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A new method of deriving higher order MPn correlation energies is presented. Application of this method
to MP6 leads to the derivation of the total correlation energyE(6) and its dissection into 36 energy terms
EABC
(6) . For 33 electron systems, for which full CI (FCI) correlation energies are knownE(6) andEABC

(6) values
together with the corresponding MP5 and MP4 energies are computed and used to analyze the initial
convergence behavior of the MPn series. Two classes of systems can be distinguished, namely systems with
monotonic convergence of the MPn series (class A systems) and systems with initial oscillations in the MPn
series (class B systems). Analysis ofEA

(4), EAB
(5) , andEABC

(6) values reveals that oscillations in the MPn series
are caused by similar oscillations in the T contributions. For class A systems, the T contributions are of
minor importance and decrease monotonically with order n as do also the SDQ contributions. For class B
systems, one observes a significantly increased importance of the T contributions and alternation in the sign
of the T energy forn ) 4, 5, 6. Results indicate that class A systems are electron systems with well-
separated electron pairs. The most important correlation effects are pair correlations while three-electron
correlations and couplings between pair correlations are relatively small. The latter become important when
electrons cluster in certain regions of an atom or molecule. Clustering of electrons always means increased
electron correlation and a more complicated correlation pattern including three-electron and pair-coupling
effects. In this case, MP theory strongly exaggerates correlation effects at even ordersn, which is corrected
by positive correlation contributions, in particular three-electron contributions at odd orders thus leading to
the oscillations observed for class B systems. Once the electron structure of an atom or molecule is understood,
it is possible to identify the system as a class A or class B system and to predict the convergence behavior
of the corresponding MPn series. If extrapolation formulas are used that do not distinguish between class A
and class B systems, the mean deviation from FCI correlation energies is 12 mhartrees. If however, different
extrapolation formulas are applied for class A and class B systems, the mean deviation obtained for the same
set of molecules decreases to 0.3 mhartree, which corresponds to an improvement of FCI estimates by a
factor of 36.

1. Introduction

Many body perturbation theory (MBPT) based on the
Møller-Plesset (MP) perturbation operator1 has led to the most
popular correlation corrected ab initio methods in quantum
chemistry.2-9 This has to do with the relatively low compu-
tational cost ofnth-order MP (MPn) methods and the size-
extensivity property of all MPnmethods.10 Another advantage
of MPn theory results from the fact that correlation effects are
included stepwise via specific excitations (MP2, double (D)
excitations describing pair correlations; MP3, couplings between
D excitations; MP4, apart from D excitations also single (S),
triple (T), and quadruple (Q) excitations describing orbital
relaxations, three-electron correlations, and independent, but
simultaneous correlations of two electron pairs; MP5, couplings
between S, D, T, Q excitations; etc.), which provides a basis
for the investigation of individual correlation effects.
Recently, we have developed sixth-order MP theory (MP6)

starting from general Rayleigh-Schrödinger perturbation theory
for n) 6.11-14 (For alternative derivations of MP6 correlation
energies, see refs 15 and 16.) At MP6, two new types of
excitations are included, namely pentuple (P) and hextuple (H)
excitations, which describe independent, but simultaneous pair,
three-electron correlations and pair, pair, pair correlations,
respectively. Classifying all contributions to the MP6 correla-
tion energy according to the possible excitations involved, one
can distinguish 55 energy termsEABC

(6) where ABC represents

possible combinations of S, D, T, Q, P, and H excitations.
Because of the equivalence of contributions ABC and CBA,
the number of uniqueEABC

(6) terms is 36, which is still a factor
4 larger than the number of uniqueEAB

(5) (nine out of 14) and a
factor 9 larger than the number ofEA

(4) terms (four). MP6 is an
O(M9) method (M, number of basis functions), which means
that the computational cost for the most expensive of the 36
MP6 terms scale withM9. Therefore, MP6 can only be applied
for relatively small molecules using presently available com-
putational techniques and computational hardware. Neverthe-
less, there are a number of reasons to develop and use MP6
theory.
(1) MP6 is the last method that can be developed using

traditional techniques. MP7 has already a total of 221 terms,
141 of which are unique.17 Therefore, setting up MP7 or even
higher MPn methods will require some form of automated
method development strategy based on computer algebra
languages. MP6 is the appropriate method to develop and test
such strategies.
(2) MP6 is after MP2 and MP4 the next even-order method

that should be of interest because of the introduction of new
correlation effects described by P and H excitations.
(3) Although the cost of a MP6 calculation is proportional

to O(M9), there is still the possibility of systematic studies on
small molecules using MP6 theory.
(4) Apart from this, one can develop useful approximate MP6

methods, which are less costly than the full MP6 approachX Abstract published inAdVance ACS Abstracts,April 1, 1996.
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because they include just the more important energy contribu-
tionsEABC

(6) rather than the full set of all 36 terms.
(5) With MP6 one has three energies (MP2, MP4, MP6) in

the class of even order methods and three in the class of odd
order methods (MP1) HF, MP3, MP5). In this way, one gets
a somewhat more realistic basis to analyze the convergence
behavior of the MPn series.
(6) Calculating the variousEA

(4), EAB
(5) , EABC

(6) contributions to
the MP4, MP5, and MP6 correlation energy, one can determine
those terms that dominate the initial convergence behavior of
the MPn series. It may be possible to relate monotonic or erratic
convergence behavior to the electronic structure of the system
investigated and to predict the former once the latter is known.
(7) Utilizing MP6 correlation energies it will be possible to

test and improve existing extrapolation formulas, by which
reliable estimates of the exact correlation energy can be obtained.
We have developed and programmed MP6 for routine

calculations to investigate points 1-4. Results of these
investigations are published elsewhere.11-14 This work has
revealed that MP6 energies provide reasonable approximations
to full CI (FCI) correlation energies, which for a given basis
set and geometry represent correct correlation energies corre-
sponding to the MPn value ∆E(n) ) ∑m

nE(m) for n ) ∞.
However, in cases of an erratic convergence behavior of the
MPn series, the (absolute) MP6 correlation energy is often larger
than the corresponding FCI value.13 We have found that better
estimates of the FCI correlation energy are obtained by applying
second-order Feenberg scaling, which is superior to first-order
Feenberg scaling or Pade´ approximants.14

In this work, we investigate the convergence behavior of the
MPn series along the lines described in points 5 and 6. For
this purpose, we reprogrammed MP5 and MP6 to decompose
each correlation energyE(n) for n e 6 into individual contribu-
tions representing specific correlation effects. In particular, we
separated contributions that depend on T effects from contribu-
tions that depend on just S, D, Q or P, H excitations because
the analysis of T terms provides evidence for the convergence
behavior of the MPn series. We will show that in the case of
strong pair and three-electron correlation effects, the MPn series
will always tend to oscillate initially. Monotonic convergence
behavior can be expected for those systems for which the
electron pairs are well-separated and couplings between electron
pairs are small. If for a given electronic systems convergence
behavior of the MPn series can be predicted, it should be
possible to derive appropriate extrapolation formulas, which lead
to reliable estimates of FCI correlation energies (see point 7
above). The latter can be used to derive reliable energy
differences for describing chemical processes.

