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The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real
bounded below. Replacing this condition by the weaker condition ofP T symmetry, one obtains
new infinite classes of complex Hamiltonians whose spectra are also real and positive. TheseP T
symmetric theories may be viewed as analytic continuations of conventional theories from rea
complex phase space. This paper describes the unusual classical and quantum properties o
theories. [S0031-9007(98)06371-6]
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Several years ago, Bessis conjectured on the basis
numerical studies that the spectrum of the Hamiltonia
H ­ p2 1 x2 1 ix3 is real and positive[1]. To date
there is no rigorous proof of this conjecture. We claim
that the reality of the spectrum ofH is due to P T
symmetry. Note thatH is invariantneitherunder parity
P , whose effect is to make spatial reflections,p !
2p and x ! 2x, nor under time reversalT , which
replacesp ! 2p, x ! 2x, and i ! 2i. However,
P T symmetry is crucial. For example, the Hamiltonia
p2 1 ix3 1 ix has P T symmetry and our numerical
studies indicate that its entire spectrum is positive defini
the Hamiltonianp2 1 ix3 1 x is not P T symmetric,
and the entire spectrum is complex.

The connection betweenP T symmetry and positivity
of spectra is simply illustrated by the harmonic oscillato
H ­ p2 1 x2, whose energy levels areEn ­ 2n 1 1.
Adding ix to H does not breakP T symmetry, and
the spectrum remains positive definite:En ­ 2n 1

5
4 .

Adding2x also does not breakP T symmetry if we define
P as a reflection aboutx ­ 1

2 , x ! 1 2 x, and again
the spectrum remains positive definite:En ­ 2n 1

3
4 . By

contrast, addingix 2 x doesbreakP T symmetry, and
the spectrum is now complex:En ­ 2n 1 1 1

1
2 i.

The Hamiltonian studied by Bessis is just one examp
of a huge and remarkable class of non-Hermitian Ham
tonians whose energy levels are real and positive. T
purpose of this Letter is to understand the fundamen
properties of such a theory by examining the class
quantum-mechanical Hamiltonians

H ­ p2 1 m2x2 2 sixdN sN reald . (1)

As a function ofN and massm2 we find various phases
with transition points at which entirely real spectra beg
to develop complex eigenvalues.

There are many applications of non-HermitianP T -
invariant Hamiltonians in physics. Hamiltonians rendere
non-Hermitian by an imaginary external field have bee
introduced recently to study delocalization transition
in condensed matter systems such as vortex flux li
0031-9007y98y80(24)y5243(4)$15.00
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depinning in type-II superconductors [2], or even to stud
population biology [3]. Here, initially real eigenvalues
bifurcate into the complex plane due to the increasin
external field, indicating the unbinding of vortices o
the growth of populations. We believe that one ca
also induce dynamic delocalization by tuning a physic
parameter (hereN) in a self-interacting theory.

Furthermore, it was found that quantum field theo
ries analogous to the quantum-mechanical theory
Eq. (1) have astonishing properties. The Lagrangi
L ­ s=fd2 1 m2f2 2 gsifdN (N real) possessesP T
invariance, the fundamental symmetry of local sel
interacting scalar quantum field theory [4]. Although th
theory has a non-Hermitian Hamiltonian, the spectru
of the theory appears to be positive definite. Also,L is
explicitly not parity invariant, so the expectation value o
the field kfl is nonzero, even whenN ­ 4 [5]. Thus,
one can calculate directly (using the Schwinger-Dyso
equations, for example [6]) the (real positive) Higg
mass in a renormalizable theory such as2gf4 or igf3

in which symmetry breaking occurs naturally (withou
introducing a symmetry-breaking parameter).

Replacing conventionalgf4 or gf3 theories by2gf4

or igf3 theories has the effect of reversing signs in th
beta function. Thus, theories that are not asymptotica
free become asymptotically free and theories that la
stable critical points develop such points. For examp
P T -symmetric massless electrodynamics has a nontriv
stable critical value of the fine-structure constanta [7].

