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ABSTRACT: We investigate the existence of holomorphic Hartree−Fock
solutions using a revised SCF algorithm. We use this algorithm to study the
Hartree−Fock solutions for H2 and H4

2+ and report the emergence of
holomorphic solutions at points of symmetry breaking. Finally, we find these
holomorphic solutions for H4 and use them as a basis for Non-Orthogonal
Configuration Interaction at a range of rectangular geometries and show them
to produce energies in good agreement with Full Configuration Interaction.

1. INTRODUCTION

The Hartree−Fock (HF) approximation provides the bedrock
of modern wave function based methods in Quantum
Chemistry. Representing the wave function as a single Slater
Determinant constructed from the product of one electron spin
orbitals, a Self-Consistent Field (SCF) method is used to
minimize the energy with respect to variation in the basis
orbitals, thus solving the nonlinear Roothaan−Hall equa-
tions.1,2 It is a mean-field method whereby the electron−
electron repulsion experienced by one electron is the average of
the repulsion from all other electrons, and hence its solutions
do not describe electron correlation effects. This is readily
observed when studying the Restricted HF solution to the
ground state of H2 which does not produce the correct
behavior at dissociation. On the simplest level such behavior at
dissociation may be corrected by using an unrestricted
Hartree−Fock (UHF) method, thus allowing the spatial parts
of the α orbitals to differ to that of the β orbitals. Beyond this,
the solutions of the Hartree−Fock method may be used as a
reference for further correlation methods.
Configuration Interaction (CI) methods provide the most

powerful solution to the problem of electron correlation. These
take a linear combination of excited state determinants 
obtained by replacing occupied orbitals with virtual orbitals 
to introduce a term depending on the interelectron distance
into the wave function. The Full CI method uses all possible
replacement determinants and yields the exact solution to the
Hamiltonian in the Hilbert Space of the system. Inevitably this
method is very computationally expensive, scaling factorially
with the number of electrons N,3 and so the use of a limited
number of excited determinants is common in methods such as
CISD (N6) which uses just single and double excitations.

Recently, one of us has studied the existence of multiple
solutions to the SCF equations using a method known as
Metadynamics.4 These solutions have been investigated by a
number of other authors,5−8 and it is thought that they may
provide a good representation of the excited states of
molecules. These low-energy SCF solutions have already
proved applicable for a Restricted Active Space Self-Consistent
Field method,9 and a study on LiF and O3

10 found that they
show similar properties to diabatic molecular states of these
molecules. In particular they do not obey noncrossing rules,
and they maintain a similar electronic structure as the molecular
geometry is varied.
The SCF states are not in general orthogonal but may still be

used in a configuration interaction calculation, and these states
provide a suitable basis for Non-Orthogonal Configuration
Interaction (NOCI) calculations yielding adiabatic states which
show similar properties to the states produced by more
expensive CI methods.10 [If very many SCF solutions (of the
order of the size of the Hilbert space) are used in NOCI, then
there may be linear dependencies. However, we propose to
only use the low-lying SCF states, which are generally
significantly fewer in number than the total size of the Hilbert
space, so we not envisage this to be a problem in practice.] In
particular, these states reproduce avoided crossings,10 conical
intersections, and we believe them to maintain size-consistency
because they are formed from a basis of size-consistent SCF
solutions. By using this basis, NOCI differs from a truncated CI,
whose size-inconsistency derives from the truncation at a fixed
excitation level for a single reference.
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For this method to be useful it is imperative that these SCF
states exist across all geometries of the system, yet the
coalescence and disappearance of states is widely reported for a
number of molecules.11,12 Even for the modest H2, it is found
that the lowest energy UHF state coalesces (Figure 1) with the

lowest energy RHF state at the Coulson-Fischer point and
disappears at shorter bond lengths, preventing the use of these
states as a basis for NOCI calculations. While the total number
of solutions to the SCF equations is unknown (and one
particular study by Fukutome13 predicts it to scale dramatically
with system size), to be useful the number of solutions should
remain constant at all geometries. Using a revised Holomorphic
Hartree−Fock theory14 we have located holomorphic-UHF
solutions (hUHF) for STO-3G H2 at bond lengths shorter than
the Coulson-Fischer point. These correspond exactly to the
UHF solutions where these exist, hence providing a constant
number of solutions at all geometries. We believe this to also be
the case for larger molecules.
To find these hUHF solutions, one must solve a

