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Introduction to PT -symmetric quantum theory

CARL M. BENDER{*

Blackett Laboratory, Imperial College, London SW7 2BZ, UK

(Received 24 August 2004; in final form 10 January 2005)

In most introductory courses on quantum mechanics one is taught that the Hamiltonian

operator must be Hermitian in order that the energy levels be real and that the theory be

unitary (probability conserving). To express the Hermiticity of a Hamiltonian, one writes

H=H{, where the symbol { denotes the usual Dirac Hermitian conjugation; that is,

transpose and complex conjugate. In the past few years it has been recognized that the

requirement of Hermiticity, which is often stated as an axiom of quantum mechanics,

may be replaced by the less mathematical and more physical requirement of space – time

reflection symmetry (PT symmetry) without losing any of the essential physical features

of quantum mechanics. Theories defined by non-Hermitian PT -symmetric Hamiltonians

exhibit strange and unexpected properties at the classical as well as at the quantum level.

This paper explains how the requirement of Hermiticity can be evaded and discusses the

properties of some non-Hermitian PT -symmetric quantum theories.

1. Introduction

The field of PT -symmetric quantum theory is only six years

old but already hundreds of papers have been published on

various aspects of PT -symmetric quantum mechanics and

PT -symmetric quantum field theory. Three international

conferences have been held (Prague, 2003; Prague, 2004;

Shizuoka, 2004) and three more conferences are planned.

Work on PT symmetry began with the investigation of

quantum-mechanical models and has now extended into

many areas including quasi-exact solvability, supersym-

metry and quantum field theory. Recently, it has been

recognized that there is a connection between PT -

symmetric quantum mechanics and integrable models.

The aim of this paper is to introduce the subject at an

elementary level and to elucidate the properties of theories

described by PT -symmetric Hamiltonians. This paper will

make the field of PT symmetry accessible to students who

are interested in exploring this exciting, new, and active

area of physics.

The central idea of PT -symmetric quantum theory is

to replace the condition that the Hamiltonian of a

quantum theory be Hermitian with the weaker condition

that it possess space – time reflection symmetry (PT
symmetry). This allows us to construct and study many

new kinds of Hamiltonians that would previously have

been ignored. These new Hamiltonians have remarkable

mathematical properties and it may well turn out that

these new Hamiltonians will be useful in describing the

physical world. It is crucial, of course, that in replacing

the condition of Hermiticity by PT symmetry we do not

give up any of the key physical properties that a

quantum theory must have. We will see that if the PT
symmetry of the Hamiltonian is not broken, then the

Hamiltonian will exhibit all of the features of a quantum

theory described by a Hermitian Hamiltonian. (The word

broken as used here is a technical term that will be

explained in section 2.)

Let us begin by reviewing some basic ideas of quantum

theory. For simplicity, in this paper we restrict our

attention to one-dimensional quantum-mechanical systems.

Also, we work in units where Planck’s constant �h=1. In

elementary courses on quantum mechanics one learns that

a quantum theory is specified by the Hamiltonian operator
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that acts on a Hilbert space. The Hamiltonian H does three

things.

(i) The Hamiltonian determines the energy eigenstates

jEni. These states are the eigenstates of the Hamilto-

nian operator and they solve the time-independent

Schrödinger equation HjEni=EnjEni. The energy

eigenstates span the Hilbert space of physical state

vectors. The eigenvalues En are the energy levels of

the quantum theory. In principle, one can observe or

measure these energy levels. The outcome of such a

physical measurement is a real number, so it is

essential that these energy eigenvalues be real.

(ii) The Hamiltonian H determines the time evolution in

the theory. States jti in the Schrödinger picture evolve

in time according to the time-dependent Schrödinger

equation Hjti= – i(d/dt)jti, whose formal solution is

jti=exp(iHt)j0i. Operators A(t) in the Heisenberg

picture evolve according to the time-dependent

Schrödinger equation (d/dt)A(t)= – i[A(t),H], whose

formal solution is A(t)= exp(iHt)A(0) exp ( – iHt).

(iii) The Hamiltonian incorporates the symmetries of the

theory. A quantum theory may have two kinds of

symmetries: continuous symmetries, such as Lorentz

invariance, and discrete symmetries, such as parity

invariance and time reversal invariance. A quantum

theory is symmetric under a transformation repre-

sented by an operator A if A commutes with the

Hamiltonian that describes the quantum theory:

[A,H]=0. Note that if a symmetry transformation is

represented by a linear operator A and if A commutes

with the Hamiltonian, then the eigenstates of H are

also eigenstates of A. Two important discrete symme-

try operators are parity (space reflection), which is

represented by the symbol P, and time reversal, which

is represented by the symbol T . The operatorsP and T
are defined by their effects on the dynamical variables

x̂ (the position operator) and p̂ (the momentum

operator). The operator P is linear and has the effect

of changing the sign of the momentum operator p̂ and

the position operator x̂: p̂? – p̂ and x̂? – x̂. The

operator T is antilinear and has the effect p̂? – p̂, x̂?x̂

and i?i. Note that T changes the sign of i because (like

P) T is required to preserve the fundamental commu-

tation relation [x̂,p̂]= i of the dynamical variables in

quantum mechanics.

Quantum mechanics is an association between states in a

mathematical Hilbert space and experimentally measurable

probabilities. The norm of a vector in the Hilbert space

must be positive because this norm is a probability and a

probability must be real and positive. Furthermore, the

inner product between any two different vectors in the

Hilbert space must be constant in time because probability

is conserved. The requirement that the probability does not

change with time is called unitarity. Unitarity is a

fundamental property of any quantum theory and must

not be violated.

To summarize the discussion so far, the two crucial

properties of any quantum theory are that the energy levels

must be real and that the time evolution must be unitary.

There is a simple mathematical condition on the Hamilto-

nian that guarantees the reality of the energy eigenvalues

and the unitarity of the time evolution; namely, that the

Hamiltonian be real and symmetric. To explain the term

symmetric, as it is used here, let us first consider the

possibility that the quantum system has only a finite

number of states. In this case the Hamiltonian is a finite-

dimensional symmetric matrix

H ¼

a b c � � �
b d e � � �
c e f � � �
..
. ..

. ..
. . .

.

0
BBB@

1
CCCA; ð1Þ

whose entries a, b, c, d, e, f, . . . are real numbers. For

systems having an infinite number of states we express H in

terms of the dynamical variables x̂ and p̂. The x̂ operator in

coordinate space is a real and symmetric diagonal matrix,

all of whose entries are the real number x. The p̂ operator in

coordinate space is imaginary and anti-symmetric because

p̂= – i(d/dx) when it acts to the right but, as we can see

using integration by parts, p̂ changes sign p̂=i(d/dx) when

it acts to the left. The operator p̂2= –d2/dx2 is real and

symmetric. Thus, any Hamiltonian of the form

H= p̂2+V(x̂) when written in coordinate space is real

and symmetric. (In this paper we use units in which m ¼ 1
2

and we treat x̂ and p̂ as dimensionless.)

However, the condition that H be real and symmetric is

not the most general condition that guarantees the reality of

the energy levels and the unitarity of the time evolution

because it excludes the possibility that the Hamiltonian

matrix might be complex. Indeed, there are many physical

applications which require that theHamiltonian be complex.

There is a more general condition that guarantees spectral

reality and unitary time evolution and which includes real,

symmetric Hamiltonians as a special case. This condition is

known as Hermiticity. To express the condition that a

complex HamiltonianH is Hermitian we writeH=H{. The

symbol { represents Dirac Hermitian conjugation; that is,

combined transpose and complex conjugation. The condi-

tion thatHmust exhibit Dirac Hermiticity is often taught as

an axiom of quantum mechanics. The Hamiltonians

H= p̂2+ p̂+V(x̂) and H= p̂2+ p̂x̂+ x̂p̂+V(x̂) are com-

plex and non-symmetric but they are Hermitian.