2. Development of Sixth-Order MP (MP6) Perturbation
Theory

There are two different ways of developing MP methods for
use in quantum chemical calculations. The first way can be
called the algebraic approach since it is based on an algebraic
derivation of matrix elements from general perturbation theory
formulas. It works well for low-order perturbation theory,4,5,7

however, becomes problematic for higher orders. In the latter
case, one can distinguish between a principal term and one or
several renormalization terms in the general perturbation theory
formula. According to the linked diagram theorem18 it is
superfluous to evaluate the renormalization terms since these
are all canceled by appropriate parts of the principal term.
Because of the linked diagram theorem it is of advantage to

derive MPn energy formulas by diagrammatic techniques which
immediately identify those terms that really contribute to the

correlation energy. Accordingly, diagrammatic derivations of
the third-, fourth-, and even fifth-order MP energy have been
made, which clearly demonstrated superiority over the algebraic
approach.6,8,19 However, the diagrammatic approach has also
its disadvantages. This becomes obvious when considering the
increase in linked diagrams contributing to the correlation
energy. If one uses Brandow diagrams,8 there are 1, 3, 39, 840,
and 28 300 antisymmetrized diagrams at second-, third-, fourth-,
fifth-, and sixth-order, respectively. This means that it is hardly
possible to derive the sixth-order correlation energy in terms
of linked diagrams.
Therefore, we used in previous work a third approach for

developing higher order perturbation theory formulas. This third
approach is based on a combination of algebraic and diagram-
matic techniques and comprises the following steps:
(1) Principal term and renormalization terms are derived from

the general perturbation theory formula.
(2) Since it is clear that all renormalization terms will be

canceled by parts of the principal term, derivation of the MPn
equations concentrates just on the principal term. This will be
dissected into various parts according to the excitations involved
at the corresponding order of perturbation theory. The various
parts will be written in a cluster operator form.
(3) Each part of the principal term characterized by S, D, T,

Q, P, H, etc. excitations can be described as representing
connected or disconnected energy diagrams according to the
nature of the cluster operators appearing in the energy formula.
(4) All connected (closed) energy terms correspond to linked

diagram contributions and enter the formula for the correlation
while the disconnected energy terms represent unlinked diagram
contributions which according to the linked cluster theorem can
be discarded.
(5) The final cluster operator form of the linked diagram

contributions is transformed into two-electron integral formulas.
This is facilitated by the fact that all those terms that originally
involved disconnected cluster operator parts can be simplified
by using intermediate arrays.12

The advantages of this approach are that (a) superfluous
energy contributions are never determined within the algebraic
derivation and (b) a tedious analysis of all linked diagram terms
is not necessary.
The latter point will become clear if step 3 as the key step of

the procedure 1-5 is described in more detail. Each cluster
operatorT̂ can be described in terms of simplified Brandow
diagrams.8 Combination of theT̂ diagrams with the diagrams
of the perturbation operatorV̂may lead to closed connected or
closed disconnected diagrams, which means that the corre-
sponding matrix elements represented linked or unlinked energy
contributions. It is also possible that the combination ofT̂ and
V̂ diagrams leads to disconnected open diagrams. In this case,
the diagrams correspond to the wave operator and cover both
linked and unlinked contributions. One has to combine the
wave operator part with further parts of the energy formula to
get a separation into connected closed () linked) and discon-
nected closed () unlinked) energy diagrams. In any case, it is
possible to identify for each part of the principal term whether
it contains just linked or in addition unlinked diagram contribu-
tions. The diagrams one has to use for this purpose are rather
simple because they correspond to some basic operators and
need not to be specified with regard to hole and particle lines.8

According to Rayleigh-Schrödinger perturbation theory, the
MP6 correlation energy is given by

(L, linked diagrams only) with the Møller-Plesset perturbation

EMP
(6) ) 〈Φ0|V̂(Ĝ0Vh)

5|Φ0〉L (1)
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operator V̂ being defined as the difference between exact
HamiltonianĤ and the zeroth-order HamiltonianĤ0

The reduced resolventĜ0 is given by

andVh by

where Φ0 is the HF reference wave function. Using the
definition of the resolvent and Slater rules, eq 1 can explicitly
be written as

with

Next, first- and second-order cluster operatorsT̂2
(1) andT̂i

(2) (i )
1, 2, 3) are defined:

where the first-order D excitation amplitudesad and the second-
order amplitudesbx are given by eqs 9 and 10:

By using the cluster operatorsT̂2
(1) and T̂i

(2) (i ) 1, 2, 3), one
can partition the MP6 energy into three differentA(X1, Y, X2)
terms (compare with Figure 1):

The first part,A1, covers all connected cluster operator diagrams

resulting from (VhT̂i
(2))C and fully contributes toEMP

(6) in form of
E(MP6)1:

A1[(VhT̂i
(2))C]L ) E(MP6)1

) ESSS
(6) + 2ESSD

(6) + 2ESST
(6) + ESDS

(6) +

2ESDD
(6) + 2ESDT

(6) + EDSD
(6) + 2EDST

(6) +

EDDD
(6) + 2EDDT

(6) + ETST
(6) + ETDT

(6) +

EDTD
(6) + 2EDTT

(6) + ETTT
(6) + ETQT

(6) (12)

The second and the third part,A2 andA3, cover all discon-
nected cluster operator diagram terms resulting from (T̂2

(1))2 or
various combinations ofT̂i

(2) with Vh as illustrated in Figure 1.

A2[(T̂2
(1))2]L ) ∑

X1

S,D,T,Q

∑
Y

D,T,Q,P,H

(2- δX1,Q
- δX1,S

δY,T -

δX1,D
δY,Q)A(X1, Y, Q)L (13)

where

A(X1, Y, Q))

∑
y

Y

〈Φ0|(T̂i(2))†Vh|Φy〉(E0 - Ey)
-1 〈Φy|Vh1/2(T̂2(1))2|Φ0〉

(i ) 1, 2, 3 for X1 ) S, D, T) (14)

or

As indicated in Figure 1, the disconnected Q cluster operator
(T̂2

(1))2 in A2[(T̂2
(1))2]L couples with the perturbation operatorVh.

This leads to disconnected and connected cluster operator
diagram parts, which in turn lead to the energy contributions
A(X1, Y, QD)L andA(X1, Y, QC)L of eqs 16-19.

A(X1, Y, QD)L )

∑
y

Y

(〈Φ0|(T̂i(2))†Vh|Φy〉(E0 - Ey)
-1 〈Φy|(Vh1/2(T̂2(1))2)D|Φ0〉)L

(i ) 1, 2, 3 for X1 ) S, D, T; Y) T, Q, P) (16)

A(X1, Y, QC)L )

∑
y

Y

〈Φ0|(T̂i(2))†Vh|Φy〉(E0 - Ey)
-1 〈Φy|(Vh1/2(T̂2(1))2)C|Φ0〉

(i ) 1, 2, 3 for X1 ) S, D, T; Y) D, T, Q) (17)

A(Q, Y, QD)L )

∑
y

Y

(〈Φ0|1/2((T̂2(1))†)2Vh|Φy〉(E0 - Ey)
-1×

〈Φy|(Vh1/2(T̂2(1))2)D|Φ0〉)L (Y ) T, Q, P,H) (18)

A(Q, Y, QC)L ) ∑
y

Y

(〈Φ0|1/2((T̂2(1))†)2Vh|Φy〉(E0 - Ey)
-1×

〈Φy|(Vh1/2(T̂2(1))2)C|Φ0〉)L (Y ) D, T, Q) (19)

Ĥ0 ) ∑
p

F̂p ) ∑
p

(ĥp + ĝp) (2)

V̂) Ĥ - Ĥ0 ) ∑
p<q

r̂pq
-1 - ∑

p

ĝp (3)

Ĝ0 ) ∑
k)1

∞ |Φk〉〈Φk|
E0 - Ek

(4)

Vh ) V̂- 〈Φ0|V̂|Φ0〉 (5)

EMP
(6) ) ∑

x1,x2

SDTQ

∑
y

SDTQPH

(〈Φ0|(T̂2(1))†Vh|Φx1
〉(E0 - Ex1)

-1Vhx1y(E0 -

Ey)
-1Vhyx2(E0 - Ex2)

-1〈Φx2
|VhT̂2(1)|Φ0〉)L (6a)

) ∑
X1,X2

SDTQ

∑
Y

SDTQPH

A(X1, Y, X2)L (6b)

Vhxy ) 〈Φx|V̂|Φy〉 - δxy〈Φ0|V̂|Φ0〉 (6c)

T̂2
(1)|Φ0〉 ) ∑

d

D

ad|Φd〉 (7)

T̂i
(2) ) ∑

x

X

bx|Φx〉 (i ) 1, 2, 3) (8)

ad ) (E0 - Ed)
-1〈Φd|V̂|Φ0〉 (9)

bx ) (E0 - Ex)
-1〈Φx|VhT̂2(1)|Φ0〉 (x) s, d, t for i ) 1, 2, 3)

(10)

EMP
(6) ) A1[(VhT̂i

(2))C]L + A2[(T̂2
(1))2]L + A3[(VhT̂i

(2))D]L
(i ) 1, 2, 3) (11)

