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We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose
energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-
Hermitian case, we classify “gapped” bands in one and two dimensions by explicitly finding their
topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a
new classification in one dimension, whose topology is determined by the energy dispersion rather than the
energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two
dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate
phase with complex-energy band degeneracies at isolated “exceptional points” in momentum space. We
also systematically classify all types of band degeneracies.
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Topological band theory provides a unified framework for
a wide range of topological states of quantummatter [1–10]
such as insulators, (semi)metals, and superconductors, and
of classical wave systems [11–14] such as photonic crystals
and mechanical metamaterials. In this theory, band struc-
tures of periodic media are classified by topological invar-
iants associated with energy eigenstates in the momentum
space. A well-known example is the TKNN invariant or
Chern number [1,15] for band structures in two dimensions
with an energy gap. An important consequence of this
classification is that the interface between topologically
inequivalent media necessarily hosts gapless boundary
states, whereby the topological invariant changes its value.
Studies of topological band theory have so far mostly

dealt with systems described by Hermitian Hamiltonians.
Recently there has been a growing interest in topological
properties of non-Hermitian Hamiltonians [16–24] appli-
cable to a wide range of systems such as (but not limited to)
systems with open boundaries [25–30] and systems with
gain and/or loss [20,31–46]. Interestingly, non-Hermitian
systems have unique topological properties with no
Hermitian counterparts. A fascinating example is non-
Hermitian Hamiltonians at exceptional points, where two
or more eigenstates coalesce [25,47–51]. Very recently, the
topological nature of exceptional points in non-Hermitian
Hamiltonians with additional symmetries have been rec-
ognized [16–20]. Dynamical phenomena near exceptional
points are also being explored both theoretically [52–59]
and experimentally [60,61].
In this work, we develop the topological band theory for

non-Hermitian Hamiltonians and explore its consequences,
highlighting unique features due to non-Hermiticity. We
start by defining the notion of “gapped” non-Hermitian band
structures whose energy spectrum is generally complex. We

then classify topologically distinct gapped band structures
and topologically stable band degeneracies. Non-Hermitian
bands with nonzero Chern numbers in two dimensions are
shown to support protected edge states, with a range of
energies connecting two bulk bands in the complex plane.
A new topological invariant unique to non-Hermitian band
structures is found from the energy dispersion, instead of
Bloch wave functions. Furthermore, we find that the
topological phase transition between distinct gapped non-
Hermitian Hamiltonians generally involves an intermediate
phase with band degeneracies at isolated points in momen-
tum space, leading to the first realization of exceptional
points in two-dimensional band structures.
Consider a non-Hermitian Hamiltonian of a periodic

system, whose eigenstates are Bloch waves and whose
energies EnðkÞ vary with crystal momentum k in the
Brillouin zone (BZ), thus defining a band structure. Here n
is the band index that labels different eigenstates. While
EnðkÞ are generally complex, we define a band n to be
“separable” if its energy EnðkÞ ≠ EmðkÞ for all m ≠ n and
all k. We define a band n to be “isolated” if EnðkÞ ≠
Emðk0Þ for all m ≠ n and all k, k0; i.e., the region of
energies fEnðkÞ;k ∈ BZg in the complex plane does not
overlap with that of any other band. In this case, we say the
band EnðkÞ is surrounded by a “gap” in the complex-
energy plane where no bulk states exist. A band is called
“inseparable” if at some momentum the complex-energy is
degenerate with another band. Our definition of separable,
isolated, and inseparable bands are mathematically natural
generalizations of the gapped, fully gapped, and gapless
bands in the Hermitian case, and form the basis of our
topological classification to be presented below.
Chern numbers in 2D separable bands.—Associated

with each separable band is a set of energy eigenstates
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defined over the BZ. Topological invariants, such as the
(first) Chern number for an energy band in two dimensions,
can be constructed from these eigenstates in a similar way
as in Hermitian systems.
However, an important difference now is the left eigen-

state and right eigenstate of a non-Hermitian matrix H ≠
H† are generally unrelated, although they share the same
eigenvalue. The right and left eigenstates satisfy the
following eigenvalue equations:

HjψR
n i ¼ EnjψR

n i; H†jψL
n i ¼ E�

njψL
n i; ð1Þ

respectively. For separable band structures, one can prove
that hψL

n jψR
n i ≠ 0 (Supplemental Material Sec. I, [62]).

