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Divergence in Mgller—Plesset theory: A simple explanation based
on a two-state model
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The convergence of the Mgller—Plesset expansion is examined for NeCH,, and HF and
analyzed by means of a simple two-state model. For all systems, increasing diffuseness of the basis
introduces highly excited diffuse back-door intruder states, resulting in an an alternating, ultimately
divergent expansion. ForF the divergence begins already at third order; for the remaining
systems, it begins later. For GHthe low-lying doubly excited state leads to a monotonic, slowly
decreasing series at lower orders; for the stretched HF molecule, the low-lying doubly excited states
lead to a slowly undulating series at lower orders. Although the divergence of the Mgller—Plesset
series does not invalidate the use of the second-order expansion, it questions the use of higher-order
Mgller—Plesset expansions in quantum-chemical studies20@0 American Institute of Physics.
[S0021-960600)30122-2

I. INTRODUCTION electron basis is sufficiently flexible to describe the diffuse
intruder states. For the above-mentioned systems, the MP
Quantum-chemical calculations are nowadays widelyseries converges in small basis sets without diffuse
used to analyze, interpret, and predict experimental data. Thenction$'’ but diverges when these sets are augmented with
development of efficient schemes and programs for Mgller-giffuse functions'
Plesse(MP) perturbation theoryhas been important for ob- The divergence of the MP series has conceptual as well
taining this status. The second-order version of MP theorys practical ramifications. The conceptual consequences re-
(MP2) is presently perhaps the most widely used correlatedate to the fact that MP theory can no longer be considered to
ab initio model. Third-(MP3) and fourth-(MP4) order meth-  provide a hierarchy of methods where an improved accuracy
ods have also been extensively used and have been implis-obtained at higher levels. The practical consequences may
mented in a number of standard quantum-chemical probe illustrated by a couple of examples. For i the aug-cc-
grams. Recently, MP5 and MP6 has also been efficientlpVDZ basis, the smallest error in the MP series occurs at the
implemented MP2 level. Since aug-cc-pVDZ is the smallest basis that can
From a huge body of calculations, it is now well estab-properly describe this anion, it becomes altogether question-
lished that the MP2 method in most cases gives a significarable to apply Mgller—Plesset theory beyond second order. A
and cost-effective improvement on the uncorrelated Hartreesimilar conclusion was drawn in an interesting study where
Fock (HF) method. However, it is also known that the MP extrapolations to the basis-set limit were carried out for
series may not converge when the HF state is a poor approxMP2, MP3, MP4, and MP5 for various properties of small
mation to the exact wave functidnFurthermore, recent in- molecule€ For equilibrium geometries and vibrational fre-
vestigations have brought into question the reliability ofquencies, the MP2 results were often the most accurate ones,
higher-order MP theory also for molecules without with a deterioration in the performance of the MP methods
near-degenerenciésThe surprising aspect of the newly re- when the basis set was extended. This is of course a very
ported divergences was that they occur for systems such agdesirable feature that prevents the use of MP theory to
the neon atom and the equilibrium water molecule, whichobtain accurate results. In Ref. 8, it was stated that the reason
traditionally have been considered as well-behaved systenfer this undesirable behavior has yet to be uncovered.
for MP theory. Indeed, the divergences appear to be inherent In this work, we extend our previous analysis of the
to the MP series, arising from spatially extended intruderdivergence in the MP series for Rejiscussing the diver-
states that are highly excited relative to the ground-state refgences of the MP series for Ne, FCH,, and HF and use a
erence wave functionSuch states occur whenever the one-simple mathematical model to show how the divergences can
be given a simple physical interpretation by means of a two-
aE| N . state model. For other examples of perturbational analysis in
ectronic mail: pou@kemi.aau.dk
PPermanent address: Department of Chemistry, University of Oslo, p.o.gterms of a two-state models see Refs. 9 and 10 and refer-
1033 Blindern, N-0315 Oslo, Norway. ences therein. In particular, we clarify the nature of the in-

0021-9606/2000/112(22)/9736/13/$17.00 9736 © 2000 American Institute of Physics



J. Chem. Phys., Vol. 112, No. 22, 8 June 2000 Perturbation convergence 9737

truders responsible for the observed divergences and explain In practice, it may not be possible to carry out an ex-
why such divergences will nearly always occur in a suffi-haustive search for degeneracies inside the unit circle. How-
ciently diffuse basis set. ever, since avoided crossings on the real axis are indicative
The convergence behavior of the £hiolecule is exam- of degeneracies in the complex plane, much useful informa-
ined in terms of the near-degeneracy of the ground state arttbn may be obtained by investigating the energies for real
a low-lying doubly excited state. For the Ne atom, the MPz'3*Of course, the identification of an avoided crossing on
divergence is analyzed as a prototypical example of a systethe real axis is not sufficient to establish divergence since the
with a back-door intruder, demonstrating that the divergencelegeneracy may occur outside the unit circle. However, as
also persists for larger basis sets. For the HF molecule, weve shall see in the next section, by projecting the zeroth-
present a detailed convergence analysis, both at the equililorder Hamiltonian and the perturbation operator onto a two-
rium geometry and at a stretched geometry, discussing thdimensional space spanned by the rootdH¢f) for real z,
different characters of the intruder states in these cases. we may estimate the real and imaginary components of the
point of degeneracy and thereby obtain an indication whether

Il. CONVERGENCE IN PERTURBATION THEORY the expansion is convergent or divergent.
o When the number of parametdise., the dimension of
A. General convergence criteria H(z)] is large, a complete scan of the spectrunHgf) for

General criteria for the convergence of perturbation exrealzis a difficult computational task. A simpler method is
pansions in a finite-dimensional space have been derived ©3ptained by performing the scan in a subspace of the correc-
Kato!! Here we give a simplified discussion of the theory astion vectors generated in a given perturbation expansion. For

relevant in this context? We consider the partitioned Hamil- example, if the energy is calculated to ordem-21, the
tonian, wave-function corrections are determined to ondemd the

subspace Hamiltonian is set up in this#1)-dimensional

H(z)=Hy+zU, 1) space. Since, in standard perturbation calculations, the ma-
wherez is a complexstrength parameterThe zeroth-order trix elements of the perturbation operator as well as the over-
problem is represented bg=0 and z=1 represents the lap of the perturbation vectors are already calculated in this
physical problem. The eigenvalue equation, subspace, we must calculate, in addition, only the matrix

elements of the zeroth-order Hamiltonian in order to perform

H(2)C(2)=E(2)C(2), 2) a scan. Such a restricted scan can therefore be apgended to
defines the energy functioB,(z). The expansion oE,(z) standard perturbation calculations at little cost. As we shall
in z, see, restricted scans provide a simple way of studying the
o occurrence of intruder states in perturbation theory.