A(Q, Y, Q))

∑
y

Y

〈Φ0|1/2((T̂2(1))†)2Vh|Φy〉(E0 - Ey)
-1 〈Φy|Vh1/2(T̂2(1))2|Φ0〉

(15)
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The sum ofA(X1, Y, QC)L (eq 17),A(Q, Y, QC)L (eq 19),
andA(Q, H, QD)L (eq 18 for Y) H) is denotedE(MP6)2a,11

which covers 12 different energy contributions:

E(MP6)2a) ∑
X1

S,D,T

2A(X1, D, QC) + A(QC, D, QC) +

A(S, T, QC)

+ ∑
X1

D,T,Q

(2- δX1,Q
)A(X1, T, QC) + A(D, Q, QC)

+ ∑
X1

T,Q

(2- δX1,Q
)A(X1, Q, QC) + A(Q, H, QD)L

(20a)

) 2 ∑
X

S,D,T

EXDQ
(6) + EQDQ

(6) + ESTQ
(6) (II) + EQTQ

(6) (II)

+ 2∑
X

D,T

EXTQ
(6) (II) + EDQQ

(6) (II) + EQQQ
(6) (II)

+ 2ETQQ
(6) (II) + EQHQ

(6) (20b)

In passing on, it is useful to note that some termsEX1YQ
(6) are

split into two parts I and II according to eq 21

EX1YQ
(6) ) EX1YQ

(6) (I) + EX1YQ
(6) (II) (21)

where part II is covered in eqs 17 and 19 while part I is
contained in eqs 16 and 18. Because of computational reasons,
all terms contained in eqs 16 and 18 (excluding the term with
Y) H, see above) are added toA3[(VhT̂i

(2))D]L, which is defined
by (compare with Figure 1)

A3[(VhT̂i
(2))D]L ) ∑

X1

D,T,Q

A(X1, Q, D)L +

∑
X1

S,D,T,Q

A(X1, T, S)L + ∑
X1

T,Q

A(X1, P, T)L (22)

Combining the terms of eq 22 with the termsA(X1, Y, QD)L of
eqs 16 and 18, one obtains simpler formulations in cluster
operator form, namely eqs 23-25:

The final MP6 energy expression covers the four energy parts
E(MP6)1, E(MP6)2, E(MP6)3, andE(MP6)4:

EMP
(6) ) E(MP6)1 + E(MP6)2a+ E(MP6)2b +

E(MP6)3 + E(MP6)4 (26)

which correspond to the connected cluster operator part
(E(MP6)1), the disconnected Q cluster operator part (E(MP6)2),
the disconnected T cluster operator part (E(MP6)3), and the
disconnected P cluster operator part (E(MP6)4). Hence, the final
form of the MP6 correlation energy is given by

E(MP6)) ESSS
(6) + 2ESSD

(6) + 2ESST
(6) + ESDS

(6) + 2ESDD
(6) +

2ESDT
(6) + EDSD

(6) + 2EDST
(6) + EDDD

(6) + 2EDDT
(6) + ETST

(6) +

ETDT
(6) + EDTD

(6) + 2EDTT
(6) + ETTT

(6) + ETQT
(6) + 2ESDQ

(6) +

2EDDQ
(6) + 2ETDQ

(6) + EQDQ
(6) + [ESTS

(6) + ESTQ
(6) (I)] +

[ESTQ
(6) (II) + EQTQ

(6) (II) a] + EQTQ
(6) (II) b + [EQTS

(6) + EQTQ
(6) (I)] +

2[EDTS
(6) + EDTQ

(6) (I)] + 2EDTQ
(6) (II)+ [EDQD

(6) + EDQQ
(6) (I)] +

[EDQQ
(6) (II) + EQQQ

(6) (II) a] + [EQQD
(6) + EQQQ

(6) (I)]+ EQQQ
(6) (II) b +

2[ETTS
(6) + ETTQ

(6) (I)] + 2ETTQ
(6) (II) + 2[ETQD

(6) + ETQQ
(6) (I)]+

2ETQQ
(6) (II) + EQHQ

(6) + [ETPT
(6) + ETPQ

(6) ] + [EQPT
(6) + EQPQ

(6) ] (27)

At this point, it is interesting to compare our development of
MP611-13 with parallel work that was published by Kucharski
and Bartlett (KB)16 after this work was done. KB approach
MP6 by exploiting a simplified CCSDTQ method corrected
through sixth order with a noniterative inclusion of some
connected Q contributions. They carry out two CC iterations
to obtain the third-order cluster amplitudes for the calculations
of S, D, T, and Q terms at MP6. While our approach starts
from the general energy formula for MP6, which is expressed
in terms of first- and second-order cluster operators, KB use
third-order cluster operators to set up the third-order wave
function. This has two important consequences, namely (a) it
is no longer possible to partition the MP6 energy into individual
contributions EABC

(6) as done in eq 27 and b to guarantee
efficient computing certain unlinked diagram contributions have
to be calculated twice (eqs 18-21 of ref 16).
In short, the MP6 method by KB is based on CC theory and

represents a two-step approach (step 1, two iterations with a
simplified CCSDTQ method have to be carried out to get third-

) [EDQD
(6) + EDQQ

(6) (I)] + 2 [ETQD
(6) + ETQQ

(6) (I)]

+ [EQQD
(6) + EQQQ

(6) (I)] (23b)

E(MP6)3 ) ∑
X1

S,D,T

(A(X1, T, S)L + A(X1, T, QD)L) +

A(Q, T, S)L + A(Q, T, QD)L

) ∑
i)1,2,3

(2- δi,1)〈Φ0|(T̂i(2))†VhT̂1(2)T̂2(1)|Φ0〉C +

〈Φ0|1/2((T̂2(1))†)2VhT̂1(2)T̂2(1)|Φ0〉C (24a)

) ESTS
(6) + ESTQ

(6) (I) + 2[EDTS
(6) + EDTQ

(6) (I)] +

2[ETTS
(6) + ETTQ

(6) (I)] + EQTS
(6) + EQTQ

(6) (I) (24b)

E(MP6)4 ) ∑
X1

T,Q

(A(X1, P, T)L + A(X1, P, QD)L)

) 〈Φ0|(T̂3(2))†VhT̂2(1)T̂3(2)|Φ0〉C +

〈Φ0|1/2((T̂2(1))†)2VhT̂2(1)T̂3(2)|Φ0〉C (25a)

) [ETPT
(6) + ETPQ

(6) ] + [EQPT
(6) + EQPQ

(6) ] (25b)

E(MP6)2b ) ∑
X1

D,T,Q

(A(X1, Q, D)L + A(X1, Q, QD)L)

) 〈Φ0|(T̂2(2))†(VhT̂2(1)T̂2(2))C|Φ0〉 +

2〈Φ0|(T̂3(2))†VhT̂2(1)T̂2(2)|Φ0〉 +

〈Φ0|1/2((T̂2(1))†)2VhT̂2(1) T̂2(2)|Φ0〉C (23a)

6176 J. Phys. Chem., Vol. 100, No. 15, 1996 Cremer and He

+ +

+ +



order amplitudes; step 2, evaluation of S, D, T, Q contributions
from third-order amplitudes; addition of P, H contributions)
while our approach represents the first single-step MP6 method
developed in the spirit of the work carried out to get MP2, MP3,
MP4, and MP5.2-9 As a consequence, the analysis of MP6

presented in the following would not be possible with the KB
approach. Furthermore, exploitment of approximated MP6
methods for which individual terms with high cost requirements
are dropped as suggested by us in previous work13 is rather
difficult if not impossible.

a

b

Figure 1. Derivation of the MP6 energy formula described in form of a flow chart. (a) Connected (C) and disconnected (D) cluster operator terms
lead to energy contributionsE(MP6)1, E(MP6)2a, E(MP6)2b, E(MP6)3, andE(MP6)4 corresponding to connected SDT contributions (1), disconnected

Q contributions (2a+ 2b), disconnected T contributions (3) and disconnected P contributions (4). Note that abbreviations such as〈
S
D
‚‚‚
| ...〉 indicate

a sum of terms such as〈S|...〉 + 〈D|...〉 + .... (b) Matrix elements in form of simplified Brandow diagrams are shown (see text).