In this paper we show that while Hermiticity is sufficient

to guarantee the two essential properties of quantum

mechanics, it is not necessary. We describe here an
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alternative way to construct complex Hamiltonians that

still guarantees the reality of the eigenvalues and the

unitarity of time evolution and which also includes real,

symmetric Hamiltonians as a special case. We will maintain

the symmetry of the Hamiltonians in coordinate space, but

we will allow the matrix elements to become complex in

such a way that the condition of space – time reflection

symmetry (PT symmetry) is preserved. The new kinds of

Hamiltonians discussed in this paper are symmetric and

have the property that they commute with the PT
operator: [H, PT ]=0. In analogy with the property of

Hermiticity H=H{, we will express the property that a

Hamiltonian is PT symmetric by using the notation

H=HPT . We emphasize that our new kinds of complex

Hamiltonians are symmetric in coordinate space but are

not Hermitian in the Dirac sense. To reiterate, acceptable

complex Hamiltonians may be either Hermitian H=H{ or

PT -symmetric H=HPT , but not both. Real symmetric

Hamiltonians may be both Hermitian and PT -symmetric.

Using PT symmetry as an alternative condition to

Hermiticity, we can construct infinitely many new Hamil-

tonians that would have been rejected in the past because

they are not Hermitian. An example of such a PT -

symmetric Hamiltonian is

H ¼ p̂2 þi x̂3 : ð2Þ

We do not regard the condition of Hermiticity as wrong.

Rather, the condition of PT symmetry offers the possibility

of studying new quantum theories that may even describe

measurable physical phenomena. Indeed, non-Hermitian

PT -symmetric Hamiltonians have already been used to

describe such phenomena as the ground state of a quantum

system of hard spheres [1], Reggeon field theory [2] and the

Lee –Yang edge singularity [3]. Although at the time that

they were written these papers were criticized for using

Hamiltonians that were not Hermitian, we now understand

that these Hamiltonians have spectral positivity and that

the associated quantum theories are unitary because these

Hamiltonians are PT -symmetric. In physics we should

keep an open mind regarding the kinds of theories that we

are willing to consider. Gell-Mann’s ‘totalitarian principle’

states that among the possible physical theories ‘Everything

which is not forbidden is compulsory’.

This paper is organized as follows: I discuss in a personal

way my discovery of PT -symmetric quantum mechanics

and give a brief history of the early days of this subject in

section 2. Section 3 explains how to calculate the energy

levels of a PT -symmetric Hamiltonian. Section 4 describes

the classical mechanics of PT -symmetric Hamiltonians.

Next, in section 5 we show that a Hamiltonian having an

unbroken PT symmetry defines a unitary quantum theory.

The demonstration of unitarity is based on showing that

PT -symmetric Hamiltonians that have an unbroken PT

symmetry also possess a new parity-like symmetry; this

symmetry is represented by a new operator that we call C.
We give in section 6 a simple 26 2 matrix illustration of the

procedures used in section 5. In section 7 we discuss the

nature of observables in PT -symmetric quantum-mechan-

ical theories. We show how to calculate the C operator in

section 8. In section 9 we explain why one may regard PT -

symmetric quantum mechanics as a complex version of

ordinary quantum mechanics. Finally, in section 10 we

discuss some possible physical applications of PT -sym-

metric quantum mechanics.

2. A personal history of PT symmetry

My first encounter with a non-Hermitian complex Hamil-

tonian dates back to the summer of 1993. In the course of a

private conversation with D. Bessis at CEN Saclay, I

learned that he and J. Zinn-Justin had noticed that the

eigenvalues of the Hamiltonian operator in (2) seemed to be

real and they wondered if the spectrum (the set of energy

eigenvalues of the Hamiltonian) might be entirely real.

(Their interest in the Hamiltonian (2) was inspired by early

work on the Lee –Yang edge singularity [3].) At the time I

did not plan to pursue this conjecture further because it

seemed absurd that a complex non-Hermitian Hamiltonian

might have real energy levels.

I did not know it at the time, but Bessis and Zinn-Justin

were not the first to notice that a complex cubic quantum-

mechanical Hamiltonian might have real eigenvalues. For

example, early studies of Reggeon field theory in the late

1970s led a number of investigators to observe that model

cubic quantum-mechanical Hamiltonians like that in (2)

might have real eigenvalues [2]. Also, Caliceti et al.

observed in 1980 that on the basis of Borel summability

arguments the spectrum of a Hamiltonian related to (2) is

real [4]. In each of these cases the possibility that a complex

non-Hermitian Hamiltonian might have real energy levels

was viewed as an isolated curiosity. It was believed that

such a Hamiltonian could not describe a valid theory of

quantum mechanics because the non-Hermiticity of the

Hamiltonian would result in non-unitary time evolution [3].

I did not forget about the remarkable Hamiltonian in (2)

and in 1997 I decided to investigate it. I suspected that if the

spectrumof thisHamiltonianwas real, it was probablydue to

the presence of a symmetry and I realized that (2) does

possess PT symmetry because any real function of ix̂ is PT -

symmetric. I decided that a simple and natural way to

determine the spectrum of (2) would be to use the delta

expansion, a perturbative technique that I had developed

several years earlier for solving nonlinear problems [5]. I

asked my former graduate student S. Boettcher to join me in

this investigation.

The delta expansion is an extremely simple technique for

solving nonlinear problems perturbatively (approximately).

Introduction to PT -symmetric quantum theory 279
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The idea of the delta expansion is to introduce a small

perturbation parameter d into a nonlinear problem in such

a way that d is a measure of the nonlinearity of the

problem. To illustrate how the delta expansion is used,

consider the Thomas –Fermi equation, a difficult nonlinear

boundary-value problem that describes the approximate

electric charge distribution in an atom:

y00ðxÞ ¼ y3=2x�1=2 ; yð0Þ ¼ 1 ; yð1Þ ¼ 0 : ð3Þ

There is no exact closed-form solution to this problem.

However, a nice way to solve this problem perturbatively is

to introduce the parameter d in the exponent:

y00ðxÞ ¼ yðy=xÞd; yð0Þ ¼ 1 ; yð1Þ ¼ 0 : ð4Þ

When d ¼ 1
2 , (4) reduces to (3). However, in (4) we treat the

parameter d as small (d55 1). When d=0, the problem

becomes linear and therefore it can be solved exactly; the

solution is y0(x)= exp (7 x). This is the leading term in the

perturbation expansion for y(x), which has the form

yðxÞ ¼
P1

n¼0 ynðxÞdn . It is easy to calculate the coefficients

of the higher powers of d. At the end of the calculation one

sets d=1/2, and from just the first few terms in the

perturbation series one obtains a good numerical approx-

imation to the solution to the Thomas –Fermi equation.

I was eager to find out what would happen if we applied

delta-expansion methods to (2). We replaced the Hamilto-

nian (2) by the one-parameter family of Hamiltonians

H ¼ p̂2 þ x̂2ðix̂Þd ; ð5Þ

where d is regarded as a small real parameter. There are two

advantages in inserting d in this fashion: first, the new

Hamiltonian remains PT -symmetric for all real d. Thus,
the insertion of d maintains the PT symmetry of the

original problem. Second, when d=0, the Hamiltonian (5)

reduces to that of the harmonic oscillator, which can be

solved exactly because the underlying classical equations of

motion are linear. Each of the energy levels of (5) have a

delta expansion of the general form

E ¼
X1
n¼0

and
n : ð6Þ

The series coefficients are easy to calculate and they are

real. Thus, assuming that this delta expansion converges,

the eigenvalues of H in (5) must be real. At the end of the

calculation we set d=1 in (6) to recover the eigenvalues of

the original Hamiltonian in (2).

The problem with the delta expansion is that it is difficult

to prove rigorously that the expansion converges. We were

able to conclude only that for every n there is always a

neighbourhood about d=0 in which the delta expansion

for the first n eigenvalues of (5) converges and thus these

eigenvalues are real when d is real. Our discovery that the

first n eigenvalues of the complex Hamiltonian (5) were real

for a small range of real d near d=0 was astonishing to us,

but we were disappointed that the delta expansion was not

powerful enough to determine whether all of the eigenvalues

of the original complex Hamiltonian (2) are real. However,

our delta-expansion analysis inspired us to perform detailed

perturbative and numerical studies of the spectrum of H in

(5). To our amazement we found that all of the eigenvalues of

H remain real for all d5 0 [6]. We coined the term PT -

symmetric to describe these new non-Hermitian complex

Hamiltonians having real energy levels{.

