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It has been suggested �F. H. Stillinger, J. Chem. Phys. 112, 9711 �2000�� that the convergence or
divergence of Møller-Plesset perturbation theory is determined by a critical point at a negative value
of the perturbation parameter z at which an electron cluster dissociates from the nuclei. This
conjecture is examined using configuration-interaction computations as a function of z and using a
quadratic approximant analysis of the high-order perturbation series. Results are presented for the
He, Ne, and Ar atoms and the hydrogen fluoride molecule. The original theoretical analysis used the
true Hamiltonian without the approximation of a finite basis set. In practice, the singularity structure
depends strongly on the choice of basis set. Standard basis sets cannot model dissociation to an
electron cluster, but if the basis includes diffuse functions then it can model another critical point
corresponding to complete dissociation of all the valence electrons. This point is farther from the
origin of the z plane than is the critical point for the electron cluster, but it is still close enough to
cause divergence of the perturbation series. For the hydrogen fluoride molecule a critical point is
present even without diffuse functions. The basis functions centered on the H atom are far enough
from the F atom to model the escape of electrons away from the fluorine end of the molecule. For
the Ar atom a critical point for a one-electron ionization, which was not previously predicted, seems
to be present at a positive value of the perturbation parameter. Implications of the existence of
critical points for quantum-chemical applications are discussed. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1991854�

I. INTRODUCTION

Although Møller-Plesset �MP� perturbation series are not
typically computed beyond fourth order in practical applica-
tions, it is possible to use full-configuration-interaction �FCI�
methodology to obtain the series coefficients up to much
higher orders1,2 in order to study the series convergence. FCI
computations are very demanding but are now feasible using
reasonably large basis sets for systems with as many as eight
or so correlated electrons, and consequently a fair number of
high-order MP series are now available in the literature.3–5

Perhaps the most surprising result of these studies is the dis-
covery that many of the series are divergent.

Among the divergent cases are such systems as Ne, F−,
HF, Cl−, and OH−. These have “class B” series, so called
because their series coefficients, once beyond the lowest or-
ders, alternate in sign.6 Cremer and co-workers7,8 have ar-
gued that the sign alternation results from the concentration
of electron pairs in small regions of space, as in closed-shell
systems with highly electronegative elements. It is interest-
ing that the divergence can depend strongly on the nature of
the basis set. A vivid illustration was given by Olsen et al.,4

who showed that the F− series, which is strongly divergent
with the augmented correlation-consistent polarized valence
double-zeta �aug-cc-pVDZ� basis set, becomes convergent

when the diffuse functions are replaced with an equal num-
ber of compact functions from the succeeding triple-zeta
basis.

A useful approach to understanding the series divergence
is to analyze the MP approximation for the energy as a con-
tinuous function of a perturbation parameter. MP perturba-
tion theory can be formulated9 in terms of a partitioning of
the Hamiltonian H�z� according to

H�z� = H0 + zH1, H1 = Hphys − H0, �1�

where H0 is the sum of one-electron Fock operators, Hphys is
the actual Schrödinger Hamiltonian, and z is a continuous
perturbation parameter. Then the MP perturbation series is
the asymptotic series of the ground-state energy expanded
about the point z=0. This series can be studied using meth-
ods of functional analysis in the complex plane.10 The series
will diverge if a singular point exists in the disk of unit
radius centered at the origin.11 If this singularity lies on the
negative real axis then the series coefficients will have alter-
nating signs.12

An explanation for the existence of a singularity on the
negative real axis has been presented by Stillinger.13 A nega-
tive value of the perturbation parameter corresponds to an
unphysical situation in which the interelectron Coulomb po-
tential is attractive. Stillinger argued that at a sufficiently
negative value of the parameter, the system will dissociate
into a bound electron cluster free from the nuclei. This value
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is a critical point at which the ground-state energy function
has a branch-point singularity, at which the function remains
finite but becomes multiple valued, with discontinuous de-
rivatives. If the critical point comes before z=−1, the series
diverges.

Here we examine Stillinger’s conjecture for the noble-
gas atoms He, Ne, and Ar and for the hydrogen fluoride
molecule using configuration-interaction �CI� computations
of the energy spectrum as a function of the perturbation pa-
rameter and analysis of high-order series with summation
approximants. In particular, we consider the effect of the
choice of basis set. This will clarify a statement by Forsberg
et al.8 that the convergence of MP series can be improved by
excluding diffuse functions from the basis set. For basis sets
that contain diffuse functions, we find evidence of the exis-
tence of a critical point at negative z at the border of a dis-
sociation continuum. However, this continuum corresponds
to full ionization, with all electrons at infinite separation. The
continuum corresponding to the electron cluster is not seen
because standard basis sets are constructed from functions
centered at the atomic nuclei and therefore cannot efficiently
model an electron cluster dissociated from the nuclei. This
cluster continuum does, however, appear if a specially de-
signed nonstandard basis set is used.

Our analysis suggests that in certain cases a critical point
can be present even with compact basis sets. Compact func-
tions centered on an atom at one end of a molecule can
provide enough basis flexibility to model the tunneling of
electrons out of a potential-energy well at the other end when
z is sufficiently negative. Also, a critical point at positive z,
corresponding to one-electron ionization, can sometimes ex-
ist.

We begin with a review of the analysis of the Hamil-
tonian that implies the existence of a critical point. Then in
Sec. III we explore the structure of the eigenvalue spectrum
as a function of the perturbation parameter using CI compu-
tations. In Sec. IV we use summation approximants to deter-
mine singularity positions from high-order MP series, for
comparison with the CI analysis. In Sec. V implications for
quantum-chemical applications are discussed.