Ex(2)=> E["2", 3)

=0 B. A two-state model
has a finiteradius of convergence Ruch thatE,(z) con-
verges for|z| <R and diverges fofz|>R. Our perturbation
expansion, Eq(3), thus converges iR>1 and diverges if
R<1.

A point of degeneracjor E,(z) is defined as a poinf,
where the statd is degenerate with another stdteE, ()
=E,({)=E,,. Itis easy to show that, for real and symmetric
matricesH, and U, such points always occur in conjugate a O
pairs (£,{*). The location of the points of degeneracy in the H_( ,8)’
complex plane is important since the radius of convergence
is the distance from the expansion poifit0) to the nearest Where all parameters are real, and we assumeghat. We
point of degeneracy CEk(Z)' Degeneracies dfk(z) in the partition the Hamiltonian matrix EC(4) into a zeroth-order
complex plane within the unit circle therefore lead to a di-Part and a perturbation part,
vergent Mgller—Plesset expansion.

It is often useful to analyze the convergence behavior of
perturbation expansions by means of a two-state motfel.
Here we describe a two-state model that will prove particu-
larly useful for discussing divergences in MP theory.

We consider the two-state problem given by the Hamil-
tonian matrix,

4

A state that becomes degenerate with the reference state Hy= aras 0 , (5)
at a point{ inside the unit circldZ|<1 is called anintruder 0 B+ Bs
state In this terminology, the requirement for convergence is —ag 6
simply the absence of intruder states. An intruder state with U=< P (6)
S

MR(£)>0 is calleda front-door intruder conversely, éack-
door intruderhasf()<0. where ag and B are thelevel-shift parametersdescribing
From this discussion, it follows that the convergence ofthe level shiftsof the zeroth-order Hamiltonian. The level
the MP expansion does not depend directly on the agreemeashifts do not appear in the physical Hamiltontdrand there-
of H andH, in terms of some matrix norm; rather, it dependsfore do not affect the eigenvalues Hf However, they de-
on our ability to select a zeroth-order matkig such that the termine the dependence H{z) andz and thus the perturba-
eigenvalues oHy+zU are nondegenerate for any complex tion series and its convergence properties.
strength parameter inside the unit circle. The eigenvalues dfl,+zU are readily obtained as
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a+B+(1-2)(y+2ay) tive) gap shifts, the points of degeneracy approzet with
E.(2)= 5 vanishing imaginary components. For=—¢, the zeroth-
order Hamiltonian becomes degenerate and the radius of
V[e+(1—2)y]?+4 572 convergence is zero. Conversely, fpr45%/ €, the point of
= 2 ' () degeneracy is located as far away from zero as possible,
. presumably leading to the most rapidly convergent series.
where we have introduced themergy-gap parameter When|{.|>1, the series in Eqg10)—(12) is convergent.
e=p—a, (8) Thus, the series is convergent for
and thegap-shift parameter (e+y)?
Y=Bs—as. (9)
Forz=1, Eq.(7) reduces to the physical energies—that is, to®"
the eigenvalues oH(1). For the expansion of the lowest &2 2y

energy, the energy corrections become —

7 1+? > 52 (16)

O =min(a+ +
ET=min(a+tas, A+ Bs), (10 Solving Eq.(16) for &, we obtain for 3/e>—1,

—ag: EO=a+aq,

ED= 11 € 2
-Bs: EQO=p+4, (D |ﬂ<§\/1+1; (17
le+y|(n—2)! . . o
gm="—_""_ =7 which should be compared with the convergence criterion

(e+y)" |6|<el2 for the unshifted problertyy=0). For 2y/e<—1, the
(—1)k series diverges. Solving EqL5) for y, we obtain the con-

X (= 2Kk (K 1)I7,n*2k52k, n=2, (12) vergence criterion
k=1 - K2 - !

45— €
where[n/2] is the largest integer smaller than or equal to > 5

n/2. From Eq.(12), we see that the higher-order corrections

depend on the level shiftss and 85 only through the gap- Thus, for any energy gapand any coupling, there exists a
shift parametery. Moreover, even though the zeroth- and gap shifty for which the expansion converges. The conver-
first-order energies, Eq610) and(11), depend separately on gence of the perturbation expansion is summarized in Table
the level shiftag, their sum is constant. We shall therefore |
in the following analyze the convergence behavior of the As we usua"y can locate 0n|y the avoided Crossings
perturbation expansion as functions of the three parametefgather than the points of degenerac§ the matrixH(z), it
€ v, andé. Note thate>0, y can be both negative, positive, is important to determine the relation between the positions
or zero, and the sign of is related to the relative phases of of the avoided crossings and the associated points of degen-
the two states. The case=0 is trivial and we consider onIy eracy. In the two-state model, there is 0n|y one avoided
|8>0. crossing, which is located by minimizing the difference be-
Instead of examining the convergence of the explicittween the two energies in E6) for realz It turns out that

form of the energy corrections in E(L2), we return to the  the avoided crossing coincides with the real part of the po-
analytical expressions for the eigenvalues, &9. To locate  sitions of the points of degeneracy:
the points of degeneracy foE.(z), we set E, ()

(18

=E_({-+) and obtain the conjugate solutions 2 =R(LL) = 4;2’;7 . (19
ety _ 4
gi:mwiz ). 19 The corresponding energy gap is given by
i,\ri:);gir:g?t’ Whereas the unshifted problém=0) has pure . I(e+ )4 2
y points of degeneracy, (Zmin) —\/m (20
{o(y= 0)=ii2—65, (14  For small couplings, the avoided crossing becomes pro-

nounced, with the two curves coming very closezat,.