holomorphized Schrödinger equation whereby the construction
of the density matrix is adjusted by removing all complex
conjugates, producing a non-Hermitian Hamiltonian. Previous
methods using non-Hermitian Hamiltonians have been used to
study metastable electronic states and Feshbach resonan-
ces,15−19 while complex valued orbital coefficients have been
used in conjunction with a standard Hermitian matrix to
explore symmetry broken RHF states.20 Our proposed
holomorphic method combines a non-Hermitian Hamiltonian
with complex orbital coefficients which are solved to find
hUHF solutions. These solutions are a basis for NOCI which
provide a good description of the system ground state.
In this paper, we study the existence and properties of these

hUHF states further and propose a holomorphic SCF algorithm
as a procedure for finding such solutions. This algorithm is used
to find holomorphic solutions for H2 in a minimal STO-3G and
6-31G* basis set, and these are then used as a basis for a NOCI
calculation before being compared to the FCI solutions in the
same basis set. Finally, we apply the method to H4

2+ and H4 in

both a square and rectangular geometry and compare our
results for H4 to those of other correlated methods.

2. HOLOMORPHIC SCF
Under a conventional SCF algorithm, the initial step is to guess
a set of trial coefficients for N orbitals (denoted i, j,...) expressed
in a basis of M functions (denoted μ,ν,...). These are used to
generate a density matrix which is in turn used to form a Fock
matrix. This Fock matrix is diagonalized to produce a new set of
orbital coefficients, and the occupied orbitals are selected.
Using this new set of coefficients, the density matrix may be
regenerated and the process repeated until self-consistency is
reached. The convergence of this process may be accelerated
using Pulay’s Direct Inversion of the Iterative Subspace
(DIIS)21,22 extrapolation, which uses a linear combination of
previously calculated Fock matrices to minimize a DIIS error
vector (defined as F P − P F).
The holomorphic UHF solutions can be found by locating

the stationary points on the holomorphic energy surface. In
practice this is just an adjustment to the Hartree−Fock energy
functional, achieved by removing all complex conjugates.
Defining the holomorphic density matrix as

∑̃ =μν μ νP C C
i

N

i i

we replace the normal density matrices in the conventional
Hartree−Fock energy functional (see e.g. ref 4 for notation)
with density matrices of this form to give a holomorphic energy
functional

∑ ∑ μν στ

μσ ντ

̃ = ̃ + ̃ | ̃

− | ̃ ̃ + ̃ ̃
μν

μν
μν

μνστ

μν στ

α μνα στ β μνβ στ

E P h P P

P P P P

1
2

[ ( )

( )( )]

Throughout the holomorphic SCF procedure, we have
normalized the orbitals using a method which also removes the
complex conjugate and require that for each orbital i

∑= ×
μ

μ μC C1
M

i i

Removal of these complex conjugates causes the functional to
become a polynomial in the holomorphic density matrix.14

Taking inspiration from the single variable case,14 where the
Fundamental Theorem of Algrebra guarantees that there exists
a constant number of solutions at all geometries, we have
investigated whether the number of solutions also remains
constant in this holomorphic generalization of Hartree−Fock
theory.
When using the holomorphic energy functional, the

holomorphic density and Fock matrices are no longer
Hermitian but instead complex symmetric allowing the Fock
matrix eigenvalues to become complex, and thus selection of
new occupied orbitals may no longer be made using the Aufbau
principle. Instead we use the Maximum Overlap Method
developed by Gill et al.,6 selecting the new orbitals as the ones
with the greatest projection into the space spanned by the
previous set. This also makes it much easier to follow excited
state solutions across geometries. Being complex symmetric
matrices, the left and right eigenvectors are the same so we
arbitrarily choose to use the right eigenvectors.23

Figure 1. Lowest energy RHF and UHF solutions for H2 using a STO-
3G basis set are plotted, and the disappearance of the UHF solutions
may be observed at around 1.2 Å. This point is known as the Coulson-
Fischer point. These states are used as a basis for NOCI, and a
discontinuity in the ground state NOCI energy at the Coulson-Fischer
point results from the disappearance of the UHF.
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In summary, our proposed holomorphic SCF algorithm
proceeds as follows:
1. Begin with a (possibly complex) guess for coefficients Ci

μ.
2. Form the one-particle holomorphic density matrix P̃μν =

∑i
NCi

μCi
ν.