Sixth-Order MP Perturbation Theory J. Phys. Chem., Vol. 100, No. 15, 19966177

+ +

+ +



3. Analysis of MPn Correlation Energies

It is reasonable to group the various contributions toE(6) into
T- and SDQ-dependent terms. Such a grouping of terms was
first done for the MP4 correlation energy where one distin-
guishes between MP4(SDQ), MP4(T), and full MP4(SDTQ)
according to eqs 28 and 29.5

Similarly, one can split the nine MP5 correlation energy
contributions into SDQ and T part:

Figure 2 gives the 55EABC
(6) terms (36 unique terms are given

in bold print) as a result of the combination of the four energy
contributionsEA

(4) of MP4 (given in the first column of Figure
2) with the 14 energy contributionsEAB

(5) of MP5 (extended by
the three additional combinations pt, pq, hq due to P and H
excitations, see first row of Figure 2) according to Slater rules.
Each of the terms shown in Figure 2 is size extensive and,
therefore, it is possible to group terms characterized by a certain
combination of excitations into subsets as indicated in Figure 2
by dashed lines. According to these dissections, we group the
55 (36) MP6 terms into 17 (12) SDQ terms that involve just S,
D, and Q excitations; the T space covers those terms that
describe the coupling between T and S, D, Q excitations (33
terms, 22 unique terms); the remaining five terms, namely QPQ,
QHQ, TPT, TPQ, and QPT, define the PH partE(6)(PH).13

The cluster operator equations of MP6 were transformed into
two-electron integral formulas and the 37 energy terms of eq
27 were programmed for the purpose of routine calculations of
total MP6 correlation energies as well as the individual MP6
contributionsEABC

(6) . Parallel to this work, MP5 was repro-
grammed to determine the nine uniqueEAB

(5) terms shown in the

first row of the diagram in Figure 2. In this way, more than 53
(out of 60) correlation energy contributionsE(n), E(n)(A...), and
EA...
(n) for (n e 6) can be obtained with one single MP6

calculation.
In this work, individual energy contributions to MP correla-

tion energiesE(n) for n e 6 are determined for 33 electronic
systems to analyze the convergence behavior of the MPn series:

BH, 1Σ+, Re, 1.5Re, 2Re;

basis set (9s5p1d/4s1p)[4s2p1d/2s1p]20

NH2,
2B1, Re, 1.5Re, 2Re;

basis set (9s5p1d/4s1p)[4s2p1d/2s1p]21

NH2,
2A1, Re, 1.5Re, 2Re;

basis set (9s5p1d/4s1p)[4s2p1d/2s1p]22

CH3,
2A′′2, Re, 1.5Re, 2Re;

basis set (9s5p1d/4s1p)[4s2p1d/2s1p]23

CH2,
2B1, CH2,

1A1; basis set (9s5p1d/4s1p)[4s2p1d/2s1p]
24

Ne, 1S, basis sets 4s2p1d, 5s3p2d, 6s4p1d25

F, 2P, basis sets 4s3p1d, 4s3p2d, 5s3p2d25

F-, 1S, basis sets 4s3p1d, 4s3p2d, 5s3p2d25

FH, 1Σ+, Re, 1.5R2, 2Re;

basis set (9s5p1d/4s1p)[4s2p1d/2s1p]26

H2O,
1A1, Re, 1.5Re, 2Re;

basis set (9s5p1d/4s1p)[4s2p1d/2s1p]26

HCCH,1Σg
+, Re; basis set (9s5p1d/4s1p)[4s2p1d/2s1p]

27

CO,1Σ+, Re, basis set (9s5p1d)[4s2p1d]
27

O3,
1A1, Re; c-O3,

1A1, Re; basis set (9s5p1d)[4s2p1d]
28

The set of reference systems includes charged and uncharged
atoms (F and F-), radicals and biradicals (CH3, 2A2′′ and CH2,

Figure 2. Partitioning of the MP6 space. In the top row and in the left column, SDQ space and T space are given for MP5 and MP4, respectively,
while in the central box SDQ, T, and PH space for MP6 are shown separated by dashed lines. In each case, the total number ofE(n)A... terms and
the number of unique terms is given. Terms with a cost dependence ofM8 (white boxes) orM9 (shaded boxes) are also indicated.

E(4)(SDQ)) ES
(4) + ED

(4) + EQ
(4) (28)

E(4)(T) ) ET
(4) (29)

E(5)(SDQ)) ESS
(5) + 2ESD

(5) + EDD
(5) + 2EDQ

(5) + EQQ
(5) (30)

E(5)(T) ) 2EST
(5) + 2EDT

(5) + ETT
(5) + 2ETQ

(5) (31)
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3B2), different states of molecules (3B2 and1A1 state of CH2,
2B1 and 2A1 state of NH2), two-heavy atom systems (HCCH,
CO), three-heavy atom systems (O3, c-O3) as well as AHn
molecules both at their equilibrium geometry (Re) and in
geometries with (symmetrically) stretched AH bonds (1.5Re,
2Re: “stretched geometries”). Calculation of the latter repre-
sents a critical test on the performance of a correlation method
because wave functions of molecules with stretched geometries
possess considerable multireference character. For 29 of these
electronic systems, FCI correlation energies are known23,24,29-31

while for the remaining four systems (HCCH, CO, O3, c-O3),
we have used CCSDT correlation energies obtained in this work
as approximations to the unknown FCI values. In previous
work, in which we analyzed infinite order contributions to
CCSDT with the help of perturbation theory,17 we showed that
among all correlation corrected methods that scale withO(M8)
or better, CCSDT comes closest to FCI. For example, CCSDT
covers 91% of all MP6 (QTD, DQT, QQT, QTT, TQT are
missing), 87% of all MP7, and 85% of all MP8 terms, some of
which are covered only partially (at MP6: DQQ, QQD, QQQ,
QTQ, TQQ, QPQ, QHQ, TPQ, QPT). In view of this, CCSDT
energies should provide a reasonable estimate of FCI values,
although their accuracy (mean deviation from FCI values: 0.53
mhartree for 20 CCSDT calculations32) is lower than that
achieved in this work.
Rather than listing and discussing the large set of correlation

energies obtained in this work (more than 1700 energy values,
E(n) values are published in refs 13 and 14), we concentrate on
describing trends and relationships between individual values.
For this purpose, the various contributions to the correlation
energy of a given system are scaled by an appropriate energy
quantity to make them comparable and to take averages over
classes of systems. As scale factors FCI correlation
energies23,24,29-31 or the quantities EN defined by eq 32 are used.

Averages over scaled energy contributions within a given class
are denoted byε(n)(A...), etc. and presented in form of bar
diagrams, which we call “spectra” of the MP correlation energy.
In this way, we have derivedE(n)(SDQ), E(n)(T), and EA...

(n)

spectra for MP4, MP5, and MP6 using the more than 1700
energy values generated in this work. We will analyze in the
following the convergence behavior of the MPn series by
comparing FCI with MP6 correlation energies, SDQ,T-partition-
ing of the total correlation space, and discussing MPn spectra
for different classes of electron systems.

4. Convergence Behavior of the MPn Series

It is well-known that the MPn series can show different
convergence behavior at lower orders.13,14,33-36 This is shown
in Figure 3 for some typical examples. One can distinguish
between two different situations: (a) The MPn energies decrease
monotonically approaching the FCI energy from above (Figure
3a,b). (b) There are initial oscillations in the MPn correlation
energy which can lead to an exaggeration of electron correlation
effects at sixth-order or even at fourth-order MP theory (Figure
3c,d). However, in each case investigated so far, the MPn series
converges to the FCI value as has been demonstrated by Handy
and co-workers15 who investigated convergence behavior up to
n ) 48 by generating MPn energies during the iterations of a
FCI calculation. We have grouped electron systems, which

possess monotonic convergence in the MPn series, in class A.
Those systems, which possess erratic convergence with initial
oscillations, we have grouped in class B.
The 29 FCI systems investigated in this work can be grouped

into 14 class A systems and 15 class B systems.