Supersymmetric non-Hermitian,P T -invariant La-
grangians have been examined [8]. It is found that t
breaking of parity symmetry does not induce a breakin
of the apparently robust global supersymmetry. Th
strong-coupling limit of non-HermitianP T -symmetric
quantum field theories has been investigated [9]; t
correlated limit in which the bare coupling constantsg
and2m2 both tend to infinity with the renormalized mas
M held fixed and finite is dominated by solitons. (I
parity-symmetric theories the corresponding limit, calle
the Ising limit, is dominated by instantons.)
© 1998 The American Physical Society 5243
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To elucidate the origin of such novel features w
examine the elementary Hamiltonian (1) using extensi
numerical and asymptotic studies. As shown in Fig.
when m ­ 0 the spectrum ofH exhibits three distinct
behaviors as a function ofN. WhenN $ 2, the spectrum
is infinite, discrete, and entirely real and positive. (Th
region includes the caseN ­ 4 for which H ­ p2 2 x4;
the spectrum of this Hamiltonian is positive and discre
and kxl fi 0 in the ground state becauseH breaks parity
symmetry.) At the lower boundN ­ 2 of this region
lies the harmonic oscillator. A phase transition occurs
N ­ 2; when1 , N , 2, there are only afinite number
of real positive eigenvalues and an infinite number o
complex conjugate pairs of eigenvalues. In this regio
P T symmetry is spontaneously broken[10]. As N
decreases from 2 to 1, adjacent energy levels merge i
complex conjugate pairs beginning at the high end of th
spectrum; ultimately, the only remaining real eigenvalu
is the ground-state energy, which diverges asN ! 11

[11]. When N # 1, there are no real eigenvalues. Th
massive casem fi 0 is even more elaborate; there is a
phase transition atN ­ 1 in addition to that atN ­ 2.

The Schrödinger eigenvalue differential equation corr
sponding to the Hamiltonian (1) withm ­ 0 is

2c 00sxd 2 sixdN csxd ­ Ecsxd . (2)

Ordinarily, the boundary conditions that give quantize
energy levelsE arecsxd ! 0 asjxj ! ` on the real axis;
this condition suffices when1 , N , 4. However, for
arbitrary realN we must continue the eigenvalue problem
for (2) into the complex-x plane. Thus, we replace the
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FIG. 1. Energy levels of the HamiltonianH ­ p2 2 sixdN as
a function of the parameterN . There are three regions: When
N $ 2 the spectrum is real and positive. The lower boun
of this region,N ­ 2, corresponds to the harmonic oscillator
whose energy levels areEn ­ 2n 1 1. When 1 , N , 2,
there are a finite number of real positive eigenvalues and
infinite number of complex conjugate pairs of eigenvalue
As N decreases from 2 to 1, the number of real eigenvalu
decreases; whenN # 1.42207, the only real eigenvalue is the
ground-state energy. AsN approaches11, the ground-state
energy diverges. ForN # 1 there are no real eigenvalues.
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real-x axis by a contour in the complex plane along
which the differential equation holds and we impose th
boundary conditions that lead to quantization at the en
points of this contour. (Eigenvalue problems on comple
contours are discussed in Ref. [12].)

The regions in the cut complex-x plane in whichcsxd
vanishes exponentially asjxj ! ` arewedges(see Fig. 2);
these wedges are bounded by theStokes linesof the
differential equation [13]. The center of the wedge, wher
csxd vanishes most rapidly, is called ananti-Stokes line.

There are many wedges in whichcsxd ! 0 as jxj !
`. Thus, there are many eigenvalue problems associa
with a given differential equation [12]. However, we
choose to continue the eigenvalue equation (2) away fro
the conventional harmonic oscillator problem atN ­ 2.
The wave function forN ­ 2 vanishes in wedges of
angular opening1

2 p centered about the negative- and
positive-realx axes. For arbitraryN the anti-Stokes lines
at the centers of the left and right wedges lie at the angl

uleft ­ 2p 1
N 2 2
N 1 2

p

2
and

uright ­ 2
N 2 2
N 1 2

p

2
.

(3)

The opening angle of these wedges isD ­ 2pysN 1 2d.
The differential equation (2) may be integrated on an
path in the complex-x plane so long as the ends of the
path approach complex infinity inside the left wedge an
the right wedge [14]. Note that these wedges contain th
real-x axis when1 , N , 4.

As N increases from 2, the left and right wedges rotat
downward into the complex-x plane and become thinner.
At N ­ `, the differential equation contour runs up and
down the negative imaginary axis and thus there is n
eigenvalue problem at all. Indeed, Fig. 1 shows tha
the eigenvalues all diverge asN ! `. As N decreases
below 2 the wedges become wider and rotate into th
upper-halfx plane. AtN ­ 1 the angular opening of the

Re(x)

Im(x)

FIG. 2. Wedges in the complex-x plane containing the con-
tour on which the eigenvalue problem for the differential equa
tion (2) for N ­ 4.2 is posed. In these wedgescsxd vanishes
exponentially asjxj ! `. The wedges are bounded byStokes
lines of the differential equation. The center of the wedge
wherecsxd vanishes most rapidly, is an anti-Stokes line.
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3 p and the wedges are centered at5

6 p and
1
6 p . Thus, the wedges become contiguous at the positi
imaginary x axis, and the differential equation contou
can be pushed off to infinity. Consequently, there is n
eigenvalue problem whenN ­ 1 and, as we would expect,
the ground-state energy diverges asN ! 11 (see Fig. 1).

