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ABSTRACT: The spin structure of wave functions is reflected in the magnetic structure of
the one-particle density matrix. Indeed, for single determinants we can use either one to
determine the other. In this work we discuss how one can simply examine the one-particle
density matrix to faithfully determine whether the spin magnetization density vector field is
collinear, coplanar, or noncoplanar. For single determinants, this test suffices to distinguish
collinear determinants which are eigenfunctions of Sn̂̂ from noncollinear determinants which
are not. We also point out the close relationship between noncoplanar magnetism on the one
hand and complex conjugation symmetry breaking on the other. Finally, we use these ideas to
classify the various ways single determinant wave functions break and respect symmetries of
the Hamiltonian in terms of their one-particle density matrix.

1. INTRODUCTION

Magnetic structures are ubiquitous in nature and are of
significant technological importance. At the microscopic level,
we associate magnetism with electronic or nuclear spin: the
spin structure of the electronic wave function yields
information about observed magnetic properties. At the
mean-field level, electronic magnetism is frequently associated
with spin symmetry breaking, simply because most spin
eigenfunctions cannot be described by a mean-field wave
function. We should note, however, that restricted open-shell
wave functions can be spin eigenfunctions and yet have
magnetic character.
On the one hand, the symmetry breaking of Hartree−Fock is

certainly artificial: for finite systems, the exact solution does not
break symmetries. On the other hand, this symmetry breaking
is not entirely unphysical, either. For example, consider the
dissociation of the H2 molecule. For large bond lengths,
Hartree−Fock breaks spin symmetry, localizing the ↑-spin
electron on one atom and the ↓-spin electron on the other.
While the exact solution is entangled and does not have broken
spin symmetry, it is also true that the exact solution, unlike the
symmetry-adapted Hartree−Fock, always has one electron on
one atom and the other electron on the other atom (at infinite
separation). Thus, the broken spin symmetry has a certain
degree of physical correctness: both the Hartree−Fock solution
and the exact solutions display antiferromagnetism. What the
broken-symmetry mean field lacks is entanglement; it gives a
sort of classical picture of the dissociated limit.
The story, somewhat unfortunately, is slightly more

complicated than that. In addition to breaking S ̂2 spin
symmetry, Hartree−Fock can also break S ̂z spin symmetry, in
what is known as generalized Hartree−Fock (GHF).1−4 But
not all GHF solutions are alike. Some may actually have an axis
of spin quantizationfor example, the wave function may be

an eigenstate of Sx̂. Though this would appear to be a GHF-
type wave function, it is actually just an unrestricted Hartree−
Fock (UHF) determinant with a rotated axis of spin
quantization. We can always create such a solution by acting
a spin rotation operator on a UHF determinant. But while these
kinds of “GHF” solutions have a collinear (i.e., ferromagnetic or
antiferromagnetic) structure, other kinds of GHF solutions may
have coplanar but noncollinear magnetic structure, or even a
general noncoplanar ordering, and when we refer to a GHF
determinant, we are really interested in one which is fully
noncollinear. These noncollinear GHF states are particularly
prevalent in systems which exhibit spin frustration.5

How are we to distinguish these various kinds of magnetic
orderings of broken spin symmetry wave functions? Con-
ceptually this seems easy enough: one could simply plot the
magnetization vector field defined in eq 8 below and examine it.
But this is by no means a practical solution except, perhaps, for
lattice Hamiltonians.
An important step was provided by Small, Sundstrom, and

Head-Gordon (SSHG).6 They pointed out that because a
collinear wave function is necessarily an eigenfunction of some
spin operator Ŝn,̂ where n ̂ is some spatial direction, one can
determine whether a wave function is collinear or not by
looking for the direction n ̂ which minimizes the fluctuation

⟨ ̂ ⟩ − ⟨ ̂ ⟩̂ ̂S Sn n
2 2. If in some direction the fluctuation vanishes, the

wave function must be an Sn̂̂ eigenfunction. This leads to the
SSHG test to determine collinearity: a wave function is
collinear if and only if the lowest eigenvalue of a matrix A
vanishes, where the elements of A are
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= ⟨ ̂ ̂⟩ − ⟨ ̂⟩⟨ ̂⟩A S S S Sij i j i j (1)

and where i and j run over x, y, and z. Note that this test in
general requires the two-particle density matrix. Moreover, it
tests the spin structure of the wave function where we are more
interested in examining the magnetic structure of the electronic
density. Obviously the former determines the latter, but testing
the latter is, as we shall see, perhaps somewhat simpler in that it
does not require the two-particle density matrix. Finally, the
SSHG test does not distinguish between coplanar and
noncoplanar magnetizations, which would appear to arise
from wave functions which break Sn̂̂ symmetry in different ways.
In this work, we seek to do several things. First, we provide a

test for the collinearity or noncollinearity of the magnetization
density, based on the structure of the spin−orbital one-particle
density matrix. This test is equivalent to the SSHG test for
single determinant wave functions, though we provide an
alternative conceptual motivation. We also show how to
distinguish between coplanar and noncoplanar magnetization
densities; this test is motivated by the observation that a
noncoplanar magnetization density requires a complex wave
function, and is novel. Finally, we note that while testing the
magnetic structure of the one-particle density matrix does not
allow us to infer too much about the spin characteristics of a
general correlated wave function, it does allow us to determine
whether a single determinant is collinear (i.e., an eigenfunction
of Sn̂̂ for some n ̂) or not. Since our test and that of SSHG are
equivalent for single determinants, this is none too surprising,
but it allows us to extend the work of Fukutome1 and of Stuber
and Paldus,3 who classified Hartree−Fock solutions in terms of
the occupied molecular orbital coefficients. We show the
equivalent classifications in terms of the one-particle density
matrix. We demonstrate our ideas for a handful of systems for
which GHF solutions can be found.