Thus, for any separable band with energy En in two
dimensions k≡ ðkx; kyÞ, one can construct four different
gauge invariant Berry curvatures:

Bαβ
n;ijðkÞ≡ ih∂iψ

α
nðkÞj∂jψ

β
nðkÞi; ð2Þ

with the normalization condition hψα
nðkÞjψβ

nðkÞi ¼ 1,
where jψα;β

n ðkÞi is the energy eigenstate of the Bloch
Hamiltonian HðkÞ. α, β ¼ L=R. We refer to BLL, BLR,
BRL, and BRR as “left-left,” “left-right,” “right-left,” and
“right-right” Berry curvatures.
The integrals of these four Berry curvatures over the BZ

define four seemingly different Chern numbers:

Nαβ
n ¼ 1

2π

Z
BZ

ϵijB
αβ
n;ijðkÞd2k; ð3Þ

where ϵij ¼ −ϵji. Importantly, we prove all four Chern
numbers are equal NLL ¼ NLR ¼ NRL ¼ NRR, implying
that the topology is captured by a single Chern number. We
emphasize that these four Berry curvatures are indeed
locally different quantities, although their integrals all
yield the same Chern number. The proof is presented
in Supplemental Material Sec. II [62]. These Chern
numbers will vanish if HðkÞ¼HðkÞT or HðkÞ¼Hð−kÞT
(Supplemental Material Sec. III [62]).
A remarkable universal result of the topological band

theory in Hermitian systems is the existence of topologi-
cally protected edge states localized at the interface
between two topologically distinct gapped phases, with
energies inside the band gap. For non-Hermitian Hami-
ltonians, we ask whether topological edge states exist, and
if so, what are their energies in the complex plane.
For concreteness, we first show the existence of topo-

logical edge states in a generalized two-dimensional Dirac
fermion model with non-Hermitian terms:

HðkÞ ¼ ðkx þ iκxÞσx þ ðky þ iκyÞσy þ ðmþ iδÞσz; ð4Þ
The energy dispersion of H is obtained by diagonalization:

E�ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − κ2 þm2 − δ2 þ 2iðk · κþmδÞ

q
;

with k≡ jkj, κ≡ ðκx; κyÞ and κ ≡ jκj. For κ < jmj, this
complex-energy band structure is separable by our defi-
nition above. It then follows from continuity that the
separable bands at m < −κ and m > κ are adiabatically
connected to the gapped bands in the Hermitian limit δ ¼
κ ¼ 0 with m < 0 and m > 0, respectively, by tuning κ to
zero, and therefore are topologically distinct with Chern
numbers differing by 1.
To demonstrate the existence of topological edge states,

we solve the domain wall problem, where two semi-infinite
domains with different parameters ðκ1; m1; δ1Þ and
ðκ2; m2; δ2Þ are separated by a domain wall along the y
axis. Since the momentum parallel to the interface ky is
conserved, we can write the edge state wave function as
ψkyðx; yÞ ¼ eikyyψkyðxÞ and solve the one-dimensional
generalized Dirac equation for ψkyðxÞ:

f½−i∂x þ iκxðxÞ�σx þ ½ky þ iκyðxÞ�σy þ ½mðxÞ
þ iδðxÞ�σzgψkyðxÞ ¼ EkyψkyðxÞ; ð5Þ

where the parameters (κðxÞ; mðxÞ; δðxÞ) ¼ ðκ1; m1;
δ1Þθð−xÞ þ ðκ2; m2; δ2ÞθðxÞ take respective values in the
regions x > 0 and x < 0. θðxÞ is the step function. ψkyðxÞ is
required to be continuous at the interface x ¼ 0.
The solution of Eq. (5) with the steplike domain wall

takes the following form:

