more simultaneous equations in two unknowns to
have a solution, but it is very unlikely. The existence of a level-crossing point
which is not a square-root singularity must be viewed as purely fortuitous; even if
such a branch point could exist for some fixed N, it would probably disappear as
soon as N is increased by 1. We conclude that in a typical N x N matrix
eigenvalue problem with parameter ¢ there are N(N — 1) square-root branch
points in the ¢ plane.

Now let us consider what may happen to the solution of the finite matrix
problem (7.5.8) as N — co. There are four possibilities and we consider each in
turn.

Possibility 1 As N — oo, the locations of the branch points stabilize, remain well
separated from each other and the origin, and maintain their identities as square-
root branch points. If this occurs, then the radius of convergence of the perturba-
tion series for each eigenvalue is then nonzero and exactly equal to the distance to
the nearest singularity in the complex plane at which this eigenvalue crosses with
(the analytic continuation of) another eigenvalue. If possibility 1 occurs, the per-
turbation theory is regular.

Example 3 Regular perturbation of the parabolic cylinder equation. An eigenvalue equation
which displays the behavior described above is

(d*/dx* + x*/4 + e|x| — E)y(x) =0,  limpg=e y(x)=0.
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For this differential equation the exact eigenfunctions y(x) are always either even or odd
under the reflection x » —x. The determinant Dy(E, ¢) in (7.5.10) factors into a product of two
determinants, D(E, &) = DY**"(E, ¢)D*¥(E, ), where D§"*"(E, ¢) contains the entries 437, and
DY{*9(E, ¢) contains the entries A% [see (7.5.6)]; 42%"! and A2%,, both vanish. The
eigenvalues associated with even eigenfunctions and the eigenvalues associated with odd eigen-
functions are qualitatively similar, so we restrict our attention to the even eigenfunctions and
their eigenvalues. The numbers A2%, in equation (7.5.6) are given by (see Prob. 7.46)

(= 1y *m*1[2(n + m) + 1](2n)!
2"*"4(n — m)? — 1jm! n!

A3 = @)

A simultaneous numerical solution of (7.5.10) and (7.5.11) gives branch points for various
values of N. The locations of these branch points stabilize as N gets large (see Table 7.4). In Fig.
7.8 we plot a portion of the upper-half complex-¢ plane showing the limiting values of some
branch points for large N. The branch points occur in complex-conjugate pairs: each branch
point in the upper-half ¢ plane is associated with another (not shown) in the lower-half plane.
Each pair of branch points is joined by a branch cut (not shown).

What happens when the eigenvalues for this problem are analytically continued around a
branch point? Contours which emerge from the origin in the ¢ plane, encircle a branch point, and
return to the origin are indicated in Fig. 7.8. These contours all consist of sequences of line
segments. The simplest contour has its corners numbered sequentially 0, 1, 2, 3,4, 1,0. In Fig. 7.9
a portion of the complex-E plane is plotted showing the images of this contour in the ¢ plane.
Note that when & = 0 the eigenvalues assume their unperturbed values 4, 3, 4, 12. [Only the
eigenvalues for even eigenfunctions y(x) = y(— x) are shown here; the unperturbed eigenvalues 3,
1, L4, ... are associated with odd functions y(x) = —y(x) and behave similarly as functions of
complex &.] As the argument of each eigenvalue follows the contour in the ¢ plane, the eigenvalues
simultaneously trace out curves in the E plane. The first two eigenvalues undergo level crossing
(they exchange identities), while the other eigenvalues return to their original positions.

Figures 7.10 to 7.12 show how other pairs of levels cross when the eigenvalues are analyti-
cally continued around other branch points in Fig. 7.8. These figures are not schematic rep-
resentations; they demonstrate the actual numerical behavior of the eigenvalues. The numerical
error is approximately equal to the thickness of the curves.