the shifted problem has complex points of degeneracy. In th€onversely, ifé6 ande+y are both numerically large, the two
two-dimensional case, these points may never become realrves are well separatedz;,, indicating that the points of
but, for large gap-shifts and small couplings, they may comealegeneracy are located far from the real axis and that it may
arbitrarily close to the real axis. be difficult to give an accurate estimate of the location of the

For|Z.|<1, the points of degeneracy become intrudersavoided crossing.
Equation(13) shows that back-door intruders may occur for In the case where the coupling is small relative to the
gap shifts in the intervat-e<y<0 and that other gap shifts gap shift|s/<|y, the expression for the energy corrections
give rise to front-door intruders. For largpositive or nega- Eq. (12) may be simplified as follows:
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TABLE I. Convergence behavior of the perturbation expansion of the two-state problem for aegiGeand
various values ofy and|8/>0.

y Convergence info. Degeneracy information
y<—¢€ Divergent R(L+)>0
y=—€ Divergent .=0
_6<7<_§ Divergent R(L.)<0
7=_§ Divergent for|8>0 R(£+)<0
< € 2y R(L.)<0
—5<r<0 Convergent fol 5|<§ +— =
2 R(L+)<0
Divergent for|5|>§ 1+ % (£=)
y=0 Convergent fol §| <§ NR({.)=0
Divergent for| 5|>§ R(¢+)=0
48— & 2
O<y<—5 Convergent f0t15|<§ \/1+ ?y R(¢:)>0
2 R(+)>0
Divergent for|§|>§ \/ 1+ ?y (L)
4522_ 62<y Convergent R(L.)>0
€
Y282 whereR,-=0.916 94 A. For CH, BH, Ne, and F, the cal-
EM=—-_* (21) . . . .
(e+y)" T culations were carried out in the aug-cc-pVDZ b&sisin-

o . ) less otherwise specifigdFor HF, the calculations were car-
When the gap shift is positivi@s for usual front-door intrud- ried out using the cc-pVD? basis and the aug-cc-pVDZ

ers, this expression shows that all energy corrections arg s yith the diffuse functions on hydrogen and the dif-
negative. For a negative gap shift that does not change theseq functions on fluorine removethug-cc-pVD2). In all

order of the zeroth-order statess for typical back-door in- .5 cyjations, only the valence electrons were correlated. The
truders, this expression predicts an alternating series with ;- a progrant’18 was used for the perturbation calcula-
negative even-order corrections and positive odd-order cOl;yg.

rections. In the same limit§|<|y], the ratio between two
consecutive energy corrections is given by
(M ¥
[SCRE A

B. CH,: An example of molecules containing low-
(22) lying double excited states

Many molecules have low-lying doubly-excited states of
showing that the relative change of the energy correctionshe same spin and spatial symmetry as the ground state. For
depends only on the ratio of the gap shjfto the zeroth- such molecules, the ground-state wave functions typically
order energy gajg+y. When the numerical value of the gap have a significant contribution from the doubly excited
shift y is significantly larger than the energy gapa slow  configuration—that is, from the zeroth-order low-lying ex-
convergence is thus obtained. cited state. Examples of small molecules with such near-
The model, Eq(21), cannot explain situations where the degeneracies are GHBH, and G. In this section, we dis-
energy corrections first decrease in magnitude and then ireuss the convergence of Maller—Plesset perturbation theory
crease(asymptotic convergengeSuch a behavior can be for such molecules, using as an example,@iHd comment-
obtained in the two-state model but occurs as a result of &g briefly on BH.
complicated interplay among the different contributions to  Since the single-reference wave function is a poor ap-
Eq. (12) and requires more than a single term to be retainegroximation to the ground state, one would expect the MP

in the expression for the energy correction. expansion of these systems to diverge. However, using a
DZP basis for carbon and a DZ basis for hydrogen, Knowles

. EXAMPLES OF M@LLER—PLESSET et al® found no indication of divergence in the first ten en-

PERTURBATION CALCULATIONS TO HIGH ORDER ergy corrections for CKlL In Table Il, we have listed the first

50 energy corrections for the GHnolecule in the aug-cc-

pVDZ basis. All corrections are negative. In Fig. 1, the mag-
In this section, we report perturbation calculations onnitudes of the energy corrections have been plotted on a

CH,, BH, Ne, F, and HF. The calculations were carried logarithmic scalgupper curvé From Table Il, we obtain a

out at the equilibrium geometries given in Ref. 4, except forratio of 0.78 between two consecutive corrections.

BH, where we use®gy=2.328%,. For HF, additional cal- Although the expansion in Fig. 1 looks convergent, con-

culations were carried out at the stretched geometrig2=5  vergence can only be established by locating the points of

A. Computational details
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TABLE Il. Mgller—Plesset energy correctioii;m mE,) for CH, using the  which gives the parameters
aug-cc-pVDZ basis.

€=0.16292, (25
Ordern E(M Ordern EM
v=0.756 76, (26)
1 —18570.021 18 26 —0.003 9537
2 —115.682 368 0 27 —0.0031375 5=0.028559, (27)
3 -21.1383833 28 —0.002 485 4
4 —6.3127006 29 —0.001 965 2 where we have chosen the phase of the two eigenvectors
2 *i-égg 13(232 22 *8-881 gg‘l’g such thats is positive. Using Eq(13), the point of degen-
7 0.546 686 1 2 0.000959 6 eracy for this two-state problem becomes
8 —0.3504481 33 —0.0007522 {+-=1.20840-0.091 20i. (28
9 -0.237 9620 34 —0.000 588 2 -
10 —-0.1730835 35 —0.000 458 7 Since this point lies outside the unit circle, the low-lying
E —8-352 ggi g? —8-888 g?gg doubly excited state is not an intruder. Indeed, a more elabo-
13 00766218 28 0,000 2137 rate search for avoided crossings #0r 0 reveals an avoided
14 ~0.0602112 39 —00001646  Crossing az=1.2.
15 —0.047572 6 40 —0.000 126 2 Even though the presence of the doubly excited state
16 —0.0378180 41 —0.000 096 4 does not lead to divergence, it does explain the slow conver-
17 —0.0301338 42 —0.0000733 gence of the expansion. To see this, consider the perturbation
18 -0.024 0701 43 —0.000 055 4 P ; ;
expansion in the above two-dimensional subspace. From
19 -0.0192373 44 —0.000 041 6 e
20 0.0153830 5 0.000031 1 Egs. (26)—(27), we see that the gap shift is significantly
21 ~0.012 2953 46 —0.0000230 larger than the coupling element. We may therefore use Eq.
22 —0.009 822 4 47 —0.000016 9 (21) for the energy corrections. Accordingly, we predict the
23 —0.007 8386 48 —0.000012 2 ratio between consecutive energy corrections using(Z2).
24 —0.006 248 6 49 —0.000 008 8 as
25 —0.004 974 1 50 —0.000 006 2
EM
E-D 0.82, (29