In Figure 4, MPn energiesε are given in % with regard to
the corresponding FCI values. For class A systems, the
correlation energy increases monotonicly from 73 (MP2) to 87
(MP3), 91 (MP4), 93 (MP5), and finally 95% (MP6) obviously
approaching the FCI limit rather slowly but asymptotically. For
class B systems, the spectrum of MPn energies based on the
pool of examples investigated in this work is totally different:
The MP2 energy already covers 95% of the FCI correlation
energy, which could mean that pair correlation is much more
important for class B systems than class A systems or that MP2
exaggerates pair correlation by a considerable amount. Most
likely both factors are responsible for the large MP2 correlation
energy in the case of class B systems. At MP3 the correlation
energy is 0.1% smaller (for class A, 14% larger) than the MP2
correlation energy which suggests that the MP3 contribution
covers beside stabilizing (negative) also large destabilizing
(positive) pair correlation contributions thus correcting partially
the exaggeration of pair correlation effects at MP2. MP4
correlation effects lead to another 5% increase of the total
correlation energy, which is larger than the corresponding
increase calculated for class A systems (4%, Figure 4). Again,
one can speculate that S, T, and Q correlation corrections newly
added at MP4 are more important for class B systems than for
class A systems. Alternatively, these effects (as well as pair
correlation effects) may be overestimated at MP4. The latter
effect seems to be corrected by a relatively large positive MP5
correlation contribution decreasing the correlation energy by
almost 2% at the MP5 level. MP6 correlation contributions
increase the absolute value of the correlation energy to 100.6%
thus slightly overshooting the FCI correlation energy. This
suggests that at MP6 certain correlation effects are still
exaggerated which is confirmed by the fact that for class B MP6
correlation energies are on the average 6% larger than for class
A (4.7% at MP5, Figure 4).
We conclude that for class A systems the MPn series

possesses normal convergence behavior. Each higher level of
MPn theory represents a better approximation to the correct
correlation energy with the MP6 energy presenting the best
approximation at the moment feasible when using standard MPn
procedures. For class B systems, the MPn series initially
oscillates which leads to an exaggeration of calculated correla-
tion energies at even orders. It is much more difficult to predict
the FCI correlation energy for class B than for class A systems.
However, it could be that if the initial oscillations in class B
are dampened out the MPn series converges faster than for class
A systems. In any case, reasonable predictions of FCI correla-
tion energies should be based for both classes on MP6
energies.14

EN) {[E(n)(SDQ)]2 + [E(n)(T)]2 + ...}-1/2 (32a)

EN) {[EA...
(n) ]2 + [EB...

(n) ]2 + ...}-1/2 (32b)

Class A: BH,1Σ+, Re, 1.5Re, 2Re; NH2,
2B1, Re, 1.5Re, 2Re;

NH2,
2A1, Re, 1.5Re, 2Re; CH3,

2A′′2, Re, 1.5Re, 2Re;

CH2,
2B1, CH2,

1A1

Class B: Ne,1S, basis sets 4s2p1d, 5s3p2d, 6s4p1d;
F, 2P, basis sets 4s3p1d, 4s3p2d, 5s3p2d;
F-, 1S, basis sets 4s3p1d, 4s3p2d, 5s3p2d,

FH, 1Σ+, Re, 1.5Re, 2Re; H2O,
1A1, Re, 1.5Re, 2Re
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A reason for the different convergence behavior of class A
and class B systems can be found when analyzing the different
contributions to the MPn correlation energy. Therefore, we
evaluated correlation energy contributionsE(n)(SDQ) andE(n)-
(T) at MP4, MP5, and MP6 for the pool of the 29 test systems
with available FCI energies. In Figure 5, calculated energies
are shown in form of bar diagrams (SDQ, black bars; T, hatched

bars) for two typical class A systems (BH,Re, 1.5Re, 2Re, CH2,
3B1, 1A1) and two typical class B systems (F- for three different
basis sets; FH,Re, 1.5Re, 2Re), respectively. The corresponding
SDQ,T diagrams obtained by appropriate scaling according to
eq 32 and averaging over all members of a given class are shown
in Figure 6.

Inspection of the diagrams in Figures 5 and 6 reveals a
number of interesting trends: For class A systems,E(n)(SDQ)
andE(n)(T) correlation energies (n) 4-6) are always negative.
Their absolute magnitude decreases exponentially with increas-
ing ordern thus guaranteeing a monotonic decrease of correla-
tion energiesE(n) and, by this, normal convergence of the MPn
series. The absolute value ofE(n)(SDQ) is always significantly
larger than the correspondingE(n)(T) value where the ratio|E(n)-
(SDQ)|:|E(n)(T)| becomes even larger for stretched geometries,
i.e. with increasing multireference character of the system in
question. Figure 6 reveals that for class A systems the ratio
betweenE(n)(SDQ) andE(n)(T) correlation contributions is
approximately 3 to 1 (MP4, 2.5; MP5, 3.5; MP6, 3.0) at all
orders investigated. Since the number of T contributions to the
total correlation energy increases withn (MP4, 25%; MP5, 50%;
MP6, 60%) while their coupling pattern to other correlation
effects becomes more and more complicated, individual three-
electron correlation effects seem to become less important. It
seems that the large number of T correlation effects keeps the

Figure 3. Graphical representation of the MPn correlation energy∆E(n) (in hartree) of (a) BH,1Σ+ at the equilibrium geometryRe and the two
stretched geometries 1.5Re and 2.0Re; (b) CH2, 3B1, and CH2, 1A1; (c) F-, 1S obtained with three different basis sets of increasing size; (d) FH,1Σ+

at the equilibrium geometryRe and the two stretched geometries 1.5Re and 2.0Re as a function of the ordern of perturbation theory applied. In each
case, MPn values are compared with the full CI (FCI) energy obtained with the same basis set at the same geometry (compare with refs 20-24).

Figure 4. Fractions of total correlation energies∆E(FCI) covered by
a given MPn correlation energy∆E(n) given in % and averaged over
all examples investigated within a class.
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ratio betweenE(n)(SDQ) andE(n)(T) correlation contributions
at about the same value. This ratio and the exponential decrease
of the SDQ part of the correlation energy with ordern guarantee
the monotonic convergence of the MPn series for class A
systems.
Class B systems differ considerably from class A systems

with regard to both sign and magnitude of the T contributions
to the correlation energyE(n). Contrary to class A systems, the
absolute value of the T contribution at MP4 (not always), MP5,
and MP6 is larger than the corresponding SDQ contribution
and, in addition, the T part is positive at fifth-order. Some of
theE(5)(SDQ) energies can also be positive (see, e.g. F-, Figure
5b), however on the average the SDQ contributions are negative
and decrease in magnitude with increasing order (see Figure
6). As a consequence, the ratio betweenE(n)(T) andE(n)(SDQ)
correlation contributions increases from 1.2 (MP4) to 2.4 (MP5)
and 3.7 (MP6), which is much stronger than the increase in the
number of T correlation terms (1:2:2.4). Hence, oscillations in
the T correlation energies dominate the convergence behavior
of the MPn series and lead to the initial oscillations of the MPn
correlation energies typical of class B systems.
One could speculate that the initial oscillations found for class

B systems have to do with multireference effects that cannot
be covered by the lower MPn methods. To test this we
investigated various stretched geometries of simple AHn mol-
ecules such as BH, NH2, FH, or H2O, where the first two
examples belong to class A and the last two class B. Results
of the analysis of their correlation energy contributions are
summarized in Figure 7. They reveal that despite of increasing
multireference character when going from the equilibrium to a
stretched geometry, convergence behavior of the MPn series

does not change. The SDQ,T diagrams possess the same pattern
as observed for the equilibrium geometries. However, there is
a significant increase in the importance of pair correlation effects
with increasing multireference character. For class A, this leads
to increasing dominance of the SDQ part over the T part and
for class B systems it reduces somewhat the dominance of the
T part. For example, for class B the SDQ part at MP4 becomes
larger in magnitude than the T part with increasing multiref-
erence character. This is in line with the observation that
multireference systems are well described by MRD-CI calcula-
tions. We conclude that initial oscillations observed for class
B systems are not caused by multireference character of the
system in question. Multireference character may lead to an
enhancement of these oscillations provided these oscillations
are already triggered by peculiarities in the electronic structure
of the system in question.