To present the results of our numerical studies, we

rewrite the Hamiltonian (5) as

H ¼ p̂2 �ðix̂ÞN ; ð7Þ

where N is a continuous real parameter{. The eigenvalues

of this Hamiltonian are entirely real for all N5 2, while for

N5 2 the spectrum is partly real and partly complex.

Clearly, the Hamiltonian H= p̂2+ ix̂3 in (2) is just one

member of a huge and remarkable class of complex

Hamiltonians whose energy levels are real and positive.

The spectrum of H exhibits three distinct behaviors as a

function of N (see figure 1).

(i) When N5 2 the spectrum is infinite, discrete, and

entirely real and positive. This region includes the case

N=4 for which H= p̂2 – x̂4. Amazingly, the spectrum of

this wrong-sign potential is positive and discrete. (Also,

hx̂i„0 in the ground state because H breaks parity

symmetry!) At the lower bound N=2 of this region lies

the harmonic oscillator. (ii) A transition occurs at N=2.

When 15N5 2 there are only a finite number of positive

real eigenvalues and an infinite number of complex

conjugate pairs of eigenvalues. We say that in this region

the PT symmetry is broken and that N5 2 is a region of

unbroken PT symmetry. (We explain the notion of broken

and unbroken PT symmetry in greater detail below.) As N

decreases from 2 to 1, adjacent energy levels merge into

complex conjugate pairs beginning at the high end of the

{Other examples of complex Hamiltonians having PT symmetry are

H= p̂2+ x̂4(ix̂)d, H= p̂2+ x̂6(ix̂)d, and so on (see [7]). These classes of

Hamiltonians are all different. For example, the Hamiltonian obtained by

continuing H in (5) along the path d:0?8 has a different spectrum from the

Hamiltonian that is obtained by continuing H= p̂2+ x̂6(ix̂)d along the

path d:0?4. This is because the boundary conditions on the eigenfunctions

are different.

{An important technical issue concerns the definition of the operator (ix̂)N

when N is noninteger. This operator is defined in coordinate space and is

used in the Schrödinger equation Hf=Ef, which reads 7f(x)+ (ix)Nf
(x)=Ef(x). The term (ix)N : exp [N log (ix)] uses the complex logarithm

function log (ix), which is defined with a branch cut that runs up the

imaginary axis in the complex-x plane. This is explained more fully in

section 3.
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spectrum. Ultimately, the only remaining real eigenvalue is

the ground-state energy, which diverges as N?1+ (the

spectrum of H= p̂2 – ix̂ is null: [8]). (iii) When N4 1 there

are no real eigenvalues.

It is apparent that the reality of the spectrum of (7) when

N5 2 is connected with its PT symmetry. The association

between PT symmetry and the reality of spectra can be

understood as follows: we say that the PT symmetry of a

Hamiltonian H is unbroken if all of the eigenfunctions of H

are simultaneously eigenfunctions of PT §.

Here is a proof that if the PT symmetry of a

Hamiltonian H is unbroken, then the spectrum of H is

real: assume that a Hamiltonian H possesses PT symmetry

(i.e. that H commutes with the PT operator) and that if f

is an eigenstate of H with eigenvalue E, then it is

simultaneously an eigenstate of PT with eigenvalue l:

Hf ¼ Ef and PT f ¼ lf : ð8Þ

We begin by showing that the eigenvalue l is a pure

phase. Multiply PT f= lf on the left by PT and use the

fact that P and T commute and that P2=T 2=1 to

conclude that f= l*lf and thus l=exp(ia) for some real

a. Next, introduce a convention that we use throughout this

paper. Without loss of generality we replace the eigenfunc-

tion f by exp ( – ia/2)f so that its eigenvalue under the

operator PT is unity:

PT f ¼ f : ð9Þ

Next, we multiply the eigenvalue equation Hf=Ef on the

left by PT and use [PT , H]=0 to obtain Ef=E*f.
Hence, E=E* and the eigenvalue E is real.

The crucial assumption in this argument is that f is

simultaneously an eigenstate of H and of PT . In quantum

mechanics if a linear operator X commutes with the

Hamiltonian H, then the eigenstates of H are also

eigenstates of X. However, we emphasize that the operator

PT is not linear (it is antilinear) and thus we must make

the extra assumption that the PT symmetry of H is

unbroken; that is, f is simultaneously an eigenstate of H

and PT . This extra assumption is non-trivial because it is

hard to determine a priori whether the PT symmetry of a

particular Hamiltonian H is broken or unbroken. For H

in (7) the PT symmetry is unbroken when N5 2 and it is

broken when N5 2. The conventional Hermitian Hamil-

tonian for the quantum-mechanical harmonic oscillator

lies at the boundary of the unbroken and the broken

regimes.

I am delighted at the research activity that my work

has inspired. In 2001 Dorey et al. proved rigorously that

the spectrum of H in (7) is real and positive [9] in the

region N5 2. Dorey et al. used techniques such as the

Bethe ansatz and the Baxter-TQ relation, which are used

in the study of integrable models and conformal

quantum field theory. In doing so they have helped to

establish a remarkable connection between the ordinary

differential equation (the Schrödinger equation) that

describes PT -symmetric quantum mechanics and the

study of integrable models. This connection, which has

become known as the ODE/IM correspondence, is rich

and profound and will lead to a much deeper under-

standing of both types of theories. Many other PT -

symmetric Hamiltonians for which space – time reflection

symmetry is not broken have been investigated, and the

spectra of these Hamiltonians have also been shown to

be real and positive [4,10–12]. Evidently, the phenomenon

of PT symmetry is quite widespread and arises in many

contexts.

Figure 1. Real energy levels of the Hamiltonian H= p̂2 –

(ix̂)N as a function of the parameter N. When N5 2, the

entire spectrum is real and positive. The lower bound of

this region, N=2, corresponds to the harmonic oscillator,

whose energy levels are En=2n+1. When 15N5 2,

there are a finite number of positive real eigenvalues and

infinitely many complex conjugate pairs of eigenvalues. As

N decreases from 2 to 1, the number of real eigenvalues

decreases and when N4 1.42207, the only real eigenvalue

is the ground-state energy. As N?1+, the ground-state

energy diverges. For N4 1 there are no real eigenvalues.

§If a system is defined by an equation that possesses a discrete symmetry,

the solution to this equation need not exhibit that symmetry. For example,

the differential equation ÿ(t)= y(t) is symmetric under time reversal t? – t.

The solutions y(t)= exp(t) and y(t)= exp( – t) do not exhibit time-reversal

symmetry while the solution y(t)= cosh (t) is time-reversal symmetric. The

same is true of a system whose Hamiltonian is PT -symmetric. Even if the

Schrödinger equation and corresponding boundary conditions are PT
symmetric, the solution to the Schrödinger equation boundary value

problem may not be symmetric under space – time reflection. When the

solution exhibits PT symmetry, we say that the PT symmetry is unbroken.

Conversely, if the solution does not possess PT symmetry, we say that the

PT symmetry is broken.
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3. Energy levels of a PT -symmetric Hamiltonian

The purpose of this section is to explain how to calculate

the eigenvalues of the complex Hamiltonian operator in (6).

To calculate the energy levels of a PT -symmetric Hamilto-

nian we adopt the techniques that are used for calculating

the energy levels of conventional Hermitian Hamiltonians.

These techniques involve converting the formal eigenvalue

problem Hf=Ef to a Schrödinger differential equation

whose solutions satisfy appropriate boundary conditions.

This Schrödinger equation is then solved numerically or by

using approximate methods such as WKB.