degeneracy ofi(z). For molecules such as GHthe low- in good agreement with the observed ratio of about 0.78.
lying doubly excited state is the most obvious candidate forThus, the first 40 corrections for GHecrease only slowly in
an intruder and it is thus appropriate to use this state and th@agnitude—not because of a large coupling between the
physical ground state as the basis vectors for a twoground state and the doubly excited state but because the
dimensional subspace. Diagonalizing the zeroth-ordezeroth-order Hamiltonian severely overestimates the energy
Hamiltonian in the subspace spanned by the two wave funcgdap between the two states.
tions, we obtain the zeroth-order and full Hamiltonians, In Fig. 1, the lower curve is a plot of the absolute values
of the energy corrections of the two-state problem. The en-
(_20'089 28 0.0 J) ergy corrections obtained from the two-state problem are
0~ ’ (23) . .
0.0 —19.1696 several orders of magnitude smaller than those obtained from
the full expansion. This is to be expected since the two-state
(24) problem includes only the interaction between the two low-
est states. The large contributions to the energy corrections
from dynamic correlation are therefore absent in the two
state model.

The two curves in Fig. 1 are nearly linear, with similar
curvatures for orders 10—40, substantiating the notion that
the convergence of the full perturbation expansion is closely
related to the lowest doubly excited state. For orders less
than 10, the full perturbation expansion contains significant
contributions from states other than the lowest doubly ex-
cited state; for orders higher than 40, the two-state model and
the full expansion both deviate from linearity. This behavior
is not in conflict with the two-state model itself; it merely
shows that the one-term approximation, E2p), is poor for
higher orders. In the two-state model, the energy corrections
change sign and are positive for orders 52—93. A similar
behavior is expected for the full energy corrections.

For the BH molecule in the aug-cc-pVDZ basis, a simi-
FIG. 1. The absolute values of the perturbation corrections fos i@Hhe 'af analysis shows that there are no front-door intruders for
aug-cc-pvDZ basisupper curvg and from the two state representation thiS system as well. For the two-state model spanned by the
using the parameters in Eq25)—(27) (lower curve. ground state and by the low-lying doubly excited state, the

—39.01842 —0.028 56
—0.02856 —38.85550Q"°

10°

10t

10t }

1073

1075t

1077
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TABLE lll. Mgller—Plesset energy correctioii® mE,) for neon using the
aug-cc-pVDZ and the aug-cc-pVThasis sets. 1\
Ordern E(ar"J)g'CC'PVDZ E;I-Lll)g-cc-pVTZ 0.5
1 —53907.365 36 —25709.612 50
2 —206.873 5085 —244.690 266 7
3 —1.547 4433 1.7194754 -1 1
4 —5.686 207 4 —7.4694834
5 2.0136991 2.000452 8
6 ~1.582384 8 ~1.494 566 5 0.8
7 0.9591255 0.898918 6
8 —0.707 4207 —0.6742726 0.4
9 0.5379288 0.513454 2
10 —0.439802 3 —0.416 984 0
11 0.375500 2 0.351804 8 -1 i
12 —0.334 4628 —0.3090011
13 0.308421 4 0.281 1695 80
14 —0.293 2434 —0.264 390 8
15 0.286 368 6 0.256 2208
16 —0.286 3549 —0.255288 3 40
17 0.292429 4 0.260941 4
18 —0.304 2885 —0.2730740
19 0.3219796 0.292 042 6 -1 1
20 —0.3458413 —0.3186451
21 0.376 478 2 0.354 148 1 FIG. 2. Information from an energy scan on the real axis for Ne in the
22 —0.4147587 —0.400 358 2 aug-cc-pVDZ basis. The upper panel contains the energy difference between
23 0.4618314 0.459 738 3 the two lowest'S states, the middle panel gives the weight of the Hartree—
24 ~0.519 1559 —0.535576 3 Fock configuration in the lowest state, and the lowest panel gives the ex-
25 0.588548 1 06322172  Pectation value of*

very small component of the ground-state configuration and

e . . .g’s very diffuse®
zeroth-order Hamiltonian again overestlmate§ the energy.dll ~ The intruder state is observed also in restricted scans
ferencg betwge n the two lowest stgtes, Ieadmg' toa pos't'v\?[here the avoided crossing is studied in the subspace of the
gap_shlft that is large c_ompared with the coupling element'correction vectors, as previously discussed. In Fig. 3, we
Again, the large gap shift leads to slow convergence. For th ive the difference between the two lowest eigenvalues of
BH molecule, the point of degeneracy in the space spann

4 . B (z) for the subspaces containing the correction vectors up
Eyo tlh; two lowest FCI wave functions give.=1.41 to ordersn equal to 2, 4, 6, 8, and 10, respectively, with the

. . scan extended to the intervigh2,2]. For n=2, there is no
BH Ej)bwouslty, ?ur. antalytis of thgbglt?tnv;rgte?;e for Ghd indication of a back-door intruder; far>2, there is a pro-
0€s not eliminate the possibility that these SeqUENCER, a4 avoided crossing that moves toward the origin with

may ultimately 'diverge bgcause of back-door intruders. Wefncreasingn. For n=4, the avoided crossing is clearly out-
shall now consider such intruder states. side the unit circle; fom=6, it is close to the unit circle.
Finally, in the highest-order subspaces=(8,10), the

C. Ne: An example of a back-door intruder

For systems like the neon atom and the HF molecule, the 5¢
Mgller—Plesset expansion diverges, with the onset of diver-
gence between orders 10 and“2 this section, we study
the back-door intruders responsible for this divergence, dem-
onstrating that the divergence is a consequence of the choic
of the zeroth-order operator. Our example will be the neon
atom in the aug-cc-pVDZ basis.

