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The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and
bounded below. Replacing this condition by the weaker conditioP@ symmetry, one obtains
new infinite classes of complex Hamiltonians whose spectra are also real and positive. ZTiese
symmetric theories may be viewed as analytic continuations of conventional theories from real to
complex phase space. This paper describes the unusual classical and quantum properties of these
theories. [S0031-9007(98)06371-6]

PACS numbers: 03.65.Ge, 02.60.Lj, 11.30.Er

Several years ago, Bessis conjectured on the basis depinning in type-1l superconductors [2], or even to study
numerical studies that the spectrum of the Hamiltoniarpopulation biology [3]. Here, initially real eigenvalues
H = p> + x> + ix? is real and positive[1]. To date bifurcate into the complex plane due to the increasing
there is no rigorous proof of this conjecture. We claimexternal field, indicating the unbinding of vortices or
that the reality of the spectrum off is due to P7  the growth of populations. We believe that one can
symmetry. Note thaH is invariantneitherunder parity also induce dynamic delocalization by tuning a physical
P, whose effect is to make spatial reflections,—  parameter (herd) in a self-interacting theory.

—p and x — —x, nor under time reversall , which Furthermore, it was found that quantum field theo-
replacesp — —p, x — —x, and i — —i. However, ries analogous to the quantum-mechanical theory in
PT symmetry is crucial. For example, the HamiltonianEq. (1) have astonishing properties. The Lagrangian
p? + ix? + ix has PT symmetry and our numerical L = (V¢)> + m>¢p* — g(i¢p)V (N real) possesse® T

studies indicate that its entire spectrum is positive definiteinvariance, the fundamental symmetry of local self-
the Hamiltonianp? + ix3 + x is not PT symmetric, interacting scalar quantum field theory [4]. Although this
and the entire spectrum is complex. theory has a non-Hermitian Hamiltonian, the spectrum

The connection betwee®7 symmetry and positivity of the theory appears to be positive definite. Al&ois
of spectra is simply illustrated by the harmonic oscillatorexplicitly not parity invariant, so the expectation value of
H = p? + x?, whose energy levels arg, = 2n + 1.  the field (¢) is nonzero, even wheW = 4 [5]. Thus,
Adding ix to H does not breakP7 symmetry, and one can calculate directly (using the Schwinger-Dyson
the spectrum remains positive definitg, = 2n + .  equations, for example [6]) the (real positive) Higgs
Adding —x also does not bregR7” symmetry if we define mass in a renormalizable theory such-ag¢* or ig¢?

P as a reflection about = % x — 1 — x, and again in which symmetry breaking occurs naturally (without

the spectrum remains positive definifg; = 2n + 3. By ~ introducing a symmetry-breaking parameter). \

contrast, addingx — x doesbreak T symmetry, and  Replacing conventionaj¢” or ¢¢-° theories by—g ¢

the spectrum is now comple¥, = 2n + 1 + %i. or igg? th_eorles has the effect of reversing signs in the
The Hamiltonian studied by Bessis is just one examplepeta function. Thus, theones that are not agymptotlcally

of a huge and remarkable class of non-Hermitian Hamil{Té& become asymptotically free and theories that lack

tonians whose energy levels are real and positive. Th&l@ble critical points develop such points. For example,

purpose of this Letter is to understand the fundamental 7 -symmetric massless electrodynamics has a nontrivial

properties of such a theory by examining the class oftable critical value of the fine-structure constarifr].
quantum-mechanical Hamiltonians Supersymmetric non-Hermitian T -invariant La-

5 w W grangians have been examined [8]. It is found that the
H=p + m=x" — (ix) (N real). 1) breaking of parity symmetry does not induce a breaking
As a function of N and massn” we find various phases of the apparently robust global supersymmetry. The
with transition points at which entirely real spectra beginstrong-coupling limit of non-HermitiarfPT -symmetric
to develop complex eigenvalues. guantum field theories has been investigated [9]; the

