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Anti-parity–time symmetry with flying atoms
Peng Peng1, Wanxia Cao1, Ce Shen1, Weizhi Qu1, JianmingWen2*, Liang Jiang2* and Yanhong Xiao1,3*
The recently developed notion of parity–time (PT) symmetry in optical systems has spawned intriguing prospects. So far,
most experimental implementations have been reported in solid-state systems. Here, we report the first experimental
demonstration of optical anti-PT symmetry—the counterpart of conventional PT symmetry—in a warm atomic-vapour cell.
Rapid coherence transport via flying atoms leads to a dissipative coupling between two long-lived atomic spin waves, allowing
for the observation of the essential features of anti-PT symmetry with unprecedented precision on the phase-transition
threshold, as well as refractionless light propagation. Moreover, we show that a linear or nonlinear interaction between the
two spatially separated beams can be achieved. Our results advance non-Hermitian physics by bridging to the field of atomic,
molecular and optical physics, where new phenomena and applications in quantum and nonlinear optics aided by (anti-)PT
symmetry could be anticipated.

Canonical quantum mechanics postulates Hermitian
Hamiltonians, to describe closed physical systems, to ensure
real eigenvalues and the orthonormality between eigenstates

with different eigenenergies. For open systems, non-Hermitian
Hamiltonians with complex eigenvalues and non-orthogonal
eigenfunctions are commonly expected. However, such an
understanding has been radically challenged since a counterintuitive
discovery by Bender and Boettcher in 19981, where a wide class of
non-Hermitian Hamiltonians (H ), subject to [H , P̂T̂ ]=0 with the
parity–time (PT) operator (P̂T̂ ), could display entirely real spectra
below some threshold. More strikingly, a sharp, symmetry-breaking
transition occurs once a non-Hermitian parameter crosses an
exceptional point. This pioneering work immediately stimulated
considerable theoretical efforts in extending Hermitian quantum
theory to non-Hermitian systems2–4. Unfortunately, quantum
mechanics is, by nature, Hermitian and, thus, any attempt to
observe PT symmetry under such a theoretical framework is out
of reach. Thanks to the mathematical isomorphism between the
quantum Schrödinger and paraxial wave equations, a PT-symmetric
complex potential can be readily established by judiciously making
use of refractive indices with balanced gain and loss5 in an optical
setting. This suggests optics as a fertile ground for experimental
investigations on PT symmetry without introducing any conflict
with standard quantum mechanics. Optical realizations6–14 have
motivated various synthetic designs with peculiar properties
otherwise unattainable in traditional Hermitian structures,
including band merging5, double refraction15, unidirectional
propagation7,10,16–18, and power oscillation7,19. Other designs include
coherent perfect laser absorbers11,20,21, optical switches22, optical
couplers23, and single-mode amplifiers14,24. Inspired by optical
settings, systems using plasmonics25, LRC circuits26, acoustics27,
artificial lattices28 and optomechanics29 have also been reported.

As a counterpart, an anti-PT-symmetric Hamiltonian follows
{H , P̂T̂ } = 0. Mathematically, a conventional PT-symmetric
Hamiltonian would become anti-PT-symmetric on multiplying
by ‘i’, implying properties of anti-PT systems conjugate to those
of PT systems. For instance, in the symmetry-unbroken regime,
lossless propagation in a PT system corresponds to refractionless
(or unit-refraction) propagation in an anti-PT system. Such an
intriguing effect may open up new opportunities for manipulating

light and form a complementary probe in non-Hermitian optics.
Despite the appealing features, the realization of anti-PT symmetry
is both theoretically and experimentally challenging. We notice
that the first theoretical proposal30 relies on a composite system of
metamaterials by demanding an impractical balance of positive and
negative real refractive indices in space. A subsequent extension
considers an optical lattice of spatially driven cold atoms31. Notably,
theoretical proposals32–34 using cold atoms for PT symmetry have
already been put forward in the spatial domain. Indeed, coherently
prepared multilevel atoms are attractive systems for exploring non-
Hermitian physics, because of their easy reconfiguration, flexible
tunability, and especially the various coherence control techniques
enabled by electromagnetically induced transparency (EIT)35–40.
However, such an experiment has yet to be performed, primarily
due to the hurdle of creating PT- or anti-PT-symmetric optical
potentials through the rather complicated spatial modulation of
driving fields or optical lattices.

In this article, we report the first experimental realization of anti-
PT-symmetric optics by introducing a novel coupling mechanism.
The coupling between two spatially separated probe fields is
mediated through coherent mixing of spin waves created in two
parallel optical channels, in contrast to existing PT experiments
where two optical fields of interest are coupled directly. Two spin
waves here are mixed through coherently diffusing atomic ground-
state coherence carried by moving atoms. The spin-wave coupling
enables either linear or nonlinear interactions between the two
probe fields. Also, the precise measurement on (anti-)PT phase
transition in the frequency domain differentiates our work from
former work rooted on either solid-material or (theoretical) cold-
atomic systems. The characteristic of easy controllability further
renders the scheme as an alternative stage for probing non-
Hermitian physics related to the exceptional point41–46.

