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ABSTRACT: We present a method for locating non-Hermitian degeneracies, called
exceptional points (EPs), and minimum-energy EPs between molecular resonances using
the complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-CC)
method. EPs are the complex-valued analogue of conical intersections (CIs) and have a
similar impact on nonadiabatic processes between resonances as CIs have on nonradiative
transitions between bound states. We demonstrate that the CAP-EOM-CC method in the
singles and doubles approximation (CAP-EOM-CCSD) yields crossings of the correct
dimensionality. The use of analytic gradients enables applications to multidimensional
problems. Results are presented for hydrogen cyanide and chloroethylene, for which the
location of the crossings of anionic resonances is crucial for understanding the dissociative
electron attachment process.

Exceptional points (EPs)1 are non-Hermitian degeneracies
that appear in open quantum systems. They are important

in many different fields, such as optics, laser physics, and
atomic and molecular physics.2,3 In this Letter, we investigate
molecules that are unstable with respect to electron loss, that
is, subject to autoionization.
In the case of autoionizing resonances, EPs have a similar

role in deactivation processes as conical intersections (CIs)
have in the decay of bound excited states. It is well-known that
the interaction of bound electronic states through nuclear
motion is often key for understanding processes such as
ultrafast decay, isomerization, and photodissociation that are
responsible for the photostability of DNA or vision, for
example.4 The probability of a nonadiabatic transition is high
near a CI and near an EP as well, and interstate couplings are
singular at both types of intersections.5 EPs are expected to be
just as ubiquitous for molecular resonances as CIs are for
bound states, but they have been investigated much less.
Linear vibronic coupling (LVC) models were established a

long time ago5,6 for the description of resonance−resonance
interactions. The presence of sharp peaks in the vibrational
excitation cross section of H2 + e− was connected to
overlapping resonance states.7,8 In addition, the interaction
of molecular electronic resonances is also important in
dissociative electron attachment (DEA), which plays a key
role in radiation damage to DNA and in the formation of
molecules in interstellar space.9 We also mention investigations
of nonadiabatic effects in resonant Auger decay10 and
interatomic Coulombic decay.11 However, EPs have been
investigated only for a few autoionizing anions: between the
2A1 and

2B2 states of the water anion,12 and between the 2A″
(π*-type) and 2A′ (σC−Cl* -type) states of the chloroethylene
anion.6 These investigations were done by scanning the

complex-valued potential energy surfaces (CPESs) along a few
modes, which requires a large number of calculations and good
chemical intuition. In this Letter, we present a method based
on analytic gradients for locating EPs on multidimensional
CPESs efficiently.
For the time-independent description of autoionizing

resonances, as well as for other dissipative systems, we can
use non-Hermitian Hamiltonians. Their complex eigenvalues E
= ER − iΓ/2 give the energy and the decay rate.13 EPs, where
the complex eigenvalues of two states become degenerate, are
of special interest because of their importance in nonadiabatic
decay, but also because they have properties radically different
from Hermitian degeneracies (CIs)2,14 (see Figure 1). At an
EP, not only the eigenvalues but also the eigenvectors coalesce,
forming a single self-orthogonal state.13 The topology of EPs
has been confirmed by experiments.15−20 When encircling a
CI, the states do not interchange, but the wave function
acquires a geometric phase.21 In contrast, when encircling an
EP, the two states can interchange,2,22 and the wave function
picks up a geometric phase.23 Encircling the EP in clockwise or
in counterclockwise directions yields different final states,
which was demonstrated by calculations24−26 and by experi-
ments on microwave transmission through a waveguide18 and
in an optomechanical system.19