The data presented in Figures 5-7 suggest that the conver-
gence behavior of the MPn series depends on magnitude and
sign of the T contributions.

(1) A relatively large ratio |E(n)(SDQ)|:|E(n)(T)|, i.e. a
relatively small importance of T contributions typical of class
A systems seems to guarantee monotonic convergence of the
MPn series provided higher terms resulting from P, H, etc.,
excitations are also small and do not play a significant role.

(2) A relatively small ratio |E(n)(SDQ)|:|E(n)(T)|, i.e. a
relatively large importance of T contributions, combined with
an alternation of the sign ofE(n)(T) with n typical of class B
systems, seems to lead to initial oscillation in the MPn series.

Figure 5. Energy contributions from SDQ and T space for (a) BH,1Σ+ at the equilibrium geometryRe and the two stretched geometries 1.5Re and
2.0Re; (b) CH2, 3B1, and CH2, 1A1; (c) F-, 1S obtained with three different basis sets of increasing size; (d) FH,1Σ+ at the equilibrium geometryRe
and the two stretched geometries 1.5Re and 2.0Re as a function of the ordern of perturbation theory applied. Solid bars:E(n)(SDQ). Hatched bars:
E(n)(T). Lines: E(n)(SDQ)+ E(n)(T).
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5. Analysis of the MPn Spectra

For further analysis of the SDQ and T contributions to the
correlation energyE(n), we discuss in the followingEA...

(n)

spectra forn ) 4, 5, and 6, which are shown in Figures 8 and
9.

MP4 Spectrum. Both for class A and class B systems, S,
D, and T correlation corrections are always negative (stabilizing)
while Q correlation effects are always positive (destabilizing).
The two classes differ with regard to the importance of pair
correlation versus three-electron correlation effects. For class
A, the former are significantly more important than either T,
Q, or S correlation effects while for class B systems pair
correlations are of reduced importance. In the latter case, three-
electron correlation effects as well as orbital relaxation effects
are significantly larger than for class A systems. Actually, T
effects represent the largest contribution to the MP4 correlation
energy. Absolutely seen they are even larger than the sum of
S, D, and Q contributions, which is a result of the fact that the
Q part at MP4 is always positive and in this way cancels a part
of the negative D contribution. Obviously, the Q correlation
effects correct for an exaggeration of pair correlation effects
typical of MP2.

MP5 Spectrum. For all systems investigated, the DD, SS,
and TT terms are negative while ST, TQ, and DQ are positive.
The three remaining MP5 terms (DT, ST, QQ) have different
signs for class A and B. There are some significant differences
between class A and B systems as far as individual contributions

are concerned. The MP5 correlation energy for a class A system
is clearly dominanted by DD (pair-pair) correlation effects.
The second largest term is the (positive) DQ term, which
obviously corrects for an overestimation of pair correlation
effects. All other terms are relatively small with a slight
dominance of the negative terms. Considering both negative
and positive MP5 terms, the former dominate for class A and
lead to a negative MP5 correlation contribution.
For class B systems, five of the nine MP5 terms are positive

(TQ, ST, DT, SD, DQ) and, by this, lead to a positive MP5
correlation energy. None of the terms (absolutely seen) is as
large as the DD term in class A. The largest term is the TQ
term, but ST, DD, SD, QQ, and DQ contributions also possess
considerable magnitude. Hence, both three-electron correlation,
pair correlation as well as orbital relaxation influence the
magnitude of the MP5 correlation energy in the case of a class
B system while for class A only pair correlations seem to be
important. The T part gets its positive sign from positive TQ
and ST contributions while the negative SDQ part is dominated
by negative DD and QQ contributions significantly reduced by
a positive DQ contribution. There are three terms, which change
sign when going from a class A to a class B example, namely
DT (- to +), SD (- to +), and QQ term (+ to -). It seems
that at the MP5 level the correlation energy of class B systems
is predominantly corrected with regard to an exaggeration of
correlation effects that occurred at a lower MPn level.

Figure 6. Energy contributionsε(n)(SDQ) andε(n)(T) for (a) class A
and (b) class B. Solid bars:εav

(n)(SDQ). Hatched bars:εav
(n)(T).

Figure 7. Energy contributionsε(n)(SDQ) andε(n)(T) for stretched
geometries of (a) class A and (b) class B systems. Solid bars:εav

(n)

(SDQ). Hatched bars:εav
(n)(T).
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MP6 Spectrum. The spectra of the MP6 correlation energy
contributions shown in Figure 9 for class A (Figure 9a) and
class B systems (Figure 9b) possesses a similar pattern as those
obtained for the MP5 correlation energy contributions (Figure
8b,c,d). For example, in class A the pair correlation term DDD
clearly dominates the MP6 correlation energy, only reduced by
the positive DDQ and (DQD+ DQQ+ QQQ) terms. All other
terms are relatively small, which holds in particular for the T
and the PH terms. Since about half of the 15 T terms that were
explicitly evaluated in this work are positive, the T contribution
to MP6 becomes small being about one-third of the SDQ
contribution similarly as found in the case of MP4 and MP5.
For class B systems, the DDD term still represents the largest

(negative) contribution to the MP6 correlation energy. However,
there are two T terms (SDT and TDT) of similar magnitude.
Six out of 10 SDQ terms are negative while 13 out of 15 T
terms are negative. Just SST and TDQ represent positive
contributions. This is the reason why the T part for class B
systems is negative and about 4 times as large as the SDQ part.
The PH part represents a relatively small positive correction as
is also found in the case of class A.
Approximate MPn Methods. Before we discuss the ques-

tion how convergence behavior depends on electronic structure,
it is useful to consider some of the approximate MPnmethods
presently in use. For example, MP4(SDQ) used at fourth order
to reduce calculational cost fromO(M7) toO(M6) is certainly a
useful method when calculating relative energies of class A
systems since in this case the importance of the T contributions

is relatively small. For class B systems, the inclusion of the T
part seems to be advisable in view of its magnitude. One could
speculate that it keeps its relative magnitude for all samples of
class B and cancellation of errors leads to reasonable MP4-
(SDQ) energy differences. However, the spectrum given in
Figure 8 is just an average over a limited number of examples
which does not exclude that the ratio|E(4)(T)|:|E(4)(SDQ)|
changes considerably within class B (see, e.g., Figure 5b).
The inclusion of the T part at MP4 will definitely be important

if one wants to compare the energies of class A and class B
systems. As is obvious from Figure 8a, the MP4(SDQ)
approximation underestimates the stability of class B systems
relative to that of class A systems due to the neglect of T
contributions. In summary, one can expect that the reliability
of MP4(SDQ) energy differences is more or less limited to cases
in which class A systems are compared.
For MP5, Kucharski, Noga, and Bartlett37 suggested an

approximate method that by neglecting the TT term requires
anO(M7) rather than anO(M8) computational cost dependence.
From Figure 8b-d, it can be seen that this should be an useful
approximation for both class A and class B systems since the
TT term represents in both cases a relatively small fraction of
the MP5 correlation energy. On the other hand, the usefulness
of a MP5(SDQ) approximation covering the DD, SD, DQ, and
QQ terms is limited in the same way as the corresponding MP4
approximation to class A systems.
Recently, we have suggested two approximated MP6 methods

[MP6(M8) and MP6(M7)], the computational cost of which

Figure 8. (a) MP4 spectrum, (b) MP5 spectrum for classes A and B, (c) MP5 spectrum for class A, and (d) MP5 spectrum for class B. For c and
d, the MP5 spectrum has been separated into SDQ and T contributions and energy termsεAB

(5) are ordered according to their magnitude.
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scale withO(M8) andO(M7).13 MP6(M8) and MP6(M7) are
obtained by dropping allM9 terms in the first case and,
additionally, allM8 terms in the second case (compare with
Figure 2). The corresponding terms are indicated in Figure
10a,b by hatched (M9 terms) or white bars (M8 terms). In
Figure10c,d, sums of allM9 andM8 contributions are compared
with the total MP6 correlation energy and its SDQ, T and PH
parts. Inspection of Figure 10a,b suggests that only for class
A systems MP6(M8) and MP6(M7) are reasonable approxima-
tions because in this case allM9 andM8 contributions are rather
small. For class B systems, the TQT term is rather large and,
therefore, should not be neglected in the T part of MP6.
However, Figure 10c,d reveal that for both class A and class B
systemsM9 andM8 terms represent a relative small fraction
(∼12%) of the total MP6 correlation energy since positive and
negative terms (see Figure 10) cancel largely. Hence, MP6-
(M8) and MP6(M7) present reasonable and economically
attractive alternatives to the costly MP6 method.