Our experiments (schematically shown in Fig. 1a) are carried out
in a 87Rb vacuum vapour cell of cylindrical shape, with a diameter
of 2.5 cm and length 5 cm. The inner surface of the cell is coated
by coherence-preserving paraffin47, which allows atoms to undergo
thousands of wall collisions with little demolition of their internal
quantum state. For comparisons between experiment and theory, an
optically thin medium is preferable with the cell temperature set at
∼40 ◦C. The cell is housed within a four-layer magnetic shield to
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Figure 1 | Anti-PT-symmetric optics via rapid atomic-coherence transport
in a warm 87Rb vapour cell. a, Schematic of a three-dimensional view of the
system. Two spatially separated optical channels (Ch1 and Ch2) each
contain collinearly propagating weak-probe and strong-control fields
operating under the condition of EIT. Ballistic atomic motion in a
para�n-wall-coated vacuum cell distributes atomic coherence through the
optically thin medium and results in e�ective coupling between the two
optical channels. With the temperature maintained at 40 ◦C, the cell is
housed within a four-layer magnetic shield to screen out the ambient
magnetic field. Output probe transmission spectra are measured by
sweeping a homogeneous magnetic field generated by a solenoid inside the
shield. PD, photodetector. b, The implementation of anti-PT symmetry
utilizing standard three-level3-type EIT configurations in two channels,
where the two ground states are Zeeman sublevels |F=2,mF=0〉 and
|F=2,mF=2〉, and the excited state is |F′= 1,mF′ = 1〉 of the 87Rb D1 line. An
external cavity diode laser provides the light for the probe and control fields
with orthogonal circular polarizations. Right-circularly polarized
strong-control fields,Ω(1)

1 andΩ(2)
1 in Ch1 and Ch2 are, respectively, on

resonance with the transition |1〉→|3〉; while left-circularly polarized
weak-probe fields,Ω(1)

2 andΩ(2)
2 in Ch1 and Ch2, are near resonant with

|2〉→|3〉, but frequency shifted in opposite directions by the same amount
|∆0|, with∆0 being the di�erence between the probe and the control field
frequencies. At steady state, the population is mainly in the ground
state |2〉.

screen out the ambient magnetic field. Inside the shield a solenoid
is used to generate a uniform magnetic field, inducing a Zeeman
shift δB to the two-photondetuning. The laser beam, derived froman
external cavity diode laser operating at the 87Rb D1 line (795 nm), is
spatially split into four beams (1.2mm in diameter) using half-wave
plates and polarization beam splitters (PBS). Orthogonally linearly
polarized probe and control beams are recombined, converted to
circular polarization by quarter-wave plates (QWP), and directed
into two optical channels, Ch1 and Ch2, separated transversely by
1 cm. In the first experiment (Fig. 1b), two right-circularly polarized
strong-control fields are resonant with the transition |1〉→|3〉, and
two left-circularly polarized weak-probe fields are nearly resonant
with |2〉→|3〉, but frequency shifted in opposite directions by the
same one-photon detuning |∆0| using acousto-optical modulators
(AOMs). To stabilize the phase relationship between the probe and
control beams, all AOMs are driven by oscillators phase locked to
each other. In each channel, the co-propagating probe and control
fields set up the standard 3-type EIT effect and create a long-
lived ground-state coherence, with a lifetime of ∼100ms. The two
spin waves are naturally coupled through the ballistic motion of

87Rb atoms in the cell, where the randomness and irreversibility
in the motion lays the foundation of the non-Hermiticity of the
effective Hamiltonian.

The atom–light interaction in our driven system is described by
the density-matrix formalism48 (equations (4)–(17) in Methods).
Under certain approximations, the following time-dependent non-
Hermitian (Floquet) Hamiltonian Heff is obtained to govern the
dynamics of the two collective spin-wave excitations:

Heff=−δBI+H , where H=
[
|∆0|− iγ ′12 iΓce−2i|∆0 |t

iΓce2i|10 |t −|∆0|− iγ ′12

]
(1)

Here, I is a 2× 2 identity (or unit) matrix, γ ′12 = γ12 + Γc + 2Γp,
with γ12 the dephasing rate of the ground-state coherence, Γc the
ground-state-coherence coupling rate between the two channels,
and 2Γp=2|Ω1|

2/γ31 the total pumping rate by the two control
beams with the same Rabi frequency Ω1, where γ31 is the atomic
optical coherence decay rate. We note that the determinant of
Heff, Det[Heff], is the denominator of the two coupled ground-
state coherences−[γ ′12+ i(|∆0|−δB)][γ

′

12+ i(−|∆0|−δB)]+Γ
2
c (see

equations (18) and (19) in Methods). The resonance condition of
the coupled system is met when Det[Heff] = 0, whose solutions,
coinciding with the two eigenvalues of H , define the appearance of
the two eigen-EIT supermodes (in terms of δB), with their real and
imaginary parts being the line centres and linewidths, respectively.
Experimentally, δB is a parameter that is swept to extract the
eigenvalues of H . From another point of view, δB can be considered
as a common offset to the diagonal elements of H ; in turn, H
can be mathematically produced from Heff by choosing a different
frequency reference, indicating that, without the −δBI term, H
recovers the essential physics. As such, H will be our starting point
throughout this work.

For simplicity, we consider the Hamiltonian H in equation (1)
at periodically distributed discrete time points satisfying e2i|∆0 |t=1.
This reduces H to a simpler form:

H ′=
[
|∆0|− iγ ′12 iΓc

iΓc −|∆0|− iγ ′12

]
(2)

with its eigenvalues corresponding to the two eigen-EIT supermodes

ω±=−iγ ′12±
√
∆2

0−Γ
2
c (3)

Here, the real parts of ω± are the values of δB which correspond to
the resonance centres of the two coupled-EIT eigenmodes, and the
imaginary parts represent their linewidths. As the essential results of
this work, equations (1)–(3) contain rich physics and possess many
interesting properties. First of all, for this 2×2 matrix, H satisfies
P̂T̂H=−H (that is, {H , P̂T̂ }=0) in contrast to P̂T̂H=H (that is,
[H , P̂T̂ ]=0) for conventional PT symmetry; hence, we termH anti-
PT-symmetric. In addition, this Hamiltonian leads to an intriguing
phase transition exhibited on the two eigen-EIT spectral branches.
Specifically, in the symmetry-unbroken regime (|∆0|<Γc), the
two eigen-EIT resonances coincide at the centre δB=0, but with
different linewidths. The anti-PT symmetry breaking occurs at the
exceptional point |∆0| = Γc where the two supermodes perfectly
overlap. When |∆0|>Γc, the driven system enters the symmetry-
broken regime, and the resonances bifurcate and exhibit level anti-
crossing, resembling a passively coupled system.