II. EXISTENCE OF A CRITICAL POINT

The perturbation expansion for the ground-state energy
eigenvalue of the Hamiltonian H of Eq. �1� is obtained as a
power series in z,

E�z� = �
i=0

n

Ei zi. �2�

The coefficient E0 is equal to the sum of Hartree-Fock orbital
energies, and E0+E1 is the Hartree-Fock approximation for
the total energy. At z=1 we have H=Hphys and E=�i=o

n Ei. If
the perturbation series is convergent, then in the limit of
large n this sum corresponds to the physical solution for the
ground-state energy. The series will diverge if E�z� contains
a singular point within the disk of unit radius centered at the
origin in the complex z plane.11

Let us summarize and clarify the arguments of
Stillinger13 for the existence of a singularity at negative z.

The rij
−1 terms in Hphys, which represent the potential energy

between electrons, are replaced in H0 by a repulsive mean-
field potential. The operator Hphys in Eq. �1� is multiplied by
z. This means that when z is negative, the exact rij

−1 interac-
tion among electrons is mutually attractive while the mean-
field interaction remains repulsive. The mean-field potential
arises from a static negative charge cloud distributed accord-
ing to the ground-state Hartree-Fock orbitals, which are lo-
calized about the nuclear framework. As the magnitude of z
increases along the negative axis, the mean-field repulsive
potential in H0 becomes stronger because it is multiplied by
a factor of �1−z�.

For sufficiently large negative z, a configuration in
which the nuclei are infinitely separated from a bound cluster
of electrons will have a lower energy than any completely
bound state. The reason for this peculiar circumstance is two-
fold.

�1� The mean-field repulsion existing in the vicinity of the
nuclei overwhelms the electron-nucleus attractions,
thereby pushing the electrons toward infinity.

�2� The rij
−1 interelectron interactions, which are now attrac-

tive, persist outside the nuclear region.

The point zc at which the energy of the bound ground state is
equal to the energy of the electron cluster is expected to be a
singular point of the function E�z�.

This analysis can be made more precise as follows. The
electronic potential-energy operator in H is

V�z� = V�ne� + V�ee��z� , �3�

in which V�ne� is the Coulomb attraction between nuclei and
electrons and V�ee� is the z-dependent operator representing
the interaction potential between electrons,

V�ee��z� = zVphys
�ee� + �1 − z�VHF

�ee�, �4�

where

Vphys
�ee� = �

i�j

rij
−1 �5�

in atomic units, and VHF
�ee� represents the Hartree-Fock mean-

field interaction,

VHF
�ee� = �

j,k
�Jk�x j� − Kk�x j�� . �6�

The Jk and Kk are the customary Coulomb and exchange
operators, respectively.14 The summation index k extends
over the occupied spin orbitals �k, while the index j extends
over the electron variables x j = �r j ,� j�, where the r j are the
spatial coordinates and the � j are the formal spin variables.
The actions of the Jk and Kk on an arbitrary one-particle
function g�x j� are given by

Jk�x j�g�x j� = g�x j� � ��k�x��2

�r j − r�
drd� �7�

and
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Kk�x j�g�x j� = �k�x j� � �k
*�x�g�x�
�r j − r�

drd� . �8�

Note that the Jk and Kk are independent of z. The �k are the
usual Hartree-Fock spin orbitals, obtained from the Hamil-
tonian at z=0.

Consider a hypothetical situation in which all N elec-
trons move as a rigid cluster with fixed positions relative to
each other but with freedom to collectively migrate off the
nuclear framework. The behavior of the potential-energy op-
erator V�z� as a function of the distance of this cluster from
any given nucleus provides a simple heuristic illustration of
the proposed critical phenomenon. Let R be the distance be-
tween some given electron in the cluster and some given
nucleus in the fixed nuclear framework. In the limit of small
R the attractive Coulomb potential V�ne� predominates over
the other terms in V�z�. At large R it is the term zVphys

�ee� that
predominates. The spatial parts of the �k fall off exponen-
tially with distance from the nuclei.15 Thus, if electron j is a
large distance from the nuclear framework, the operator
Jk�x j� approaches the simple repulsive Coulomb potential
1 /R, while the effect of the exchange operator decays to zero
much more rapidly. With all electrons far away from the
nuclear region,

V�z� � �− �N − 1�z + N − Ztot − 1�
N

R
+ z�

i�j

rij
−1, �9�

where Ztot is the sum of the charges of all the nuclei. The first
term on the right-hand side is repulsive when
z�1−Ztot / �N−1� and increases with decreasing R. Interpo-
lating between this small-R and large-R behavior, we obtain
a schematic representation of the potential given by the solid
curve in Fig. 1.

In the limit of infinite R, the rij remain finite and the
electronic Hamiltonian becomes simply

H�z� = −
1

2�
i

�i
2 + z�

i�j

rij
−1. �10�

Making a change of variables in Eq. �10� to qi=−zri, it is
easy to show that the z dependence of the quantized energy
levels of the electron cluster is simply

Ec
�N��z� = z2��N�, �11�

where the discrete levels ��N��0 are those which occur for
the special case z=−1. The effect of a sufficiently negative
value of z is to create a barrier at intermediate distance and to
narrow the well at the nucleus. As z becomes more negative,
the barrier for the electrons to escape increases, and the well
in the nuclear region also narrows. At some critical value zc

the ground state of the bound manifold in the nuclear well
becomes equal to Ec

�N� and the electrons can depart from the
nuclear framework by tunneling through the barrier. For
z�zc, the Hamiltonian exhibits a continuum of eigenstates in
which the electrons are dissociated from the nuclear frame-
work and exist in a collective scattering state relative to the
fixed nuclear configuration �within the Born-Oppenheimer
approximation�.