The crossing conditions for same-symmetry intersections
can be derived in the two-dimensional subspace of the two
strongly interacting states. The energy difference between the
eigenvalues of the two-dimensional Hamiltonian matrix
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is ωϵ − ϵ +( ) 41 2
2 2 , where ϵ1 − ϵ2 is the diabatic energy

difference and ω is the coupling between the two states. In the
case of bound-state crossings, the matrix elements are real, so
there are two conditions for degeneracy: ϵ1 − ϵ2 = 0 and ω =
0.27,28 The eigenvectors remain orthogonal at the CI.
In the case of resonances, ϵ1, ϵ2, and ω can be complex; thus,

to have an EP between the states, both the real part and the

imaginary part of ωϵ − ϵ +( ) 41 2
2 2 have to be zero.6,29 This

means that the dimensionality of the EP seam is N − 2 (where
N is the number of nuclear degrees of freedom), just like the
CI seam for bound states, but the behavior of the crossing
states differs fundamentally between the two cases. The
Hamiltonian becomes defective at the EP, the two wave
functions coalesce, which means that the eigenvectors no
longer span the entire space. In addition, there is one
dimension along which the degeneracy of the real parts or
that of the imaginary parts can be kept, while the other parts
split (Figure 1). The Re and Im degeneracy seams can even
form a closed loop containing two EPs, as was demonstrated
by Feuerbacher et al.6 using an LVC model including linear
resonance widths and complex coupling terms.
Available methods for locating EPs30−34 use peculiarities of

the EP like the state-exchange phenomenon, the square-root
energy gap, or the nonanalytical behavior of energies at the EP.
In the method of Cartarius et al.,31 calculations are performed
along closed adiabatic loops, and the interchange of states is
used as a sign that the EP is inside the loop. In the iterative
three-point and one-point methods of Uzdin and Lefebvre33

and in the octagon method of Feldmaier et al.,34 guesses are
made for the position of an EP in a two-parameter space
utilizing the analytic behavior of the square of the energy

difference. Lefebvre and Moiseyev32 showed that the break-
down of the Pade ́ analytic continuation method can be utilized
as well to find EPs.
These methods are most useful for problems with one

complex parameter or two real parameters, for example, to
describe coalescence in molecular photodissociation, where
EPs can arise at specific values of the wavelength and the
intensity of the laser.35 It was suggested that population
transfer can be achieved between vibronic states of H2

+ and
Na2 by a chirped laser pulse, which can be utilized for
vibrational cooling.25,35−38

In molecules, the number of vibrational degrees of freedom
grows quickly with the size of the system (N = 3Natoms − 6 for
nonlinear molecules), which makes an EP search according to
the above-mentioned methods rather complicated. Also, there
is an (N − 2)-dimensional seam of EPs, from which the most
relevant point for estimating the importance of a nonadiabatic
process is the minimum-energy EP (MEEP). Here, we present
a method for locating EPs and MEEPs within the complex
absorbing potential equation-of-motion coupled-cluster (CAP-
EOM-CC) formalism39 by using analytic gradients. This
method opens up the possibility of studying DEA in
polyatomic systems without the need to impose geometrical
constraints.
We employ the CAP-EOM-CC method with a box-type

quadratic CAP added at the Hartree−Fock (HF) level as
outlined in refs 39 and 40. CAP-EOM-CC provides the two
resonances in one calculation if the same set of parameters
(CAP strength parameter η and box size parameters rα

0, α = x,
y, z) are used for both states,41 which ensures the balanced
description of the crossing states.9

The CAP-EOM-CC right wave function of state λ is defined
as

|Ψ = ̂ |Φλ
λ ̂R e) )T

HF (2)

where T̂ is the cluster operator and operator R̂λ can be chosen
in different forms to create excited, ionized, electron-attached,
or spin-flipped states.42 The scalar product ⟨ϕi|ϕj⟩ is replaced
by the c-product43 (ϕi|ϕj) ≡ ⟨ϕi*|ϕj⟩, which yields a complete
set of eigenvectors if there is no degeneracy.13 At EPs,
however, the c-norm of the corresponding eigenvector is zero,
even though the eigenvector is nonzero (self-orthogonal-
ity).13,43

It should be mentioned here that truncated CC and EOM-
CC methods do not give the correct shape and dimensionality
of same-symmetry crossings of bound states.44−46 This is
because truncation introduces non-Hermiticity, which changes
the crossing conditions. If we look at the problem as a real
nonsymmetric perturbation to a real symmetric matrix, a CI is
blown up to a circle of EPs because of the perturbation, and
complex eigenvalues appear within the circle.47

In the case of a truncated CAP-EOM-CC treatment of
resonances, the Hamiltonian is complex non-Hermitian. As
every complex matrix is similar to a complex symmetric
matrix,29 the crossing conditions of a complex symmetric H of
eq 1 apply, so truncated CAP-EOM-CC is expected to give the
correct dimensionality of the crossing seam. We demonstrate
this by calculations on the anions of hydrogen cyanide and
chloroethylene. Similar to truncated EOM-CC methods,
truncated CAP-EOM-CC can be systematically improved
toward the CAP-FCI limit by including higher-order
excitations.