2. SPIN−ORBITAL ONE-PARTICLE DENSITY MATRIX
AND THE MAGNETIZATION DENSITY

Before we can discuss collinearity tests, we will require some
preparatory material.
We begin, then, by considering the full spin−orbital one-

particle density matrix associated with a normalized state |Ψ⟩,
which may or may not be a single determinant and which we
write as

γ = ⟨Ψ| |Ψ⟩μν
ηξ

ν μ
†
ξ η

c c (2)

where ν and μ index spatial basis functions and η and ξ are spin
indices. Quite generally, in a spin−orbital basis in which the
first block index corresponds to ↑-spin and the second block
index corresponds to ↓-spin, we have

γ
γ γ

γ γ
=

↑↑ ↑↓

↓↑ ↓↓

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

(3)

For our purposes, it is more convenient to decompose the
density matrix into a charge component P and spin
components M⃗ as

γ σ=
+ −

+ −
= ⊗ + ⃗ ⊗ ⃗

⎛
⎝⎜

⎞
⎠⎟

P M M M

M M P M
P M

i

i
1

z x y

x y z
(4)

Here, 1 is the identity matrix in spinor space, σ⃗ is the vector of
Pauli matrices, and ⊗ denotes the Kronecker product; P is the

charge density matrix, and M⃗ is the vector of spin density
matrices:

⃗ =M M M M( , , )x y z (5)

The individual component matrices are

γ γ

γ γ

γ γ

γ γ

= +

= +

= −

= −

↑↑ ↓↓

↓↑ ↑↓

↓↑ ↑↓

↑↑ ↓↓

P

M

M

M

1
2

( ) (6a)

1
2

( ) (6b)

1
2i

( ) (6c)

1
2

( ) (6d)

x

y

z

and can be extracted from

= ⟨Ψ| + |Ψ⟩ ≡ ⟨Ψ| ̂ |Ψ⟩

= ⟨Ψ| + |Ψ⟩ ≡ ⟨Ψ| ̂ |Ψ⟩

= ⟨Ψ| − |Ψ⟩ ≡ ⟨Ψ| ̂ |Ψ⟩

= ⟨Ψ| − |Ψ⟩ ≡ ⟨Ψ| ̂ |Ψ⟩

μν ν μ ν μ μν

μν ν μ ν μ μν

μν ν μ ν μ μν

μν ν μ ν μ μν

† †

† †

† †

† †

↑ ↑ ↓ ↓

↑ ↓ ↓ ↑

↑ ↓ ↓ ↑

↑ ↑ ↓ ↓

P c c c c P

M c c c c M

M c c c c M

M c c c c M

1
2

(7a)

1
2

(7b)

1
2i

(7c)

1
2

(7d)

x x

y y

z z

Having defined these magnetization density matrices, we can
now define the magnetization vector field or, if one prefers, the
spin density vector field. Choosing our basis to be real, as we
can do without loss of generality, the magnetization vector at a
point in space is simply

∑ χ χ⃗ ⃗ = ⃗ ⃗ ⃗
μ ν

μ ν μνm r r r M( ) ( ) ( )
, (8)

Note that only the symmetric part of M⃗ contributes to the
magnetization vector. Because M⃗ is Hermitian, its symmetric
part is its real part. If the density matrix γ is real, then My is
purely imaginary; hence, my(r)⃗ vanishes identically and the
magnetization density m⃗(r)⃗ is coplanar. In other words, a real
wave function has coplanar magnetism. The converse is not
necessarily true: coplanar magnetism does not necessarily imply
a real wave function. Conceivably, we could have, for example,
My purely imaginary with complex Mx and Mz. We should note
that the imaginary parts of M⃗ do contribute to the spin current
density.1 We shall have more to say on the spin current density
later.

3. TESTING MAGNETIC STRUCTURE
Suppose that a wave function is an eigenfunction of Sẑ (and of
the total number operator). Then that wave function has a
definite number of ↑-spin and of ↓-spin electrons. For such a
wave function, γ↑↓ and γ↓↑ must be identically zero, because the
operator c↑

† c↓ changes the number of electrons of each spin
direction when acting on that wave function. Thus, an Ŝz
eigenfunction has a block diagonal spin−orbital density matrix,
and if the spin−orbital density matrix is not block diagonal, the
wave function is not an eigenfunction of Sẑ.
Note that if the spin−orbital density matrix is block diagonal,

we cannot guarantee that the underlying wave function is an
eigenfunction of Ŝz unless the wave function is a single
determinant. If the wave function is a single determinant,
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diagonalizing the spin−orbital density matrix allows us to
obtain the occupied natural orbitals; if the density matrix is
block diagonal, the occupied orbitals can be chosen to be Sẑ
eigenfunctions, and if the occupied orbitals are Ŝz eigenfunc-
tions, so is the determinant. To test the spin structure of a
general wave function, we require the two-particle density
matrix, as SSHG pointed out.
We have discussed the special case of magnetization aligned

along the z axis, but of course nothing privileges that axis. Quite
generally, if a wave function is an S ̂n̂ eigenfunction, then the
spin−orbital density matrix is block diagonal in spin blocks
where ↑ and ↓ are defined relative to n ̂. If the density matrix
cannot be brought to this form, the magnetization is
noncollinear and the wave function is not an eigenfunction of
S ̂n̂ for any direction n ̂; if the density matrix can be brought to
this form, the magnetization vector field is collinear and the
wave function, if a single determinant, is guaranteed to be an
eigenfunction of S ̂n̂.
3.1. Spin Rotation Operators. To test this possibility, we

must consider spin rotation operators. We define a unitary spin
rotation operator7