There are many applications of non-HermitidZ -  correlated limit in which the bare coupling constagts
invariant Hamiltonians in physics. Hamiltonians renderedand —m? both tend to infinity with the renormalized mass
non-Hermitian by an imaginary external field have beenM held fixed and finite is dominated by solitons. (In
introduced recently to study delocalization transitionsparity-symmetric theories the corresponding limit, called
in condensed matter systems such as vortex flux lin¢he Ising limit, is dominated by instantons.)
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To elucidate the origin of such novel features werealx axis by a contour in the complex plane along
examine the elementary Hamiltonian (1) using extensivevhich the differential equation holds and we impose the
numerical and asymptotic studies. As shown in Fig. 1boundary conditions that lead to quantization at the end
when m = 0 the spectrum ofH exhibits three distinct points of this contour. (Eigenvalue problems on complex
behaviors as a function &f. WhenN = 2, the spectrum contours are discussed in Ref. [12].)
is infinite, discrete, and entirely real and positive. (This The regions in the cut complex{plane in whichy(x)
region includes the casé = 4 for which H = p?> — x*;  vanishes exponentially 48| — o arewedgegsee Fig. 2);
the spectrum of this Hamiltonian is positive and discretethese wedges are bounded by tBtokes linesof the
and(x) # 0 in the ground state becaugt breaks parity differential equation [13]. The center of the wedge, where
symmetry.) At the lower boundv = 2 of this region (x) vanishes most rapidly, is called anti-Stokes line.
lies the harmonic oscillator. A phase transition occurs at There are many wedges in whighx) — 0 as|x| —

N = 2; whenl < N < 2, there are only dinite number . Thus, there are many eigenvalue problems associated
of real positive eigenvalues and an infinite number ofwith a given differential equation [12]. However, we
complex conjugate pairs of eigenvalues. In this regiorchoose to continue the eigenvalue equation (2) away from
PT symmetry isspontaneously brokefil0]. As N  the conventional harmonic oscillator problem Mt= 2.
decreases from 2 to 1, adjacent energy levels merge infbhe wave function forN = 2 vanishes in wedges of
complex conjugate pairs beginning at the high end of theangular opening%w centered about the negative- and
spectrum; ultimately, the only remaining real eigenvaluepositive-realx axes. For arbitrary the anti-Stokes lines

is the ground-state energy, which divergesMs— 1*  at the centers of the left and right wedges lie at the angles

[11]. WhenN = 1, there are no real eigenvalues. The N -2
massive casen # 0 is even more elaborate; there is a Olesy = — 7 + — and
phase transition @ = 1 in addition to that atv = 2. N+22 (3)
The Schrodinger eigenvalue differential equation corre- 0. — N-2 7
sponding to the Hamiltonian (1) witlh = 0 is right N+22°
=" (x) — (ix)Ny(x) = Eg(x). (2)  The opening angle of these wedgegiis= 27 /(N + 2).

Ordinarily, the boundary conditions that give quantizedThe (_jifferential equation (2) may be integrated on any
energy levelsE arey(x) — 0 as|x| — = on the real axis; path in the complex- plane so long as the ends of the

this condition suffices when < N < 4. However, for path'approach complex infinity inside the left wedgg and
arbitrary realN we must continue the eigenvalue problemthe right wedge [14]. Note that these wedges contain the

for (2) into the complexs plane. Thus, we replace the realx axjs whenl < N <4, .
2) P P P As N increases from 2, the left and right wedges rotate

downward into the complex-plane and become thinner.
At N = oo, the differential equation contour runs up and
down the negative imaginary axis and thus there is no
eigenvalue problem at all. Indeed, Fig. 1 shows that
the eigenvalues all diverge & — ». As N decreases
below 2 the wedges become wider and rotate into the
upper-halfx plane. AtN = 1 the angular opening of the

Energy

Im(x)