Figure 1. Degeneracy seams in a three-dimensional parameter space
and behavior of eigenvalues in the branching plane for (a) Hermitian
and (b) non-Hermitian degeneracies.
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Because of the coalescence of the wave functions at an EP,
the wave function amplitudes diverge.13 The phase rigidity
(rλ)

48−51 is the ratio of the c-norm and the regular norm, and it
can be used as an indicator of an EP. Because of the
nonsymmetric nature of CAP-EOM-CC we calculate it as

=
Ψ̃ |Ψ

⟨Ψ̃ |Ψ ⟩
=

+
−

+λ
λ λ

λ λ
r

A
A B

i
B

A B
( )

2 2 2 2
(3)

∑= + λ λA L R1 2 Im( ) Im( )
i

i i
(4)

∑= λ λB L R2 Re( ) Im( )
i

i i
(5)

where Ψ̃λ is the left CAP-EOM-CC wave function; Li
λ and Ri

λ

are the left and the right EOM amplitudes corresponding to
single, double, etc. excitations; and we used the fact that left
and right eigenvectors are biorthogonalized using the c-
product

∑Ψ̃ |Ψ = − =λ λ
λ λ λ λL R L RRe( ) (Re( ) Re( ) Im( ) Im( )) 1

i
i i i i

(6)

∑Ψ̃ |Ψ = + =λ λ
λ λ λ λL R L RIm( ) (Re( ) Im( ) Im( ) Re( )) 0

i
i i i i

(7)

The phase rigidity is complex in our case because of different
left and right eigenvectors in truncated CAP-EOM-CC. For
well-separated resonances, its value should be close to 1 with a
negligible imaginary part, and it should go to 0 as the EP is
approached, because the amplitudes and thus the regular scalar
product grow. For a full CC expansion, the phase rigidity
would have purely real values.
To locate EPs on multidimensional CPESs, we use the fact

that both the real and the imaginary energy differences have to
go to zero as the EP is approached. The corresponding
gradient difference vectors can be used to determine directions
in which the energy differences decrease, and a method similar
to the direct method by Bearpark et al.52 for locating crossing
points of bound states can be applied.
We use gradient g̃ to locate any EP between two states

̃ = +g f fRe Im (8)

= −
|| ||

E Ef
x
x

2(Re( ) Re( ))Re 2 1
Re

Re (9)

= − −
|| ||

E Ef
x
x

4(Im( ) Im( ))Im 2 1
Im

Im (10)

where xRe and xIm are the gradient difference vectors

= −x G GRe( ) Re( )Re 2 1 (11)

= − −x G G2(Im( ) Im( ))Im 2 1 (12)

We presented the implementation of Re(G) in an earlier
paper40 and used it for locating resonance equilibrium
structures53 and for the initial optimization of minimum-
energy crossing points (MECPs) between anionic states and
their parent neutral states.54 We complement our implementa-
tion with Im(G) in the current work (see the Supporting
Information for the gradient formula).
To find the minimum-energy exceptional point (MEEP),

one would additionally have to minimize ER of one of the
states in the subspace orthogonal to the two-dimensional
branching plane, as is done for the MECP of bound states.52

While in the latter case the branching plane is spanned by the
gradient difference vector and the nonadiabatic force matrix
element (h),14,55 in the case of EPs the two-dimensional
branching plane is spanned by different combinations of the
xRe, xIm, hRe, and hIm vectors.
In our current implementation, the gradient of the second

state is orthogonalized to the plane spanned by xRe and xIm
using projector

=g GRe( )2 (13)

which is expected to cause slower convergence than
orthogonalization to the branching plane, but the calculation
of hRe and hIm is avoided.
The final gradient used for the MEEP optimization is given

as

̅ = + +g f f gRe Im (14)