One could also consider MP6(SDQ) or MP6(SDTQ) as
interesting approximations to MP6; however, these methods do
not lead to any cost reduction since they possess anO(M9) cost
dependence as has been pointed out previously.13

6. Convergence Behavior and Electronic Structure

If we consider all results and observations summarized in
Figures 3-10 as well as the electronic structures and bonding
patterns of class A and class B systems, then we come to the
conclusion that systems of the two classes basically differ with
regard to their electron distribution. Class A covers those
molecules, the bond and lone electron pairs of which are well
separated and distributed over the whole space of the molecule.
For example, in BH,1Σ+, core electron pair, bonding electron
pair, and lone pair are localized in different parts of the
molecule. The same is true in the case of NH2, CH3, or CH2
as indicated in Figure 11. Because the electron pairs of class
A systems are well-separated, the importance of three-electron
correlations and couplings between the correlation modes of
the various electron pairs is moderate and the molecular
correlation energy is dominated by pair correlation effects.
For class B systems, a clustering of electron pairs in certain

regions of an atom or molecule is observed (Figure 11). For
example, for F, F- and Ne three or even four electron pairs
share the available space in the valence sphere, which is rather
limited due to the orbital contracting and charge attracting force
of the nucleus. For H2O and FH, there are two or even three
electron pairs that cluster in the lone pair region. Simiarly,
molecules with multiple bonds should belong to class B since
more than one electron pair can be found in the bonding region.
We tested this for CO, HCCH, and O3 and found our prediction
to be confirmed in all three cases.
If electrons cluster in regions of atomic or molecular space,

three-electron correlations become important since they provide
a simple mechanism to protect the region of an electron pair
against occupation by other electrons. Accordingly, T correla-
tion effects can become as large or even larger than pair
correlation effects. In view of the basically different electron
structures of class A and class B systems, one can predict that
coupling effects are much more important for the latter than
the former systems. Couplings will lead at the MP3 and the
MP5 level to significant corrections. We have found that all
SDQ couplings taken together at the MP5 level can actually
lead to positive contributions for class B systems. Since positive
contributions in the T part comprising ST, DT, TT, and TQ
terms make this always positive, positive MP5 correlation
contributions and accordingly oscillatory convergence behavior
for class B systems result.
In view of the fact that MP6 covers both connected and

disconnected T contributions, one could ask whether three-
electron correlation effects (connected T contributions associated
with T̂3) or orbital relaxation plus pair correlation effects
(disconnected T contributions associated withT̂1T̂2) are more
important for class B molecules. Such a question can easily
be answered by inspection of the MP6 spectra shown in Figure
9. On the average, disconnected T contributions represented
by the energy terms DTS+ DTQ, STS+ STQ+ QTQ, TTS
+ TTQ in Figure 9 cover about 17% of the total T energy in
case of class B systems while the corresponding value for class
A systems is 13%. Obviously, orbital relaxation plus pair
correlation effects are of limited but similar importance for both
class A and class B systems. The dominant role of T correlation
contributions in the case of class B systems clearly results from
three-electron correlation effects (more than 80% of the T
contributions are connected T contributions) in the way de-
scribed above.

Figure 9. MP6 spectrum for (a) class A, (b) class B, and (c) classes
A and B. For a and b, the MP6 spectrum has been separated into SDQ,
T, and PH contributions and energy termsεABC

(6) are ordered according
to their magnitude.
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It is interesting to note that the connected Q contribution
associated withT̂4 and represented by the term TQT plays almost
no role for class A systems (Figure 9a) in line with the general
understanding that four-electron correlation effects are normally
rather small. For class B systems, the energy contribution TQT
is on the average the third most important T contribution
comparable in magnitude with the DDQ or DQD+ DQQ +
QQQ contributions (Figure 9b). However, while the latter terms
are positive, TQT is negative indicating that a new correlation
effect is added to the MP6 energy. Obviously, four-electron
correlation effects become important for systems with a cluster-
ing of electrons in a confined space such as class B systems.
Four-electron and three-electron correlation make it possible
that, e.g., the electrons of multiple bonds can predominantly be
located in the bond region despite unfavorable Coulombic
interactions.
By inspection of the pair structure of an atom or molecule it

is easy to predict whether the system in question belongs to
class A or class B and whether it possesses monotonic or erratic
convergence behavior. Of course, there are border cases
between the two classes for which predictions may be difficult.
An example is H2O in its equilibrium geometry, for whichE(n)

seems not to oscillate although convergence is not monotonic.14

However, investigation of its SDQ,T spectrum or the MPn
values for stretched geometries of H2O clearly indicates strong
initial oscillations typical of a class B system.
Comparing class A and class B systems and the convergence

behavior of the MPn series for these systems, it is appropriate

to consider class B system as the normal case which reveals
the typical deficiencies of the MP perturbation theory descrip-
tion. MPn theory is characterized by an inclusion of new
correlation effects at even orders and a coupling between these
effects at odd orders thus reducing part of the correlation effects
obtained at the previous order. In the case of strong electron
correlation, this must lead to oscillations in the correlation
energy. With increasing number of electrons, there will be more
systems with clustering of electron pairs in certain regions of
atomic or molecular space and a strongly correlated movement
of the electrons. This means that there will also be more
systems with initial oscillations in the MPn series. Accordingly,
class A systems should be considered as the exceptions, for
which as a result of a fortuitous cancellation or dampening of
the typical MPn oscillations a monotonic convergence is
obtained.

7. Improvement of the Convergence Behavior of the
MPn Series

In recent work, we investigated various approaches to improve
the convergence behavior of the MPn series.14 We found that
with the help of MP6 correlation energies useful estimates of
FCI correlation energies are obtained by applying either
Feenberg scaling or Pade´ approximants.14 We could demon-
strate that second-order Feenberg scaling (FE2) leads to the best
estimates that differ from FCI correlation energies on the average
by just 0.15 mhartree for atoms and molecules in their
equilibrium geometry. First-order Feenberg scaling (FE1) or

Figure 10. MP6 spectrum for (a) class A and (b) class B indicating all terms withO(M9) andO(M8) dependence. In c and d the sums ofO(M8)
andO(M9) terms are compared with SDQ, T, PH and total MP6 correlation energies.

Sixth-Order MP Perturbation Theory J. Phys. Chem., Vol. 100, No. 15, 19966185

+ +

+ +



[2,2] Pade´ approximants are also useful but lead to deviations
of 1.09 and 0.54 mhartree (see Figure 12).
Although the calculational work to get FE or Pade´ estimates

of the FCI correlation energy is negligible, it is even simpler to

apply extrapolation formulas. At a time when routine calcula-
tions of MPn correlation energies were only possible forn e
4, Pople, Frisch, Luke, and Binkley (PFLB)38 derived an
extrapolation formula for estimating the exact correlation energy
∆E:38

Equation 33 is correct up to fourth order and is based on the
assumption that even- and odd-order terms of the MPn series
form a geometrically progressive energy series where the ratio
of successive even-order terms is similar to the ratio of
successive odd-order terms.
Extension of the PFLB extrapolation equation to sixth-order

MP perturbation theory leads to

where formula 34 is correct up to sixth order and also based on
the assumption of monotonic convergence of the MPn series,
which of course is not fulfilled for case B systems. This is

Figure 11. Electronic structures of class A and class B systems.

Figure 12. Comparison of the mean absolute deviation of estimated
from true FCI correlation energies when approximating FCI values by
first-order Feenberg scaling (FE1), second-order Feenberg scaling (FE2),
[2,2] Pade´ approximants, MP6 correlation energies or MP6 based
extrapolation formulas. ExtrapI: One extrapolation formula (eq 34)
is used that does not distinguish between class A and class B systems.
ExtrapII: Two extrapolation formulas (eqs 35 and 36) are used that
reflect the different convergence behavior of class A and class B
systems. Atoms and molecules in their equilibrium geometry are used.