̂ Ω = γ β α̂ ̂ ̂R( ) e e eS S Si i iz y z (9)

where Ω stands for the collection of rotation angles (α, β, γ).
The three angles α, β, and γ are Euler angles and cover the
sphere. With this operator we can define a rotated state

|Ψ̃ ⟩ = ̂ Ω |Ψ⟩Ω R( ) (10)

Note that if the Hamiltonian commutes with the spin
operators, then |Ψ⟩ and |Ψ̃Ω⟩ are degenerate

⟨Ψ̃ | ̂ |Ψ̃ ⟩ = ⟨Ψ| ̂ Ω ̂ ̂ Ω |Ψ⟩ = ⟨Ψ| ̂ |Ψ⟩Ω Ω
†H R H R H( ) ( ) (11)

where we have used the fact that Ĥ commutes with R̂ and that
R̂† R̂ = 1. Note also that if |Ψ⟩ is a single determinant, so too is
|Ψ̃Ω⟩, because R̂ is a series of exponentials of one-body
operators; i.e., it is a Thouless transformation.8 Together, these
observations imply that if |Ψ⟩ is a solution of the Hartree−Fock
equations, then so too is |Ψ̃Ω⟩. In fact, the collection of states
|Ψ̃Ω⟩ forms a manifold known as the Goldstone manifold and is
used in spin symmetry projection.7,9,10

Let us now consider the rotated density matrix. Generically,
we will have

γ ̃ = ⟨Ψ̃| |Ψ̃⟩

= ⟨Ψ| ̂ ̂|Ψ⟩

= ⟨Ψ| ̂ ̂ ̂ ̂|Ψ⟩

= ⟨Ψ| ̃ ̃ |Ψ⟩

μν
ηξ

ν μ

ν μ

ν μ

ν μ

†

† †

† † †

†

ξ η

ξ η

ξ η

ξ η

c c

R c c R

R c RR c R

c c

(12a)

(12b)

(12c)

(12d)

where c ̃ is the rotated annihilation operator. The first line (eq
12a) shows a sort of active rotation perspective: the rotation
operator is understood as rotating the wave function, and we
consider the density matrix expressed in terms of the original
spin coordinates. We see, however, from the last line (eq 12d)
that this is equivalent to a passive rotation perspective: the wave
function is left alone, and the underlying basis is rotated. This
latter perspective is more helpful for our purposes: if by such a
rotation we can eliminateMx andMy, the magnetization density
is collinear.

Using the representation of Ŝz in terms of fermionic creation
and annihilation operators,

̂ = −↑
†

↑ ↓
†

↓S c c c c
1
2

( )z (13)

we see that

̂ = −

̂ =

↑
†

↑
†

↓
†

↓
†

c S c

c S c

[ , ]
1
2

(14a)

[ , ]
1
2

(14b)

z

z

Note that we have dropped spatial orbital indices for simplicity.
We can resum the commutator expansion analytically, and one
can show that

=

=

θ θ θ

θ θ θ

− ̂
↑
† ̂ −

↑
†

− ̂
↓
† ̂

↓
†

c c

c c

e e e (15a)

e e e (15b)

S S

S S

i i 1/2i

i i 1/2i

z z

z z

This is turn implies that

θ θ

θ θ

̃ =
̃ = +
̃ = −
̃ =

P P

M M M

M M M

M M

(16a)

cos( ) sin( ) (16b)

cos( ) sin( ) (16c)

(16d)

x x y

y y x

z z

where P̃ and M̃i are the components of the rotated density
matrix γ.̃ We can express this concisely as

θ

̃ =
̃ =

P P

M R M

(17a)

( ) (17b)z

Here, Rz(θ) is the rotation matrix corresponding to rotation by
angle θ about the z axis and M̃ and M are written as column
vectors. One finds equivalent results for Sx̂ and Ŝy spin
rotations. Spin rotations of the wave function manifest as spatial
rotations of the magnetization density matrices.
Note that we are using the word “spatial” here in a somewhat

cavalier sense: the directions x, y, and z in the magnetization
density matrices are not physically significant in the absence of
an external field.
It may prove useful to note the spatial rotation matrices

corresponding to the spin rotation operator of eq 9. We have

θ θ θ

θ θ
=

−

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
R ( )

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )
x

(18a)

θ
θ θ

θ θ
=

−⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
R ( )

cos( ) 0 sin( )

0 1 0

sin( ) 0 cos( )
y

(18b)

θ
θ θ

θ θ= −

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
R ( )

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

z

(18c)

Note that this is opposite the usual convention for passive
rotations. We have included Rx(θ) for completeness.
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We make one final observation. While spin rotations cannot
convert a collinear density matrix into a noncollinear density
matrix or a coplanar density matrix into a noncoplanar one,
they can convert a real density matrix into a complex density
matrix. The spin rotation operator, that is, does not commute
with the complex conjugation operator defined below. A
complex conjugation eigenfunction, upon spin rotation, may
cease to be a complex conjugation eigenfunction. The converse
is rarely true; most complex density matrices cannot be made
real by simple spin rotations, though paired UHF (see below)
and real UHF can always be interconverted.
3.2. Testing Collinearity and Coplanarity. We can take

advantage of the correspondence between spin rotations of |Ψ⟩
and spatial rotations of M⃗ to test the magnetic structure of the
density matrix. We note the following:
(1) If the spin density matrices M⃗ are all identically zero,

then the magnetization density vanishes. If, in addition. the
wave function is a single determinant, it is an eigenfunction of
S ̂2 with eigenvalue zero and is also an eigenfunction of Sn̂̂ with
eigenvalue 0 for all directions n ̂. This is the case for RHF.
(2) If the spin density matrices can be rotated so that Mz is