The Schrödinger eigenvalue problem for the PT -

symmetric Hamiltonian (7) is

�f00
nðxÞ � ðixÞNfnðxÞ ¼ EnfnðxÞ ; ð10Þ

where En is the nth eigenvalue. For a Hermitian Hamilto-

nian the boundary conditions that give quantized energy

levels En are that the eigenfunctions fn(x)?0 as jxj?? on

the real axis. This condition suffices for (10) when

15N5 4, but for N5 4 we must continue the eigenvalue

problem for (10) into the complex-x plane. Thus, we

replace the real-x axis by a contour in the complex plane

along which the differential equation holds. The boundary

conditions that lead to quantization are imposed at the

endpoints of this contour. (The rest of this brief section is

somewhat technical and may be skipped by those without a

background in complex differential equations. See [13] for

more information on how to solve such problems.)

The endpoints of this contour lie in regions in the

complex-x plane in which the eigenfunctions fn (x)?0

exponentially as j x j ? ?. These regions are known as

Stokes wedges (see figure 2). The Stokes wedges are

bounded by the lines along which the solution to the

differential equation is oscillatory [14]. There are many

wedges in which we can require that f(x)?0 as j x j??.

Thus, there are many eigenvalue problems associated with

a given differential equation [13]. For a given value of N we

must first identify which one of these eigenvalue problems

is associated with (10). To do so we start with the harmonic

oscillator problem at N=2 and smoothly vary the

parameter N until it reaches the given value. At N=2

the eigenfunctions vanish in wedges of angular opening 1
2p

centred about the negative-real and positive-real x axes.

For any N5 1 the centres of the left and right wedges lie at

the angles

yleft ¼ �pþ N� 2

2Nþ 4
p and yright ¼ � N� 2

2Nþ 4
p : ð11Þ

The opening angle of these wedges is D=[2/(N+2)]p. The
differential equation (10) may be integrated on any path in

the complex-x plane so long as the path approaches

complex infinity inside the left wedge and inside the right

wedge. These wedges contain the real-x axis when

15N5 4.

As N increases from 2, the left and right wedges rotate

downward into the complex-x plane and become thinner.

We can see on figure 1 that the eigenvalues grow with N as

N??. At N=? the differential equation contour runs up

and down the negative imaginary axis, and this leads to an

interesting limiting eigenvalue problem. Because all of the

eigenvalues of (7) diverge like N2 as N??, for large N we

replace H by the rescaled Hamiltonian H/N2. In the limit

N?? this new Hamiltonian becomes exactly solvable in

terms of Bessel functions. The eigenvalue problem at

N=? is the PT -symmetric equivalent of the square well

in ordinary Hermitian quantum mechanics [15].

As N decreases below 2, the wedges become wider and

rotate into the upper-half x plane. At N=1 the angular

opening of the wedges is 2
3p and the wedges are centred at

5
6p and 1

6p . Thus, the wedges become contiguous at the

positive-imaginary x axis, and the differential equation

contour can be pushed off to infinity. Hence, there is no

eigenvalue problem when N=1 and, as we would expect,

the ground-state energy diverges as N?1+ (see figure 1).

Having defined the eigenvalue problem for the Hamilto-

nian in (7), we can solve the differential equation by using

numerical methods. We can also can use approximate

analytical methods such as WKB [14]. WKB gives a good

approximation to the eigenvalues in figure 1 when N5 2.

The novelty of this WKB calculation is that it must be

performed in the complex plane. The turning points x+ are

those roots of E+ (ix)N= 0 that analytically continue off

the real axis as N moves away from N=2:

Figure 2. Wedges in the complex-x plane containing the

contour on which the eigenvalue problem for the differ-

ential equation (10) for N=4.2 is posed. In these wedges

f(x) vanishes exponentially as jxj??. The wedges are

bounded by lines along which the solution to the

differential equation is oscillatory.
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x� ¼ E1=N exp ½ipð3=2� 1=NÞ� ;
xþ ¼ E1=N exp ½�ipð1=2� 1=NÞ� :

ð12Þ

These points lie in the lower (upper) x plane in figure 2

when N4 2 (N5 2).

The WKB quantization condition is ðnþ 1=2Þp ¼R xþ
x�

dx½Eþ ðixÞN�1=2 . It is crucial that the integration path

be such that this integral is real. When N4 2 this path lies

entirely in the lower-half x plane, and when N=2 the path

lies on the real axis. When N5 2 the path is in the upper-

half x plane; it crosses the cut on the positive-imaginary

axis and thus is not a continuous path joining the turning

points. Hence, WKB fails when N5 2.

When N5 2, the WKB calculation gives

En 	
Gð3=2þ 1=NÞp1=2ðnþ 1=2Þ

sin ðp=NÞGð1þ 1=NÞ


 �2N=ðNþ2Þ

ðn ! 1Þ :

ð13Þ

This result is quite accurate. The fourth exact eigenvalue

(obtained using Runge-Kutta) for the case N=3 is 11.3143

while WKB gives 11.3042, and the fourth exact eigenvalue

for the case N=4 is 18.4590 while WKB gives 18.4321.

4. PT -symmetric classical mechanics

In the study of classical mechanics the objective is to

describe the motion of a particle satisfying Newton’s law

F=ma. The trajectory x(t) of the particle is a real function

of time t. The classical equation of motion for the complex

PT -symmetric Hamiltonian (7) describes a particle of

energy E subject to complex forces. Thus, we have the

surprising result that classical PT -symmetric Hamiltonians

describe motion that is not limited to the real-x axis. The

classical path x(t) may lie in the complex-x plane. The

purpose of this section is to describe this remarkable

possibility [7].

An intriguing aspect of figure 1 is the transition at N=2.

As N goes below 2, the eigenvalues begin to merge into

complex conjugate pairs. The onset of eigenvalue merging

can be thought of as a phase transition. We show in this

section that the underlying cause of this quantum transition

can be understood by studying the theory at classical level.

The trajectory x(t) of a classical particle governed by the

PT -symmetric Hamiltonian (7) obeys + dx[E+(ix)N] – 1/2

=2dt. While E and dt are real, x(t) lies in the complex

plane in figure 2. When N=2 (the harmonic oscillator),

there is one classical path that terminates at the classical

turning points x+ in (12). Other paths are nested ellipses

with foci at the turning points (see figure 3). All these paths

have the same period.

When N=3, there is again a classical path that joins the

left and right turning points and an infinite class of paths

enclosing the turning points (see figure 4). As these paths

increase in size, they approach a cardioid shape (see figure

5). The indentation in the limiting cardioid occurs because

paths may not cross, and thus all periodic paths must avoid

the path in figure 4 that runs up the imaginary axis. When

N is noninteger, we obtain classical paths that move off

onto different sheets of the Riemann surface (see figure 6).

In general, whenever N5 2, the trajectory joining x+ is

a smile-shaped arc in the lower complex plane. The motion

is periodic. Thus, the equation describes a complex

pendulum whose (real) period T is given by

T ¼ 2Eð2�NÞ=2N cos
ðN� 2Þp

2N


 �
Gð1þ 1=NÞp1=2
Gð1=2þ 1=NÞ : ð14Þ

Below the transition at N=2 a path starting at one

turning point, say x7 , moves toward but misses the turning

point x+. This path spirals outward, crossing from sheet to

sheet on the Riemann surface, and eventually veers off to

infinity. Hence, the period abruptly becomes infinite. The

total angular rotation of the spiral is finite for all N5 2,

but it becomes infinite as N?27 (see figure 7).

5. PT -symmetric quantum mechanics

The discovery that the eigenvalues of many PT -symmetric

Hamiltonians are real and positive raises an urgent

question: does a non-Hermitian Hamiltonian such as H

in (7) define a physical theory of quantum mechanics or is

the positivity of the spectrum merely an intriguing

mathematical property of special classes of complex

eigenvalue problems? A physical quantum theory (i) must

possess a Hilbert space of state vectors and this Hilbert

Figure 3. Classical paths in the complex-x plane for the

N=2 oscillator. The paths form a set of nested ellipses.

These closed periodic orbits occur when the PT symmetry

is unbroken.
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space must have an inner product with a positive norm; (ii)

the time evolution of the theory must be unitary; that is, the

norm must be preserved in time.

A definitive answer to this question has been found

[16,17]. For a complex non-Hermitian Hamiltonian having

an unbroken PT symmetry, a linear operator C that

commutes with both H and PT can be constructed. We

denote the operator representing this symmetry by C
because the properties of C are similar to those of the

charge conjugation operator in ordinary particle physics.