Thus, the conclusion that a singular point exists at nega-
tive z follows from the fact that at large negative z the repul-
sive interelectron interactions are spatially limited to the re-
gion of the nuclei while the interelectron attraction is not.
This analysis is a special case of a more general analysis of
many-body perturbation theories presented earlier by Baker
in the context of nuclear physics.16 Baker suggested that zc is
analogous to a critical point in an �E ,z� phase diagram. For
real z beyond zc the Hamiltonian will not support a bound
state of all the particles. This is similar to the situation in
which the nuclear charge Z of an atom is treated as a con-
tinuous parameter. The energy can be obtained as an
asymptotic series in 1/Z. For any atom there exists a critical
charge below which the atom will spontaneously ionize,17–21

resulting in a singular point at some positive value of 1 /Z.
Similar behavior is also seen in the semiclassical 1 /D expan-
sion of atomic and molecular energies, where D is the spatial
dimensionality.22–29 Another analog is the general phenom-
enon of spatial and/or spin symmetry breaking in Hartree-
Fock electronic reference wave functions, a topic with an
extensive literature.30–39 Perhaps the best-known example is
the restricted to unrestricted Hartree-Fock �RHF to UHF�
orbital instability that develops at intermediate bond dis-
tances during the homolytic cleavage of chemical bonds.40

Mathematical conditions for the existence of critical points
for orbital instabilities have been known for some time.32–35

In statistical mechanics critical points correspond to sin-
gular points,41 typically of algebraic form. In the case of the
perturbation theories for the Schrödinger equation, the disso-
ciation at the critical point comes about by tunneling through
a potential-energy barrier, which results in a more compli-
cated functional form. An analysis of the 1/Z series for the
two-electron atom20 has suggested that the singularity can be
described by a confluent hypergeometric function.

It is also of interest to consider the behavior of the MP
energy function for positive values of z beyond the physical
point z=1. The interelectron potential is repulsive and its
magnitude is increased by a factor of z, while the mean-field
potential, multiplied by �1−z�, becomes attractive for z�1.
It is not obvious in advance which of these two effects will
predominate in the region of the nuclear framework. If it is
the repulsion, then there could come a value of z at which the
energy could be lowered by ejecting an electron. This would

FIG. 1. Schematic representation of the total potential-energy function for
the migration of a rigid electron cluster to a distance R off the nuclear
framework. The solid curve corresponds to a sufficiently negative value of
the perturbation parameter z. The dashed curve corresponds to z=0.
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be a critical point on the positive real z axis corresponding to
one-electron ionization. Indeed, there might be a series of
one-electron ionizations as z becomes increasingly positive.

III. ANALYSIS OF CONFIGURATION-INTERACTION
EIGENVALUES

In practice, MP perturbation series are computed within
the approximation of a finite one-particle basis set;9 i.e., the
Hartree-Fock molecular orbitals used to construct the many-
body wave functions are represented in terms of a finite set
of atomic, typically Gaussian, functions. The exact many-
body solution for the finite one-particle basis is the full-
configuration-interaction �FCI� wave function, a variation-
ally optimized linear combination of all Slater determinants
resulting from the distribution of the electrons in the molecu-
lar orbitals in all possible ways. The MP perturbation series
is the asymptotic expansion of the FCI eigenvalue function,
EFCI�z�.9 This function can be obtained by constructing the
z-dependent Hamiltonian matrix using Eq. �1� and then de-
termining the eigenvalues of the matrix by numerical diago-
nalization for given z values.

The singularity structure of these eigenvalue functions in
the complex z plane can be derived from first principles. One
can prove20,42 that the singular points occur in complex-
conjugate pairs with nonzero imaginary parts, and in the
neighborhood of each singular point the function behaves as
a square-root branch point. This would seem to contradict the
Stillinger conjecture, which requires a critical point on the
real axis. In fact, there is no contradiction because Still-
inger’s analysis applies to the true E�z�, not to EFCI�z� within
a finite atom-centered basis. Another difference between
these two functions is that the FCI spectrum consists only of
discrete bound states while the true spectrum contains an
ionization continuum. At zc the ground state is expected to
pass into the continuum. E�z� becomes complex beyond zc

while EFCI�z� remains real.
What then is the significance of the MP critical point of

E�z� for the corresponding EFCI�z�? One might expect that
EFCI�z� would try to model a continuum at zc with a grouping
of discrete but closely spaced eigenstates that undergo sharp
avoided crossings with the ground state.17 To answer this
question, we have computed configuration-interaction energy
eigenvalues of the z-dependent Hamiltonian for various sys-
tems. The computational method and the basis sets are de-
scribed in detail in Appendix A.

The FCI spectrum for the He atom as a function of z,
using the augmented correlation-consistent polarized valence
quadruple-zeta �aug-cc-pVQZ� basis set, is shown in Fig. 2.
This basis belongs to the family of correlation-consistent po-
larized valence X-tuple zeta �cc-pVXZ� Gaussian sets aug-
mented with diffuse functions.43–45 These sets are widely
used for high-accuracy ab initio quantum chemistry. What
we have plotted in Fig. 2 and in all of the subsequent E�z�
diagrams is actually the quantity

��j��z� = E�j��z� − �E0 + E1z� , �12�

where the E�j��z� are the eigenvalues, with j labeling differ-
ent eigenstates. The MP series coefficients E0 and E1 corre-

spond to the ground state. E1 is much larger than subsequent
Ei and its value for low-lying excited states is not too differ-
ent from the value for the ground state. Therefore, ��j� for
low-lying states is approximately parallel to the z axis, and
this more clearly displays the relative spacing of the energy
levels than would a plot of E�j�. ��0� is zero at z=0, and at the
physical point z=1 it is equal to the correlation energy. Thus,
��0��z� can be thought of as a z-dependent generalization of
the ground-state correlation energy. For j�0, however,
��j��z� is the difference between the energy of an excited state
and the Hartree-Fock energy of the ground state.

The dotted curve in Fig. 2 corresponds to the energy of a
bound dielectron. Separating out the motion of the center of
mass in Eq. �10� makes this an exactly solvable two-body
problem, with ground-state energy −z2 /4. The large-dash line
shows the total dissociation limit, given by setting E�j��z�
=0 in Eq. �12�. The small-dash curve shows the limit for
one-electron ionization obtained using a direct numerically
exact computation, as described in Appendix A. Bound
eigenstates of H�z� can exist only in the �E ,z� region be-
tween the dotted and small-dash curves.