Table Ill contains(in the second columnthe Mgller—
Plesset energy corrections up to order 25. In Fig. 2, we
present information about the lowest FCI eigenvector of
H(z) of symmetry'S for real z the upper panel contains the
energy difference between the two loweé$ states, the T
middle panel the weight of the Hartree—Fock configuration —; ) 1 2
in the lowest state, and the lower panel the expectation value

2 ; ; FIG. 3. The energy difference in calculations on Ne using the aug-cc-pVDZ
of r (measurlng. the dlffusgness of the lowest stawe basis between the two lowest eigenvaluesi@) for the subspaces contain-
observe an avoided crossing at abaut —0.82—for z ing the correction vectors up to orderequal to 2, 4, 6, 8, and 10, respec-

< —0.82, the wave function of the lowest energy has only aively.
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TABLE V. Occupation numbers and expectation values’ for natural

orbitals of the ground and intruder state for Ne using FCI in the aug-cc-
pVDZ basis set.
0.0002 Ground state Intruder state
Orbitals n ré/a.u. n r?/a.u.
— . 1s 2.000 0.0335 2.000 0.0335
15 25 2s 1.991 1.0834 1.971 4.1472
2py, 2py, 2p, 1.979 1.2695 1.993 13.135
-0.0002

FIG. 4. The energy corrections for Ne in the two-state model using theparame‘[ers In Eqi32)_(34)' Note that'_ for the two-state
parameters in Eq$32)—(34). model, the energy corrections are significantly smaller than

the full corrections of Table .
Expressed in terms of the Hartree—Fock orbitals, the in-
avoided crossing is located inside the unit circle close to truder state is a rather complicated wave function. In Table
= —0.82—the location obtained from the energy scan. IV, we have analyzed the intruder state in terms of the vari-

To investigate the intruder state in more detail, we studyPUs excitation levels using the Hartree—Fock orbitals. More
the two-state problem spanned by the two lowest states atthan 70% of the weight of the wave function arises from

=—0.82. In the basis of the vectors that diagonalizgin  Sixfold or higher excitations. In Table V, we give the natural
this subspace, we obtain occupation numbers and the expectation values’ éor the

FCI ground stat¢obtained as the lowest root &f(1)] and

for the intruder statfobtained as the second state that diago-

nalizesH, in the space spanned by the two lowest roots of

H(—0.82]. The occupation numbers of the intruder state

(31) shows that this state is well represented by the single elec-
tronic configuration $%2s’'22p’®, where the 2’ and 2’

In the following, we shall refer to the higher state as theorbita'_S are very diffuse and differ significantly from the the

intruder state(i) and to the lower state as the ground Statecanomcal orbitals of the ground-state Hartree—Fock configu-

(g). From the above matrices, we obtain the parameters ration.

—74.43285 0.0
Ho= , (30)

0.0 —66.8741

—127.9758  0.0059
| 0.0059 —111.2763°

The occurrence of the highly diffuse back-door intruders
€=16.6995, (32 may be explained using simple physical arguments. We first
_ note that the zeroth- and first-order energies are usually sev-
y=-9.14078, (33 eral orders of magnitude larger than the higher-order correc-
6=0.0059. (34)  tions. The energy of a state can therefore be accurately
These parameters predict the point of degeneracy, approximated by the linear form
EW(z)=EQ+zE". (36)

{.=-0.827+0.001i, (35)
én Fig. 5, we have used this approximation for the ground

showing that there indeed is a point of degeneracy within th .
unit circle—that is, an intruder state. Since the coupling icState and for the intruder state of the two-state problem. The

small compared with the gap shift, we can invoke 1) to zeroth- and first-order energies have been extracted from the
explain the alternating sign of the energy corrections.

In Fig. 4, we present the energy corrections for the per-
turbation expansion as given by the two-state model with the n

TABLE IV. Breakdown of wave function into weights of excitation levels
for the intruder state of Ne in aug-cc-pVDZ basis.

Excitation level Weight

©

0.093 603
0.258 588
0.350 948
0.203 870
0.071 053
0.017 687
0.003 506
0.000 705
0.000 040 FIG. 5. The total energieEy(z) (gray ling, Ey(2) (thin full line), E{(2)
(dotted ling, and Eg+(z) (dashed lingas a function ofz
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diagonal elements of the matricek, andH of Eqgs.(30)—  corrections of the aug-cc-pVDZ and the truncated
(31), leading to the following linear expressions for the en-aug-cc-pVTZ basis are very similar and the divergence is
ergies of the ground and intruder states: equally pronounced in the two cases.
The validity of the above discussion of divergence due
Eg(z):—74.432 85-53.542 93, (37) to diffuse back-door intruders is not restricted to the neon
atom. We have investigated a number of other atoms and
E!(z)z —66.87413-44.40217%. (39 molecules with high electron densities and many interacting

electrons and observed similar crossings of the ground state
Figure 5 also contains the true energy functi®g(z), ob-  and the continuum states for negatizen the next section,
tained as the lowest eigenvalue ld{z). The curves of the \ye shall discuss HF. Here, we comment briefly on the in-
energy functionfg(z) andEy(z) are very nearly identical, tryder states for the anion E
demonstrating the validity of the linear approximation. As described previousty,the F system diverges al-