The inner product with respect to T conjugation is

hcjwiCPT ¼
Z

dxcCPT ðxÞwðxÞ ; ð15Þ

where cCPT (x)=
R
dyC(x,y)c*( – y). This inner product

satisfies the requirements for the quantum theory defined

byH to have a Hilbert space with a positive norm and to be

a unitary theory of quantum mechanics.

To explain the construction of the C operator we begin by

summarizing the mathematical properties of the solution to

the eigenvalue problem (10) associated with the Hamilto-

nian H in (7). Recall from figure 2 that this differential

equation is imposed on an infinite contour in the complex-x

plane and that for large jxj this contour lies in wedges

placed symmetrically with respect to the imaginary-x axis

as in figure 2. When N5 2, H has an unbroken PT
symmetry. Thus, the eigenfunctions fn(x) are simulta-

neously eigenstates of the PT operator: PT fn(x)=

lnfn(x). As we argued in section 2, ln can be absorbed

into fn(x) so that PT fnðxÞ ¼ f�
nð�xÞ ¼ fnðxÞ (see (9)).

The eigenstates of a conventional Hermitian Hamilto-

nian are complete. There is strong evidence that the

eigenfunctions fn(x) for the PT -symmetric Hamiltonian

(7) are also complete. The coordinate-space statement of

completeness is

X1
n¼0

ð�1ÞnfnðxÞfnðyÞ ¼ dðx� yÞ ðx; y realÞ : ð16Þ

This non-trivial result has been verified numerically to

extremely high accuracy (twenty decimal places) [18,19].

The unusual factor of (7 1)7 in this sum does not appear

in conventional quantum mechanics. This factor is ex-

plained in the following discussion.

We must now try to find the inner product associated

with our PT -symmetric Hamiltonian and it is here that we

can see the difficulty connected with its non-Hermiticity. In

conventional Hermitian quantum mechanics the Hilbert

space inner product is specified even before we begin to

look for the eigenstates of H. For our non-Hermitian

Hamiltonian we must try to guess the inner product. A

reasonable guess for the inner product of two functions f(x)

and g(x) might be

ðf; gÞ 

R
dx ½PT fðxÞ�gðxÞ ; ð17Þ

where PT f(x)= [f(7 x)]* and the path of integration in

the complex-x plane follows the contour described in

section 3. The apparent advantage of this choice for the

inner product is that the associated PT norm (f,f) is

independent of the overall phase of f(x) and is conserved in

time. With respect to this inner product the eigenfunctions

fm(x) and fn(x) of H in (7) are orthogonal for n „m.

However, when m=n we see that the PT norms of the

eigenfunctions are not positive:

ðfm;fnÞ ¼ ð�1Þndmn : ð18Þ

Figure 4. Classical paths in the complex-x plane for the

N=3 oscillator. In addition to the periodic orbits, one

path runs off to i? from the turning point on the imaginary

axis.

Figure 5. Classical paths in the complex-x plane for the

N=3 oscillator. As the paths get larger, they approach a

shape resembling a cardioid. We have plotted the rescaled

paths.
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This result is apparently true for all values of N in (7)

and it has been verified numerically to extremely high

precision. Because the norms of the eigenfunctions

alternate in sign, the metric associated with the PT

inner product (�,�) is indefinite. This sign alternation is a

generic feature of the PT inner product. Extensive

numerical calculations verify that (18) holds for all

N5 2.

Figure 6. Classical paths for the case N=2.5. These paths do not intersect. The graph shows the projection of the parts of the

path that lie on three different sheets of the Riemann surface. As the size of the paths increases, a limiting cardioid appears on

the principal sheet. On the remaining sheets of the surface the path exhibits a knot-like topological structure.
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Despite the existence of a non-positive inner product, we

can still do some of the analysis that one would normally

perform for a conventional Schrödinger equation

Hfn=Enfn. For example, we can use the inner product

formula (18) to verify that (16) is the representation of the

unity operator by showing that dyd(x – y)d(y – z)= d(x – z).

Figure 7. Classical paths in the complex-x plane for N=1.8, N=1.85 and N=1.9. These non-periodic paths spiral outward

to infinity. As N?2 from below, the number of turns in the spiral increases. The lack of periodic orbits corresponds to a

broken PT symmetry.

286 C. M. Bender

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
7:

11
 1

6 
M

ay
 2

01
2 



We can use completeness to reconstruct the parity operator

P in terms of the eigenstates. The parity operator in

position space is

Pðx; yÞ ¼
X1
n¼0

ð�1ÞnfnðxÞfnð�yÞ ¼ dðxþ yÞ : ð19Þ

By virtue of (18) the square of the parity operator is unity:

P2=1. We can also reconstruct H in coordinate space:

H(x,y)=Sn( – 1)
nEnfn(x)fn(y). Using (16) – (18) we can see

that this Hamiltonian satisfies Hfn(x)=Enfn(x).

We now address the question of whether a PT -

symmetric Hamiltonian defines a physically viable quan-

tum mechanics. The difficulty with formulating a PT -

symmetric quantum theory is that the vector space of

quantum states is spanned by the energy eigenstates, of

which half have norm +1 and half have norm 7 1. In

quantum theory the norms of states carry a probabilistic

interpretation, so the indefinite metric (18) is unacceptable.

The situation here in which half of the energy eigenstates

have positive norm and half have negative norm is

analogous to the problem that Dirac encountered in

formulating the spinor wave equation in relativistic

quantum theory [20]. Following Dirac, we attack the

problem of an indefinite norm by finding an interpretation

of the negative-norm states. We claim that in any theory

having an unbroken PT symmetry there exists a symmetry

of the Hamiltonian connected with the fact that there are

equal numbers of positive- and negative-norm states. To

describe this symmetry we construct the aforementioned

linear operator C in position space as a sum over the

eigenstates of the Hamiltonian [16]:

Cðx; yÞ ¼
X1
n¼0

fnðxÞfnðyÞ : ð20Þ

The properties of this new operator C resemble those of

the charge conjugation operator in quantum field theory.

For example, we can use (16) – (18) to verify that the square

of C is unity (C2=1): dyC(x,y)C(y,z)= d(x – z). Thus, the
eigenvalues of C are + 1. Also, C commutes with the

Hamiltonian H. Therefore, since C is linear, the eigenstates

of H have definite values of C. Specifically, if the energy

eigenstates satisfy (18), then we have

CfnðxÞ ¼
Z

dy Cðx; yÞfnðyÞ

¼
X1
m¼0

fmðxÞ
Z

dyfmðyÞfnðyÞ ¼ ð�1ÞnfnðxÞ :

Thus, C represents the measurement of the sign of the PT
norm of an eigenstate in (18).

The operators P and C are distinct square roots of the

unity operator d(x – y). That is, P2= C2=1, but P „ C.

Indeed, P is real, while C is complex. The parity operator in

coordinate space is explicitly real P(x,y)= d(x+ y), while

the operator C(x,y) is complex because it is a sum of

products of complex functions, as we see in (20). The two

operators P and C do not commute. However, C does

commute with PT .

Finally, having obtained the operator C we define the

new inner product structure given in (15). This inner

product has a positive definite norm. Like the PT inner

product (17) this new inner product is phase independent.

Also, it is conserved in time because the time evolution

operator (just as in ordinary quantum mechanics) is exp

(iHt). The fact that H commutes with PT and with CPT
implies that both inner products, (17) and (15), remain time

independent as the states evolve. However, unlike (17), the

inner product (15) is positive definite because C contributes

7 1 when it acts on states with negative PT norm. In terms

of the CPT conjugate, the completeness condition (16)

reads

X1
n¼0

fnðxÞ½CPT fnðyÞ� ¼ dðx� yÞ : ð21Þ

To review, in the mathematical formulation of a

conventional quantum theory the Hilbert space of physical

states is specified first. The inner product in this vector

space is defined with respect to ordinary Dirac Hermitian

conjugation (complex conjugate and transpose). The

Hamiltonian is then chosen and the eigenvectors and

eigenvalues of the Hamiltonian are determined. In contrast,

the inner product for a quantum theory defined by a non-

Hermitian PT -symmetric Hamiltonian depends on the

Hamiltonian itself and is thus determined dynamically. One

can view this new kind of quantum theory as a ‘bootstrap’

theory because one must solve for the eigenstates of H

before knowing what the Hilbert space and the associated

inner product of the theory are. The Hilbert space and the

CPT inner product (15) are then determined by these

eigenstates via (20).