The radius of convergence of the perturbation series for an eigenvalue increases as the size of
the unperturbed eigenvalue increases because, as can be seen from Fig. 7.8, the distance to the
nearest branch point at which this eigenvalue crosses with another also increases.

Table 7.4 Stabilization of the branch point
“A” as N - oo

This branch point is one of five which are plotted in
Fig. 7.9. The Nth approximation to a branch point is a
value of ¢ which simultaneously solves Dy(E, ¢) = 0 and
(0/0E)Dy(E, €) = 0 [see (7.5.10) and (7.5.11)]

N Nth approximation to A

—1.136 + 0.5552i
—1.209 + 0.5623i
—1.206 + 0.5741i
—1.205 + 0.5731i
—1.205 + 0.5730i
—1.205 + 0.5730i

= IE B - NV R A N
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Figure 7.8 A portion of the complex-¢ plane for the perturbation problem in Example 3 of Sec. 7.5.
Shown are four level-crossing points A4, B, C, and D. Paths made up of short line segments which
start at the origin and go around the points 4, B, C, and D are indicated. Particular points along
these paths are labeled by the numbers 1 through 15. The images of these paths in the complex-E plane
are shown in Figs. 7.9 to 7.12. Figures 7.8 through 7.12 were drawn with the help of B. Svetitsky
and H. Happ.

i 3 4 Complex-E plane
i )

L 3 4 .
20 —2.0
o 4
1.0+ —1.0
(1] T P | \‘ul.;lllun W N A 0

-35 =25 -15 =05 0.5 1.5 2.5 3.5 4.5 5.5 6.5

Figure 7.9 Level crossing of the first two even-parity eigenvalues in the complex-E plane. This figure
shows the images of the path in the complex-¢ plane that encircles the branch point A (see Fig. 7.8).
For example, the images of the line segment from the origin to “1” in the ¢ plane are paths from
0.5, 2.5, 4.5, and 6.5 in the E plane to the four points marked “1”. As we go from the origin in the
¢ plane to “17, “2”, “3”, “4”, “1”, and back to the origin, all of the eigenvalues in the E plane return
to their original positions except for two, which exchange their identities.
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Figure 7.10 Level crossing of the second and third even-parity eigenvalues in the complex-E plane.
This figure shows the images of the path in the complex-¢ plane that encircles the branch point
labeled “B” (see Fig. 7.8).
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Figure 7.11 Level crossing of the third and fourth even-parity eigenvalues in the complex-E plane.
This rather complicated figure shows the images of the path in the complex-¢ plane that encircles the
branch point labeled “C” (see Fig. 7.8).

Possibility 2 As N — oo, the branch points all move out to co. If this were to
happen, it would mean that the eigenvalues of the original differential equation
would all be entire functions of ¢. Thus, the perturbation problem in question
would be regular. We will give an interesting argument, based on the properties of
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Figure 7.12 The images of the path in the complex-¢ plane that encircles the branch point labeled “D”
(see Fig. 7.8). The effect of traversing this path is to exchange the first two even-parity eigenvalues
in the complex-E plane.

Herglotz functions, which rules out this possibility whenever W is one-signed
for all x.

An analytic function is said to be Herglotz if Im f> 0 when Im z > 0,
Imf=0 when Im z=0, and Im f< 0 when Im z < 0. For example, f(z) =
16 + 7z is a Herglotz function. It is a rigorous result of complex variable theory
that an entire function [f(z) is entire if it is analytic for all |z| < co] which is
Herglotz is linear [f(z) = a + bz]. (For the proof see Prob. 7.47.)

Next, we argue that whenever (7.5.3) is a regular perturbation problem, E(e)
or —E(g) is Herglotz. If (7.5.3) is a regular perturbation problem, then for all
complex ¢, éW(x) becomes insignificant compared with V(x) as |x|— co. Thus,
the asymptotic behavior of y(x) for large |x| is independent of ¢&. Having estab-
lished this we simply multiply (7.5.3) by y* (the complex conjugate of y) and
integrate from — oo to co. After