[l w ol ~ ©
T T T T T

FIG. 1. Energy levels of the Hamiltoniagi = p?> — (ix)" as

a function of the parametey¥. There are three regions: When
N = 2 the spectrum is real and positive. The lower bound
of this region,N = 2, corresponds to the harmonic oscillator,
whose energy levels aré, =2n + 1. Whenl < N <2,
there are a finite number of real positive eigenvalues and aklG. 2. Wedges in the complex-plane containing the con-
infinite number of complex conjugate pairs of eigenvaluestour on which the eigenvalue problem for the differential equa-
As N decreases from 2 to 1, the number of real eigenvaluesion (2) for N = 4.2 is posed. In these wedgedx) vanishes
decreases; wheN = 1.42207, the only real eigenvalue is the exponentially agx| — c«. The wedges are bounded Byokes
ground-state energy. A& approachesl™, the ground-state lines of the differential equation. The center of the wedge,
energy diverges. Fa¥ = 1 there are no real eigenvalues. whereys(x) vanishes most rapidly, is an anti-Stokes line.
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wedges is%n- and the wedges are centered%at- and TABLEI. Comparison of the exact eigenvalues (obtained
L. Thus, the wedges become contiguous at the positive¥ith the Runge-Kutta method) and the WKB result in (5).
imaginary x axis, and the differential equation contour y 5
can be pushed off to infinity. Consequently, there is n 0 1.1562 10942 4 0 14771 13765
eigenvalue problem whe¥ = 1 and, as we would expect, 1 41092 4.0894 1 6.0033 5.9558
the ground-state energy divergeshas— 17 (see Fig. 1). 2 75621  7.5489 2 11.8023 11.7689

3 3

4

Eexact EWKB N n Eexact EWKB

To ensure the numerical accuracy of the eigenvalues in 11.3143 11.3042 18.4590 18.4321
Fig. 1, we have solved the differential equation (2) using 15.2916  15.2832
two independent procedures. The most accurate and diretTt
method is to convert the complex differential equation to a
system of coupled, real, second-order equations which we Asymptotic study of the ground-state energy neas
solve using the Runge-Kutta method; the convergence i&—When N = 1, the differential equation (2) can be
most rapid when we integrate a|0ng anti-Stokes lines. WéOlved exaCtly in terms of Alry functions. The anti-Stokes
than patch the two solutions together at the origin. Wéines atv = 1lie at 30 and at 150. We find the solution
have verified those results by diagonalizing a truncatedhat vanishes exponentially along each of these rays and
matrix representation of the Hamiltonian in Eq. (1) in then rotates back to the realaxis to obtain
harmor)ic os<_:i||ator bas!s functions. _ Diefiright(x) = Clei(:LxeiiW/6 + Eeﬂ"”/3), (6)
Semiclassical analysis-Several features of Fig. 1 can | ' )
be verified analytically. WheV = 2, WKB gives an We must patch these solngns togethex at 0 accord-
excellent approximation to the spectrum. The novelty ofing to the patching conditiof: | (x)|*|,—o = 0. But for
this WKB calculation is that it must be performed in the real £, the Wronskian identity for the Airy function is
complex plane. The turning poinis- are those roots of d e i3 1
E + (ix)N = 0 thatanalytically continueoff the real axis o |Ai(xe " '7/0 + Ee 727/ = 5o (D

. ; 0 27’
asN moves away froniV = 2 (the harmonic oscillator): . ) i 7
instead of 0. Hence, there is no real eigenvalue.

x_ = EVNimG2=UN) -y = RN im(1/271/N) Next, we perform an asymptotic analysis for= 1 +

@ & —¢"(x) = ()" Yx) = E¢g(x), and takey(x) =
yo(x) + eyi(x) + O(e?) as e — 0+. We assume that
E — wase — 0+, letC, = 1in Eq. (6), and obtain

These turning points lie in the lower-half (upper-haif)
plane in Fig. 2 whetv > 2 (N < 2). i 614 2/3E?
The leading-order WKB phase-integral quantization Yo(0) = Ai(Ee 27/3) ~ (/m/CE=14e23E /p /7 (8)
condition is (n + 1/2)7 = [("dxJE + (ix)V. Itis  we set y;(x) = Q(x)yo(x) in the inhomogeneous
crucial that this integral follows a path along which the equation —y/(x) — ixy1(x) — Eyi(x) = ix In(ix)yo(x)

integral is real. WhenN > 2, this path lies entirely in  gnd get

the lower-halfx plane and whemv = 2 the path lies on ;

the real axis. But, wheW < 2 the path is in the upper- 0'(0) = — fwdxx In(ix)yg (x) . ©)
half x plane; it crosses the cut on the positive-imaginary ¥6(0) Jo

axi_s and this isot a Continuous path joining the turning Choosing0(0) = 0, we find that the patching condition
points. Hence, WKB fails whenv < 2. atx = 0 givesl = 2me| yo(0)2[0'(0) + 0*(0)], where