The operator C does not exist as a distinct entity in

ordinary Hermitian quantum mechanics. Indeed, if we

allow the parameter N in (7) to tend to 2, the operator C in

this limit becomes identical to P. Thus, in this limit the

CPT operator becomes T , which is just complex conjuga-

tion. As a consequence, the inner product (15) defined with

respect to the CPT conjugation reduces to the complex

conjugate inner product of conventional quantum me-

chanics when N?2. Similarly, in this limit (21) reduces to

the usual statement of completeness
P

n fnðxÞf�
nðyÞ ¼

dðx� yÞ.
The CPT inner-product (15) is independent of the choice

of integration contour C as long as C lies inside the

asymptotic wedges associated with the boundary conditions

for the eigenvalue problem (10). In ordinary quantum
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mechanics, where the positive-definite inner product has the

form dx f*(x)g(x), the integral must be taken along the real

axis and the path of the integration cannot be deformed

into the complex plane because the integrand is not

analytic{. The PT inner product (17) shares with (15) the

advantage of analyticity and path independence, but it

suffers from non-positivity. It is surprising that we can

construct a positive-definite metric by using PT conjuga-

tion without disturbing the path independence of the inner-

product integral.

We can now explain why PT -symmetric theories are

unitary. Time evolution is expressed by the operator exp

(7iHt), whether the theory is determined by a PT -

symmetric Hamiltonian or just an ordinary Hermitian

Hamiltonian. To establish unitarity we must show that as a

state vector evolves, its norm does not change in time. If

c0(x) is a prescribed initial wave function belonging to the

Hilbert space spanned by the energy eigenstates, then it

evolves into the state c1(x) at time t according to

ct(x)=exp( – iHt)c0(x). With respect to the CPT inner

product defined in (15), the norm of the vector ct(x) does

not change in time, hctjcti= hc0jc0i, because the Hamil-

tonian H commutes with the CPT operator.

6. Illustrative example: a 26 2 matrix Hamiltonian

The 26 2 matrix Hamiltonian

H ¼ r exp ðiyÞ s
s r exp ð�iyÞ

� �
; ð22Þ

where the three parameters r, s and y are real, illustrates the

above results on PT -symmetric quantum mechanics. This

Hamiltonian is not Hermitian, but it is PT symmetric,

where the parity operator is P ¼
�
0
1
1
0

�
and T performs

complex conjugation [21].

There are two parametric regions for this Hamiltonian.

When s25 r2sin2 y, the energy eigenvalues form a complex

conjugate pair. This is the region of broken PT symmetry.

On the other hand, when s25 r2 sin2 y, then the eigenvalues

e+ = r cos y + (s2 – r2 sin2 y)1/2are real. This is the region

of unbroken PT symmetry. In the unbroken region the

simultaneous eigenstates of the operators H and PT are

jEþi ¼
1

ð2 cos aÞ1=2
exp ðia=2Þ
exp ð�ia=2Þ

� �
;

jE�i ¼
i

ð2 cos aÞ1=2
exp ð�ia=2Þ
�exp ðia=2Þ

� �
;

ð23Þ

where we set sin a=(r/s) sin y). The PT inner product

gives (e+ , e+)= + 1 and (e+ , e+ )=0, where

(u, u)= (PT u)�u. Therefore, with respect to the PT inner

product, the resulting vector space spanned by the energy

eigenstates has a metric of signature (+ , – ). The condition

s24 r2 sin2 y ensures that the PT symmetry is not broken.

If this condition is violated, the states (23) are no longer

eigenstates of PT because a becomes imaginary. When PT
symmetry is broken, the PT norm of the energy eigenstate

vanishes.

Next, we construct the operator C using (20):

C ¼ 1

cos a
i sin a 1
1 �i sin a

� �
: ð24Þ

Note that C is distinct from H and P and it has the key

property that C j e+ i= + je+ i. The operator C commutes

with H and satisfies C2=1. The eigenvalues of C are

precisely the signs of the PT norms of the corresponding

eigenstates. Using the operator C we construct the new

inner product structure hujui=(CPT u)�u. This inner

product is positive definite because he+ je+ i=1. Thus,

the two-dimensional Hilbert space spanned by je+ i, with
inner product h�j�i, has signature (+ ,+ ).

Finally, we show that the CPT norm of any vector is

positive. For the arbitrary vector c ¼
�
a
b

�
, where a and b

are any complex numbers, we see that

Tc ¼
a�

b�

� �
; PT c ¼

b�

a�

� �
; and

CPT c ¼ 1

cos a
a� þ ib� sin a

b� � ia� sin a

� �
:

Thus, hcjci=(CPT c)�c= 1
cos a [a*a+b*b+ i(b*b – a*a)

sin a]. Now let a= x+iy and b= u+ iu, where x, y, u
and u are real. Then

cjc ¼ 1

cos a
x2 þ u2 þ 2xu sin aþ y2 þ u2 � 2yu sin a
� �

;

ð25Þ
which is explicitly positive and vanishes only if

x= y= u= u=0.

Since huj denotes the CPT -conjugate of jui, the

completeness condition reads

jEþihEþj þ jE�ihE�j ¼
1 0
0 1

� �
: ð26Þ

{If a function satisfies a linear ordinary differential equation, then the

function is analytic wherever the coefficient functions of the differential

equation are analytic. The Schrödinger equation (10) is linear and its

coefficients are analytic except for a branch cut at the origin; this branch cut

can be taken to run up the imaginary axis. We choose the integration

contour for the inner product (18) so that it does not cross the positive

imaginary axis. Path independence occurs because the integrand of the

inner product (18) is a product of analytic functions.
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Furthermore, using the CPT conjugate he+ j, we get C as

C= je+ ihe+ j – je – ihe – j.
If we set y=0 in this two-state system, the Hamiltonian

(22) becomes Hermitian. However, C then reduces to the

parity operator P. As a consequence, CPT invariance

reduces to the standard condition of Hermiticity for a

symmetric matrix; namely, that H=H*. This is why the

hidden symmetry C was not noticed previously. The

operator C emerges only when we extend a real symmetric

Hamiltonian into the complex domain.

7. Observables in PT -symmetric quantum mechanics

How do we represent an observable in PT -symmetric

quantum mechanics? Recall that in ordinary quantum

mechanics the condition for a linear operator A to be an

observable is that A=A{. This condition guarantees that

the expectation value of A in a state is real. Because

operators in the Heisenberg picture evolve in time

according to A(t)= exp (iHt)A(0)exp ( – iHt), this Hermi-

ticity condition is maintained in time. In PT -symmetric

quantum mechanics the equivalent condition is that at time

t=0 the operator A must obey the condition

AT= CPT ACPT , where AT is the transpose of A. If this

condition holds at t=0, then it will continue to hold for all

time because we have assumed that H is symmetric

(H=HT). This condition also guarantees that the expecta-

tion value of A in any state is real.

The operator C itself satisfies this requirement, so it is an

observable. Also the Hamiltonian is an observable.

However, the x and p operators are not observables.

Indeed, the expectation value of x in the ground state is a

negative imaginary number. Thus, there is no position

operator in PT -symmetric quantum mechanics. In this

sense PT -symmetric quantum mechanics is similar to

fermionic quantum field theories. In such theories the

fermion field corresponds to the x operator. The fermion

field is complex and does not have a classical limit. One

cannot measure the position of an electron; one can only

measure the position of the charge or of the energy of the

electron!

One can see why the expectation of the x operator is a

negative imaginary number by examining figure 4. Note

that the classical trajectories have left – right (PT )

symmetry, but not up – down symmetry. Also, the

classical paths favour the lower-half complex-x plane.