There is no evidence from the FCI spectrum in Fig. 2 of
a dissociation continuum at negative z. Along the positive
real z axis there is a broad avoided crossing at z=3.0, but this
represents an interaction between the ground state and the
1s2s 1S excited state. It corresponds to a complex-conjugate
pair of square-root branch points in E�z�, with real parts of
the singular points equal to the point of closest approach of
the two interacting curves for a path along the real axis. �See
Appendix B.� There is also a very broad isolated avoided
crossing at z�−13, the position of which, in contrast to the
position of the avoided crossing at positive z, depends
strongly on the choice of basis set. Increasing the basis size
to augmented correlation-consistent polarized valence sex-
tuple zeta �aug-cc-pV6Z� moves the avoided crossing to z=
−5.7, while decreasing the size to aug-cc-pVDZ causes it to
disappear. But even with the larger basis, the crossing at
negative z represents an isolated interaction between the
ground state and a single bound excited state.

FIG. 2. Energies ��j��z�=E�j��z�− �E0+E1z�, in units of Eh, of the FCI spec-
trum for 1S states of the He atom as a function of the perturbation parameter
z, with the aug-cc-pVQZ basis. The full ionization limit E�z�=0 corresponds
to the large-dash line while the limit of one-electron ionization is shown by
the small-dash curve. The limit for dissociation into a bound dielectron
corresponds to the dotted curve.
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Figure 3 shows results from an extremely diffuse basis
�“aug-cc-pVQZ-et3”� constructed by adding to the aug-cc-
pVQZ basis additional Gaussian functions with exponents
chosen according to an even-tempered scheme, as described
in Appendix A. The structure of the FCI spectrum at positive
z is similar to that in the previous examples, but now the
structure at negative z is quite different. A group of very
sharp crossings is evident, beginning at z=−2.2. In fact, the
crossings are avoided but they approach so closely that this
cannot be discerned within the resolution of the plot. The z
value at the onset of the sharp crossings can be decreased by
adding even more diffuse functions, but the limit, obtained
by setting the Gaussian exponents almost to zero, is the full
ionization limit, not the limit of the bound dielectron.

One-electron functions centered at the nucleus are not
well suited for describing a dielectron cluster dissociated
from the nucleus. A simple way to construct a basis set valid
over a wide range of both positive and negative z is to aug-
ment the basis with a “ghost” atom far away from the

nucleus. The ghost atom consists merely of basis functions
centered at this position but with no nuclear charge. Basis
functions centered at the nucleus describe the system for
positive z and for negative z before the critical point, and the
ghost functions can describe a dielectron that has left the
nucleus. Results are shown in Fig. 4. Specifically, we used an
aug-cc-pVQZ basis centered at the He nucleus and an aug-
cc-pVQZ basis for a ghost hydrogen atom 1000 Å away. The
discrete spectrum of the dielectron can now be seen, starting
just beyond the dielectron value of zc.

Figures 5 and 6 show CI results for the Ne atom with the
cc-pVDZ and aug-cc-pVDZ basis sets, respectively. These
sets differ in that the latter is supplemented with diffuse s , p,
and d functions.45 These are frozen-core computations; de-
terminants with excitations of the 1s electrons are omitted
from the CI wave function. As a consequence, the electron
cluster we expect to form after z passes through the critical
point will consist only of the eight valence electrons. The
dashed curves in the figures correspond to dissociation into
eight free electrons and an Ne8+ ion with a frozen 1s core.
Because of the large sizes of the basis sets, we have trun-
cated the Hamiltonian matrices by configuration selection.
�See Appendix A for details.�

Without the diffuse functions, the level structure at nega-

FIG. 4. Energies ��j�, in Eh, of the FCI spectrum of He for those states for
which the overlap with the 1S ground-state wave function is nonvanishing
within the precision of the computation, as a function of the perturbation
parameter z, with an aug-cc-pVQZ basis centered at the nucleus further
augmented with a ghost hydrogen aug-cc-pVQZ basis centered 1000 Å
away. As in Fig. 2, the large-dash line, the small-dash curve, and the dotted
curve show the full ionization, one-electron ionization, and bound dielectron
limits, respectively.

FIG. 5. Energies ��j�, in Eh, of the CI spectrum for 1S states of the Ne atom
as a function of the perturbation parameter z, with the cc-pVDZ basis. The
dashed curve shows the limit of ionization to free valence electrons.

FIG. 3. Energies ��j�, in Eh, of the FCI spectrum for 1S states of the He atom
as a function of the perturbation parameter z, with the diffuse even-tempered
aug-cc-pVQZ-et3 basis. As in Fig. 2, the large-dash line, the small-dash
curve, and the dotted curve show the full ionization, one-electron ionization,
and bound dielectron limits, respectively.

FIG. 6. Energies ��j�, in Eh, of the CI spectrum for 1S states of the Ne atom
as a function of the perturbation parameter z, with the aug-cc-pVDZ basis.
The dashed curve shows the limit of ionization to free valence electrons.
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tive z for Ne �Fig. 5� is quite simple, showing a broad iso-
lated avoided crossing with the ground state at z=−2.4. The
level structure is very different with the aug-cc-pVDZ basis
�Fig. 6�. In that case the basis is sufficiently diffuse to model
a continuum. Many new curves are now present that have
very sharp avoided crossings with the diabatic continuation
of the ground-state energy at negative z values. The first of
these new crossings is at z=−0.9, which is somewhat beyond
the critical point for full ionization of the eight valence elec-
trons. Adding very diffuse functions brings the continuum
down to the full ionization limit. By augmenting the basis on
the Ne nucleus with another basis for a ghost F atom far from
the Ne nucleus, the initial crossing can be moved to before
the full ionization limit.