nonzero but both Mx and My are zero, then the magnetization
density is collinear. The underlying wave function is not a
singlet (but may be an eigenfunction of S2̂). If the wave
function is a single determinant, it is definitely an eigenfunction
of S ̂n̂ for some direction n ̂. This is the case of UHF and also of
rotated UHF solutions.
(3) Otherwise the magnetization is noncollinear and the

wave function is not an eigenfunction of Sn̂̂ for any direction n ̂,
whether the wave function is a single determinant or not. If the
wave function is a single determinant, it is not an eigenfunction
of S ̂2. This is the case of GHF.
In other words, if the wave function yields a nonzero spin

density matrix, it is not a singlet; if the density matrix can be
rotated to have the UHF structure, then the magnetization
vector field is collinear and the wave function, if a single
determinant, is definitely an eigenfunction of Sn̂̂; if the density
matrix cannot be rotated to have the UHF structure, then the
magnetization vector field is noncollinear and the wave function
is not an eigenfunction of Ŝn.̂
To see whether a spin density matrix vanishes or not, it is

simplest to test its Frobenius norm. Recall that the (square of
the) Frobenius norm of a matrix X is

∑|| || = * = †X XX XXTr( )
pq

pq pq
2

(19)

Our matrices are Hermitian, so

|| || =X XTr( )2 2
(20)

We maximize the norm of one component of M⃗. To do so,
we can diagonalize a matrix T given by

=T M MTr( )ij
i j

(21)

This matrix is real and symmetric. Its diagonal components are
the norms of the various magnetization density matrices. Its off-
diagonal components can be brought to zero by a sequence of
rotations or, more correctly, we can bring T to diagonal form
using spin rotation operators of the sort given in eq 9.
Diagonalizing T is tantamount to finding the spin rotation
which maximizes the norm of the largest component of M⃗ and
minimizes the norm of the smallest compotent; in other words,
the diagonal elements of T cannot be rotated to be larger than

the largest eigenvalue of T or smaller than the smallest
eigenvalue of T.
Our procedure in full is thus simple. We build the matrix T

and diagonalize it. If T has three zero eigenvalues, then M⃗
vanishes and the wave function, if a single determinant, has the
RHF structure. If T has two zero eigenvalues, the magnetization
was collinear. Otherwise it was noncollinear. Depending on the
outcome of the test and on whether the wave function is a
single determinant or not, we may or may not be able to say
whether the wave function itself is an eigenfunction of S ̂2 or of
S ̂n̂. For single determinants, the test is equivalent to the test of
SSHG (see below); for multideterminantal wave functions it is
not.
If the magnetization is noncollinear, we can repeat the test

but with a modified matrix

τ = M MTr[Re( ) Re( )]ij
i j

(22)

If there are any zero eigenvalues, the magnetization was
coplanar because we could rotate to make one of the
components of M⃗ purely imaginary. Note that this coplanarity
test is new.
In a nonorthonormal basis, we have

=T M S M STr( )ij
i j

(23)

where S is the overlap matrix of spatial orbitals, and analogously
for τij.
We make a few caveats. First, it is possible in principle for T

to have one zero eigenvalue, which means we can bring M⃗ to
the form M⃗ = (Mx, 0, Mz). This would of course correspond to
the coplanar case, but where a typical coplanar magnetic
structure has coplanar spin density but may have noncoplanar
spin density matrices, this case corresponds to coplanar spin
density matrices. Second, we must point out the existence of
paired UHF and paired GHF solutions (see below). In these
cases, m⃗ vanishes and τ = 0, yet T may have one or more
nonzero eigenvalues. Lastly, after diagonalization of T, we
choose directions such that ||My|| ≤ ||Mx|| ≤ ||Mz||, which we can
always do as a matter of convenience.

3.2.1. Collinear Spin Densities. We make a quick comment
on the collinear case. If after the final rotation the density
matrices are

⃗ ‴ =M 0 0 Z( , , ) (24)

then before that final rotation (i.e., after the second rotation)
the density matrices must also have been

⃗ ″ =M 0 0 Z( , , ) (25)

This in turn means that before the y rotation (and therefore
after the first z rotation) the density matrices were

β β⃗ ′ =M Z 0 Z( sin( ), , cos( )) (26)

And, last, this in turn means the initial unrotated density
matrices were

β α β α β⃗ = −M Z Z Z( sin( ) cos( ), sin( ) sin( ), cos( ))
(27)

A collinear solution, in other words, is characterized by a
density matrix vector which is a spatial unit vector times a single
matrix:

⃗ = ̂nM Z (28)

where
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β α β α β̂ = −n (sin( ) cos( ), sin( ) sin( ), cos( )) (29)

An alternative test for whether a set of spin density matrices is
collinear, then, is simply to see whether the components Mx,
My, and Mz are all multiples of the same matrix M.
3.2.2. SSHG Test. The collinearity test of SSHG in general

looks at eigenvalues of the matrix A defined in eq 1. We take a
moment to rewrite this matrix for the case of a single
determinant, using the language of the previous section. We will
assume an orthonormal basis for simplicity.
In their work, SSHG note that, for a single determinant, one

finds

δ= − +A NO OTr( )
1
4ij i j ij (30)

where N is the number of electrons and

σ= ⊗†O C C
1
2

(1 )i iocc occ (31)

Here, Cocc is the matrix of occupied orbital coefficients.
Using the cyclic property of traces, we can equivalently write

σ σ δ= − ⊗ ⊗ +† †A NC C C C
1
4

Tr[ (1 ) (1 )]
1
4ij i j ijocc occ occ occ

(32)

One can recognize the density matrix γ = CoccCocc
† and notes

that

γ= =N PTr( ) 2Tr( ) (33)

Then one has

γ σ γ σ δ= − ⊗ ⊗ +A P
1
4

Tr[ (1 ) (1 )]
1
2

Tr( )ij i j ij (34)