3. Generate the α and β Fock matrices

∑ μν στ μσ ντ̃ = + ̃ | − ̃ |μν
α

μν
στ

στ α
στF h P P[ ( ) ( )]

N

∑ μν στ μσ ντ̃ = + ̃ | − ̃ |μν
β

μν
στ

στ β
στF h P P[ ( ) ( )]

N

4. Generate new orbitals from the right eigenvectors of the
Fock matrix.
5. Form the holomorphized overlap matrix of old and new

orbitals.

∑̃ =
μ

μ μO C Cij

M

i j
old new

This overlap matrix is used to select the new orbitals through
the Maximum Overlap Method.
6. Repeat until self-consistency is reached.
We try this algorithm with a large number of different initial

guess sampled randomly to find as many stationary points as
possible. Once convergence has been reached, the true energy
of the holomorphic solutions may be found by orthonormaliz-
ing the orbitals and then using the normal energy functional;
these states may then be used alongside standard RHF and
UHF solutions as a basis for configuration interaction methods.
This step appears to be a principal difference to the non-
Hermitian SCF methods proposed by McCurdy and Head-
Gordon16,17 whereby the “true” exterior scaled wave function is
evaluated using a transformed variable. Since the known RHF
and normal UHF states are also stationary points on the
holomorphic potential energy surface, they are also found by
the holomorphic SCF algorithm and included in the CI.

3. COMPUTATIONAL DETAILS

Throughout the computational work, the necessary integrals
were generated using a modified version of Q-Chem 4.3,24 and

the SCF algorithm was implemented with additional processing
using SciPy.25 All figures were plotted with matplotlib.26

4. HOLOMORPHIC SOLUTIONS TO H2

The use of excited SCF solutions as a basis for configuration
interaction calculations is not possible even for H2. Breakdown
of the RHF solution to yield a symmetry broken UHF solution
(where the α and β electrons have become isolated on separate
atoms) gives the Coulson-Fischer11 point and an inconsistent
number of states across all geometries. Using our holomorphic
SCF algorithm we have found hUHF solutions with complex
coefficients which appear to correspond to these UHF solutions
beyond the Coulson-Fischer point.
Under a STO-3G basis set (corresponding to one atomic

orbital centered on each H atom) we used QChem to generate
the σg and σu symmetry orbitals which were then used as the
basis set for the holomorphic SCF algorithm. We identified two
RHF and two UHF solutions (each UHF solution is doubly
degenerate), and these are shown on the left-hand graph in
Figure 2, the lowest of each matches those found previously in
ref 14. We note the existence of a higher doubly degenerate
RHF state corresponding to H+···H− and H−···H+ at
dissociation; however, we do not search for these as accurate
results may still be achieved with the states plotted in Figure 2.
At the Coulson-Fischer point, a state can be seen rising sharply
out of the UHF solution: this is a pair of holomorphic solutions
which have complex coefficients. While the cusp in the real
energy of the hUHF state may appear distressing, we have
previously found that the holomorphic energy is smooth and
continuous.14 In the Non-Orthogonal CI (NOCI) method, the
six hUHF solutions are used to form a Hamiltonian matrix
which is then diagonalized to produce a new set of new energy
eigenvalues. Significantly, the NOCI solutions under the STO-
3G basis show a smooth ground state energy which
corresponds perfectly with the lowest energy FCI state.
However, this is to be expected as under this minimal basis
set the Hilbert space is completely spanned by the hUHF and
RHF solutions, and thus the NOCI method becomes
equivalent to the FCI.
With this is mind, we repeat the calculations using the larger

6-31G* basis, corresponding to two atomic orbitals centered on
each atom. The set of six hUHF solutions is still used as a basis
for NOCI, but now the Hilbert space contains 16 determinants.