ψkyðxÞ ¼
�
ψ1

ψ2

�
½expðx=λþÞθð−xÞ þ expðx=λ−ÞθðxÞ�: ð6Þ

Localized edge states only exist when Reð1=λþÞ > 0
and Reð1=λ−Þ < 0.
Solving λ� for the most general case is complicated. For

κy ¼ 0, we can obtain the analytical solution when the
Dirac mass m have opposite signs in the regions x < 0 and
x > 0. The localization lengths are [63]

1=λþ ¼ jm1j þ κ1;x þ is1δ1;

1=λ− ¼ −jm2j þ κ2;x − is2δ2: ð7Þ
Here si ¼ mi=jmij is the sign of the Dirac mass. The
dispersion of these edge state is still Eky ¼ s2ky as in the
Hermitian case. Comparing Eq. (7) with the solution in
the Hermitian limit, a nonzero κx;i modifies the edge state
localization length. The requirements on the sign of
Reð1=λ�Þ are satisfied only for separable band structures
jκx;ij < jmij.
For general cases κx, κy, δ ≠ 0, we find numerically that

when the two domains have topologically distinct separable
band structures, there exists a band of edge states localized
at the domain wall. The energies of these edge states have
both real and imaginary parts, which lie inside the gap in
the complex-energy plane and connect to bulk bands.
Figure 1 shows an example of the complex-energy spectra
for bulk and topological edge states in our domain wall
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setup. A detailed discussion on the numerics, along with
the discussion of a similar lattice model, can be found in the
Supplemental Material Sec. IV [62].
Vorticity of energy eigenvalues.—In addition to the

Chern number, we find a new topological invariant asso-
ciated with the energy dispersion of non-Hermitian band
structures, rather than the energy eigenstates. Enabled by
complex rather than real energies, this invariant νmnðΓÞ is
defined for any pair of the bands as the winding number of
their energies EmðkÞ and EnðkÞ in the complex-energy
plane,

νmnðΓÞ ¼ −
1

2π

I
Γ
∇k arg ½EmðkÞ − EnðkÞ� · dk; ð8Þ

where Γ is a closed loop in momentum space. We call
νmnðΓÞ the vorticity. In the following, the subscript is
suppressed when the band indices m and n are evident.
A nonzero vorticity defined on a contractible loop Γ in

the BZ implies the existence of a band degeneracy within
the region enclosed by Γ, where Emðk0Þ ¼ Enðk0Þ. For a
pair of separable bands, the vorticity can be nonzero
only for noncontractible loops in the BZ. As we will
see, this leads to a ðZ=2Þd classification of d-dimensional
separable bands. For example, consider the non-Hermitian
Hamiltonian in one dimension

HðkÞ ¼ bþðkÞσþ þ b−ðkÞσ−; ð9Þ

where σ� ≡ σx � iσy and b�ðkÞ are complex functions of k
with periodicity 2π. The spectrum of HðkÞ is

E�ðkÞ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþðkÞb−ðkÞ

p
: ð10Þ

The two bands are separable when b�ðkÞ ≠ 0 for
k ∈ ½0; 2π�. Taking Γ to be the entire one-dimensional
BZ, the vorticity νΓ is simply half the sum of winding
numbers of bþðkÞ and b−ðkÞ around the origin of the
complex plane. Although the winding of bþðkÞ and b−ðkÞ
are always integers due to periodicity, the vorticity νΓ can
be a half-integer, and is quantized as Z=2.
It is important to notice the square root singularity in the

dispersion of Eq. (10). Because of this singularity, when νΓ
is a half-integer, both the pair of energy eigenvalues
ðEþ; E−Þ and the corresponding eigenstates ðjψþi; jψ−iÞ
are swapped without encountering any degeneracy as the
momentum is traversed along Γ [64,65]. Figure 2(a) shows
such a scenario of νΓ ¼ 1=2.
The Z=2 classification we found for separable non-