Inserting our decomposition of γ, one finds that the
components of A are

δ= − + − + ⃗ · ⃗A M M P P M MTr( )
1
2

Tr[ ]ij
i j

ij
2

(35)

For a single determinant, γ is idempotent. We have

γ σ σ= ⊗ + ⊗ = ⊗ + ⊗P M P M( 1 ) 1i i i i2 2
(36)

where here we employ the summation convention. Using

σ σ σδ= + ϵ1 ii j
ij ijk

k
(37)

we see that the portion of γ2 which is proportional to the
identity in spin space is simply P2 + MiMi. Idempotency of the
one-particle density matrix implies that

− = ⃗ · ⃗P P M M2 (38)

We can thus write the matrix A simply as

δ= − + −A T P PTr( )ij ij ij
2

(39)

For a single determinant, the SSHG test can be reformulated in
terms of diagonalization of the simple matrix T.
For the sake of completeness, we reiterate the three

possibilities for a single determinant here, in terms of T and
of A:
(1) If the determinant is a singlet, then A = T = 0; both

matrices of course have three zero eigenvalues.
(2) If the determinant is collinear, then T has one nonzero

eigenvalue λ = Tr(P − P2) and two zero eigenvalues; the
eigenvalues of A are (0, λ, λ).
(3) If the determinant is noncollinear, then T has no more

than one zero eigenvalue (and usually has none); A has no zero
eigenvalues.

4. CLASSIFICATION OF HARTREE−FOCK SOLUTIONS
We have seen that the collinearity test informs us about the
symmetries of single determinants. We therefore take a
moment to revisit the classification of Hartree−Fock solutions
in terms of symmetries, first proposed by Fukutome1 and later
analyzed by Stuber and Paldus.3 The various classifications are
presented in Table 1. In addition to the spin operators S ̂2 and Ŝz
we also have the complex conjugation operator K̂ and the time-
reversal operator, Θ̂. For our purposes it is enough to define K̂
and Θ̂ by their action on a single determinant. Suppose a

Table 1. Classification of Hartree−Fock Solutions in Terms of Preserved Symmetriesa

Fukutome designation Stuber−Paldus designation symmetries preserved structure of occupied orbital coefficient matrix Cocc structure of density matrices

TICSb real RHF S ̂2, S ̂z, K̂, Θ̂ ∈σσ
σσ

⎜ ⎟
⎛
⎝

⎞
⎠ 

C
C C0

0 , occ M⃗ = 0⃗, ∈ P

CCWc complex RHF S ̂2, S ̂z σσ
σσ

⎜ ⎟
⎛
⎝

⎞
⎠

C
C
0

0 M⃗ = 0⃗

ASCWd paired UHF S ̂z, Θ̂ *
σσ

σσ

⎛
⎝⎜

⎞
⎠⎟

C
C
0

0 Mx = My = 0, ∈ P M( , i )z

ASDWe real UHF S ̂z, K̂ ∈σσ
σ σ′ ′

⎜ ⎟
⎛
⎝

⎞
⎠ 

C
C C0

0 , occ Mx = My = 0, ∈ P M( , )z

ASWf complex UHF S ̂z σσ
σ σ′ ′

⎜ ⎟
⎛
⎝

⎞
⎠

C
C
0

0 Mx = My = 0

TSCWg paired GHF Θ̂ − * *
σσ σσ

σσ σσ

′

′

⎛
⎝⎜

⎞
⎠⎟

C C
C C ∈

⎯ →⎯⎯⎯
P M( , i )

TSDWh real GHF K̂ ∈σσ σσ
σ σ σ σ

′
′ ′ ′

⎜ ⎟
⎛
⎝

⎞
⎠ 

C C
C C C, occ ∈

⎯ →⎯⎯⎯
P M( , )

TSWI complex GHF σσ σσ
σ σ σ σ

′
′ ′ ′

⎜ ⎟
⎛
⎝

⎞
⎠

C C
C C

aWe show the names suggested by Fukutome and those suggested by Stuber for each of these solutions and also include the structure of the matrix
of orbital coefficients and any constraints placed on it as well as the structures of the charge and spin density matrices and constraints placed upon
them. bTime-reversal invariant closed shell. cCharge current wave. dAxial spin current wave. eAxial spin density wave. fAxial spin wave. gTorsional
spin current wave. hTorsional spin density wave. ITorsional spin wave.
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determinant Φ is specified by a matrix of occupied molecular
orbital coefficients

Φ =
↑

↓

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟C

C

C
( )occ

occ

occ (40)

Then the determinants K̂Φ and Θ̂Φ are specified by matrices of
occupied molecular orbital coefficients which are respectively

̂ Φ =
*

*

Θ̂Φ =
− *

*

↑

↓

↓

↑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

KC
C

C

C
C

C

( )
( )

( )
(41a)

( )
( )

( )
(41b)

occ
occ

occ

occ
occ

occ

Thus, we have

σΘ̂ = − K̂i y (42)

The classifications in Table 1 were presented originally in terms
of occupied molecular orbital coefficients; here, we list the
corresponding constraints on the density matrix components,
which were also discussed earlier by Weiner and Trickey.11

Note that we prefer to define any collinear solution as UHF,
reserving GHF for genuinely noncollinear states which are not
eigenfunctions of Sn̂̂ for any direction n ̂. We have chosen to
label the spin quantization axis, if it exists, as the z axis for
convenience, but this choice has no physical significance.
For the most part the constraints on the density matrix are

obvious. We must spend a few moments to consider the density
matrices of paired UHF and paired GHF. Note that paired
UHF requires an equal number of ↑-spin and ↓-spin electrons,
while paired GHF requires an even number of electrons.
The paired UHF molecular orbital coefficients satisfy