The hydrogen fluoride molecule is isoelectronic to Ne
and with the aug-cc-pVDZ basis its level structure as a func-
tion of z is similar to that for Ne. However, with the nonaug-
mented cc-pVDZ basis, as shown in Fig. 7, the results are
qualitatively different from the corresponding Ne results. In
contrast to the Ne case, hydrogen fluoride, even with this
compact basis, has excited states that cross through the
ground state at negative z, although the density of the states
is less than that for the critical points in the previous ex-
amples with the augmented bases. The reason is that the
basis functions centered on the H atom are able to model a
cluster of the valence electrons in the same way that the
ghost-atom basis functions did this for the He and Ne atoms.
The repulsive mean-field potential is much stronger in the
neighborhood of the F nucleus than in the neighborhood of
the H nucleus, and it becomes more important, in proportion
to the factor �1−z�, as z becomes more negative. At some
point on the negative z axis, this effect will become strong
enough to make the valence electrons jump to the hydrogen
side of the molecule, causing a critical point to appear. The
resulting singularity structure is not too much closer to the
origin of the z plane than is the singularity for the isolated
avoided crossing in cc-pVDZ Ne. Although the singularity
structures of these two systems are quite different, the effect
on the convergence of the partial sums of the energy series4

is similar.

To test this explanation we carried out FCI computations
as a function of z for the hydrogen fluoride molecule and
then used the ground-state wave function to compute the
value of the dipole moment. The computations were per-
formed using a modified version of the DETCI module of the
PSI3 software package5,46 Beyond the critical point, we ex-
pect to have, in effect, a H7− ion separated from a F7+ ion by
the physical hydrogen fluoride �z=1� bond distance of
0.916 94 Å. This would imply that the dipole moment vector
would have a length of 30.83 D, pointing toward the hydro-
gen. Figure 8 shows the FCI results. Before the critical point,
the value of the dipole moment is quite stable with a magni-
tude of approximately 2 D. At z=−1.3 it undergoes a sudden
change of sign and stabilizes at approximately 35 D, which is
consistent with our explanation.

Figure 9 shows the spectrum for the Ar atom with the
cc-pVDZ basis. The level structures at negative z are similar
to those for Ne with the corresponding basis. However, at
positive z the first excited-state eigenvalue now approaches
very close to the ground-state energy, in contrast to the broad
avoided crossing in the case of Ne. Figure 10 shows the

FIG. 7. Energies ��j�, in Eh, of the CI spectrum for 1�+ states of the hydro-
gen fluoride molecule as a function of the perturbation parameter z, with the
cc-pVDZ basis and internuclear separation of 0.916 94 Å. The dashed curve
shows the limit of ionization to free valence electrons. FIG. 8. Ground-state dipole moment of the hydrogen fluoride molecule as a

function of the perturbation parameter z, as computed from the FCI wave
function using the cc-pVDZ basis.

FIG. 9. Energies ��j�, in Eh, of the CI spectrum for 1S states of the Ar atom
as a function of the perturbation parameter z, with the cc-pVDZ basis. The
dashed curve shows the limit of ionization to free valence electrons. Circles
mark the points of closest approach of excited states with the diabatic con-
tinuation of the ground state at positive z.
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approach in more detail. The diabatic continuation of the Ar
ground state can be seen to undergo a series of close avoided
crossings.

The valence electrons in Ar are farther from the nucleus
than in Ne. As z increases beyond z=1 the mean-field central
potential, although attractive, is less able to counter the in-
creased interelectron repulsion than in the case of Ne. The
close crossings in the figure might represent a critical point
for ionization to a free electron and an Ar+ ion. Alternatively,
they could represent crossings with a series of Rydberg
states, with one electron far from the nucleus. Indeed, our
exact analysis of the He case reveals that a single-ionization
envelope �shown in Figs. 2–4� should be expected for posi-
tive z, and Rydberg states should be encountered prior to
reaching this continuum. The closeness of the approach of
the curves would be due to the fact that there is very little
overlap between the eigenfunctions for the Rydberg state and
the ground state.

IV. ANALYSIS OF SUMMATION APPROXIMANTS

The positions of singular points of EFCI�z� in the com-
plex z plane can be estimated by fitting quadratic summation
approximants to the MP series.10,47 These approximants are
functions of the form

S�L/M,N��z� =
1

2QM
�PL ± 	PL

2 − 4QMRN� , �13�

where PL ,QM, and RN are polynomials in z of degrees L ,M,
and N, respectively. Note that S�L/M,N��z� will have a square-
root branch point at each nondouble root of the discriminant
polynomial

D�L/M,N� = PL
2 − 4QMRN. �14�

Because the series coefficients Ei are real numbers, these
roots will either lie on the real axis or will exist as complex-
conjugate pairs. For this reason, a quadratic approximant
would seem to have an appropriate functional form for mod-
eling EFCI�z�, thus providing an alternative to the CI plots for
obtaining information about the singularity structure.

We use the normalization condition QM�0�=1. The rest
of the polynomial coefficients are determined by setting the
Taylor series of S�L/M,N��z� equal to the MP series, according
to the asymptotic equation

QME2 − PLE + RN 
 O�zL+M+N+2� , �15�

which means that the coefficients of the power series in z of
the left-hand side are equal to zero through order zL+M+N+1. E
in Eq. �15� represents the power series for the energy. Col-
lecting terms according to the power of z yields a set of L
+M +N+2 simultaneous linear equations that determines the
polynomial coefficients. It is convenient to express the power
series in the form

E = �E0 + E1� + E2z + E3z2 + E4z3 + ¯ �16�

because E0+E1 is the Hartree-Fock energy and E0 and E1 are
usually not separately reported. This amounts to analyzing a
function

ẼFCI�z� = E0 +
1

z
�EFCI�z� − E0� , �17�

which has the same branch point structure as EFCI.
Because the MP series is an asymptotic expansion about

the origin of the complex z plane, branch points closer to the
origin will be modeled more accurately than those farther
away. The number of branch points with converged results
for their locations will increase as the order of the series is
increased, although at very high order we find that roundoff
error in the series coefficients causes spurious branch points
to appear. The singularity positions from quadratic approxi-
mants are listed in the third column of Table I. The pertur-
bation series were computed to high order with high preci-
sion with the PSI3 software package.5,46,48 Results are shown

FIG. 10. Expanded view of energies ��j�, in Eh, of the CI spectrum for 1S
states of the Ar atom as a function of the perturbation parameter z, with the
cc-pVDZ basis. Circles mark the points of closest approach of excited states
with the diabatic continuation of the ground state at positive z.