The spectral profiles of the two eigen-EIT spectra can be
experimentally probed by slowly sweeping the magnetic field with
time and measuring the weak-probe transmission. Therefore, the
measured probe transmission is a function of both δB (lower x-axis)
and time (upper x-axis), as shown in Fig. 2a1,a2 and b1,b2. As
expected from equation (1), the EIT spectra display beating patterns
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Figure 2 | Representative transmission spectra of output probe light in anti-PT symmetry. a1,a2, Typical transmission spectra of output probe light after
Ch1 (with the probe red-detuned from the control by∼15 Hz) and Ch2 (with the probe blue-detuned from the control by∼15 Hz) in the regime of anti-PT
unbroken phase, exhibiting a beating frequency of∼30 Hz. b1,b2, Typical transmission spectra of output probe light with probe detuning∓60 Hz in Ch1
and Ch2, respectively, in the regime of broken anti-PT phase. The bold, dotted curves in a1,a2,b1,b2 are the EIT spectra extracted at time points t which
satisfy ei(2|∆0|t+1ϕ)= 1, and the beating notes marked in dark blue are for the phase reference (Methods). The insets are calculated curves from the
modified theory (Methods). a3,b3, Comparison of the dotted curves in Ch1 (a1 and b1) and Ch2 (a2 and b2) plotted together. a4,b4, Uncoupled EIT
spectra separately measured from Ch1 (with red detuning∼15 Hz/∼60 Hz) with both channels’ control and only Ch1’s probe input on, and from Ch2 (with
blue detuning∼15 Hz/∼60 Hz) with both channels’ control and only Ch2’s probe input on. The experimental parameters here are control powers of
∼180 µW and probe powers of∼3.7 µW.

(light-blue curves in Fig. 2a1,a2 and b1,b2) oscillating at a frequency
|2∆0|. The physical origin of the beating can be understood as
follows. The simultaneous presence of the oppositely detuned
probes in Ch1 and Ch2 locally creates two spin waves within
the laser-beam volumes that precess, respectively, with e−i|10 |t and
ei|10 |t in a common rotating frame. Meanwhile, the atomic thermal
motion, at a much faster timescale than that needed for steady-state
coherence formation, redistributes and mixes the two spin waves
coherently within the entire vapour cell. The total coherence in each

channel is thus the sum of the two spin waves evolving at ei|∆0 |t and
e−i|∆0 |t . Consequently, its amplitude ismodulated at frequency |2∆0|,
giving rise to beating in the probe transmission spectra. Figure 2
shows two sets of representative probe transmission spectra with
∆0=∓15Hz (Fig. 2a1,a2) in the symmetry-unbroken regime and
∆0=∓60Hz (Fig. 2b1,b2) in the symmetry-broken regime. From
the beating spectra, one can extract a set of EIT spectra, as denoted
by the red/blue dots, for a particular value of ei(2|∆0 |t+1ϕ), where 1ϕ
is the difference between the two channels’ input probe–control
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Figure 3 | Anti-PT supermodes in coupled-EIT channels in a homogeneous, warm 87Rb vapour cell. a,b, Characteristics of the real part Re[ω] (a) and
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separation between two uncoupled channels, and the red dots are for the coupled case with both Ch1 and Ch2 on. In b, the green dots and blue squares are
the extracted linewidths of the two eigen-EIT modes, respectively. The error bars are standard deviations obtained from ten measurements. As described in
the text, the linewidth values here are in good agreement with an independent check. The experimental parameters here are the same as those in Fig. 2.
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Figure 4 | Theoretical calculation and experimental demonstration of refractionless propagation of light (n=1+Re[χ]/2=1) assisted by anti-PT
symmetry in the symmetry-unbroken regime. a,b, Theoretical results. In the presence of two magnetic fields (giving a change of∆B to the two-photon
detuning) with opposite signs in Ch1 and Ch2, in the uncoupled case, with only the linearly polarized beam in one channel on, the left-circularly polarized
component in Ch1 (blue) and that in Ch2 (red) experience nonzero Re[χ] at δB=0 (a). In contrast, when both channels are on, they see zero Re[χ]
at δB=0 when the coupled system is operated in the symmetry-unbroken region (b). c,d, Experimental results. In the presence of two artificially created
magnetic fields with opposite signs in Ch1 and Ch2, the linearly polarized light in Ch1 and Ch2 experiences nonzero and reversed Faraday rotations
(proportional to Re[χ]) at δB=0, when only one channel’s linearly polarized beam is on (uncoupled case) (c). When both the linearly polarized beams are
on (coupled case), the rotation angle becomes zero at δB=0 for both channels, in good agreement with the theoretical prediction (d). The laser power for
each linearly polarized light beam is 140 µW. The two circularly polarized o�-resonant beams with opposite helicity in the two channels to create the
fictitious magnetic field have powers of 150 µW, and are red-detuned from the |F=2〉→|F′= 1〉 transition by 1.3 GHz. The beam size for all lasers is
approximately 1.2 mm in diameter and∆B= 15 Hz.

relative phases (see Methods). The spectra are fitted (red/blue lines)
by a weighted sum of the two eigen-EIT spectra (see equations (18)
and (19) in Methods) to give the linewidth and line centre values as
predicted by equation (3). As one can see, both the experimental
EIT spectra with the beat and the extracted spectra show good
agreement with the corresponding theoretical simulations (insets).