=
*

⎛
⎝⎜

⎞
⎠⎟C

A
A
0

0occ
(43)

so the density matrix is

γ =

=
*

†

†⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

C C

AA

A A

(44)

0

0

occ occ

T

Then

= + *

= − *

†

†

P AA A A

M AA A A

1
2

( ) (45a)

1
2

( ) (45b)z

T

T

Clearly, P is real and Mz is purely imaginary.
Similarly, for paired GHF the orbital coefficients are

=
− * *

⎛
⎝⎜

⎞
⎠⎟C

A B
B Aocc

(46)

so that the density matrix is

γ =
+ − +

− * + * * +

† †

† †

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

AA BB AB BA

B A A B A A BB

T T

T T
(47)

Then the charge and spin density matrices are

= + + * +

= − * + * − +

= − * + * + −

= + − * −

† †

† †

† †

† †

P AA BB A A BB

M B A A B AB BA

M B A A B AB BA

M AA BB A A BB

1
2

( ) (48a)

1
2

( ) (48b)

1
2i

( ) (48c)

1
2

( ) (48d)

x

x

z

T T

T T

T T

T T

Again, it is clear that P is real and M⃗ is purely imaginary.
Recall from our earlier discussions that if a density matrix

component is purely imaginary, the corresponding magnet-
ization density vector field component vanishes. We thus see
that paired UHF and paired GHF both have m⃗(r)⃗ = 0 ⃗. This is
physically sensible, in that paired UHF and paired GHF remain
time-reversal invariant. Only mean-field wave functions which
break time-reversal symmetry can have nonzero magnetization
density vector fields, just as only those which break complex
conjugation symmetry can have noncoplanar magnetization
density vector fields. [Note that even a restricted open-shell
determinant, which remains a spin eigenfunction, breaks time-
reversal invariance.]
We take one more brief digression. In addition to the

magnetization density vector field m⃗(r)⃗ we can define three
other relevant densities. There is of course the familiar charge
density

∑ χ χ⃗ = ⃗ ⃗
μ ν

μ ν μνn r r r P( ) ( ) ( )
, (49)

For purposes of classifying determinants, it is uninteresting. We
can also define the charge current density (see, e.g., ref 1),

∑ χ χ χ χ⃗ ⃗ = − ⃗ ∇ ⃗ − ⃗ ∇ ⃗
μ ν

ν μ μ ν μνj r r r r r P( ) i [ ( ) ( ) ( ) ( )]
, (50)

Only the antisymmetric (and hence imaginary) component of
P contributes to j.⃗ And we can define the spin current density

∑ χ χ χ χ⃗ ⃗ = − ⃗ ∇ ⃗ − ⃗ ∇ ⃗
μ ν

ν μ μ ν μνJ r r r r r M( ) i [ ( ) ( ) ( ) ( )]
k k

, (51)

where here k indexes x, y, or z. Again, only the imaginary
components of Mk contribute to Jk⃗. Table 2 relates the different
types of determinants to different restrictions on the current
density, j;⃗ magnetization density, m⃗; and spin current density,
Jk⃗.

Table 2. Constraints on Densities and Current Densities for
Various Kinds of Single Determinantsa

type of determinant j(⃗r)⃗ m⃗(r)⃗ Jx⃗(r)⃗ Jy⃗(r)⃗ Jz⃗(r)⃗

real RHF − − − − −
complex RHF U − − − −
real UHF − m(r)⃗ z ̂
paired UHF U − − − U
complex UHF U m(r)⃗ z ̂ − − U
real GHF − my(r)⃗ = 0 − U −
paired GHF U − U U U
complex GHF U U U U U

aHyphened entries (−) indicate the corresponding vector must
vanish; the letter “U” indicates the corresponding vector is not
constrained.
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5. APPLICATIONS

We examine the basic idea with a few examples.
5.1. Tetrahedral H4. Consider a uniform stretching of

tetrahedral H4. We use the cc-pVDZ basis for simplicity.
Calculations are carried out in in-house code. Since the exact

ground state is of singlet character for which ⟨ ⃗⟩ = ⃗̂S 0, we limit
our discussion to Hartree−Fock solutions which satisfy this
constraint. We find a real RHF solution, a real UHF solution, a
real GHF solution, which, following ref 6, we will denote
“rGHF”, and a complex GHF solution, which we denote
“cGHF.” In fact, there are three distinct degenerate UHF
solutions, three distinct degenerate real GHF solutions, and
two distinct degenerate complex GHF solutions, the basic
structures of which are shown in Figure 1. By “distinct
solutions” we mean solutions which cannot be transformed into
one another merely by spin rotation.
To initialize the GHF solutions, we add a Fermi contact term

to the Hamiltonian and gradually turn off the strength of this
perturbation. Our Fermi contact perturbations are motivated by
vibronic distortions of the electronic structure. Tetrahedral H4
is Jahn−Teller active; distorting the orbitals along the Jahn−
Teller active modes12 without displacing the nuclei is thus likely
to lead to lower energy solutions. We should note that a global

rotation of the Fermi contact bias is associated with a global
rotation of the spin magnetization in the GHF solution.
Accordingly, the physically relevant quantity is the relative
orientations of vectors on different atoms, but not the global
orientation.
In Figure 2 we show dissociation energies for the Hartree−

Fock solutions as well as from coupled cluster with singles and
doubles13 (CCSD) based on these determinants. We also show
the full configuration interaction (FCI) curve as a reference.
Note that we have excluded RHF from the plot as RHF
dissociates to the wrong limit and would not fit on our plot.
The other three Hartree−Fock solutions all dissociate correctly.
The real GHF is never more than a few millihartrees below the
UHF, and the complex GHF is never more than a few
millihartrees below the real GHF, so it is not easy to distinguish
the various solutions on the plot. Interestingly, the RHF-based
CCSD is perhaps the best of the CCSD curves at large bond
lengths, and the CCSD based on complex GHF is the worst of
the lot.
We think it is valuable to understand the origin of the near-

degeneracy between different spin arrangements for tetrahedral
H4. At long atomic separations, the Hamiltonian reduces to a
Heisenberg Hamiltonian with an antiferromagnetic J. Interest-
ingly, the frustration inherent in the tetrahedral arrangement