Hermitian Hamiltonians in one dimension is in contrast
with the case of gapped Hermitian Hamiltonians, all of
which are topologically trivial.
In one dimension, there is no topologically protected

edge state within the gap in the complex-energy plane.
Without chiral symmetry, one can always add on-site
potential to lift the energy of the edge state into the bulk
spectrum. We note that the zero modes found in
Refs. [18,19] are due to the chiral symmetry, and our
understanding is in accordance with [24].
Topologically stable band degeneracies.—Having com-

pleted the classification of separable band structures, we
now study topologically stable band degeneracies in non-
Hermitian systems, which cannot be removed by small
perturbations. In Hermitian systems, a famous example of

FIG. 1. The energies of two bulk bands (yellow and blue
regions), and the edge state (green line) in the complex-energy
plane for the domain wall problem Eq. (5). The bulk band is
isolated according to our definition. The energy unit is m. The
bulk phase κ ¼ ð0.2; 0.3Þ, δ ¼ 0.4 is connected to the vacuum
(dispersion not shown) mvac=m ¼ −1, κvac ¼ δvac ¼ 0.

(a) (b)

(c)

FIG. 2. (a) The swapping of energy eigenvalues. θ ∈ ½0; 2π�
parametrizes the loop Γ. The dashed curves are the projection of
the energy trajectory. (b) The dispersion near an exceptional
point. The Hamiltonian isHðkÞ ¼ σþ þ ðkxσx þ kyσyÞ. The loop
Γ in (a) is the circle k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
¼ 1, which is parametrized by

θ as k ¼ ðcos θ; sin θÞ. (c) The energy dispersion along kx ¼ 0.
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topologically stable band degeneracies is the Weyl point in
three dimensions [10], whereas band degeneracies in two
dimensions such as the Dirac point are unstable in the
absence of symmetry. The stability of the Weyl point is
intimately related to the fact that finding a level degeneracy
in a Hermitian matrix generically requires tuning 3 param-
eters. Since energy eigenvalues of non-Hermitian
Hamiltonians are complex, one might expect finding a
level degeneracy requires tuning even more parameters.
Remarkably, the contrary is true. For non-Hermitian
Hamiltonians, finding a level degeneracy generically
requires tuning 2 parameters [50]. Also, the Hamiltonian
at the generic degeneracy points are defective; i.e., its entire
set of eigenstates do not span the full Hilbert space. A
pedagogical review of these results is in Supplemental
Material Sec. V [62].
Therefore, non-Hermitian periodic Hamiltonians in two

or higher dimensions can have a new type of stable band
degeneracy at defective points, which has no analog in
Hermitian band structures. The k · p Hamiltonian near such
a defective point takes the following standard form, up to a
unitary transformation,

HðkÞ ¼ aI þ ϵσþ þ
X
i;j

kicijσj; ð11Þ

where i ¼ x, y, j ¼ x, y, z, a, ϵ, and cij are complex
numbers. The dispersion to the leading order of k is

E�ðkÞ ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cxkx þ cyky

q
; ð12Þ

where cx ¼ 2ϵðcxx þ icxyÞ and cy ¼ 2ϵðcyx þ icyyÞ. The
degeneracy is defective if ϵ ≠ 0. In the general case cx,
cy ≠ 0 and Imðcy=cxÞ ≠ 0, the band degeneracy defined by
Eqs. (11) and (12) is called an “exceptional point” in the
literature [25,48–51]. A concrete example of a k · p
Hamiltonian near an exceptional point is HðkÞ ¼ ϵσþþ
vðkxσx þ kyσyÞ, whose dispersion is shown in Fig. 2(b).
Contrary to their name of “exceptional” we find excep-

tional points to be ubiquitous in non-Hermitian band
structures in dimensions greater than one. In particular,
exceptional points appear in topological phase transitions
in two dimensions, giving rise to an inseparable intermedi-
ate phase. Hermitian Hamiltonians in two dimensions do
not have robust band degeneracies in the absence of
symmetry.
Our claim can be demonstrated using the generalized