Figure 2. hUHF, NOCI, and FCI states are plotted for H2 in a STO-3G (left) and 6-31G* (right) basis. The holomorphic solutions can be rising out
of the Coulson-Fischer point where the normal UHF solutions disappear. For the STO-3G basis, the NOCI states correspond to the FCI states since
their basis spans the full Hilbert space. For 6-31G*, there is still a very good correspondence, and the observed NOCI states are smooth.
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These results are shown on the right-hand graph of Figure 2.
Despite the hUHF solutions spanning only a subspace of the

Hilbert Space, the NOCI states remain smooth as predicted,14

and each one corresponds closely to one of the FCI states. The
symmetries of these states may be identified (from the bottom)
as 1Σg

+, 3Σu
+, 1Σu

+, and 1Σg
+.

5. SYMMETRY BREAKING IN H4
2+

H2 is not the only molecule which exhibits disappearing UHF
solutions; in fact many diatomics such as F2 also have a
Coulson-Fischer point, and symmetry breaking of states has
been observed in yet more complex molecules. Recently,
Cohen et al.12 have shown that symmetry broken states exist in
the ground RHF state of H4

2+ with a rectangular arrangement.
Using our holomorphic SCF method, we used a STO-3G basis
to investigate this RHF state and its symmetry broken UHF
states, and these are plotted in Figure 4 for a square geometry
and a rectangle with aspect ratio 5:7. Under this model it is
possible to simulate the interaction of two H2

+ molecules with
very large ratios representing essentially noninteracting
molecules and the square representing a strongly interacting
system.
In our results, the ground RHF state can clearly be seen

covering all geometries and giving a poor description of the
system energy in the dissociation limit. For the rectangular
geometry, this RHF state breaks down into two symmetry
broken UHF states at different geometries. The lower energy

UHF state corresponds to a state with the α electron localized
over a pair of hydrogens sharing a short edge of the rectangle
and the β electron on the opposite side, thus maximizing the
bonding interaction between the pairs of H atoms. In contrast,
the higher energy UHF state corresponds to the state with the
α and β electrons localized over a pair of hydrogens sharing a
long edge of the rectangle. At bond lengths shorter than
Coulson-Fischer points, the hUHF states emerge as predicted
to provide a continuation to the normal UHF states. These
show complex coefficients as expected and as seen for the
hUHF states of H2. For the square geometry, both possible
arrangements of the α and β electrons become equivalent, and
thus the states become degenerate. This causes the single 4-fold
degenerate hUHF state shown emerging from the RHF state.
Using these 5 states (1 × RHF and 4 × hUHF) as a basis for

nonorthogonal CI produces the states plotted in blue.
Significantly, these states are smooth and continuous across
all bond-lengths. The ground Full CI state is plotted in green
and shows good correspondence to the lowest energy NOCI
state, which itself is a dramatic improvement on the RHF state.
It is also worth noting that further symmetry breaking of the
UHF solutions was identified at larger bond lengths, and this
may provide an interesting base for further study.

6. HOLOMORPHIC STATES OF H4

We now proceed to examine the SCF solutions of four
interacting H atoms in the arrangement depicted by Figure 3.
This model has been used repeatedly to assess the performance
of Coupled-Cluster and other methods27−29 since at large θ the
model resembles well separated H2 units, where the multi-
reference character of the wave function increases, while at 90°
the four atoms form a square and the solutions become
degenerate. The authors of such studies have repeatedly found
what they refer to as a cusp in the RHF energy at 90° which
then produces subsequent cusps in the Coupled-Cluster
energies generated using this RHF reference.
We have replicated the calculations carried out by Scuseria et

al.28 for this system at R = 1.70 Å but using a STO-3G basis
instead of Dunning’s DZP basis set, and we plot the two lowest
energy RHF states along with their corresponding CCSD
energies and the FCI energy in Figure 5. In the Scuseria study,
only the lowest energy RHF state at each geometry has been

Figure 3. In this model, the size of the rectangle is dictated by the
parameter R while θ quantifies the degree of asymmetry.