Thus, the average classical position is a negative

imaginary number. Just as the classical particle moves

about in the complex plane, the quantum probability

current flows about in the complex plane. It may be that

the correct interpretation is to view PT -symmetric

quantum mechanics as describing the interaction of

extended, rather than pointlike objects.

8. Calculation of the C operator

The distinguishing feature of PT -symmetric quantum

mechanics is the C operator. The discovery of C in [16]

raises the question of how to evaluate the formal sum in

(20) that represents C. In ordinary Hermitian quantum

mechanics there is no such operator. Only a non-Hermitian

PT -symmetric Hamiltonian possesses a C operator distinct

from the parity operator P. Indeed, if we were to evaluate

(20) for a PT -symmetric Hamiltonian that is also

Hermitian, the result would be P, which in coordinate

space is d(x+ y) (see (19)).

Calculating C by direct evaluation of the sum in (20) is

not easy in quantum mechanics because it is necessary to

calculate all the eigenfunctions fn(x) of H. Such a

procedure cannot be used in quantum field theory because

there is no simple analogue of the Schrödinger eigenvalue

differential equation and its associated coordinate-space

eigenfunctions.

Fortunately, there is an easy way to calculate the C
operator, and the procedure circumvents the difficult

problem of evaluating the sum in (20). As a result the

technique readily generalizes from quantum mechanics to

quantum field theory. In this section we use this

technique to calculate C for the PT -symmetric Hamilto-

nian [22]

H ¼ 1
2 p̂

2 þ1
2 x̂

2 þiE x̂3 : ð27Þ

We will show how to calculate C perturbatively to high

order in powers of e for this cubic Hamiltonian. Calculating

C for other kinds of interactions is a bit more difficult and

requires the use of semiclassical approximations [23].

Our calculation of C makes use of its three crucial

properties. First, C commutes with the space – time reflec-

tion operator PT ,

½C;PT � ¼ 0 ; ð28Þ
although C does not commute with P or T separately.

Second, the square of C is the identity,

C2 ¼ 1 ; ð29Þ

which allows us to interpret C as a reflection operator.

Third, C commutes with H,

½C;H� ¼ 0 ; ð30Þ

and thus is time independent. To summarize, C is a time-

independent PT -symmetric reflection operator.

The procedure for calculating C begins by introducing a

general operator representation for C of the form [24]

C ¼ exp ½Qðx̂; p̂Þ�P ; ð31Þ
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where P is the parity operator and Q(x̂, p̂) is a real function

of the dynamical variables x̂ and p̂. This representation

conveniently incorporates the three requirements (28) – (30).

The representation C=exp (Q)P is general. Let us

illustrate this simple representation for C in two elementary

cases: first, consider the shifted harmonic oscillator

H ¼ 1
2 p̂

2 þ1
2 x̂

2 þiEx̂ . This Hamiltonian has an unbroken

PT symmetry for all real e. Its eigenvalues En ¼ nþ 1
2 þ 1

2E
2

are all real. The C operator for this theory is given exactly

by C=exp (Q)P, where Q= – ep̂. Note that in the limit

e?0, where the Hamiltonian becomes Hermitian, C
becomes identical with P.

As a second example, consider the non-Hermitian 26 2

matrix Hamiltonian (22). The C operator in (24) can be

easily rewritten in the form C=exp (Q) P, where

Q ¼ 1
2s2 ln ½ð1� sin aÞ=ð1þ sin aÞ�. Here, s2 ¼

�
0
i
�i
0

�
.

Again, observe that in the limit y?0, where the Hamilto-

nian becomes Hermitian, the C operator becomes identical

with P.
We will now calculate C directly from its operator

representation (31) and we will show that Q(x̂, p̂) can be

found by solving elementary operator equations. To find

the operator equations satisfied by Q we substitute C=exp

(Q) P into the three equations (28) – (30) in turn.

First, we substitute (31) into the condition (28) to obtain

exp ½Qðx̂; p̂Þ� ¼ PT exp ½Qðx̂; p̂Þ�PT ¼ exp ½Qð�x̂; p̂Þ� ;
from which we conclude that Q(x̂, p̂) is an even function of

x̂. Second, we substitute (31) into the condition (29) and

find that

exp ½Qðx̂; p̂Þ�P exp ½Qðx̂; p̂Þ�P
¼ exp ½Qðx̂; p̂Þ� exp ½Qð�x̂;�p̂Þ� ¼ 1 ;

which implies that Q(x̂p̂)= –Q( – x̂, – p̂). Since we already

know that Q(x̂, p̂) is an even function of x̂, we conclude that

it is also an odd function of p̂.

The remaining condition (30) to be imposed is that the

operator C commutes with H. Substituting C=exp

[Q(x̂, p̂)]P into (30), we get exp [Q (x̂, p̂)][P, H]+ [exp

[Q(x̂, p̂],H]P=0. We can express the Hamiltonian H in

(27) in the form H=H0+ eH1, where H0 is the harmonic

oscillator Hamiltonian H0 ¼ 1
2 p̂

2 þ1
2 x̂

2, which commutes

with the parity operator P, and H1= ix̂3, which anti-

commutes with P. The above condition becomes

2E exp ½Qðx̂; p̂Þ�H1 ¼ ½exp ½Qðx̂; p̂Þ�;H� : ð32Þ
The operator Q(x̂, p̂) may be expanded as a series in odd

powers of e:

Qðx̂; p̂Þ ¼ EQ1ðx̂; p̂Þ þ E3Q3ðx̂; p̂Þ þ E5Q5ðx̂; p̂Þ þ � � � : ð33Þ

Substituting the expansion in (33) into the exponential exp

[Q(x̂, p̂)], we get after some algebra a sequence of equations

that can be solved systematically for the operator-valued

functions Qn(x̂, p̂) (n=1,3,5, . . .) subject to the symmetry

constraints that ensure the conditions (28) and (29). The

first three of these equations are

H0;Q1½ � ¼ �2H1 ;

H0;Q3½ � ¼ �1
6½Q1; ½Q1;H1�� ;

H0;Q5½ � ¼ 1
360½Q1; ½Q1; ½Q1; ½Q1;H1����
� 1

6 ½Q1; ½Q3;H1�� þ ½Q3; ½Q1;H1��ð Þ :
ð34Þ

Let us solve these equations for the Hamiltonian in (27),

for which H0 ¼ 1
2 p̂

2 þ1
2 x̂

2 and H1= ix̂3. The procedure is

to substitute the most general polynomial form for Qn using

arbitrary coefficients and then to solve for these coefficients.

For example, to solve the first of the equations in (34), [H0,

Q1]= – 2ix̂3, we take as an ansatz for Q1 the most general

Hermitian cubic polynomial that is even in x̂ and odd in p:

Q1ðx̂; p̂Þ ¼ Mp̂3 þNx̂p̂x̂ ; ð35Þ

whereM and N are undetermined coefficients. The operator

equation for Q1 is satisfied if M ¼ �4
3 and N= 2.

It is straightforward, though somewhat tedious, to

continue this process. In order to present the solutions

for Qn(x̂,p̂) (n4 1), it is convenient to introduce the

following notation: let Sm,n represent the totally symme-

trized sum over all terms containing m factors of p̂ and n

factors of x̂. For example, S0,0=1, S0,3= x̂3,

S1;1 ¼ 1
2 x̂p̂þ p̂x̂ð Þ , S1;2 ¼ 1

3 x̂2 p̂þ x̂p̂x̂þ p̂x̂2
� �

, and so on.

The properties of the operators Sm,n are summarized in [25].

In terms of the symmetrized operators Sm,n the first three

functions Q2n+1 are

Q1 ¼ �4
3 p̂

3 �2S1;2 ;

Q3 ¼ 128
15 p̂

5 þ40
3S3;2 þ 8S1;4 � 12p̂ ;

Q5 ¼ �320
3 p̂7 �544

3 S5;2 � 512
3 S3;4 � 64S1;6 þ 24 736

45 p̂3 þ6 368
15 S1;2 :

ð36Þ

This completes the calculation of C. Together, (31), (33) and
(36) represent an explicit perturbative expansion of C in

terms of the operators x̂ and p̂, correct to order e6.
To summarize, using the ansatz (31) we can calculate the C

operator to very high order in perturbation theory. We are

able to perform this calculation because this ansatz obviates

the necessity of calculating the wave functions fn(x).