TABLE I. Branch-point locations of FCI energy function from analysis of
quadratic approximant with index �L /M ,N� of MP series and from fitting
directly to explicit FCI energy values.

System �basis� �L /M ,N�

Branch pts.
from series

approximants

Branch pts.
from fit to

FCI energies

Ne �cc-pVDZ� �6/5 ,6� −2.62±0.90i −2.63±0.90i
�5/5 ,6� 3.14±0.5i 3.12±0.61i

HF �cc-pVDZ� �7/6 ,7� −1.30 −1.33
−1.30±0.04i

�6/6 ,7� 2.51±0.37i 2.44±0.46i
2.8

Ar �cc-pVDZ� �4/4 ,4� 3.3 2.8±0.02i
3.7

�4/4 ,5� 1.2±4.0i
Ne �aug-cc-pVDZ� �11/11,11� −0.824±0.007i

−0.892
�6/6 ,7� 3.0±0.6i

HF �aug-cc-pVDZ� �8/8 ,8� −0.759±0.015i
−0.771

�7/7 ,8� 1.94±1.0i
2.03±1.0i

Ar �aug-cc-pVDZ� �6/6 ,6� −1.24±0.01i −1.183
−1.5

�6/6 ,7� 2.58 2.43±0.08i
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for the highest order feasible, as determined by adding a
random error to the last digit of the Ei and noting the effect
on the computed branch-point positions. We show only the
branch points that seem to converge.

The roundoff error enters at a lower order for the series
with compact basis sets than for those with augmented basis
sets, because the three examples with a compact basis have
no singularity within the disk of unit radius in the complex
plane. Therefore, the partial sums of the energy series are
convergent at z=1, which implies that the series coefficients
become smaller as the order increases. Eventually, the series
coefficients become equal to zero within the finite precision
of the computation and yield no further information for fit-
ting the approximants. There is no such problem for the sys-
tems with augmented basis sets because their partial sums
are divergent at z=1.

The magnitude of the imaginary part of the branch-point
location is related to the sharpness of the avoided crossing.
For an isolated avoided crossing, one can model the interac-
tion between the two states using a two-dimensional matrix
eigenvalue equation.49 The two eigenvalues are connected by
a complex-conjugate pair of square-root branch points. We
show in Appendix B that the closest approach along the real
z axis occurs when z is equal to the real part of the branch-
point pair, and the separation at closest approach between the
two states is, to a good approximation,

�Emin = ���− − �+�Im zs� , �18�

where zs and zs
* are the singularity locations and �− and �+

are the diabatic slopes for the two states. A very small value
of �Emin implies that the crossing is almost diabatic, with
very little interaction between the two energy curves, while a
large value implies strongly interacting states. The amount of
interaction between energy curves should be an indicator of
whether or not the singularity structure of E�z� being mod-
eled corresponds to a simple square-root branch point or to a
critical point. Small values of �Emin should be characteristic
of critical points because the eigenfunction of the upper state
should have very little spatial overlap with the eigenfunction
of the ground state, and hence the connecting matrix ele-
ments should be small.

The plots of the spectra in Sec. III are in qualitative
agreement with the results in Table I. For example, Ne with
the cc-pVDZ basis has a broad avoided crossing near z=
−2.7 in Fig. 5 and the corresponding imaginary part in Table
I is rather large, while the sharp crossings at negative z for
aug-cc-pVDZ Ne in Fig. 6 correspond to a group of closely
spaced branch points that the quadratic approximant places
directly on the real axis. An analysis of the curves in Fig. 5
predicts branch points at −2.66±0.98i and 3.31±0.64i. Qua-
dratic approximant analysis of the MP series gives
−2.62±0.90i and 3.14±0.5i. The agreement is not quantita-
tive because the MP series corresponds to the full CI energy
while the curves in the figures were generated from truncated
CI computations. In principle, Im zs can be determined from
the curves by estimating �− ,�+, and �Emin and using Eq.
�18�. However, because that equation comes from a 2	2
matrix approximation the accuracy can be adversely affected

by the presence of other nearby crossings. We find that a 3
	3 matrix approximation is more satisfactory and have em-
ployed it in the analysis of the figures.

To more rigorously determine branch-point locations and
thereby assess the accuracy of the zc predictions from qua-
dratic approximants and from truncated CI computations, we
adapted the PSI3 code5,46 to explicitly compute FCI eigenval-
ues of H�z� along the real axis. Exact E�z� values �within the
chosen finite basis set� for the subspace of lowest-lying elec-
tronic states were determined iteratively using a modified
block Davidson algorithm.50 This approach is more costly
than the indirect analysis of EFCI�z� based on the MP series
because it uses, in effect, a separate FCI computation at each
value of z, but it provides an independent check of the qua-
dratic approximant analysis without the error of the truncated
CI computations. To extract a singularity position from the
E�z� values, we fit a 3	3 matrix eigenvalue function to
several ground-state E�z� points surrounding an avoided
crossing.

The iterative subspace procedure for the FCI computa-
tions worked well in uncongested areas, but in regions of z
where the spectrum was crowded with numerous sharp
avoided crossings, convergence difficulties were often en-
countered. �The truncated CI approach used to generate the
figures of Sec. III did not suffer from such problems because
the complete eigenspectrum of the truncated matrix was
computed by standard, noniterative methods that do not re-
sort to subspace expansions.� Our FCI branch points, for
cases in which we obtained convergence, are listed in Table I
alongside the results from the MP series analysis. The excel-
lent agreement between the corresponding zc values nicely
demonstrates the ability of quadratic approximants of high-
order MP series to accurately locate FCI branch points.