To ensure the numerical accuracy of the eigenvalues
Fig. 1, we have solved the differential equation (2) usin
two independent procedures. The most accurate and di
method is to convert the complex differential equation to
system of coupled, real, second-order equations which
solve using the Runge-Kutta method; the convergence
most rapid when we integrate along anti-Stokes lines. W
than patch the two solutions together at the origin. W
have verified those results by diagonalizing a truncat
matrix representation of the Hamiltonian in Eq. (1) i
harmonic oscillator basis functions.

Semiclassical analysis.—Several features of Fig. 1 can
be verified analytically. WhenN $ 2, WKB gives an
excellent approximation to the spectrum. The novelty
this WKB calculation is that it must be performed in th
complex plane. The turning pointsx6 are those roots of
E 1 sixdN ­ 0 thatanalytically continueoff the real axis
asN moves away fromN ­ 2 (the harmonic oscillator):

x2 ­ E1yNeips3y221yNd, x1 ­ E1yN e2ips1y221yNd.
(4)

These turning points lie in the lower-half (upper-half)x
plane in Fig. 2 whenN . 2 sN , 2d.

The leading-order WKB phase-integral quantizatio
condition is sn 1 1y2dp ­

Rx1

x2
dx

p
E 1 sixdN . It is

crucial that this integral follows a path along which th
integral is real. When N . 2, this path lies entirely in
the lower-halfx plane and whenN ­ 2 the path lies on
the real axis. But, whenN , 2 the path is in the upper-
half x plane; it crosses the cut on the positive-imagina
axis and this isnot a continuous path joining the turning
points. Hence, WKB fails whenN , 2.

WhenN $ 2, we deform the phase-integral contour s
that it follows the rays fromx2 to 0 and from 0 tox1:
sn 1 1y2dp ­ 2 sinspyNdE1yN11y2

R1
0 ds

p
1 2 sN . We

then solve forEn:

En ,
∑

Gs3y2 1 1yNd
p

p sn 1 1y2d
sinspyNdGs1 1 1yNd

∏2NyN12

sn ! `d . (5)

We perform a higher-order WKB calculation by replacin
the phase integral by aclosed contourthat encircles the
path in Fig. 2 (see Refs. [10,13]). See Table I.

It is interesting that the spectrum of thejxjN potential is
like that of the2sixdN potential. The leading-order WKB
quantization condition (accurate forN . 0) is like Eq. (5)
except that sinspyNd is absent. However, asN ! `,
the spectrum ofjxjN approaches that of the square-we
potentialfEn ­ sn 1 1d2p2y4g, while the energies of the
2sixdN potential diverge (see Fig. 1).
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TABLE I. Comparison of the exact eigenvalues (obtained
with the Runge-Kutta method) and the WKB result in (5).

N n Eexact EWKB N n Eexact EWKB

3 0 1.1562 1.0942 4 0 1.4771 1.3765
1 4.1092 4.0894 1 6.0033 5.9558
2 7.5621 7.5489 2 11.8023 11.7689
3 11.3143 11.3042 3 18.4590 18.4321
4 15.2916 15.2832

Asymptotic study of the ground-state energy nearN ­
1.—When N ­ 1, the differential equation (2) can be
solved exactly in terms of Airy functions. The anti-Stokes
lines atN ­ 1 lie at 30± and at 150±. We find the solution
that vanishes exponentially along each of these rays a
then rotates back to the real-x axis to obtain

cleft,rightsxd ­ C1,2Ai s7xe6ipy6 1 Ee62ipy3d . (6)

We must patch these solutions together atx ­ 0 accord-
ing to the patching conditiond

dx jcsxdj2jx­0 ­ 0. But for
realE, the Wronskian identity for the Airy function is

d
dx

jAi sxe2ipy6 1 Ee22ipy3dj2
Å
x­0

­ 2
1

2p
, (7)

instead of 0. Hence, there is no real eigenvalue.
Next, we perform an asymptotic analysis forN ­ 1 1

e, 2c 00sxd 2 sixd11ecsxd ­ Ecsxd, and takecsxd ­
y0sxd 1 ey1sxd 1 Ose2d as e ! 01. We assume that
E ! ` ase ! 01, let C2 ­ 1 in Eq. (6), and obtain

y0s0d ­ Ai sEe22ipy3d , eipy6E21y4e2y3E3y2

y2
p

p . (8)