For ∆0 =∓15 Hz, the two eigen-EIT spectra (Fig. 2a3) coalesce
at δB = 0, while for ∆0 =∓60 Hz, the two spectra (Fig. 2b3) are
pulled closer to each other without complete overlap, compared to
the uncoupled EIT spectra (Fig. 2a4 and b4) separately measured
from Ch1/Ch2 with both control fields on but only Ch1’s/Ch2’s
probe on.

1142

© Macmillan Publishers Limited . All rights reserved

NATURE PHYSICS | VOL 12 | DECEMBER 2016 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys3842
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3842 ARTICLES

1.0

1.4

1.8

−400 −200 0 200 400 −400 −200 0 200 400 −400 −200 0 200 400

Experiment

    = 0π
Ch1 probe
Ch2 probe

a1

b1

c1

d1

e1

f1

Monte Carlo result

a3

b3

c3

d3

e3

f3

Theory

a2

b2

c2

d2

e2

f2

Pr
ob

e 
ga

in
 c

oe
ffi

ci
en

t (
a.

u.
)

Tr
an

sm
itt

ed
 p

ro
be

 p
ow

er
 (a

.u
.)

Pr
ob

e 
ga

in
 c

oe
ffi

ci
en

t (
a.

u.
)

−4.0

−2.0

0.0

−4.0

−2.0

0.0

−4.0

−2.0

0.0

−4.0

−2.0

0.0

−4.0

−2.0

0.0

−4.0

−2.0

0.0

−3.0

−2.0

−1.0

0.0

−3.0

−2.0

−1.0

−3.0

−2.0

−1.0

−3.0

−2.0

−1.0

−3.0

−2.0

−1.0

−3.0

−2.0

−1.0

1.0

1.4

1.8

1.0

1.4

1.8

1.0

1.4

1.8

1.0

1.4

1.8

1.0

1.4

1.8

ϕ

    = π/2ϕ

    = 3π/4ϕ

    = πϕ

    = 5π/4ϕ

    = 3π/2ϕ

    = 0πϕ

    = π/2ϕ

   = 3π/4ϕ

    = πϕ

    = 5π/4ϕ

    = 3π/2ϕ

    = 0πϕ

    = π/2ϕ

   = 3π/4ϕ

    = πϕ

    = 5π/4ϕ

    = 3π/2ϕ

B (Hz)δ
B (Hz)δ

B (Hz)δ

Δ Δ Δ

Δ Δ Δ

Δ Δ Δ

Δ Δ Δ

Δ Δ Δ

Δ Δ Δ

Figure 5 | Observation of interference between two EIT channels by manipulating the relative-phase di�erence among laser beams. For |∆0|=0, when
all the beams in both channels are on, the EIT spectra of the output probes are measured for di�erent relative phases of the input optical fields,
1ϕ=1ϕ1−1ϕ2, where1ϕi is the probe–control relative phase in the ith channel. Depending on1ϕ, the interference e�ect may change the EIT spectra
dramatically. a1–f1, Experimental results, a2–f2, results calculated from the modified theory (see Methods), and a3–f3, Monte Carlo simulations (see
Methods), for1ϕ=0,π/2,3π/4,π,5π/4,3π/2. In a2–f2 and a3–f3 the plots are of the theoretical probe gain coe�cients (negative value means
absorption), proportional to the imaginary part of the probe’s susceptibility. Experimental parameters: control powers of∼155 µW and probe powers of
∼3.7 µW. Parameters used in the theoretical calculations: γ12=2π×7.5 Hz, Γc=2π× 15 Hz, γ13=2π×500 MHz, |Ω(1,2)

1 |=2.4× 10−4γ13, |Ω(1,2)
2 |=

5× 10−5γ13. Parameters used in the Monte Carlo simulations: |Ω(1,2)
1 |=2π× 1.0 MHz, |Ω(1,2)

2 |=0.1×|Ω(1,2)
1 |, γ13=2π×500 MHz, the attenuation factor of

the ground-state coherence and population di�erence upon each wall collision is e−(1/250) (equivalent to γ12=2π×7.5 Hz), the laser-beam size and cell
size are set to be the same as the experimental values.

The evolution of the anti-PT supermodes is carefully examined
by varying |∆0|. By applying the method elaborated in Methods,
the extracted line centres and their corresponding linewidths
are plotted as a function of |2∆0| in Fig. 3, showing excellent
agreement with theoretical predictions. Remarkably, the current
system has high resolution of the phase-transition threshold at
the Hz level. The experimental data (Fig. 3) evidently reveals the
exceptional point occurring at |2∆0| = 30.5 Hz, which implies Γc
of about 15Hz. According to equation (3), when ∆0 = 0 the full
linewidth difference between the two supermodes should be 4Γc.
This is verified from the fitting curve to the experimental data
in Fig. 3b. Besides, equation (3) predicts the full linewidth of
the lower eigenmode near ∆0= 0 to be 2(2Γp+ γ12). To confirm
this prediction experimentally, we first allow only one channel

on and obtain γ12 = 5 Hz through the zero-power EIT linewidth
measurement. By utilizing the full width of 2(Γp+γ12)=69Hz
of the single-channel EIT spectrum (not shown), we deduce
2Γ p=59Hz and 2(2Γp + γ12) = 128 Hz, which agrees with the
width of the lower eigenmode for ∆0 = 0 shown in Fig. 3b. We
note that Γc is mainly determined by experimental parameters
such as the laser power and beam size, cell geometry, and atomic
thermal velocity.