Although the intruder state is high above the groundready from third order. A scan of the spectrum l8{z)
state forz=0, their different slopes give rise to a crossing for snows an avoided crossing at=—0.64. In a subspace
z<0. The linear approximation predicts a crossing for gpanned by the two lowess roots of H(—0.64) and in the
=—0.827, which agrees well with the true location of de- pasjs that diagonalizes the zeroth-order Hamiltonian in this
generacy. The curve crossing is thus a consequence of th@hspace, we obtain a coupling element of 0.047. This cou-
presence of states that, compared with the ground state, hayging is significantly larger than the corresponding coupling
a significantly higher zeroth-order energy but a significantlyjn neon, explaining the more rapid divergence in. F
smaller absolute value of the first-order energy. In Maller—  For the less electron-rich molecules, back-door intruder
Plesset perturbation theory, the first-order energy is equal tgates may be observed in extended basis sets. For the BH
the electron-repulsion energy of the reference determinaninglecule, there are no back-door intruders in the aug-cc-
Configurations with very diffuse electron distributions will yvpz and d-aug-cc-pVDZ basis sets. However, in the t-aug-
thus necessarily have a numerically small first-order energyc-p\Tz basis, we may identify a back-door intruder with
correction. {.=—0.98-5x10"8i. However, because of the very small
The above divergence of the Mgller—Plesset expansiogoupling and the proximity of the criticalto the unit circle,

is thus caused by crossings of the ground-state energy Curyg, signs of this intruder are detected in the first 50 terms of
with the curves of states that, for the physical Hamiltonianthe Mgller—Plesset expansion. As the energy corrections af-
are located high in the continuum. To illustrate this point, wWeger the first 50 terms are smaller than 18 we may regard
have in Fig. 5 also given the linear energy approximation, this BH expansion to be practically converged. However, if
the expansion is continued beyond order 50, the divergence
must eventually occur.

For the CH molecule, there are no intruders in the aug-
ngc-pVDZ basis. When a second set of diffuse functions is
added at the d-aug-cc-pVDZ level, we observe a back-door
ri.ptruder. Again, the perturbation expansion can be continued
to a convergence of 13° with no sign of divergence. For

Ey, =EL) +ES) z= —65.5899- 28.259@, (39

for a hypothetical neon state containing the tweelectrons

and with the eight valence electrons located so far away fro
the nucleus that the system can be considered & Namn.

The zeroth- and first-order energies of this ion have bee
obtained from théHd, andH operator of the neutral atom in .
the aug-cc-pVDZ basis. The ground-state curve is predicteHqese molecules Wh‘?re mtruder states show up only when
to cross the curve for the ionized atom for — 0.35. As the WO Of three sets of diffuse functions are added, the coupling

basis increases, states similar to this ionized state will béo the refergnce state is so small that, for all practical pur-
included and lead to avoided crossings in this region. poses, the intruders do not affect the convergence of the

The identification of back-door intruders as diffuse Con_expansion.

tinuum states explains a number of puzzling features in th(ta_ The que_stlon of conl;/ergencelor d(;vergen(i[erz] Oprglrtu:bf'
observed divergences. First, it is now clear why the diver-ON €xpansions was above analyzed using the L1 states
tained by diagonalizingl(z). However, a examination of

gences are observed only when diffuse functions are addet th- and first-ord i f the diff N
since only then are continuum states of low electron repul- € zeroth- and first-order energy corrections ot the ditieren

sion present. Second, the back-door intruders are very highg/onﬁguranons\l; usr]alllly;ufflme?rt]_to ar)S\t/v_er the questuon of
excited since all valence orbitals change from contracted t onvergence. vve shall discuss this point in a separate com-

diffuse orbitals. Third, the divergences are more pronouncemunlcat'on'

for electron-rich systems such as neon: For such systems, the ) o

first-order energy is numerically large with the result thatt?écl_liFdo%;a}nmtﬁlfjseg ;:r?(ljc%e\:\fl?r.\s contz;tln:jngtbtc)th

E4(2) rises sharply into the continuum far0, increasing i -ying excited states

the likelihood of crossings for>—1. We first consider calculations on HF at the equilibrium
According to this discussion, an increase of the basigeometryR, e in the cc-pVDZ basis. In Fig. 6, we have

should not remove the intruder states even if only contracteglotted information about the lowest two roots lé{z) for

functions are added. As an illustration, we have listed in thehis system. The upper plot contains the energy of the lowest

third column of Table Il the energy corrections obtained bystate, the second plot contains the difference between the

using the truncated aug-cc-pVThasis, obtained from the energies of the two lowest roots, the third plot contains the

aug-cc-pVTZ basis by removing thidunctions. The energy coefficient of the ground-state determinant for the lowest



9744 J. Chem. Phys., Vol. 112, No. 22, 8 June 2000
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-80

30

15

-1 1

FIG. 6. Information from an energy scan on the real axis for HF at equilib-
rium geometry in the cc-pVDZ basis. The upper panel contains the energy
of the lowest state, the second panel contains the energy difference between
the two lowest states, the third panel gives the coefficient of the Hartree—
Fock configuration in the lowest state, and the lowest panel gives the ex-
pectation value ok?.

root, and the fourth and lowest plot gives the expectation
value ofx? for the lowest root. Thex axis is orthogonal to
the molecular axis and the expectation valuecomeasures

the diffuseness of the state. No avoided crossings are ob-
served in the intervat=[ — 1,1]: there is no minimum in the
excitation-energy curve and the ground-state wave function
is dominated by the Hartree—Fock determinant fozaCon-
sequently, we expect the Mgller—Plesset expansion to con-
verge, as confirmed by the Mgller—Plesset energy correc-
tions plotted in Fig. 7.

Adding the diffuse functions to the basis at the equilib-
rium geometry, we obtain the scan in Fig. 8. There is now a
pronounced avoided crossing &t —0.743. The shape of
the energy-difference curvge., the near-degeneracy of the
energies and the absence of interaction whda slightly
larger than—0.743 indicates that the coupling between the
ground state and the intruder state is very small. To quantify
the coupling and the gap shift, calculations were performed
in the subspace of the two lowest states oH(—0.743. In
this subspace, the zeroth-order states give the matrices

0.002

-0.002

-0.006

—44.91005
0.000 34

which correspond to

€=12.316 78,
y=—7.06758,

~30

-80

Olsen et al.

15

FIG. 7. The energy corrections for HF at equilibrium geometry in the cc-
pVDZ basis.