V. DISCUSSION

The singularity structure in the negative half plane of the
perturbation parameter z for the MP energy function E�z�
depends strongly on the choice of basis set. Stillinger’s
conjecture13 that there will be a critical point at some nega-
tive real value of z corresponding to dissociation into a
bound electron cluster free from the nuclei is based on an
analysis of the Hamiltonian without a finite basis set approxi-
mation. In practice, MP computations are performed with a
finite basis, which means that the relevant function is the FCI
energy EFCI�z�. Depending on the basis set, EFCI�z� may or
may not have a singularity structure resembling that of E�z�.
In particular, a basis set constructed from functions centered
on the nuclei cannot efficiently model a situation in which
the electrons are bound together as a pseudoparticle that is
not bound to the nuclei. We find that for computations using
standard basis sets augmented with diffuse functions, EFCI

can have a group of branch points very close to the real axis
that correspond to a critical point in E�z�, but the physical
process occurring at that point is complete dissociation rather
than formation of an electron cluster.

Our analysis resolves the apparent disagreement between
Stillinger’s suggestion that class B series behavior is caused
by a critical point and the conclusion of a study by Olsen et
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al.49 that it is caused by an avoided crossing with an excited
state. Olsen et al. used a 2	2 matrix eigenvalue equation as
an approximant for EFCI�z� and found that the dominant sin-
gularity structure for class B systems consisted of a complex-
conjugate pair of square-root branch points. By construction,
this approximant has only one such pair. It can model only
one branch-point pair at a time of the grouping of branch
points that EFCI�z� uses to model a critical point. Olsen et al.
studied the first pair in the grouping and noted that with
augmented basis sets its location approached the continuum
energy for complete dissociation, which is consistent with
our findings from CI plots and quadratic-approximant series
analyses. In other words, the “backdoor intruder” state,
which can spoil the convergence of the MP series, is the
completely ionized state represented in a limited diffuse
atom-centered basis set.

In general, we predict that atoms will have the critical-
point singularity structure in the negative half plane only if a
sufficiently diffuse basis set is used. Molecules, however,
may show this singularity structure even with compact basis
sets, due to a migration of the electrons within the molecule.
Basis functions on less electronegative atoms can model a
cluster of valence electrons that have moved away from the
more electronegative atoms due to the increasing magnitude
of the mean-field repulsion. This effect should be most im-
portant, occurring at relatively smaller �z� values, when
highly electronegative atoms are present. A new result from
the present work is the observation that EFCI�z� for the Ar
atom has singularity structure in the positive half plane very
close to the real axis, indicating either a critical point for
one-electron ionization or a sharp avoided crossing with a
Rydberg state. In contrast, for Ne the first singularity in the
positive half plane corresponds to a broad avoided crossing
with another bound state.

The primary motivations for studying the singularity
structure of the MP energy function are to develop methods
for predicting the accuracy of MP4 computations and for
improving that accuracy by modeling the dominant
singularity.10,39,51,52 Critical points can exist within the unit
circle, and in such cases the MP series will be divergent.
Although MP2 may still be dependable, adding higher-order
terms of a divergent series will, at some high enough order,
begin to decrease the accuracy. It is now clear that MP4
series should not in general be summed by simply adding
together the terms in the perturbation series; much more de-
pendable results can be obtained from the MP4-q
 summa-
tion approximant.53 The q
 approximant uses a repartition-
ing of the Hamiltonian to shift the singularity positions so as
to optimize the series summation by a quadratic approxi-
mant. �The use of a quadratic approximant ensures that the
summation will converge even if the series itself diverges.47�
The locations of the singularities for the purpose of this op-
timization are determined from the roots of the discriminant
polynomial D�L/M,N� of Eq. �14�. Fourth order is, in general,
quite low for an asymptotic series analysis. In the high-order
limit the series coefficients are determined by the asymptotic
series of the dominant singularity, according to Darboux’s
theorem,12,54 but at fourth order one can expect nonsingular
effects and effects of nondominant singularities to still be

significant. The effective use of the q
 method depends on
having some idea of how accurately the singularities of the
fourth-order approximant model the true singularity struc-
ture.

A low-order quadratic approximant works best when the
dominant singularity of the underlying function is an isolated
square-root branch-point pair. In such cases, for example, the
molecules BH, CH2,NH2,CH3, and H2O+, the q
 approxi-
mant can reduce the summation error by an order of
magnitude.51,53 For systems in which the dominant singular-
ity of the underlying function is a critical point, the improve-
ment from the approximant is more modest. In applying the
q
 approximant, one must choose whether to model the sin-
gularity structure in the positive or the negative half plane.
This choice can be made on the basis of the approximant’s
own estimates of the various singularity positions. However,
the branch points in EFCI�z� that describe a critical point have
very small imaginary parts, orders of magnitude smaller than
the imaginary parts of the “true” square-root branch points
that correspond to avoided crossings in both E�z� and
EFCI�z�. A branch-point pair with small imaginary part be-
haves at a distance as a double root of D�L/M,N�. Because
D�L/M,N�

1/2 is nonsingular at a double root, such branch points
will be harder to detect than branch points with larger imagi-
nary parts, and in an analysis using a series of only fourth
order they seem to be farther from the origin than they actu-
ally are.

The position of the critical points of the exact E�z� can
easily be estimated even with very-low-order perturbation
theory. For example, for He the critical point for complete
ionization can be estimated from MP2 simply by setting the
partial sum equal to zero, according to

zc =
1

2E2
�− E1 ± 	E1

2 − 4E0E2� . �19�

Using the aug-cc-pVDZ basis, this gives zc=−1.918, which
is in excellent agreement with the exact result, −1.893. How-
ever, the position of a critical point in EFCI�z�, which is the
information most relevant for MP series summation, is much
harder to calculate. By taking into account the known posi-
tion of zc in E�z�, the position of the branch point in the
MP4-q
 approximant, and the qualitative understanding we
have presented here of the accuracy with which a given kind
of basis set can model the dissociation of the system, it may
be possible to develop a procedure for reliably estimating the
position of zc in EFCI�z� using fourth-order series.