As illustrated above, in the regime of unbroken anti-PT
symmetry, the initially separated EIT resonance centres of the
two channels coalesce due to dissipative coupling. According to
the Kramers–Kronig relation, this coalescence of spectra should
result in zero Re[χ ] (real part of the total linear susceptibility)
at the overlapped EIT centre—that is, unit refractive index n
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according to the relation n= 1+ Re[χ ]/2 for an optically thin
medium. Such refractionless (or unit-refraction) propagation of
light is an exact analogue of the lossless propagation of light in a
PT-symmetric system in its symmetry-unbroken regime, where
probe powers coherently oscillate between two coupled subsystems
without experiencing either gain or loss. To demonstrate the effect,
we inject linearly x-polarized laser beams into both Ch1 and
Ch2, resonant with the 5S1/2|F=2〉→5P1/2|F ′=1〉 transition, for
which two circular polarization components form EIT. Instead of
introducing ±|∆0| to the two-photon detuning in two channels,
we here produce opposite Zeeman shifts ±∆B by effectively
creating a local fictitious magnetic field through the a.c. Stark
shifts of additional far-off-resonant circularly polarized lasers with
opposite helicities in Ch1 and Ch2. At the output, for different
δB we measure the transmitted intensity difference between the
45◦ and −45◦ polarization components (corresponding to the Jy
component on the Poincaré sphere for light), which is the Faraday
rotation signal and proportional to Re[χ ] for the left-circularly
polarized component. When only one linearly polarized beam is
on (uncoupled case), the curves of the Faraday rotation versus δB
are slightly shifted in opposite directions, resulting in nonzero and
opposite rotations at δB= 0 in the two channels (Fig. 4c). In the
coupled case with the linearly polarized beams in both channels on
and ∆B<Γc, the atomic-coherence coupling now gives rise to zero
Faraday rotation at δB= 0 (Fig. 4d). The experimental result is in
good agreement with the theoretical prediction (Fig. 4a,b).

Phase sensitivity arising from coherence transport is another
intriguing feature of our system. We illustrate this for ∆0 = 0
(Fig. 1) when the ground-state coherences in the two channels share
the same oscillation frequency. By tuning 1ϕ=1ϕ1−1ϕ2, with
1ϕ1 (1ϕ2) being the relative phase between the input control and
probe in Ch1 (Ch2), nontrivial interference phenomena can occur
between the two channels. Let us recall that, at steady state, the
conventional 3-type EIT system36 is phase insensitive, since the
probe transmission is independent of the relative phase between
the input control and probe. Due to the coupling of the two spin
waves, in contrast, the coupled-EIT system here becomes phase
sensitive. As an example, Fig. 5 shows the output probe’s EIT spectra
of the two channels for various 1ϕ. Specifically, as 1ϕ = π, the
EIT amplitudes (Fig. 5d1) are reduced to zero because of complete
destructive interference between the two channels, in contrast to the
maximal EIT amplitude for 1ϕ= 0 (Fig. 5a1). In the intervening
region the dispersive feature appears (Fig. 5b1–c1 and e1–f1),
generally associated with many phase-sensitive processes. The
experimental data is confirmed both by our simplified analytical
theory (Fig. 5a2–f2) and the Monte Carlo simulations (Fig. 5a3–f3,
Methods), suggesting an agreement between the two theoretical
approaches. The observation of such nonlocal interference implies
that two spatially separated light beams can interfere with each
other, contrary to conventional interference experiments, where the
light beams must overlap.

The anti-PT system proposed here further provides a versatile
way for photon–photon interactions. Despite the configuration of
control/probe fields in Fig. 1b permitting linear interaction between
the two weak-probe fields, this interaction can be modified to
become nonlinear by choosing the pumping configuration depicted
in Fig. 6a. Here, the effective Hamiltonian governing the ground-
state-coherence coupling between two channels takes a similar form
to equation (1) and remains anti-PT-symmetric, if the two-photon
detunings in the two channels are properly set. Interestingly, the
resulting nonlinear process is analogous to the well-known four-
wave mixing (FWM)49, and the two probes play similar roles to
those of the Stokes and anti-Stokes fields in FWM. Intuitively, as
the atomic coherence is being created in Ch1, the population is
driven from |1〉 to |2〉; when this atom enters Ch2, the population is
then brought back to |1〉. The process is continuously boosted along

with the coherence transfer. As a result, both weak-probe fields are
coherently amplified subject to the phase-matching condition. To
confirm the analysis, we have carried out Monte Carlo simulations
for the simple case of zero probe detunings. In Fig. 6b, the probe
transmissions from both channels are plotted as a function of δB,
assuming the initial phases of all optical fields to be zero. We find
gain in both channels around δB = 0. For large δB, although the
phase-matching condition is still satisfied, the reduced ground-
state coherence provides insufficient gain to compensate loss, which
indicates that coherence plays an essential role in this FWM-like
process. To further assess the nonlinear interaction, let us look at the
probe transmissions for δB=0 by varying the phases (θp1,θp2) of the
two probe fields. The simulation is presented in Fig. 6c, where two
probe phases are swept together (θp1= θp2) whilst the two control
phases (θc) are set at zero. Efficient FWM is expected to occur
in our system when perfect phase matching is approached—that
is, θp1 + θp2 = 2θc + 2mπ with m an integer. Such an intuition is
verified by the simulation shown in Fig. 6c, where the maximal gain
indeed appears at θp1,p2=0, π, 2π. Complete theoretical modelling
including nonzero probe detunings and the effects of the exceptional
point will be considered in the future. To the best of our knowledge,
so far all demonstrations of EIT-assisted nonlinear optics are based
on optical nonlinearities inherent to suitable multilevel atomic
structures36. In comparison, here the effective nonlinearity is built
from coherence transport.