9. Quantum mechanics in the complex plane

We have seen in section 4 that the classical motion of

particles described by PT -symmetric Hamiltonians is not

confined to the real-x axis; the classical paths of such

particles lie in the complex-x plane. Analogously, the new

kinds of quantum theories discussed in this paper may also

290 C. M. Bender

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
7:

11
 1

6 
M

ay
 2

01
2 



be viewed as extensions of ordinary quantum mechanics

into the complex domain. This is so because, as we saw in

section 3, the Schrödinger equation eigenvalue problem and

the corresponding boundary conditions are posed in the

complex-x plane.

The idea of extending a Hermitian Hamiltonian into the

complex plane was first discussed by Dyson, who argued

heuristically that perturbation theory for quantum electro-

dynamics diverges [26]. Dyson’s argument involves rotating

the electric charge e into the complex plane e?ie. Applied

to the anharmonic oscillator Hamiltonian

H ¼ 1
2 p̂

2 þ1
2 x̂

2 þ1
4g x̂

4 ðg > 0Þ ; ð37Þ

Dyson’s argument would go as follows: rotate the coupling

g into the complex-g plane to – g. Then the potential is no

longer bounded below, so the resulting theory has no

ground state. Thus, the energies En(g) are singular at g=0

and the perturbation series for En(g), which are series in

powers of g, must therefore have a zero radius of

convergence and must diverge for all g„ 0. These perturba-
tion series do indeed diverge, but there is a flaw in Dyson’s

argument, and understanding this flaw is necessary to

understand how a non-Hermitian PT -symmetric Hamilto-

nian can have a positive real spectrum.

The flaw in Dyson’s argument is simply that the

eigenvalues of the Hamiltonian

H ¼ 1
2 p̂

2 þ1
2 x̂

2 �1
4 g x̂

4 ðg > 0Þ ; ð38Þ

are undefined until the boundary conditions on the

eigenfunctions are specified. These boundary conditions

depend crucially on how this Hamiltonian with negative

coupling is obtained. Dyson’s way to obtain H in (38)

would be to substitute g= jgjexp (iy) into (37) and to rotate

from y=0 to y=p. Under this rotation, the energies En(g)

become complex: the En(g) are real and positive when g4 0

but complex when g5 0. The PT -symmetric way to obtain

(38) is to take the limit d: 0?2 of H ¼ 1
2 p̂

2 þ1
2 x̂

2 þ1
4 gx̂

2ðix̂Þd
(g4 0). When (38) is obtained by this limiting process, its

spectrum is real, positive and discrete.

How can the Hamiltonian (38) possess two such

astonishingly different spectra? As we saw in section 3,

the answer lies in understanding the boundary conditions

satisfied by the wave functions fn(x). Under Dyson’s

rotation the eigenfunctions fn(x) vanish in the complex-x

plane as jxj?? inside the wedges –p/35 arg x5 0 and

– 4p/35 arg x5 –p. Under the PT limiting process, in

which the exponent d ranges from 0 to 2, fn(x) vanishes

in the complex-x plane as jxj?? inside the wedges p/
35 argx5 0 and –p5 argx5 – 2p/3. In the latter case

the boundary conditions hold in wedges that are

symmetric with respect to the imaginary axis (see figure

2); these boundary conditions enforce the PT symmetry

of H and are responsible for the reality of the energy

spectrum.

Apart from the differences in the energy levels, there is

another striking difference between the two theories

corresponding to H in (38). Under Dyson’s rotation the

expectation value of the operator x̂ remains zero. This is

because Dyson’s rotation preserves the parity symmetry of

H in (38). However, under our limiting process, in which d
ranges from 0 to 2, this expectation value becomes non-zero

because as soon as d begins to increase, parity symmetry is

violated (and is replaced by PT symmetry).

The non-vanishing of the expectation value of x̂ has

important physical consequences. We suggest in the next

section that PT symmetry may be the ideal quantum field

theoretic setting to describe the dynamics of the Higgs

sector in the standard model of particle physics.

10. Physical applications of PT -symmetric quantum theories

It is not known whether non-Hermitian, PT -symmetric

Hamiltonians can be used to describe experimentally

observable phenomena. However, non-Hermitian Hamil-

tonians have already been used to describe interesting

interacting systems. For example, Wu showed that the

ground state of a Bose system of hard spheres is described

by a non-Hermitian Hamiltonian [1]. Wu found that the

ground-state energy of this system is real and conjectured

that all the energy levels were real. Hollowood showed that

even though the Hamiltonian of a complex Toda lattice is

non-Hermitian, the energy levels are real [27]. Non-

Hermitian Hamiltonians of the form H= p̂2+ ix̂3 and

cubic quantum field theories arise in studies of the Lee –

Yang edge singularity [3] and in various Reggeon field

theory models [2]. In each of these cases the fact that a non-

Hermitian Hamiltonian had a real spectrum appeared

mysterious at the time, but now the explanation is simple:

in each case the non-Hermitian Hamiltonian is PT -

symmetric. In each case the Hamiltonian is constructed

so that the position operator �x or the field operator f is

always multiplied by i.

An experimental signal of a complex Hamiltonian might

be found in the context of condensed matter physics.

Consider the complex crystal lattice whose potential is

V(x)= i sin x. While the Hamiltonian H= p̂2+ i sin x̂ is

not Hermitian, it is PT -symmetric and all of its energy

bands are real. However, at the edge of the bands the wave

function of a particle in such a lattice is always bosonic (2p-
periodic), and unlike the case of ordinary crystal lattices,

the wave function is never fermionic (4p-periodic) [28].

Direct observation of such a band structure would give

unambiguous evidence of a PT -symmetric Hamiltonian.

The quartic PT -symmetric quantum field theory that

corresponds to H in (7) with N=4 is described by the

‘wrong-sign’ Hamiltonian density
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H ¼ 1
2p

2ðx; tÞ þ 1
2½rxfðx; tÞ�2 þ 1

2m
2f2ðx; tÞ � 1

4gf
4ðx; tÞ :

ð39Þ

This theory is remarkable because, in addition to the energy

spectrum being real and positive, the one-point Green’s

function (the vacuum expectation value of f) is non-zero

[29]. Also, the field theory is renormalizable, and in four

dimensions it is asymptotically free and thus non-trivial

[30]. Based on these features, we believe that the theory may

provide a useful setting in which to describe the dynamics

of the Higgs sector in the standard model.

Other field theory models whose Hamiltonians are non-

Hermitian and PT -symmetric have also been studied. For

example, PT -symmetric electrodynamics is particularly

interesting because it is asymptotically free (unlike ordinary

electrodynamics) and because the direction of the Casimir

force is the negative of that in ordinary electrodynamics

[31]. This theory is remarkable because it can determine its

own coupling constant. Supersymmetric PT -symmetric

quantum field theories have also been studied [32].

How does a gf3 theory compare with a gf4 theory? A

gf3 theory has an attractive force. Bound states arising as a

consequence of this force can be found by using the Bethe –

Salpeter equation. However, the gf3 field theory is

unacceptable because the spectrum is not bounded below.

If we replace g by ig, the spectrum becomes real and

positive, but now the force becomes repulsive and there are

no bound states. The same is true for a two-scalar theory

with interaction of the form igf2 w, which is an acceptable

model of scalar electrodynamics that has no analogue of

positronium. It would be truly remarkable if the repulsive

force that arises in a PT -symmetric quantum field theory

having a three-point interaction could explain the accel-

eration in the expansion of the universe.

We believe that the concept of PT symmetry as a

generalization of the usual Dirac Hermiticity requirement

in conventional quantum mechanics is physically reason-

able and mathematically elegant. While the proposal of PT
symmetry is unconventional, we urge the reader to keep in

mind the words of Michael Faraday: ‘Nothing is too

wonderful to be true, if it be consistent with the laws of

nature’.
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