WhenN = 2, we deform the phase-integral contour so
that it follows the rays fromx— to O and from O tox:

(n + 1/2)7 = 2sin(z /N)EYN*1/2 [l ds</T — s¥. We ,

then solve forE, | = -5 ARy f dx xIn(ix)y3(x) |. (10)
F(3/2 + I/N)\/— 2N/N+2 \/E y(%(O) 0 0
E [ 7(n + 1/2)i|
" sin(z/N)I'(1 + 1/N) Sinceyo(x) decays rapidly as increases, the integral in
Eq. (10) is dominated by contributions near 0. Asymp-
(n — ). (5) totic analvsis of this i . R :
ysis of this integral gives an implicit equation
We perform a higher-order WKB calculation by replacing for E as a function of (see Table Il):
the phase integral by elosed contourthat encircles the A3 32
path in Fig. 2 (see Refs. [10,13]). See Table I. 1 ~ ee*PECETS3 In(2x/f)_+ -
It is interesting that the spectrum of the" potential is — (1 - y)V/31/8. (11)
like that of the—(ix)" potential. The leading-order WKB Behavior nearN = 2.—The most interesting aspect
quantization condition (accurate far > 0) is like Eq. (5) of Fig. 1 is the transition that occurs & = 2. To
except that sifw/N) is absent. However, a — «,  describe quantitatively the merging of eigenvalues that
the spectrum ofx|"¥ approaches that of the square-well begins whenN <2 we let N = 2 — € and study the
potential[E, = (n + 1)>7%/4], while the energies of the asymptotic behavior as — 0+. [A Hermitian perturba-
—(ix)N potential diverge (see Fig. 1). tion causes adjacent energy levels to repel, but in this case
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we have used the zeroth-order result in Eq. (7). Using
Egs. (8) and (9) this equation becomes
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TABLE Il. Comparison of the exact ground-state enemgy 12l R "]
nearN = 1 and the asymptotic results in Eq. (11). The explicit — =6 7 é
dependence af on € is roughly E « (— Ine)?/3, " m= /
e=N-1 Eexact Eg. (11) e m'=5/16 —
0.1 1.6837 2.0955 81 ? 1
0.01 2.6797 2.9624 & — e m=716 /
0.001 3.4947 3.6723 5 6l 'ﬁ_/{ |
0.0001 4.1753 4.3013 =)
0.00001 4.7798 4.8776 __/
0.000001 5.3383 5.4158 4 1
0.0000001 5.8943 5.9244
2 L

. . . . 0 b : :
the non-Hermitian perturbation of the harmonic oscilla- 05 1.0 15
tor (ix)>" € ~ x> — ex?[In|x| + Yiwsgr(x)] causes the N
levels to merge.] A complete description of this asymp-FIG. 3. Them # 0 analog of Fig. 1. Note that transitions
totic study is given elsewhere [10]. occur atN =2 andN = 1.

The onset of eigenvalue merging is a phase transition
that occurs even at the.lassicallevel.. Consider the clas- We thank D. Bessis, H. Jones, P. Meisinger, A. Wight-
sical equations of motion for a particle of energysub- a0 and v. zarmi for illuminating conversations.
ject to the complex forces described by the Hamiltonianc \j B, thanks the Center for Nonlinear Studies, Los
(1). Form = 0 the trajectoryx(r) of the particle obeys Ajamos National Laboratory, and S.T.B. thanks the
+dx[E + (ix)V]""/? = 2dr. While E and dr are real, Physics Department at Washington University for its

x(7) is a path in the complex plane in Fig. 2; this path ter-pogpitality. This work was supported by the U.S. Depart-
minates at the classical turning points in (4). ment of Energy.

WhenN = 2, the trajectory is an arc joining- in the
lower complex plane. The motion geriodic; we have a
complex pendulum whose (real) peridds

T = 2E2N/2N co{ W - 2)77}
2N
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