Given the tight connection of our system tomagnetometers, slow
light and quantummemory50, new directions may be opened up for
precisionmeasurements, quantum optics and quantum information
science. The EIT spectra with beating is similar to Ramsey fringes
and can thus be used for precisely measuring the optical phase or
themagnetic field. It is also intriguing to investigate the possibility of
using the synthetic FWMconfiguration described above to entangle
two spatially non-overlapping weak lasers, and to explore the effect
of the phase transition in anti-PT symmetry on quantum noise.
Furthermore, with some modifications this system can be switched
to be PT-symmetric. Despite the mediator analysed in this work
being freely moving atoms, similar strategies might be extended to
other systemswhere the indirect coupling is established through, but
not limited to, electrons, polaritons, plasmas, or phonons.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Derivation of the anti-PT-symmetric Hamiltonian. The system of interest is
schematically depicted in Fig. 1a, where two optical channels 1 and 2 with no
spatial overlap are each composed of a collinear weak-probe field and a
strong-control field. The atomic level structure is the three-level3-type EIT
configuration shown in Fig. 1b. Two identical, right-circularly polarized control
fields with the same Rabi (Ω (1)

1 =Ω
(2)
1 ) and angular (ω(1)1 =ω

(2)
1 ) frequencies are

applied on resonance with the atomic transition |1〉→|3〉; while two left-circularly
polarized probe fields (withΩ (1)

2 =Ω
(2)
2 and ω(1)2 6=ω

(2)
2 ) are tuned almost resonant

with the transition |2〉→|3〉, but frequency shifted in opposite directions by a small
value |10|. Under the EIT conditions, the population is mainly distributed in |2〉. A
common magnetic field is applied to implement the two-photon detuning in the
EIT spectra measurement. The two-photon detunings in Ch1 and Ch2 are
δ(1)=∆

(1)
1 −∆

(1)
2 =|∆0|−δB and δ(2)=∆(2)

1 −∆
(2)
2 =−|∆0|−δB, respectively, where

∆
(j)
1 (∆(j)

2 ) is the one-photon detuning of the control (probe) in the jth channel
(j=1,2). The ground-state coherences in the two channels are effectively coupled
through thermal motion at a rate Γc.

Under the rotating-wave approximation, the atom–light interaction can be
described by the following density-matrix formalism48,
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Here, γij represents the decay rate of the coherence between states |i〉 and |j〉, γ ′
stands for the decay rate of the ground-state population difference, γ is the decay
rate of the excited state, and Γ (j)

p =(|Ω
(j)
1 |

2/γ23) denotes the optical pumping rate
for EIT in the jth channel.

Since the optical coherences ρ(j)31 and ρ
(j)
32 decay much faster than the

ground-state coherences ρ(j)12 , we can assume that they follow the slow oscillations
in the ground-state coherences. Therefore, by setting the time derivatives of optical
coherences in equations (6) and (7) and (10) and (11) to be zero, one can express
the optical coherences in terms of ground-state coherences. The control beams in
the experiment are relatively weak such that the excited-state population ρ(j)33 =0.
Also, we assume thatΩ (j)

1 �Ω
(j)
2 , so that ρ(j)22 =1. By adopting a procedure similar to

that implemented in ref. 48, only equations (12) and (13) survive and play an
essential role for describing the underlying physics. Thus, one can obtain the
following coupled equations of two collective spin-wave excitations (or in short,
spin waves) associated with the ground-state coherences, ρ(1)12 and ρ(2)12 :
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Here, γ ′12=γ12+Γc+Γ
(1)
p +Γ

(2)
p =γ12+Γc+2Γp represents the total effective

decay rate of the spin waves, with the assumption of equal control powers in Ch1
and Ch2. Information about the collective spin-wave excitations can be simply
detected via EIT by measuring the weak-probe outputs after the cell, as their

transmittances are linear functions of the ground-state coherence in the optically
thin regime—that is, ρ32=(iΩ2+ iΩ1ρ12)/γ23.

From the coupled equations (16) and (17), the effective non-Hermitian
Hamiltonian Heff (as shown in equation (1)) can be deduced that governs the
dynamics of the two collective spin-wave excitations:

Heff=−δBI+H , where H=
[
|∆0|− iγ ′12 iΓce−2i|∆0 |t

iΓce2i|10 |t −|∆0|− iγ ′12

]
It is straightforward to show H is anti-PT-symmetric because it satisfies
P̂T̂H=−H , in contrast to P̂T̂H=H in conventional PT symmetry. Another
important feature of this equation is that H is symmetric under discrete time
translations, t→t+π/ |∆0|, and is hence a periodic function in time,
H (t)=H(t+π/ |∆0|) with the period π/ |∆0| of the perturbation. Such an
observation of the symmetry of the Hamiltonian (1) enables the use of the Floquet
formalism, and could become another control in investigating the dynamics of the
coupled spin waves.

In the adiabatic limit, the atomic dynamics follows the effective Hamiltonian
(1), which evolves slowly under the presence of the terms e±2i|∆0 |t . In the
steady-state approximation, the two collective spin-wave excitations take the form
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The physics behind equations (18) and (19) is the following. Each spin-wave
excitation is a linear superposition of the two coupled-EIT eigenmodes, whose
spectral profiles can be obtained by setting the denominator of equations (18) or
(19) to zero. Each eigenmode has contributions from both channels and exhibits a
beating frequency of 2 |∆0|.