∆E(PFLB,MP4))
EMP
(2) + EMP

(3)

1- (EMP
(4) /EMP

(2) )
(33)

∆E(extrapI,MP6)) EMP
(2) + EMP

(3) +
EMP
(4) + EMP

(5)

1- (EMP
(6) /EMP

(4) )
(34)
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reflected by an unreasonably large mean absolute deviation of
12.21 mhartrees from exact FCI correlation energies, which is
seven times larger than that obtained for MP6 correlation
energies (see Figure 12). Analysis of the failure of eq 34 reveals
that this is due to the problem of covering with one formula
the basically different convergence behavior of class A and class
B systems.
As we have shown above it is possible to clarify whether a

given electronic system belongs to class A or class B. Accord-
ingly, it is also possible to apply for the two classes two different
extrapolation formulas which reflect the different convergence
properties of the two classes. For class A, we suggest eq 35:

where the original PFLB formula is retained in view of the
monotonic convergence found for class A systems; however,
the ratio of subsequent correlation contributions is given by the
best MPn values available at the moment, namelyEMP

(5) and
EMP
(6) .
As was discussed above, for class B systemsE(MP6) values

are mostly more negative than FCI energies, which indicates
that higher order correlation effects are exaggerated. Therefore,
their contributions toE(n) have to be scaled down, which is done
in eq 36 in three different ways:

Both 1/(1- x) (eq 35) and expx (eq 36) lead to similar
series, however, in the exponential series higher powersk of x
are scaled down by prefactors 1/k! thus effectively reducing
higher correction terms. Secondly, all correction terms in eq
35 are negative (EMP

(5) < 0 andEMP
(6) /EMP

(5) > 0) while this is no
longer true for the first correction term of eq 36. Since both
EMP
(5) and EMP

(6) /EMP
(4) > 0, the first correction is positive thus

leading to a substantial reduction in the magnitude of the
correlation energy. All other correction terms are negative
because (EMP

(4) + EMP
(5) ) < 0; however, corrections are smaller

than in the case of A becauseEMP
(6) /EMP

(4) < EMP
(6) /EMP

(5) ). In
summary, correction terms are significantly reduced for class
B energies because MP6 overshoots the FCI value for these
systems.
Application of eqs 35 and 36 leads to infinite-order correlation

energies superior to energies predicted by either the PFLB eq
33 or the MP6 extrapolation eq 34. This is reflected by a mean
absolute deviation of 0.34 mhartree for atoms and molecules at
their equilibrium geometries.
We conclude that by the use of MP6 correlation energies and

an improvement of the original PFLB extrapolation formula
based on a clear distinction of class A and class B systems,
errors in predicted infinite order correlation energies can be
reduced by a factor of 5 with regard to predictions based on
MP6 energies alone and by a factor of about 36 with regard to

predictions based on just one extrapolation formula (eq 34) for
both class A and class B systems. FCI values derived from
eqs 35 and 36 are comparable with those obtained by second-
order Feenberg scaling (see Figure 12) and, therefore, guarantee
energy differences of FCI quality.

8. Conclusions

This work explains for the first time the convergence behavior
of the MPn series. This explanation is based on a detailed
analysis of MP4, MP5, and MP6 correlation energies of 33
examples for which FCI or at least CCSDT correlation energies
are available. We have appropriately scaled correlation energies
and correlation energy contributions to better compare them for
different electronic systems and to derive averaged values which
facilitate the discussion of individual correlation energies. In
this way, we have obtained “MPn spectra”, which provide a
detailed insight into the decomposition of MPn correlation
energies into S, D, T, Q, P, and H contributions forn e 6. The
analysis of MPn correlation energies and correlation energy
spectra leads to the following conclusions.
(1) For a group of atoms and molecules (class A), the MPn

series converges monotonically while for another group (class
B) convergence is erratic with typical initial oscillations.
(2) Oscillations are caused by strong changes in the magnitude

of calculated T contributions when increasingn from 4 to 5
and 6. For class A systems, the T part is not important. The
correlation energyE(n) is dominated by the SDQ part, which
decreases monotonically with increasingn. For class B systems,
the T part dominates the correlation energy. It oscillates
between negative and positive values with increasing ordern
thus causing similar oscillations of the total correlation energy.
(3) The analysis reveals that monotonic convergence is

parallel to a dominance of pair correlation effects (D at MP4,
DD at MP5, DDD at MP6) and a relatively slow convergence
rate (at MP6 only 96% of the FCI correlation energy is covered).
For class B systems, both pair correlation effects and three-
electron correlation effects are of large importance to describe
electron correlation in those regions where electrons cluster.
This leads to a significant exaggeration of correlation effects
in particular at even orders, which can only be compensated by
positive correlation energy corrections at odd orders. Both facts
taken together cause the initial oscillations in the MPn series
of class B systems.
(4) Class A systems are characterized by electronic structures

with well-separated electron pairs while class B systems are
characterized by electronic structures with electron clustering
in one or more regions. As indicated in Figure 11, one can
expect that Li and Be compounds, boranes and carboranes,
carbenes, classical carbocations, alkyl radicals, linear alkanes,
etc. are typical class A systems, which show monotonic
convergence in the MPn series. Typical examples of class B
systems with initial oscillations in the MPn series should be
atoms with almost or totally filled valence shells such as, e.g.,
F, F-, Ne, etc., molecules with multiple bonds such as CO,
HCCH, etc.; conjugated systems (annulenes, polyenes, etc.);
nonclassical carbocations; and hypervalent compounds.
We predict that class B systems represent the majority while

class A systems represent a minority, i.e. there exist more
systems which possess initial oscillations in the MPn series.
(5) By recognizing that convergence behavior in the MPn

series is a direct consequence of the electronic structure of class
A and class B systems, it is possible to predict the convergence
behavior of a given system and to apply an appropriate
extrapolation formula for estimating FCI correlation energies.
In this work, we suggest two new extrapolation formulas for

∆E(A)(extrapII,MP6)) ∑
n)2

4

EMP
(n) +

EMP
(5)

1- (EMP
(6) /EMP

(5) )

) ∑
n)2

6

EMP
(n) + EMP

(5) (EMP
(6) /EMP

(5) )2 + ... (35)

∆E(B)(extrapII,MP6)) EMP
(2) + EMP

(3) + (EMP
(4) +

EMP
(5) ) exp(EMP

(6) /EMP
(4) ) (36)

) ∑
n)2

6

EMP
(n) + EMP

(5) (EMP
(6) /EMP

(4) ) +

1/2! (EMP
(4) + EMP

(5) )(EMP
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(4) )2 +

1/3! (EMP
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class A and class B systems, which lead to significant better
predictions of FCI correlation energies than any previous
extrapolation formula (Figure 12).
(6) The analysis of the various MPn spectra reveals the

applicability of MPn approximations presently in use. For
example, the error in relative energies obtained with MP4(SDQ)
should be considerable if class A systems are compared with
class B systems. Neglect of the TT term at MP537 or all M9

andM8 terms at MP613 to obtainM7 methods should lead to
reasonable approximations to full MP5 and full MP6, respec-
tively.
The discussion presented above makes it rather clear that the

convergence of the MPn series is a direct consequence of the
perturbation theory formalism, which may be compared with a
bad driving style: The “perturbation engine” is accelerated at
even orders n by “fueling” it with new correlation effects (D at
MP2, STQ at MP4, PH at MP6, etc.); however, it is slowed
down at odd orders by pushing the “coupling brake” (DD
coupling at MP3, SDTQ,SDTQ coupling at MP5, etc.). This
must lead to initial oscillations in the MPn series which becomes
obvious in the way electron correlation is important. Since the
latter depends on the number of electrons and a clustering of
electrons in certain regions of space, the deficiencies of the
perturbation engine become obvious for class B systems (i.e.
the majority of electronic systems) while they are reflected for
class A systems just by the relatively slow convergence of the
MPn series.
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