In principle, the singularity structure could be taken as a
consideration in choosing a basis set. Removing diffuse
functions from the basis will eliminate the critical point at
negative z or at least shift it away from the origin, lessening
its significance. Unfortunately, as has been pointed out
previously,3,4,49 the systems for which the negative-z critical-
point singularity is dominant are very often the same systems
for which diffuse functions are needed for an accurate de-
scription of the wave function.45 Perhaps a more promising
strategy is to change the position of the critical point by
modifying the partitioning of the Hamiltonian. One method
is to change the positions of energy-level crossings by incor-
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porating level shifting operators55–58 into H0. This allows one
to arbitrarily specify the unperturbed energy spectrum. Alter-
natively, the critical-point position can be shifted to an arbi-
trary position by the Feenberg repartitioning,6–8,53,59–61

which effects a conformal mapping of the z plane.62 These
approaches must be implemented with care because they
shift the positions of all singularities, possibly increasing the
importance of some other singularity that previously was
nondominant.
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APPENDIX A: COMPUTATIONAL DETAILS

Energy computations

Here we describe the procedures that were used to gen-
erate E�z� for Figs. 2–7, 9, and 10. CI matrices of H�z� in a
many-electron basis of Slater determinants were explicitly
constructed from one- and two-electron integrals computed
using the MOLPRO2000 software package.63 For all z, the H�z�
matrix was properly constructed from the ground-state
Hartree-Fock orbitals of the physical Hamiltonian H0+H1. A
unitary transformation of the original Hamiltonian matrix
was performed to represent H�z� in a basis of configuration
state functions with the same spin and angular momentum as
the ground electronic state. For He �Figs. 2–4� the full CI
matrix was used. For the other systems the CI matrix was
truncated in order to allow explicit construction and storage
of the CI matrix in core memory. For the initial Hamiltonian
matrix, determinants were included in the basis if the corre-
sponding E0 was below a cutoff value. To determine the
cutoff, determinants with the same value of E0 were grouped
into manifolds and then whole manifolds were added to the
basis in order of increasing E0 until the basis dimension was
as close as possible to 4000. The subsequent unitary trans-
formation to the configuration state-function representation
substantially reduced the basis dimension. All the eigenval-
ues of the CI matrices were computed, using the eigensystem
routine of MATHEMATICA.64

To definitively reveal the ionization structure of the ex-
act E�z� spectrum of He for z�1, we used Cooley-Numerov
�CN� numerical methods65,66 to precisely determine the en-
ergy curve for ground-state He+. This was implemented us-
ing the numerical differential equation solvers in
MATHEMATICA.64 First, the Hartree-Fock 1s orbital for the He
atom was self-consistently converged on a very fine radial
grid by a CN algorithm to provide an essentially exact nu-
merical representation of the mean-field potential. The CN
procedure was then executed again to compute virtually ex-
act He+ eigenvalues of H�z�. The resulting He+ energy curve
is superimposed on the right side of Figs. 2–4. It provides an
infinite-basis exact envelope with which to analyze the
finite-basis curves for positive z. Nonetheless, on the coarse
scale of the figures, the exact He+ curve is practically indis-

tinguishable from the curves which would be obtained with
the finite QZ basis sets.

Basis sets

Standard correlation-consistent polarized X-tuple zeta
�cc-pVXZ� one-particle Gaussian basis sets and their diffuse-
augmented analogs �aug-cc-pVXZ� were employed in this
study.43–45 As the cardinal number X of these atomic orbital
sets increases, in the sequence X=D,T,Q,5 ,6 ,…, a system-
atic approach to the complete basis set limit is achieved. Of
particular note for our current purposes is the ability of the
diffuse aug-cc-pVXZ sets to partially model ionization phe-
nomena. Our extremely diffuse aug-cc-pVQZ-et3 basis set
for He was derived from the standard aug-cc-pVQZ
5s4p3d2f spherical-harmonic set by a 3s3p3d3f even-
tempered extension, with diffuse Gaussian function expo-
nents �k=c�k−2, k=1,2 ,3, where �c ,��= �0.03,3.804�,
�0.014, 3.444�, �0.029, 3.484�, and �0.046, 3.881� for the
s , p ,d, and f manifolds, respectively.

APPENDIX B: AVOIDED CROSSINGS
AND BRANCH POINTS

A 2	2 matrix eigenvalue problem provides a simple
model for locating complex-valued branch points zs of E�z�
from features of avoided crossings along the real z axis.49

Consider the matrix

Hphys = � �

� �
� , �B1�

which is partitioned for a perturbation expansion in z in the
form H�z�=H0+zH1 with

H0 = � + s 0

0 � + �s
�, H1 = �− s �

� − �s
� . �B2�

The eigenvalues of H�z� are

E±�z� =
1

2
� + � + �1 − z��2s + �s��

±
1

2
�� + �1 − z��s�2 + 4� 2z2�1/2, �B3�

where

� = � − , �s = �s − s. �B4�

The point of closest approach between E+ and E− is

zmin =
� + �s

4� 2 + �s
2�s, �B5�

at which the difference between the eigenvalues is

�Emin =
2��� + �s�� �
�4� 2 + �s

2�1/2 . �B6�

It follows from Eq. �B3� that the branch points of E±�z� are zs

and zs
*, where
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zs =
� + �s

4� 2 + �s
2��s + 2� i� . �B7�

Note that zmin=Re zs.
Let �=Im zs /Re zs. Then �=2� /�s, and

�Emin = ��sIm zs��1 + �2�1/2. �B8�

Let

�± = lim
z→�

dE±

dz
. �B9�

�+ and �− are the diabatic slopes of the eigenvalue functions.
Taking the derivative of Eq. �B3� with respect to z, one finds
that

�s = ��+ − �−��1 + �2�−1/2, �B10�

which yields Eq. �18�.
The magnitude of the off-diagonal term in the perturba-

tion evaluated at the point of closest approach, �� Re zs� can
be taken as a measure of the amount of interaction between
the two eigenstates. If �Re zs� is significantly larger than
�Im zs�, which is usually true for the dominant singularities of
MP energy functions, then �� Re zs���Emin/2.
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