Equations (16) and (17) can be also perturbatively solved in the non-adiabatic
limit. In such a case, in fact, one can expand the two spin-wave excitations in terms
of Fourier series—that is, ρ(1)12 =

∑n=∞
n=−∞ ρ

(1)
12 (n)e2in|∆0 |t and

ρ
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12 (n)e2in|10 |t . Equations (12) and (13) can then be evaluated by

matching terms with the same order. For the range of parameters in the current
work, even truncating the series up to the first order n=1 would yield a good
agreement between theory and experiment. After lengthy algebra, one can obtain:
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We have proved that equations (20) and (21) can be converted back to equations
(18) and (19) when the adiabatic condition is met. Our experiment was carried out
in the adiabatic regime where∆0 and Γc are much smaller than γ ′12.

Criteria for phase reference selection. As can be seen from equations (18) and
(19), to extract the linewidth and line centre of the eigen-EIT spectra from the
measured EIT spectra containing beat patterns, we need to identify all the points
on the beat with time t which give a fixed value to ei(2|∆0 |t+1ϕ), where1ϕ is the
difference between the two channels’ input probe–control relative phases. For
convenience, we choose time points satisfying ei(2|∆0 |t+1ϕ)=1. To identify these
points, a reference point is needed such that all other points can be found at time
intervals that are integral multiples of the beating period from it.

Equations (20) shows that, for Ch1, the d.c. part of the spin wave has its centre
determined by the two-photon detuning of Ch1, while the centre of its a.c. part is
determined by the two-photon detuning of Ch2. For the spin wave in Ch2 it is vice
versa. Moreover, equation (20) implies that, for the Ch1 EIT spectra, only when
δB=−|∆0| (that is, δ(2)=0) do the atoms not impose an additional dynamical
phase on top of the beating term e−2i|∆0 |t . We note that the beat note at this location
has the maximal amplitude across the whole spectral profile. Meanwhile, by
examining the corresponding optical coherence for Ch1’s probe field, we can see
that, at the peak of the maximal beating note, e−i(2|∆0 |t+1ϕ)=1 on the time axis is
satisfied. Similarly, equation (21) indicates that, for Ch2, such a beat note is located
at δB=|∆0|. Based upon this analysis, in the experiment we first identify the beat
note with the maximal amplitude and then choose its peak location as the time
reference origin (see Fig. 2a1,a2 and b1,b2).

The phase criteria we used here are not the only possible choice, but a
convenient one. In fact, if the reference origin is offset from the peak of the
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maximal beat note, the lineshape of the extracted coupled-EIT spectra would be
modified in some way. For our experimental conditions, for instance, in the regime
where Γc> |∆0|, the degree of tilting in the lineshape of EIT will change, due to the
changed weight of the dispersive components; in the regime where Γc< |∆0|, two
equally weighted peaks in the extracted EIT spectra become unequal. Fortunately,
such a situation does not affect the extracted values of the line centre and linewidth
of the EIT eignemodes, but affects only the weights of the two eigenmodes and the
ratio between the Lorentzian and dispersive components. The unequal peaks
(red/blue curves in Fig. 2b1,b2) and slightly tilted Lorentzians (red/blue curves in
Fig. 2a1,a2) indicate that the criteria stated above give a small deviation of the
phase reference origin selected from the ideal value. This is mainly due to the finite
number of beats available in the experiment as well as the small drift of input laser
phases,1ϕ. For example, in the spectra from Ch1, the beat with the maximal
amplitude is not precisely located at δB=−|∆0|. Such a small discrepancy is
unavoidable and vanishes only for infinitely dense beat notes, which require an
infinitely long data acquisition time and absolutely no phase instability in any of
the optical fields.

Modification of the model. Although the theory described above, named
‘unmodified theory’ from now on, captures the essential physics behind the
observed anti-PT symmetry, a careful comparison of the experimentally measured
EIT spectra still reveals a discrepancy with respect to those computed from the
unmodified theory. An example (shown in Supplementary Fig. 1) exhibits a
disagreement between the unmodified theory (Supplementary Fig. 1 a2–d2) and
the experiment (Supplementary Fig. 1 a1–d1). In particular, the calculated beating
contrast is much smaller than that measured experimentally. In addition, for the
case of∆0=0, EIT spectra computed (not shown) from equations (18) and (19) do
not agree with the complete destructive interference effect observed for1ϕ=π in
the experiment (Fig. 5d1). This discrepancy occurs because we neglected coherence
transfer between the cell regions inside and outside the laser beams; in other words,
the full role of motional averaging in the system was not taken into account. In
practice, atoms fly into and out of the laser beams rapidly and, as a consequence,
coherences produced from the two channels mix much better within the whole cell
volume than those described from the simple model presented above. Intuitively,
this fast mixing should result in a higher beat contrast for∆0 6=0 and a better
cancellation of EIT at1ϕ=π for∆0=0.

Before addressing this issue, let us recall that the EIT lineshape in a buffer-gas
or wall-coated vapour cell has a dual structure if the laser-beam size is much
smaller than the cell volume38,51–54. The broad spectral structure comes from the
one-time interaction of the atoms and the light, with a linewidth determined by the
transit time across the laser beam (∼300 kHz in our experiment). The narrower
structure on top, due to the much longer time that the atoms spend outside the laser
beam experiencing dark evolution, has a linewidth (∼100Hz in our experiment)
determined by the ground-state-coherence decay rate and the optical pumping
rate. Given the large difference in the two linewidths, the broad structure may be
considered as a constant offset added to the coherence calculated by the simple
model (equations (16) and (17)) in the frequency range of the narrow structure.