Figure 4. hUHF and NOCI states are plotted along with the ground FCI state for H4
2+ using a STO-3G basis for a square (left) and rectangular

(right) geometry with aspect ratio 5:7. Two hUHF states can be seen for the rectangular geometry, both doubly degenerate and corresponding to the
expected UHF state beyond the Coulson-Fischer point. In the square geometry these two states become degenerate to give a single symmetry
broken state with 4-fold degeneracy.
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used as the reference for the CCSD calculation, ignoring any
higher energy solutions. It appears obvious to us that one
cannot ignore these higher energy states since Figure 5
demonstrates that this cusp is by no means an error in the RHF
but is a crossing of two solutions, found to be degenerate at
90°. Furthermore, it is clear that the subsequent cusp observed
in the CCSD calculation is a crossing of two states in an
analogous manner to the RHF states. Using these two RHF

states as a basis for our Non-Orthogonal CI method returns a
smooth curve without any cusp. We note that though the shape
models the FCI curve well, the energy of this NOCI solution is
significantly too high, indicating that the large contribution due
to dynamical correlation is absent. Using our holomorphic SCF
algorithm we identified a further 16 hUHF states of similar or
lower energy to these RHF states, and these are plotted along
the θ = 90° cross-section of the potential energy surface in
Figure 6. Again we observe the emergence of a holomorphic
state with complex coefficients and the same degeneracy at the
coalescence point of a UHF state with an RHF state, conserving
the total number of states. We apply the NOCI method to the
basis set formed from the 18 RHF and hUHF solutions to
generate NOCI solutions plotted in blue. The ground state
NOCI state shows good correspondence to the FCI ground
state solution, despite the NOCI space only containing 18
determinants compared to the 36 determinants of the Hilbert
space. As a control we have compared to the NOCI formed
from the RHF and 17 random complex UHF states (see
supplementary Figure 1) where we have found the minimum
deviation from the FCI to be 0.1 Eh. Further to this, we have
also plotted cross sections through the potential surface
between 70−110° at R = 0.65, 0.85, and 1.70 Å using the
same hUHF states, and these are shown in Figure 7. These
cross sections contain 12, 8, and 0 complex holomorphic states
at 90° respectively. The two lowest NOCI solutions calculated
from this hUHF basis are smooth and correspond well to the
two lowest FCI states, again showing no cusp at 90°. It is also
interesting to note that as one moves away from 90° in the R =
0.85 Å plot, we see the 4-fold degenerate UHF turn
holomorphic, while in the R = 0.65 Å we see the 2-fold

Figure 5. Lowest energy RHF (red and blue) solutions for H4 in a
STO-3G basis are plotted at R = 1.7 Å and show clearly that the RHF
cusp observed is a crossing of the two states, giving 2-fold degeneracy
at 90°. A NOCI with just these two states recovers a smooth lower
(green) and upper (not plotted) state. The corresponding CCSD
states (magenta and cyan) are also plotted and also show a crossing at
this point.

Figure 6. 18 hUHF states found for square H4 in a STO-3G basis are plotted in red and used as a basis for generating the NOCI states (blue) for
which the ground state corresponds well with the ground FCI state (green). The degeneracy of the hUHF states at R = 1.7 Å from bottom to top are
2, 4, 8, 2, and 2.
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degenerate UHF state also yield a holomorphic state. Overall,
each hUHF solution coalesces with an RHF solution at some
point on this potential energy surface. In future studies we hope
to map these coalescence points across the potential energy
surface.

7. CONCLUSION

In this study we have demonstrated that using a matrix-driven
holomorphic SCF algorithm, it is possible to locate
holomorphic-UHF solutions. These hUHF solutions form an
extension to the conventional UHF solutions where such states
coalesce with an RHF state and disappear. Despite being
located by finding the stationary states on a holomorphic,
complex-valued potential energy surface, the hUHF states have
real-valued holomorphic energy expectation values, Ẽ, although
we are unsure why this is the case. Furthermore, the hUHF
states provide an excellent basis for Non-Orthogonal CI,
yielding states which provide an excellent representation of the
ground FCI state at a much lower computational cost. Since the
UHF solutions are size extensive, we believe the NOCI states
will also be, and we hope to verify this in the future.
Using this algorithm, we have been able to demonstrate that

the cusps observed in the energy calculations on H4 actually
represent the crossing of two RHF states, and the ground FCI
state may again be well represented using the hUHF states as a
basis for NOCI. In future studies, we hope to explore the

nature of these holomorphic solutions further and look to use
the hUHF solutions as a reference for other correlation
methods such as Coupled-Cluster.
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