Dirac model Eq. (4). The intermediate regime jmj < jκj
separates the two topologically distinct separable band
structures at m > κ and m < −κ. In this intermediate
regime, the two bands E�ðkÞ cross at two isolated points
k� in the momentum space

k� ¼ −
mδ

κ
n̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2 −m2Þðκ2 þ δ2Þ

p
κ

ẑ × n̂: ð13Þ

Here n̂≡ κ=κ. It is straightforward to check that k� are
exceptional points. Generated from a separable band
structure with zero total vorticity, these two exceptional
points have opposite vorticities. The phase diagram of
Eq. (4) and the typical trajectory of these two band
degeneracy points are shown in Fig. 3.
When κ ¼ jmj ≠ 0 the exceptional point pair inevitably

merges at

Qs ¼ k� ¼ −sδn̂; ð14Þ

where s ¼ m=jmj. Denote q ¼ k −Qs. The dispersion
near such a degeneracy reads

Es;�ðqÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 þ 2sqnδÞ þ 2iqnm

q
: ð15Þ

qn ≡ q · n̂ is the component of q along n̂ direction. The
Hamiltonian is defective at this degeneracy. However, it
belongs to the case cy ¼ Imðcy=cxÞ ¼ 0 in Eq. (12). The
dispersion is proportional to

ffiffiffi
q

p
and q along the direction

of n̂ and ẑ × n̂, resulting in a zero vorticity. Being defective
but with no vorticity distinguishes this degeneracy from the
exceptional point. We call it “hybrid point” due to the
anisotropy in the dispersion. We leave a systematical study
of band degeneracies resulting from merging two excep-
tional points [66,67] in the Supplemental Material, Sec. VI
[62]. The remaining special case m ¼ κ ¼ 0 hosts a ring of
exceptional points at k ¼ jδj [27]. This “exceptional ring”
is present due to the rotational symmetry at κ ¼ 0; hence, it
is generally unstable in two dimensions. As δ tends to zero,
the ring shrinks to a Dirac point. Only then do we recover
the Hermitian topological phase transition point.
In summary, the most general scenario of non-Hermitian

topological transition is through hybrid point–exceptional
point pair–hybrid point, instead of the Dirac point in the
Hermitian case.

(a) (b)

FIG. 3. (a) The bulk phase diagram of Hamiltonian Eq. (4) for a
given δ. The white regions represent the separable phases, and the
colored region represents the inseparable phase. The light blue
region κ > jmj > 0 is the phase with a pair of exceptional points;
the red lines κ ¼ jmj > 0 show the phase with a hybrid point
(HP). The origin κ ¼ m ¼ 0 is a Dirac point (DP) if δ ¼ 0 and is a
ring of exceptional points (EP ring) if δ ≠ 0. (b) The trajectory of
the exceptional points in the momentum space when m moves
along the purple dashed line in (a). Here κ ¼ ðδ; 0Þ.
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As already discussed earlier in this Letter, the square root
singularity in Eq. (12) leads to the pair switching of
eigenvalues or eigenstates around an exceptional point.
This can be characterized by the half-integer quantized
topological invariant νΓ defined in Eq. (8), where Γ
encloses a single exceptional point. It follows from
Eq. (12) that νΓ ¼ �1=2, whose sign is determined by
the sign of Imðcy=cxÞ. Therefore, exceptional points are
characterized by topological charges �1=2.
We note that in Ref. [19] there is a similar formula

characterizing the topology of the exceptional point, which
can be seen as a special case of Eq. (8), with the spectrum
being symmetric with respect to E ¼ 0, i.e., a ¼ 0 in
Eq. (11). In Ref. [21], the loop topology of exceptional
points is characterized by the integral of the Berry phase
when it is encircled twice. This can be seen as a special case
of Eq. (8) when the Hamiltonian is complex symmetric or
of size 2 × 2. In general, this phase is a path-dependent
geometric phase and is thus not quantized [68–70].
Extension of non-Hermitian topological band theory to

higher dimensions, different symmetry classes, and its
applications to a wide range of physical systems will be
presented in forthcoming works.
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