On the basis of the above analysis, we phenomenologically add an offset to the
ground-state coherence to include the process of coherence exchange between the
volumes inside and outside the laser beams. That is, we modify the source terms for
the coherences in equations (16) and (17) as follows:
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Here, the ((γ ′12+ iδ(1,2))/Γc) terms on the right-hand side give rise to an offset of
η((Ω

(1,2)∗
1 Ω

(1,2)
2 )/γ23Γc) to the coherences ρ(1,2)12 for the single-channel case (that is,

setting the coherence of the other channel ρ(2,1)12 to be zero). Alternatively, this term
can be understood as an additional source for ρ(1,2)12 contributed by the region
outside the laser beams through coherence transport. The dimensionless constant η
is a fitting parameter. It is evident that this modification does not change the
effective Hamiltonian (1) of the system, because it affects only the source term for
the coherence. Interestingly, such a simple correction made in the model enables a
quantitative comparison with experimental data.

Equations (22) and (23) can be solved using the perturbative approach
described above. The calculated EIT transmission spectra of the probe beams in the
two channels are shown in Supplementary Fig. 1 a3–d3, which show an excellent
agreement with the experimental measurements displayed in Supplementary Fig. 1
a1–d1. When plotting the EIT spectra with no beat, the phase reference origin here
has been shifted by 1/30th of the beating period with respect to the above criteria,
to match the shape of the EIT curve extracted from the experimental data (Fig. 2).
In the calculations, we allow the magnetic field to vary slowly enough with time, as
the sweeping magnetic field does in the experiment. The time t and δB are depicted,
respectively, on the upper and lower horizontal axes. We also verified that the

modified model shows an excellent agreement with the EIT interference
experiment (Fig. 5a2–f2).

Monte Carlo simulations. To further verify the correctness of our theoretical
model described above, we have carried out full Monte Carlo simulations.
Previously, analytical models and two-dimensional Monte Carlo simulations have
been developed to study repetitive atom–light interactions under EIT in both
coated cells and buffer-gas cells, for a single-channel laser-beam geometry51–54. We
here extend the Monte Carlo simulation to the current two-channel scenario. In the
simulation, for simplicity, a round area is assumed to represent the laser-beam cross
section. The atoms are allowed to move freely and collide with the cell wall, and the
angular distribution relative to the surface normal of bounced atoms follows a
cosine distribution55. For each time that the atom bounces off the cell wall, to
account for the ground-state population difference and coherence decay, we assign
an attenuation factor to the population difference and the ground-state coherence,
and then let the atomic dynamics continue until the system reaches its steady state.
Typically, 5,000 trajectories are averaged to reduce the heavy computational load of
the simulation. An example (Fig. 5a3–f3) is provided for the case where∆0=0. As
we can see, the simulation matches the experiment very well.

Measurements and methods for curve fitting. As described above, the
coupled-EIT eigenspectra measured by the probe transmittance exhibit an
oscillatory pattern at a beating frequency of 2 |∆0|. Experimentally, to properly
acquire such a beating spectrum, the following conditions should be satisfied. First,
the magnetic field is swept slowly enough such that the atoms form steady-state
beat oscillations for each δB. Second, to prevent the beating from being washed out
during time averaging over several magnetic-field-sweeping periods, the
magnetic-field-sweeping period is maintained at integer multiples of the beating
period. Third,1ϕ should not drift during each sweeping, otherwise the phase
fluctuations may wash out the beating fringes during averaging. Therefore, after
each scan, we recheck and make sure that1ϕ remains unchanged.

After acquiring the EIT spectra with the beat note, we locate the beat with the
maximal amplitude (the bold dark-blue lines highlighted in Fig. 2a1,a2 and b1,b2),
and set the position of this beat’s peak as the time reference origin. Starting from
this reference origin, the remaining discrete time points (red/blue dots in
Fig. 2a1,a2 and b1,b2) are then sequentially identified at distances of integral
multiples of the beating period. As the phase of the beat depends on the relative
phase between the two coherences (oscillating at e±i|∆0 |t respectively) as well as δB
(see equations (20)–(21)), these identified time points (red/blue dots) are located at
different positions of the beat notes. The EIT spectra formed by these red/blue dots
are a weighted sum of the two eigen-EIT supermodes as given in equation (3),
whose linewidth and line centre can be then obtained by curve fitting. Note that the
EIT spectra of either channel is sufficient to extract the line centres and linewidths
of both eigenmodes, and each eigenmode is generally a tilted Lorentzian because it
is composed of a Lorentzian and a dispersive component with the same linewidth
and line centre, according to equations (18) and (19).

The two-channel EIT under coupling has a profile distinct from that without
coupling. In our definition, the uncoupled EIT spectra from Ch1 (Ch2) are
measured with both channels’ control fields and only Ch1’s (Ch2’s) input probe on
(see Fig. 2a4 and b4). In the experiment, we first turn on the control and probe
fields in only one channel and optimize the laser frequencies to ensure a symmetric
EIT lineshape. The coupled EIT is measured when the probe and control in both
channels are on. The separation between the two uncoupled EIT resonance centres
is simply |2∆0|. When both channels are on, the extracted EIT spectral profiles
deviate from a single Lorentzian. Here, on the one hand, due to a small phase offset
as explained above, the existence of a small dispersive component slightly tilts the
Lorentzian in the regime where Γc> |∆0|. As a result, the extracted EIT spectrum
in either channel is asymmetric with respect to δB. On the other hand, the lineshape
in the regime where 0c< |∆0| has dual peaks because the centres of two EIT
eigenmodes do not overlap. In the regime where Γc> |∆0|, the extracted EIT
spectra have dual linewidths because they are a superposition of two EIT
eigenmodes with the same line centre but different linewidths. Indeed, we found
that, without introducing a second (slightly tilted) Lorentzian with a different
linewidth, a single-linewidth Lorentzian does not fit the experimental data well. As
displayed in Figs 2 and 3 in the main text, our theory is in excellent agreement with
the experimentally extracted data. The coupling rate Γc between the two channels
is deduced from the phase-transition point by tuning |∆0|, and the theoretical
model for calculating Γc is under development.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon
reasonable request.
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