Figure 1. Atomic magnetic moments in tetrahedral H4. Top row: the three distinct UHF solutions. Middle row: the three distinct real GHF
solutions. Bottom row: the two distinct complex GHF solutions.
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yields an exact degeneracy in the HF solution to the
Heisenberg Hamiltonian [the exact ground states for
tetrahedral H4 and the equivalent Heisenberg Hamiltonian
are also doubly degenerate]: the UHF solution with two spin-
up and two spin-down electrons, the square planar arrange-
ment, and the tetrahedral arrangement of spins all have the
same energy. While in H4 there are deviations from this
degeneracy, they remain small and reflect discrepancies
between the molecular Hamiltonian and the corresponding
Heisenberg Hamiltonian which arise from our use of a finite
interatomic separation.
We are not, however, particularly interested in the total

energies. In Figure 3 we show the norms of the various

components of M⃗ after rotation for the three magnetic
Hartree−Fock solutions. Note that due to the high symmetry
of the problem, all three components of M⃗ have the same norm
in the noncoplanar complex GHF, while Mx and Mz have the
same norm for the coplanar real GHF. We can tell that the
complex GHF is noncoplanar by, for example, noticing that all
three components of M⃗ have nonzero real parts, or simply by
checking τ, which has three nonzero eigenvalues. The
noncoplanar GHF solution yields forces on the nuclei that
respect the tetrahedral geometry, while the UHF and coplanar
GHF solutions, in contrast, are susceptible to a tetragonal
Jahn−Teller distortion that can lower the energy.

5.2. Hydrogen Rings. We next consider another artificial
hydrogen system. This time, we place five hydrogen atoms
equally spaced around a circle such that the distance between
nearest neighbor atoms is 3 Bohr. For large interatomic
separation, the hydrogen atoms should be coupled antiferro-
magnetically. When the rings have an odd number of atoms,
this leads to spin frustration and a GHF ground state.14 We use
the STO-3G basis set for maximal simplicity and employ a
Fermi contact term which directs the spin on each atom to be
at an angle of 144° from that on its neighbors. We expect to
converge to a coplanar GHF (and do; see Figure 4).
To complicate things, and to showcase our coplanarity test,

we do a global spin rotation of the Fermi contact term with
arbitrary parameters α, β, and γ (see eq 9). The resulting wave
function is complex (and in fact breaks complex conjugation
symmetry). After diagonalization, we find Tyy = 0.156 and Txx =
Tzz = 1.713, indicating a noncollinear solution. Because the
solution is noncollinear, we test for coplanarity, and after
diagonalization we find τyy = 0 and τxx = τzz = 1.713, indicating
coplanarity. We do not generally expect the nonzero
eigenvalues of T and of τ to be the same, but they are the
same here because our determinant is just a spin rotation of a
real GHF wave function for which T and τ have the same
nonzero eigenvalues. The spins in Figure 4 have been rotated
back into the molecular plane.

5.3. Fullerenes. In previous work,15 we have pointed out
that there are noncollinear HF solutions for fullerene
molecules. In simple terms, fused aromatic rings display a
strong tendency toward antiferromagnetism.16 In fullerenes, the
presence of pentagon rings leads to frustration that is relieved
by arranging the corresponding spins in noncollinear arrange-
ments. Here, we choose to discuss two representative cases,
namely, C36 and C60.
The structure of C36 (with D6h symmetry) can be thought of

as an hexacene ring capped by an additional hexagon on the top
and bottom. The GHF solution has all magnetic moments lying
on the same plane, as illustrated in Figure 5. There is full
antiferromagnetic arrangement between carbon atoms in the
hexacene ring related by a mirror plane perpendicular to the C6
axis of the molecule. In the case of C60, the spin arrangement
coincides with the one obtained by Coffey and Trugman17 on
the basis of the Heisenberg Hamiltonian. All atomic magnetic
moments corresponding to the same pentagon are coplanar,
but the planes corresponding to different pentagons are not
parallel (left panel of Figure 6). There is exact antiferromag-
netic arrangement along hexagon−hexagon edges (right panel
of Figure 6).
While the magnetic structures discussed above were obtained

by visual inspection, our collinearity tests fully confirm this
picture, as seen in Table 3. In C36 we have a coplanar solution
(with Tzz > Txx), while in C60 we have a three-dimensional spin
structure (with Txx = Tyy = Tzz, leading to ⟨Sx̂⟩ = ⟨Ŝy⟩ = ⟨S ̂z⟩ =
0).

6. CONCLUSIONS

Describing magnetic phenomena at a first-principles level is not
always straightforward, even in the absence of an applied
external magnetic field. For correlated wave functions, magnetic
ordering can be discerned by examining the two-particle density
matrix or even higher body density matrices. The situation is
simpler at the mean-field level, where the one-particle density
matrix suffices.

Figure 2. Dissociation energies of tetrahedral H4 in the cc-pVDZ basis
set when uniformly stretched. The RHF curve is far too high in energy
to see on the plot.