The outlined methods were implemented in Q-Chem,56

built upon the MECP search implementation by Epifanovsky
and Krylov.57

To test the EP optimization and MEEP optimization
algorithms and to investigate the topology of EPs within the
CAP-EOM-CC singles and doubles (CAP-EOM-CCSD)
model, we performed calculations on the HCN− anion,

Figure 2. Real and imaginary parts of the CPESs above the branching plane corresponding to the EP at ∠ = 165° from Figure 3 (marked by a red
dot here). The third panel shows the real part of the phase rigidity for the first state. For the definition of u and v vectors, see the Supporting
Information. Calculations were performed with the fixed CAP parameters of the EP (see the Supporting Information).
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which can have a one-dimensional EP seam between two
resonance states of the same symmetry and multiplicity at bent
structures. We looked at crossings between two 2A′ states that
correspond to a 2Π state and a 2Σ+ state in linear geometry and
presumably play a part in DEA to HCN.
For these calculations we used the CAP-EOM-EA-CCSD

method and the standard Dunning basis set aug-cc-pVTZ
augmented with three extra p functions on each atom
(following the augmentation scheme described in ref 39).
The CAP strength parameter was kept fixed at the value 9 ×
10−3 a.u.,58 but the box size parameters were relaxed during the
EP optimization.
First we located EPs at five different constrained bond angles

between 155° and 175° using eq 8 for the optimization. To
verify the shape of the CPESs around EPs, we investigated the
EP corresponding to ∠ = 165°. Because there are just three
degrees of freedom for HCN−, it is simple to determine the
branching plane in this case (see the Supporting Information).
In Figures 2 and 3 it can be seen that the dimensionality of the

EP is correctly described by the CAP-EOM-CCSD method:
there is a one-dimensional EP seam, and the degeneracy is
lifted in the branching plane, as expected. The real parts of the
surfaces remain degenerate in one direction, and the imaginary
parts interchange here, while the imaginary parts are
degenerate in the opposite direction,59 which is also in
agreement with analytical models.
The real part of the phase rigidity of state 1 is plotted in

Figure 2. It is of the order of 10−2 at the approximate EP, but it
is below 0.6 already at radius 0.01 (approximately 0.007 Å
change in the bond lengths). The imaginary part of the phase
rigidity is negligible, with values between −0.008 and 0.007 for
all points calculated (see the Supporting Information).
The EPs found at different bond angles cover a large range

of ER and Γ values (Figure 3), and the difference between the
two states is typically smaller than 6 meV for both quantities

(see the Supporting Information). The third-order interpolat-
ing functions for ER,1 and ER,2 have a minimum at ∠ = 163.16°
and 163.18°, respectively. The MEEP (shown as a red dot in
Figure 3) was converged with a slightly looser threshold than
the previous EP points, so the energy difference of the two
states is somewhat larger than before (20 meV for ER and 2
meV for Γ). The need to use looser thresholds is probably due
to the fact that g is not exactly parallel to the EP line. The
MEEP has internal coordinates RCN = 1.165 Å, RCH = 1.162 Å,
and ∠ = 162.98°, the latter in very good agreement with the
above approximated values, which indicates that the looser
thresholds do not induce a large error in the structure.
To try out our method for a larger system with more degrees

of freedom, we investigated chloroethylene, which is a good
model for biologically important halogenated compounds. For
example, halogenated DNA bases are used as sensitizers in
radiation therapy, and it is believed that DEA involving
resonance states plays a role in this process by inducing strand
breaks in DNA.60 Experimental studies of chloro-substituted
ethylenes61−65 suggest that electron attachment produces a π*
resonance, which, through out-of-plane motions, converts to a
σ* state that is dissociative along a C−Cl bond. This DEA
process for removing a chloride ion from the molecule might
be important in the detoxification of these substances, which
are common pollutants of groundwater.66

In an earlier paper we presented vertical attachment energies
(VAEs) and MECPs between the lowest-energy anionic state
and the parent neutral state for chloro-substituted ethylenes.54