0.000 34
—37.84247° “4D

(42)
(43)

30

15

-1

1

FIG. 8. Information from an energy scan on the real axis for HF at the
equilibrium geometry in the aligcc-pVDZ basis. The upper panel contains

the energy of the lowest state, the second panel contains the energy differ-

—54.659 80

0.000 00
Ho= 0.000 00 ’

—49.4106 40

ence between the two lowest states, the third panel gives the coefficient of
the Hartree—Fock configuration in the lowest state, and the lowest panel
gives the expectation value &f.
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FIG. 9. The energy corrections for HF at equilibrium geometry in the -1 1

aud-cc-pVDZ basis.

0=0.000 34. (44

The coupling element is indeed small. The weak coupling
arises since the intruder is dominated by quadruple and
higher excitations into the diffuse functions. The predomina- -1 1
tion of excitations into diffuse orbitals is reflected in the
expectation value of?, which changes abruptly at the 30
avoided crossing. The location of the crossing may again by
estimated from linear expansions of the energies of the 15
ground state and the intruder state. Obtaining the zeroth- and 1
first-order energies from Eq$40) and (41), we predict an
avoided crossing at=—0.743, in perfect agreement with
the value obtained from the energy scan. FIG. 10. Information from an energy scan on the real axis for HF at the
The Mgller—Plesset expansion for HF is thus divergenstretched geometry in the cc-pVDZ basis. The upper panel contains the

: P : : : - energy of the lowest state, the second panel contains the energy difference
in the aug-cc-pVDZ basis. The dlvergence IS Clearly seen IIEetween the two lowest states, the third panel gives the coefficient of the

Fig. 91.Where we have plotted th_e Mgller—Plesset energy,ariree—Fock configuration in the lowest state, and the lowest panel gives
corrections for this system. The sign of the energy correcthe expectation value of.

tions alternate, as predicted from Eg&1).

Turning next to the results for the stretched bond, we
give in Fig. 10 the results of the scan in the cc-pVDZ basisto the boundary of the unit circle, it may be necessary to
In the energy-difference curve, we observe two avoidedjetermine the eigenvectors Bif(z*) in the full CI space to
crossings: a shallow minimum at=0.8 and a sharp mini- establish whether the point of degeneracy represents an in-
mum at z=—0.598. We shall investigate these avoidedtruder state. As the gap shift and the coupling are of similar

-1 1

crossings separately, using the two-state model. ~ magnitude, the simple one-term expansion in @4) cannot
'For the avoided crossing at=0.8, the two-state Hamil-  pe used. In Fig. 11, we have plotted the perturbation expan-
tonian is defined by the matrices sion using Eq(12) with the above obtained values. Although
—56.374951 0.000 00 not evident from Fig. 11, the perturbation series is ultimately
= converging.
0 ( 0.00000 —55.974 84:)’ 49 ging
( —43.565 86 0.1195() “9)
0.1195 —43.8787 6. 010
which give
€=0.08727, (47) 0-008 _
AAAAAAAR AAAARAAANR
y=0.3128, (48) vvvvvvvvvvvuvvvvvv\
6=0.1195. (49
-0.005
The points of degeneracy are obtained from B®) as .
=0.80+=0.62i. The relatively strong coupling is consistent -o.010
with the large separation between the curves at the avoided

crossing. The point of degeneracy is predicted to be just

outside the l.mit Cir(?le-' 'ln ge.nerall, when a point Of. degenfig, 11. The energy corrections for HF in the two-state model using the
eracyz* having a significant imaginary component is closeparameters in Eqg47)—(49).
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-30
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40
-0.010 *80\
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1
-0.030
0.5
\
FIG. 12. The energy corrections for HF at stretched geometry in the cc- J
pVDZ basis. -1 1
—
. . . 0. 8\
The avoided crossing at=—0.598 is much more pro-
nounced. Accordingly, the two-state model using the two 0.4

lowest states oH(—0.598 gives a sharp crossing at=
—0.598. The Hamiltonian matrices of this model are given
by -1 1

—56.41951  0.00000
0= (50) 30
0.00000 —44.29616’
— 42817676 X108 L 15
2x10°8  —2254257° (51)
-1 1

giving a point of degeneracy .= —.598+1.2x10 9,

which corresponds to a back-door intruder very close to th&!G. 13. Information from an energy scan on the real axis for HF at the
real axis stretched geometry in the augc-pVDZ basis. The upper panel contains the

. . . . energy of the lowest state, the second panel contains the energy difference
The dominant contribution to the intruder state may bebetween the two lowest states, the third panel gives the coefficient of the

written as 17220"230"2177’5177'5, where &' is the anti-  Hartree—Fock configuration in the lowest state, and the lowest panel gives
bonding sigma orbital, @ the most diffuse hydrogen func- the expectation value of’.
tion, and thew’ orbitals consist of the hydrogem orbitals
orthogonal to the molecular axis. Thus, the intruder repre-
sents a state with six electrons in the most diffuse hydrogemtruder takes over and the series begins to alternate and
functions. We also note that the reason for the occurrence afiverge in a manner typical of such intruders. Note that, even
the back-door intruder at the stretched geoméisyopposed though the most strongly coupled electronic state governs in
to the equilibrium geometjyis not an increased first-order lowest order, the fate of the series is eventually determined
correction—in fact, the first-order ground-state energy isby the weakly coupled back-door intruder.
2.3E;, lower at the equilibrium geometry than at the stretched  The last case to be studied is the HF molecule at the
geometry (—45.480E,, vs —43.180E;). Rather, the in- stretched geometry in the diffuse basis. In Fig. 13, we have
truder is stabilized by a reduced zeroth-order dﬁﬁ) listed the results of the corresponding scanHifz). For
- Eéo) that arises from a lowering of the virtual orbital ener- positive z, there is a very weak avoided crossing around 0.9
gies and a simultaneous raising of the occupied orbital eneand a pronounced avoided crossingzat —0.51. For the
gies. Thus, the antibonding orbital has a negative orbital enavoided crossing a= 0.9, there is no obvious change of the
ergy of —0.129 5°E;, at the stretched geometry, whereas thecharacter of the wave function, whereas the avoided crossing
lowest energy for a totally symmetric virtual orbital at equi- at z= —0.51 is associated with abrupt changes of the lowest
librium is 0.183 8%,,. The intruder state is again stabilized state: a sharp drop in the weight of the Hartree—Fock deter-
compared to the ground state by a numerically much smalleminant and a sudden increase in the diffuseness of the state.
first-order energy. Within the two-state model, the first-order =~ The two-state model reveals that the weak avoided
energy of the intruder state and the ground state is thuesrossing is associated with the points of degeneracy 0.92
—22.5425E,, and —42.817 6&,,, respectively. +0.53i, which are sufficiently far removed from the unit
In Fig. 12, we have plotted the MP sequence to order 50circle that we can rule out the possibility of an intruder.
The series behaves in a manner that reflects the presence @bnversely, for the degeneracy at negativere obtain from
both avoided crossing discussed above. Thus, after a fethe two-state moddlemploying the two lowest eigenvectors
irregular corrections, corrections 10—30 exhibit a slowly un-of H(—0.50)] /.= —.510+=6x10"°, indicating the pres-
dulating pattern that is determined by the interaction with theence of an intruder. The small imaginary part of the points of
strongly coupled would-be front-door intruder. For higherdegeneracy agrees with the very small energy gap at the
orders the interaction with the weakly coupled back-dooravoided crossing. Figure 14 gives the MP series to order 15,
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1 ing the aug-pvDZ basis. If the HF bond is stretched to
2Ry, the Epstein—Nesbet perturbation expansion exhibits
rapid divergence.