Figure 3. Norms of the various magnetization density matrices for the
three magnetic solutions in the symmetric dissociation of tetrahedral
H4. Recall that, for example, Txx = ||Mx||2 = Tr(MxMx). In this case,
after rotation the real GHF has ||Mx|| = ||Mz||, while, for the complex
GHF, all three components of M⃗ have equal norms.
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Particularly at the mean-field level, the description of
magnetism is frequently related to symmetry breaking.
Unfortunately, spin symmetry can break in manifold ways,
and we would like a simple way to determine the form of
symmetry breaking. In general this requires considering the
two-particle density matrix,6 though again the one-particle

density matrix is enough to understand the precise form of
symmetry breaking for mean-field wave functions. Even for
correlated broken-symmetry wave functions, there may be a
significant amount of information to be gleaned from single-
particle properties.

Figure 4. Spin magnetization density vector field in the plane of the H5 ring in the STO-3G basis set. Left panel: unit vectors pointing in the
direction of m⃗(r)⃗. Right panel: length of m⃗(r)⃗.

Figure 5. Atomic magnetic moments in C36. Left panel: view from the
cap. Right panel: view from the hexacene ring belt.

Figure 6. Atomic magnetic moments in C60. The left panel shows the atomic magnetic moments translated to the centers of the pentagons, making
the locally coplanar structure readily apparent. The right panel shows the atomic magnetic moments themselves and emphasizes the
antiferromagnetic character along hexagon edges.

Table 3. Eigenvalues of T and of τ for GHF Solutions in C36
and C60

a

eigenvalue C36 C60

Txx 6.164 7.076
Tyy 0.621 7.076
Tzz 9.989 7.076
τxx 6.164 6.761
τyy 0.000 6.761
τzz 9.989 6.761

aFrom plotting magnetization densities we know that the magnetic
structure in C36 is noncollinear but coplanar, while in C60 it is fully
noncoplanar, as confirmed by our tests.
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There are three main messages of this work. The first is that
noncoplanar magnetism requires an underlying complex
conjugation symmetry breaking, just as nonzero spin magnet-
ization density requires an underlying time-reversal symmetry
breaking. Second, a relatively straightforward examination of
the one-particle density matrix can provide complete
information about the magnetic structure of a single-
determinant wave function and useful, albeit incomplete,
information about the magnetic structure of a correlated wave
function. The noncollinearity test discussed here is equivalent
to that of SSHG for single determinants; the coplanarity test is
novel. Finally, we want to reiterate that because the one-particle
density matrix encapsulates all relevant information about
single-determinant wave functions, one can readily see which
symmetries a mean-field wave function has broken simply by
looking at the density matrix without resorting to orbital
coefficients; indeed, the density matrix is perhaps a better place
to look because unlike orbital coefficients, it is invariant to any
orbital rotation which changes the wave function by no more
than an overall phase.
We note, finally, that while GHF calculations are not too

common, the GHF method has some significant advantages2,4

which suggest that it should be taken seriously and fully
noncoplanar magnetic structures should be allowed in mean-
field calculations.

■ APPENDIX: COMPLEX COPLANAR GHF
We have said that coplanar spin densities do not necessarily
correspond to real GHF determinants or even to those which
can be rotated to be real. Here we wish to provide a few simple
examples showing that a coplanar spin density cannot
necessarily be made to correspond to a real GHF determinant.
See ref 18 for examples of complex coplanar GHF wave
functions in molecular systems.
For a density matrix to correspond to a single determinant, it

merely needs to be Hermitian and idempotent; as a
consequence of the latter, it traces to an integer particle
number.19

Consider, then, the density matrix γ with components

=

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

x

x

P

1
2

0 i

0
1
2

0

i 0
1
2 (52a)

=

−
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
xM

1
4

0 0

0 0

0 0
1
4

x

(52b)

=M 0y (52c)

=

−

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
xM

1
4

0 0

0 0

0 0
1
4

z

(52d)

This density matrix is Hermitian and for =x 1
8

it is also

idempotent; it therefore corresponds to some single determi-
nant. BecauseMy = 0 it is clearly coplanar, and it is noncollinear
since Mx and Mz are not multiples of one another. Because P is
complex and spin rotations do not change P, it is clear that γ
corresponds to an intrinsically complex coplanar GHF.
While it is clear that a complex charge density matrix

guarantees a complex GHF, one can have an intrinsically
complex coplanar GHF even when P is real. Consider the
density matrix γ with components

σ
λ

λ
λ=

+

−
= +

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
P

1
2

0

0
1
2

1
2

1 z

(53a)

λ
λ

λ= =
⎛
⎝⎜

⎞
⎠⎟M

0
0

1x

(53b)

σλ
λ

λ=
−

=
⎛
⎝⎜

⎞
⎠⎟M

0 i
i 0

y y

(53c)

σ σ
λ

λ
λ=

− −

− +
= −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟M

0 ( 1 i)

( 1 i) 0
( )z y x

(53d)

Again, γ is Hermitian and for λ =2 1
20

it is idempotent and thus

corresponds to a single determinant. Because My is purely
imaginary, the magnetization density is coplanar. One can
readily verify that M⃗ is noncollinear, most easily by noting that
Mx, My, and Mz are not all multiples of the same matrix Z.
Spin rotations can change γ to γ ̃ and components Mk to M̃k

via an orthogonal transformation. If γ ̃ is to be purely real, then
M̃y must be purely imaginary. Since Mx and Mz have real parts
on different matrix elements, a purely imaginary M̃y can have no
contributions from Mx or Mz.
Because orthogonal transformations preserve the angles

between vectors, if neither Mx nor Mz contributes to M̃y,
then My contributes to neither M̃x nor M̃z. For γ ̃ to be real,
both these matrices must be real, which means neither can have
any contribution from Mz. But if no part of γ ̃ has any
contribution from Mz, the transformation could not have been
invertible, let alone orthogonal.
In short, then, there is no spin rotation which can make γ ̃

real, yet the magnetization vector field m⃗(r)⃗ is clearly coplanar.
A coplanar m⃗(r)⃗ can arise from a density matrix γ which cannot
be transformed to a real GHF by spin rotations.
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