Here, we located the MEEP between the π* and σ* states of
the chloroethylene anion so that we can construct a complete
pathway for DEA. These calculations were carried out using
CAP-EOM-EA-CCSD and the aug-cc-pVDZ+3p basis set (3
extra p functions on C and Cl atoms). The two states have
different symmetry at planar structures (A″ and A′), which
means they cannot interact. At the MEEP, the Cl atom is bent
slightly out of the molecular plane; this allows for the
interaction of the two states. The C−Cl bond and, to a smaller
extent, the C−C bond are elongated compared to the
equilibrium structure of the neutral molecule (see the
Supporting Information). Feuerbacher et al. also located an
EP for this system6 by changing the C−Cl bond length and the
Cl out-of-plane angle in increments and leaving all other
coordinates fixed at their value at the neutral equilibrium
structure. Our method allows for the efficient optimization of
all nuclear coordinates, and in this way it yields the MEEP,
which is more relevant for assessing the probability of the DEA
process.
To check the shape of the CPESs near the MEEP, we

performed calculations in the xRe−xIm plane. The resulting
surfaces (Figure 4) have two EPs in the plane, and the shape
formed by the Re(E) and the Im(E) degeneracy seams
resembles an ellipse. This is in line with LVC results and ab
initio calculations of Feuerbacher et al.,6 who introduced the
term doubly intersecting complex energy surfaces (DICES) for
this phenomenon. In Figure 4 the ellipse fitted to the Im(E)
surface crossing can be seen. The optimized MEEP is not
exactly on the ellipse; differences in bond lengths between the
MEEP and the corresponding approximated point on the
ellipse, EP1, are smaller than 0.001 Å. The C−Cl bond at the
other EP on the ellipse, EP2, is shorter by 0.013 Å than at EP1,
and the H−C−C−Cl dihedral angle is −4.1° at EP2 compared
to 2.3° at EP1 and MEEP.

Figure 3. Resonance positions and widths and the energy of the
parent neutral state along the EP line of HCN−. The optimized MEEP
is marked by a red dot. Optimized structural parameters and box size
parameters are available in the Supporting Information.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b03228
J. Phys. Chem. Lett. 2018, 9, 6978−6984

6981

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b03228/suppl_file/jz8b03228_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b03228/suppl_file/jz8b03228_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b03228/suppl_file/jz8b03228_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b03228/suppl_file/jz8b03228_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b03228/suppl_file/jz8b03228_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.8b03228


To construct a pathway for DEA, we performed linear
interpolation between the neutral equilibrium structure and the
MEEP and between the MEEP and the MECP. The π* state
has a much smaller resonance width than the σ* state in the
Franck−Condon region, but the width of the latter state
quickly decreases along the DEA pathway (Figure 5). At the

MEEP it is similar to the vertical width of the π* state.
Transition from π* to σ* occurs near the MEEP where the
coupling of the two states is large. From the MEEP both the
position and the width of the σ* resonance decrease
monotonically, until the MECP with the neutral state is
reached, and the anionic state becomes stable with respect to
electron loss. Note that at the MECP regular EOM-CCSD was
used for the calculation of the σ* state; thus, Γ is zero by
definition.

The MEEP has slightly lower energy (1.761−1.768 eV) than
the VAE of the π* state (1.801 eV54), and the MECP is at a
substantially lower energy than the previous two (1.059 eV54),
which means that DEA can proceed along a completely barrier-
free route. The long lifetime of the π* state relative to the σ*
state and the accessibility of the MEEP makes electron
attachment to the π* orbital very likely to produce chloride
ions as suggested also by experiments. However, experiments
find the maximum of the DEA cross section at around 1.2−1.3
eV,63,64 that is, at considerably lower energy than our VAE. A
similar deviation was obtained and analyzed in more detail in
ref 6. We also note that the π* state has a minimum before
reaching the MEEP, which is expected to elongate the time the
anion is subject to electron loss. To model how the properties
of real and imaginary surfaces influence the efficiency of the
DEA process, dynamical simulations of nuclear motion would
be needed.
In summary, we presented a method for locating EPs and

MEEPs on multidimensional CPESs using analytic gradients.
The peculiar shape of CPESs around EPs was discussed, and
the ability of the CAP-EOM-CCSD method to correctly
describe the vicinity of EPs was demonstrated. DEA to
chloroethylene was investigated by locating the MEEP
between π* and σ* anionic states and constructing a pathway
from the neutral equilibrium structure to the σ*−neutral
MECP through the MEEP.
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