0200 An alternative modification of the Mgller—Plesset parti-
5 A /\ /\ tioning is based on the use of modified virtual orbitals. How-
‘\/"\_//'\\/ \/ ever, in this approach the occupied orbitals are usually not
\/ modified, so the energy of the reference state will again rise
300 o \/ into the continuum for negative values of
-0.

IV. CONCLUSIONS

We have demonstrated how the convergence patterns of
FIG. 14. The energy corrections for HF at stretched geometry in theMP Seres Can- be understopd n ter-ms ofaswnple -mathematl_
aug-cc-p.)VDZ basis. gal model, which can be given a.5|mple phy5|cal'|nFerpreta-
tion. The computational complexity of the analysis is much
larger than the complexity of solving the FCI problem and
rthus cannot be used as a practical remedy for a divergent MP
series.

For molecules with low-lying double excited states, as
E. Relations between low- and high-order CH,, BH,.and HF at the strgtched geometry, we have.o.b—
convergence served points of degeneracy in the half-plane with a positive

) ) real value. For CH, BH, and stretched HF using the

From perturbathq calculations through ordgr 6, Cre_meraug-cc-pVDZ basis, these points of degeneracy were defi-
and Hé have classified molecules as belonging to eithemjtely outside the unit circle. For stretched HF using the cc-
class A or class B. Class A systems have perturbation COlsVDZ basis, this point of degeneracy was detected to be just
rections that are monotonically decreasing while class B sys;side the unit circle. Studying the two-state problem in the
tems have perturbation cprrectigns thfe\t alternate in sign. 'Qpace spanned by the ground state and the low-lying double
accordance with the previous discussion, class B moleculgs,ited state, we observe a significant coupling between the
contains electron-rich atoms whereas class A molecules coRy,o zeroth-order functions, and the zeroth-order energy gap
tain atoms with fewer electrons. Our calculations and a”aly'severely overestimates the energy gap. The large coupling
sis show that that it is difficult, and not in general mathemati-glement causes the corrections in the initial orders to be
cal motivated, to extrapolate from low-order to the |5ge whereas the large overestimation of the energy gap in
asymptotic_behavior. In particular, the.question of convereroth order causes the very slow decrease in the energy
gence or divergence cannot be determined by a study of therrections. These observations explains the initial slow
lowest orders energy contributions. An example is HF,yonotonic convergence of the MP series for these mol-
which is a class B system with the initial energy correctionsgcyles. As the above points of degeneracy all are located
alternating in sign. However, in calculations at the stretcheq) jtside the unit circle, they do not cause divergence.
geometry with a nonaugmented basis, the perturbation cor- Al molecules examined in the present paper exhibit
rections only alternate in sign up to order ten, after which thg,,ck_door intruders in basis sets containing sufficient diffuse
corrections have the form of a damped sinus function with g,ctions. For the molecules BH and GHwhere the back-
period of about 20. From about order 30 the series starts t§,or intruders only occur when double or higher augmented
diverge with perturbation corrections alternating in sign.  pasis sets are used, the MP series converge to better than
10" *2 in energy, and no signs of divergence occur in the
lowest 50 orders. Although the MP series in these cases may
be considered practically converged, the sequences ulti-

In the previous discussion, we have restricted our attenmately diverge.
tion to the Mgller—Plesset theory. It may be of interest to  The divergences of the MP series for the electron-rich
comment briefly on other partitions. The diagonal of themolecules are not related to numerical instabilities nor to
Hamiltonian in the Slater determinant or configuration statebasis-set artifacts but are rather inherent to the Mgller—
basis is occasionally used as the zeroth-order HamiltoniaRlesset partitioning of the Hamiltonian. The divergences can
leading to the Epstein—Nesbet partitioning. As the first-ordebe reproduced using a simple mathematical analysis based
energy vanishes trivially for this partitioning, there are, ofon the two-state model. We believe that it is now firmly
course, no back-door intruders due to numerically large firstestablished that the divergence for even simple systems such
order energies. A scan for HF at the equilibrium distanceas neon and HF are due to highly excited diffuse back-door
Rye in the diffuse aufpVDZ basis shows accordingly no intruders, that couple only weakly to the ground state. In our
intruderstates. Instead an avoided crossingrat 1.1 is ob-  earlier study of the divergences, basis sets of double-zeta
served. This avoided crossing is due to the interaction bequality augmented with diffuse functions were considered.
tween the reference state and an excited state dominated Bye present calculations include basis sets of triple-zeta qual-
singly and doubly excited configurations. The Epstein—ity augmented with diffuse functions, and we find the same
Nesbet perturbation expansion is thus convergent for HF usdivergences in these calculations. In short, the divergences

showing a divergent, alternating series already at third orde

F. Alternative partionings
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