We set y1sxd ­ Qsxdy0sxd in the inhomogeneous
equation 2y00

1 sxd 2 ixy1sxd 2 Ey1sxd ­ ix lnsixdy0sxd
and get

Q0s0d ­
i

y2
0 s0d

Z `

0
dx x lnsixdy2

0 sxd . (9)

ChoosingQs0d ­ 0, we find that the patching condition
at x ­ 0 gives1 ­ 2pej y0s0dj2fQ0s0d 1 Qp0s0dg, where
we have used the zeroth-order result in Eq. (7). Usin
Eqs. (8) and (9) this equation becomes

1 ­
e

p
E

e4y3E3y2

Re

"
i

y2
0s0d

Z `

0
dx x lnsixdy2

0 sxd

#
. (10)

Sincey0sxd decays rapidly asx increases, the integral in
Eq. (10) is dominated by contributions near 0. Asymp
totic analysis of this integral gives an implicit equation
for E as a function ofe (see Table II):

1 , ee4y3E3y2

E23y2f
p

3 lns2
p

E d 1 p

2 s1 2 gd
p

3 gy8 . (11)
Behavior nearN ­ 2.—The most interesting aspect

of Fig. 1 is the transition that occurs atN ­ 2. To
describe quantitatively the merging of eigenvalues tha
begins whenN , 2 we let N ­ 2 2 e and study the
asymptotic behavior ase ! 01. [A Hermitian perturba-
tion causes adjacent energy levels to repel, but in this ca
5245



VOLUME 80, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 15 JUNE 1998

t-
.
s
e

ts
rt-

i-
tin,
l-

g

).

N.

e

m
e

TABLE II. Comparison of the exact ground-state energyE
nearN ­ 1 and the asymptotic results in Eq. (11). The explic
dependence ofE on e is roughlyE ~ s2 ln ed2y3.

e ­ N 2 1 Eexact Eq. (11)

0.1 1.6837 2.0955
0.01 2.6797 2.9624
0.001 3.4947 3.6723
0.0001 4.1753 4.3013
0.00001 4.7798 4.8776
0.000001 5.3383 5.4158
0.0000001 5.8943 5.9244

the non-Hermitian perturbation of the harmonic oscilla
tor sixd22e , x2 2 ex2fln jxj 1 1

2 ipsgnsxdg causes the
levels to merge.] A complete description of this asym
totic study is given elsewhere [10].

The onset of eigenvalue merging is a phase transiti
that occurs even at theclassicallevel. Consider the clas-
sical equations of motion for a particle of energyE sub-
ject to the complex forces described by the Hamiltonia
(1). For m ­ 0 the trajectoryxstd of the particle obeys
6dxfE 1 sixdN g21y2 ­ 2dt. While E and dt are real,
xstd is a path in the complex plane in Fig. 2; this path te
minates at the classical turning pointsx6 in (4).

WhenN $ 2, the trajectory is an arc joiningx6 in the
lower complex plane. The motion isperiodic; we have a
complex pendulum whose (real) periodT is

T ­ 2E22Ny2N cos
∑

sN 2 2dp
2N

∏
Gs1 1 1yNd

p
p

Gs1y2 1 1yNd
.

(12)

At N ­ 2 there is a global change. ForN , 2 a path
starting at one turning point, sayx1, moves toward but
missesthe turning pointx2. This path spirals outward
crossing from sheet to sheet on the Riemann surface,
eventually veers off to infinity asymptotic to the angl

N
22N p . Hence, the period abruptly becomes infinite. Th
total angular rotation of the spiral is finite for allN fi 2
and asN ! 21, but becomes infinite asN ! 22. The
path passes many turning points as it spirals anticlockw
from x1. [The nth turning point lies at the angle
4n2N12

2N p (x1 corresponds ton ­ 0).] As N approaches
2 from below, when the classical trajectory passes a n
turning point, there corresponds an additional mergi
of the quantum energy levels as shown in Fig. 1. Th
correspondence becomes exact in the limitN ! 22 and
is a manifestation of Ehrenfest’s theorem.

Massive case.—Them fi 0 analog of Fig. 1 exhibits a
new transition atN ­ 1 (see Fig. 3). AsN approaches 1
from above, the energy levels reemerge from the comp
plane in pairs and atN ­ 1 the spectrum is again entirely
real and positive. BelowN ­ 1 the energies once again
disappear in pairs, now including the ground state. A
N ! 0 the infinite real spectrum reappears again. T
massive case is discussed further in Ref. [10].
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FIG. 3. The m fi 0 analog of Fig. 1. Note that transitions
occur atN ­ 2 andN ­ 1.
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